
Cúram 8.2.1
Merative ™ Cúram Design System Guide 7.11.2

Note

Before using this information and the product it supports, read the information in Notices on page
53

© Merative US L.P. 2012, 2025

© Merative US L.P. 2012, 2025

Edition

This edition applies to Cúram 8.2.1.

© Merative US L.P. 2018, 2025

© Merative US L.P. 2012, 2025

© Merative US L.P. 2012, 2025

Contents vii

Contents

Note.. iii

Edition... v
1 Cúram Design System.. 9
2 What's new and release notes for Cúram Design System..11
2.1 What's new in the Cúram Design System.. 11

2.2 Cúram Design System release notes.. 11
3 Prerequisites and supported software... 13
4 Installing and getting started with the design system..19
5 Upgrading the design system... 23
6 Developing your web application..25
6.1 Tutorial: Creating a page in your application.. 25

6.2 JavaScript™ development environment...31

6.3 Design system packages.. 31

6.4 Connecting to REST APIs...32
The RESTService utility.. 33
Connecting to REST APIs on Tomcat.. 36
Authenticating against REST APIs..37

7 Deploying your web application to a web server.. 39

7.1 Install and configure IBM® HTTP Server with WebSphere® Application Server......................39

Generating an IBM® HTTP Server plug-in configuration.. 40

Configuring the IBM® HTTP Server plug-in.. 40

7.2 Install and configure Oracle HTTP Server with Oracle WebLogic Server............................... 41
Installing Oracle HTTP Server and its components..42
Configuring the Oracle HTTP Server plug-in.. 43

7.3 Installing and configuring Apache HTTP Server... 44

7.4 Building your web application for deployment...45

7.5 Deploying your web application to a web server.. 45
8 Troubleshooting and support..49
8.1 Citizen Engagement components and licensing... 49

8.2 Citizen Engagement support strategy... 50

8.3 Examining log files.. 50

Notices.. 53
Privacy policy... 54

Trademarks.. 54

© Merative US L.P. 2012, 2025

Cúram 8.2.1 viii

© Merative US L.P. 2012, 2025

1 Cúram Design System 9

1 Cúram Design System

You can use the design system to develop your own custom web applications in addition to the
standard Cúram web client. The design system provides the foundational packages for building
accessible and responsive web applications. It consists of a React UI component library, React
development resources, and a style guide for creating web applications.

The design system incorporates the US Web Design Standards and also supports additional CSS,
utility classes, and a layout framework to enable teams to quickly build Section 508 compliant,
responsive, and production-ready web applications.

Documentation versions

The online documentation applies only to the most recent version of the design system. To read
the documentation in PDF format for earlier versions, see the Cúram PDF library.

© Merative US L.P. 2012, 2025

https://www.merative.com/support/spm/product-documentation/pdf-library

Cúram 8.2.1 10

© Merative US L.P. 2012, 2025

2 What's new and release notes for Cúram Design System 11

2 What's new and release notes for Cúram Design
System

Read about the what's new and release notes for the Cúram Design System .

2.1 What's new in the Cúram Design System

Read about the enhancements and improvements in the Merative™ Cúram Design System.

7.11.2 (18 December 2025)

No what's new updates in Merative™ Cúram Design System for this release.

2.2 Cúram Design System release notes

Read about enhancements and bug fixes in the Cúram Design System.

For more information about changes that depend on server-side updates, see the release notes
for your specific version of Cúram at https://curam-spm-devops.github.io/wh-support-docs/spm/
overview/.

For more information about compatibility with Cúram versions, see 3 Prerequisites and supported
software on page 13.

7.11.2 (18 December 2025)

Links not distinguishable in High Contrast mode (SPM-149019)

Previously, the items in the “Go to section” dropdown were not clearly distinguishable as links
when in High Contrast mode. With the new update, underlines are now applied in High Contrast
mode, making it easier for users to recognize them as links. (DT037438)

Stuttering during exception or alert announcements (SPM-138251)

Previously, screen readers repeated error message links multiple times, causing a stuttering
experience. Now, the message is read twice as expected: once for the full text and once for the
embedded link. (DT037138)

© Merative US L.P. 2012, 2025

https://curam-spm-devops.github.io/wh-support-docs/spm/overview/
https://curam-spm-devops.github.io/wh-support-docs/spm/overview/

Cúram 8.2.1 12

© Merative US L.P. 2012, 2025

3 Prerequisites and supported software 13

3 Prerequisites and supported software

Before you install or upgrade, review the prerequisites and supported software to ensure
compatibility.

Cúram Platform

Cúram Platform is a prerequisite for developing and deploying your web application.

The Cúram Design System asset is released at more frequent intervals than Cúram and requires
specific Cúram versions to benefit from the most recent server-side enhancements and bug fixes.

Note:

• From Cúram Design System 5.0.0 onwards, new features, server-side enhancements, and
defect fixes are supported only in the most recent Cúram version lines. Security fixes and
defect fixes are supported on Cúram 7.0.10-7.0.11.

• The Cúram Design System 3.x.x version line continues to be supported for security updates
and critical defect fixes only on the older compatible version lines of Cúram, 7.0.10 -7.0.11.

• The Cúram Design System 2.6 version line continues to be supported for security updates
and critical defect fixes only on the older compatible version lines of Cúram, 7.0.4 -7.0.9.

For more information about the support strategy, see 8.2 Citizen Engagement support strategy on
page 50.

Note: From October 2019, new features, and server enhancements and defect fixes, are
delivered only in the most recent version line.

Table 1: Compatibility with Cúram

A list of the asset versions and their compatible Cúram versions.

Asset versions Compatible Cúram versions

7.11.2 • 8.2.1 for all new features, enhancements, and
defect fixes.

• 7.0.10-7.0.11 for security fixes and defect fixes.

7.11.1

7.11.0

7.10.1

7.10.0

7.9.0

• 8.2.0 for all new features, enhancements, and
defect fixes.

• 7.0.10-7.0.11 for security fixes and defect fixes.

© Merative US L.P. 2012, 2025

Cúram 8.2.1 14

Asset versions Compatible Cúram versions

7.8.0

7.7.1

7.7.0

7.6.2

7.6.1

7.6.0

7.5.0

7.4.0

• 8.1.3 for all new features, enhancements, and
defect fixes.

• 7.0.10-7.0.11 for security fixes and defect fixes.

7.3.1

7.3.0

7.2.0

7.1.0

7.0.2

7.0.1

7.0.0

• 8.1.2 for all new features, enhancements, and
defect fixes.

• 7.0.10-7.0.11 for security fixes and defect fixes.

6.3.1

6.3.0

6.2.3

6.2.2

• 8.1.1 for all new features, enhancements, and
defect fixes.

• 7.0.10-7.0.11 for security fixes and defect fixes.

6.2.1

6.2.0

6.1.4

• 8.1.0 for all new features, enhancements, and
defect fixes.

• 7.0.10-7.0.11 for security fixes and defect fixes.

6.1.3

6.1.2

6.1.1

6.1.0

• 8.0.3 for all new features, enhancements, and
defect fixes.

• 7.0.10-7.0.11 for security fixes and defect fixes.

6.0.2

6.0.1

6.0.0

5.3.2

5.3.1

5.3.0

5.2.2

5.2.1

5.2.0

5.1.0

• 8.0.2 for all new features, enhancements, and
defect fixes.

• 7.0.10-7.0.11 for security fixes and defect fixes.

© Merative US L.P. 2012, 2025

3 Prerequisites and supported software 15

Asset versions Compatible Cúram versions

5.0.0 • 8.0.1 for all new features, enhancements, and
defect fixes.

• 7.0.10-7.0.11 for security fixes and defect fixes.

4.1.4

4.1.3

4.1.2

4.1.1

4.1.0

• 8.0.1 for all new features, enhancements, and
defect fixes.

4.0.3

4.0.2

4.0.1

4.0.0

• 8.0.0 for all new features, enhancements, and
defect fixes.

3.0.10

3.0.9

3.0.8

3.0.7

3.0.6

• 7.0.11 iFix 5 for essential maintenance, security
updates and critical defect fixes.

• 7.0.10 iFix 8 for essential maintenance, security
updates and critical defect fixes.

3.0.5

3.0.4

• 7.0.11 iFix 3 for all new features, enhancements,
and defect fixes.

• 7.0.10 iFix 7 for essential maintenance, security
updates and critical defect fixes.

3.0.3 • 7.0.11 iFix 3 for all new features, enhancements,
and defect fixes.

• 7.0.10 iFix 6 for essential maintenance, security
updates and critical defect fixes.

3.0.2 • 7.0.11 iFix 2 for all new features, enhancements,
and defect fixes.

• 7.0.10 iFix 5 for essential maintenance, security
updates and critical defect fixes.

3.0.1

3.0.0

• 7.0.11 iFix 1 for all new features, enhancements,
and defect fixes.

• 7.0.10 iFix 4 essential maintenance, for security
updates and critical defect fixes.

2.9.1

2.9.0

• 7.0.11 for all new features, enhancements, and
defect fixes.

• 7.0.10 iFix 3 for essential maintenance, security
updates and critical defect fixes.

© Merative US L.P. 2012, 2025

Cúram 8.2.1 16

Asset versions Compatible Cúram versions

2.8.6

2.8.5

(Including the 2.8.4 internal release)

2.8.3

2.8.2

2.8.1

2.8.0

2.7.0

• 7.0.10 iFix 3 for all new features, enhancements,
and defect fixes.

Node.js

Node.js is a prerequisite for installing the React application and for developing and deploying
your web application.

Compatible Node.js versions.

Supported software Version Prerequisite
minimum

Operating system restrictions

Node.js 22 LTS (latest)

20 LTS (latest)

20 LTS (latest) No

Note: By default, Node 16 uses Node Package Manager (npm) 8 and Node 18 uses npm 9.
To use either of these configurations, you must specify the npm option legacy-peer-deps
in your project. The way that npm treats peer dependencies changed. The Cúram Universal
Access Responsive Web Application is using the legacy-peer-deps option as a temporary
fix while we work to remove this constraint. For more information about legacy-peer-
deps, see npm Docs. The following steps outline how to configure the legacy-peer-deps
option:

1. Create a .npmrc file at the root of your project.
2. Add the legacy-peer-deps=true content to the file.

Application server, web server, and database

Deploying the web application requires a web server in the Cúram topology. The following
application server, web server, and database combinations are supported for developing and
deploying your custom application.

• IBM® WebSphere® Application Server, IBM® HTTP Server or Apache HTTP Server, and
IBM® Db2®

• IBM® WebSphere® Application Server, IBM® HTTP Server or Apache HTTP Server, and
Oracle Database

© Merative US L.P. 2012, 2025

https://docs.npmjs.com/cli/v7/using-npm/config#legacy-peer-deps

3 Prerequisites and supported software 17

• Oracle WebLogic Server, Oracle HTTP Server or Apache HTTP Server, and Oracle Database

For more information about installing an application server or database for Cúram, see the Server
Developer's Guide.

HTTP servers

These HTTP servers are supported for deployment.

Compatible HTTP server versions

Supported software Version Prerequisite minimum Operating
system
restrictions

9.0 9.0.0.5 NoIBM® HTTP Server

8.5.5 8.5.5.9 No

Oracle HTTP Server 12.2.1.3.0 and future
fix packs

12.2.1.3.190808 No

Apache HTTP Server 2.4 and future
patches

2.4 No

Web browsers

The following browsers are supported for developing and deploying your web application.

New versions of Chrome, Firefox, Edge, and Safari are released more frequently than Internet
Explorer, and updates are installed automatically by default for these browsers. Design system
releases are tested on the latest versions of the browsers that are available at the start of Merative
™'s development cycle;

Note: Only stable Chrome releases are tested.

If a browser is tested and no issues are found, Merative ™ certifies that version. The prerequisites
advise the version that is certified at each new product release. If Merative ™ cannot certify a
version, you might need to revert to a previous, fully certified version. While Merative ™ supports
customers with newer versions of the browsers than the last certified version, customers must
know that those versions of the browsers are not fully tested.

Supported software Version Prerequisite
minimum

Operating system restrictions

Apple Safari 14 and future fix
packs

13 No

Google Chrome 91 and future fix
packs

80 No

Microsoft™ Edge 91 and future fix
packs

44 No

Mozilla Firefox 89 and future fix
packs

73 No

© Merative US L.P. 2012, 2025

Cúram 8.2.1 18

Accessibility

This accessibility software is certified.

Supported
software

Version Prerequisite
minimum

Operating system
restrictions

Browser

Freedom Scientific
JAWS screen
reader

2023 and
future fix packs

2023 No Microsoft Edge

Apple VoiceOver Any version
and future fix
packs

Any version Any version Safari

Note: The combination of Microsoft Edge and JAWS 2023 is the only certified screen reader
and browser combination.

Previous versions

To see the prerequisites and supported software for previous versions, see the Cúram PDF library.

© Merative US L.P. 2012, 2025

http://www-01.ibm.com/support/docview.wss?uid=swg27041327

4 Installing and getting started with the design system 19

4 Installing and getting started with the design system

To get started quickly, install Node.js, install a React application, install the Social Program
Management Design System Node packages, and complete the short tutorial. When it is time to
develop and test your REST APIs, install the Cúram Java Application Development Environment
(ADE).

About this task

You need a React application into which you can install the Social Program Management Design
System node packages. You can use any React application. However, the Facebook create-
react-app contains some useful tools that simplify getting started with React development.

The Social Program Management Design System consists of the following Node packages:

• @spm/core

• @spm/core-ui

• @spm/core-ui-locales

• @spm/intelligent-evidence-gathering

• @spm-intelligent-evidence-gathering-locales

• @govhhs/govhhs-design-system-core

• @govhhs/govhhs-design-system-react

• @spm/eslint-config

• @spm/test-framework

• @spm/web-dev-accelerator-scripts

© Merative US L.P. 2012, 2025

Cúram 8.2.1 20

• @spm/web-dev-accelerator

Attention: When working with npm packages, it is important that you familiarize yourself
with the npm ecosystem and how package dependencies work, so that you can adopt a suitable
security strategy for your project needs.

Procedure

1. Download and install Node.js from https://nodejs.org. The installation includes the npm (Node
package manager), which you can use to install your Node packages.
For more information about Node.js, see this Node.js developerWorks article.

2. Create your React application by using Facebook's create-react-app:
a) From the directory where you want to create your React application, enter the following

command, where my-app is the name that you want to call your application. A my-app
directory is created to contain the application files.

npx create-react-app my-app

For more information about create-react-app, see the create-react-app user guide.
b) You now have a basic React application in the my-app directory. You can run the

application by entering the following commands:

cd my-app
npm start

If the local host does not start automatically, browse to http://localhost:3000/ to see the
running application.

3. Download the Cúram Design System Node packages. Open Cúram Support, under
Software Downloads, select Go to Downloads, and follow the instructions to download the
SPM_DS_<version>.zip archive file. Then extract the packages in the archive file to any
directory.

4. Install and configure the Cúram Design System Node packages.
a) From your my-app React application directory, enter the following command for each

design system package to install the packages.

npm install <path>/<package-name>-<version>.tgz

Where <path> is the download path, <package-name> is a downloaded package, and
<version> is the package version.

Note: Ignore any Node package dependency warnings for now. If needed, you can
resolve them later.

© Merative US L.P. 2012, 2025

https://nodejs.org
https://developer.ibm.com/node/2018/04/25/going-open-deprecating-the-ibm-sdk-for-node-js-in-favour-of-the-community-builds/
https://github.com/facebook/create-react-app/blob/main/packages/cra-template/template/README.md
http://localhost:3000/
https://www.merative.com/support/spm

4 Installing and getting started with the design system 21

b) To import the minified JavaScript and CSS files for the design system components, edit
the my-app\src\App.js file and insert the following lines:

import '@govhhs/govhhs-design-system-core/dist/js/@govhhs/govhhs-wds.min';
import '@govhhs/govhhs-design-system-core/dist/css/govhhs-wds.min.css';

5. Now, you can do the short tutorial to get started, or you can install the Cúram Java ADE that
you need to develop and test your REST APIs, and do the tutorial later.
a) Complete the short tutorial to get started, see 6.1 Tutorial: Creating a page in your

application on page 25.
b) Install the Cúram Java ADE, see the Server Developer's Guide.

© Merative US L.P. 2012, 2025

Cúram 8.2.1 22

© Merative US L.P. 2012, 2025

5 Upgrading the design system 23

5 Upgrading the design system

The design system is released on a frequent schedule. To upgrade to a new version, replace the
Social Program Management Design System Node packages in your React application with the
newer versions. Only the most recent version and two previous versions are supported. Ensure
that you are reading the documentation for your version of the design system.

Procedure

1. Download the Cúram Design System Node packages. Open Cúram Support, under
Software Downloads, select Go to Downloads, and follow the instructions to download the
SPM_DS_<version>.zip archive file. Then extract the packages in the archive file to any
directory.

2. Install the Cúram Design System Node packages. From your React application directory,
enter the following command for each design system package to install the packages.
In the command, <path> is the download path, <package-name> is a downloaded
package, and <version> is the package version.

Note: Ignore any Node package dependency warnings for now. If needed, you can resolve
them later.

npm install <path>/<package-name>-<version>.tgz

3. Run the following command to install the package dependencies.

npm install

4. Complete any upgrade steps in the 2.2 Cúram Design System release notes on page 11.

© Merative US L.P. 2012, 2025

https://www.merative.com/support/spm

Cúram 8.2.1 24

© Merative US L.P. 2012, 2025

6 Developing your web application 25

6 Developing your web application

Create your web application with the help of the development resources that are included in the
Cúram Design System.

6.1 Tutorial: Creating a page in your application

In this short tutorial, you update the create-react-app App.js file in your React application to
build an application page with the Social Program Management Design System components.
For more information about how to design and use Social Program Management Design System
components, see the Storybook documentation in @govhhs/govhhs-design-system-
react/doc/index.html.

Procedure

1. Let's run the application. While it is running, you can see your changes as you make them.
Run the application by entering the following commands:

cd my-app
npm start

Browse to http://localhost:3000/ to see the running application.
2. Edit my-app/src/App.js.
First, let's add a header, which includes a nav bar, logo, and the agency name. For the header to
load, we must import four components.

• Header
• Primary Navigation
• NavigationLink
• Link
3. We need to import the image for the header logo, so add the following line after the

JavaScript and CSS imports lines we added during installation.

import logo from '@govhhs/govhhs-design-system-core/dist/img/logo-mark.svg';

If a duplicate import logo statement is already included in the App.js file, delete it.
4. To make the components available for us to use, insert the following component import

statement after the logo import statement.

import {
 Header,
 PrimaryNavigation,
 SecondaryNavigation,
 NavigationLink,
 Link,
 HeaderOverflowMenu,
 OverflowMenuOption
} from "@govhhs/govhhs-design-system-react"

© Merative US L.P. 2012, 2025

http://localhost:3000/

Cúram 8.2.1 26

5. Replace the <div> code inside the create-react-app render function with the following code.

<div>
 <Header
 title="Agency name"
 logo={}
 >
 <PrimaryNavigation>
 <NavigationLink
 title="Section One"
 id="basic-nav-section-one"
 >
 <Link>
 Sub-Link One
 </Link>
 <Link>
 Sub-Link Two
 </Link>
 <Link>
 Sub-Link Three
 </Link>
 </NavigationLink>
 <NavigationLink
 title="Section Two"
 id="basic-nav-section-two"
 >
 <Link>
 Sub-Link One
 </Link>
 <Link>
 Sub-Link Two
 </Link>
 <Link>
 Sub-Link Three
 </Link>
 </NavigationLink>
 <NavigationLink
 title="Link Three"
 id="basic-nav-section-three"
 />
 <NavigationLink
 title="Link Four"
 id="basic-nav-section-four"
 />
 </PrimaryNavigation>
 </Header>
 </div>

Add the Hero component.
6. In the component import statement, insert Hero into the list of imported components.

import {
 Hero,
 Header,
 PrimaryNavigation,
 SecondaryNavigation,
 SecondaryNavigationList,
 NavigationLink,
 Link,
 HeaderOverflowMenu,
 OverflowMenuOption
} from "@govhhs/govhhs-design-system-react"

7. When you add more than one component in the return() function, the JSX code must be
wrapped in a surrounding <div> element. We want the Hero component to load underneath

© Merative US L.P. 2012, 2025

6 Developing your web application 27

the header, so insert the <Hero /> tag after the </Header> tag in the return() function.
The return() function now has the following structure:

<div>
 <Header>
 ...
 <NavigationLink
 title="Link Four"
 id="basic-nav-section-four"
 />
 </PrimaryNavigation>
 </Header>
 <Hero />
 </div>

The hero component is displayed in the running application.
Now let's add some cards to our page. Cards are a great way to provide an entry point to more
details, or access to actions on card content.

We must add some layout components to our list of imports:

• Grid
• Column
• Section

And add the card components to our list of imports:

• Card
• CardHeader
• CardBody
• CardFooter
8. Update your component import statement by inserting the following card components:

import {

 Card,
 CardHeader,
 CardBody,
 CardFooter,
 Grid,
 Column,
 Section,
} from "@govhhs/govhhs-design-system-react"

© Merative US L.P. 2012, 2025

Cúram 8.2.1 28

9. To display the cards underneath the </Hero> component, append the following JSX code to
lay three link cards out in a grid:

 <Section>
 <Grid>
 <h2>Card Actions</h2>
 <p>Before using cards in your project, have a look at the guidance in
 Storybook on how to use cards correctly.</p>
 <Column width="1/3">
 <Card href="/404" className="wds-u-mr--small wds-u-mt--small">
 <CardHeader title="Card header" highlight/>
 <CardBody>
 <p>
 Neque porro quisquam est qui dolorem ipsum quia dolor sit
 amet, consectetur, adipisci velit.
 </p>
 </CardBody>
 <CardFooter>
 </CardFooter>
 </Card>
 </Column>
 <Column width="1/3">
 <Card href="" className="wds-u-mt--small">
 <CardHeader title="Card header" highlight/>
 <CardBody>
 <p>
 Neque porro quisquam est qui dolorem ipsum quia dolor sit
 amet, consectetur, adipisci velit.
 </p>
 </CardBody>
 <CardFooter>
 </CardFooter>
 </Card>
 </Column>
 <Column width="1/3">
 <Card href="" className="wds-u-mt--small">
 <CardHeader title="Card header" highlight/>
 <CardBody>
 <p>
 Neque porro quisquam est qui dolorem ipsum quia dolor sit
 amet, consectetur, adipisci velit.
 </p>
 </CardBody>
 <CardFooter>
 </CardFooter>
 </Card>
 </Column>
 </Grid>
 </Section>

The cards are displayed in the running application.
Next, add a section that contains a form, an image, and a content area. For this section, we need
to add some more components to our component import statement. Hopefully you're getting the
hang of this!

• FieldSet
• TextInput
• Content
• TextArea
• Button
• Image

© Merative US L.P. 2012, 2025

6 Developing your web application 29

10. Add the following items to your component import statement:

import {

 FieldSet,
 TextInput,
 Content,
 TextArea,
 Button,
 Image,
 Form
} from '@govhhs/govhhs-design-system-react';

11. Because we are using an image in this part of the page, we need to import that too. Add the
following line before our component import statement:

import img from '@govhhs/govhhs-design-system-core/dist/img/hero-480.jpg';

12. For the last step, to append the JSX code to our return() function, add the following code
after the last </Section> tag:

<Section className="wds-c-section--light">
 <Grid>
 <Column width="1/2">
 <Content>
 <h3 className="wds-u-mt--small">About</h3>
 <p>All design system components are fully responsive and will work
 on mobile, tablet and desktop browsers.
 Try it out by resizing the browser window.</p>
 <Image
 src={img}
 alt="Error loading Image"
 fallback={}
 />
 </Content>
 </Column>
 <Column width="1/2">
 <h3 className="wds-u-mt--small">Form title</h3>
 <form>
 <FieldSet>
 <TextInput
 label="Text input"
 value="Input text"
 />
 <TextInput
 label="Text input"
 value="Input text"
 />
 <TextArea label="Text area label"></TextArea>
 <Button category="primary" style={{float: "right"}}>Sign up</
Button>
 </FieldSet>
 </form>
 </Column>
 </Grid>
 </Section>

Results
That's it, your page is now complete, you have created a fully responsive page in very little time!
Hopefully you enjoyed this tutorial and see the benefits of using our design system.

© Merative US L.P. 2012, 2025

Cúram 8.2.1 30

Example

Here's the final App.js file for reference:

import React, { Component } from 'react';
import './App.css';
import '@govhhs/govhhs-design-system-core/dist/js/@govhhs/govhhs-wds.min';
import '@govhhs/govhhs-design-system-core/dist/css/govhhs-wds.min.css';
import logo from '@govhhs/govhhs-design-system-core/dist/img/logo-mark.svg';
import img from '@govhhs/govhhs-design-system-core/dist/img/hero-480.jpg';
import {
 Hero,
 Header,
 PrimaryNavigation,
 SecondaryNavigation,
 SecondaryNavigationList,
 NavigationLink,
 Link,
 HeaderOverflowMenu,
 OverflowMenuOption,
 Card,
 CardHeader,
 CardBody,
 CardFooter,
 Grid,
 Column,
 Section,
 FieldSet,
 TextInput,
 Content,
 TextArea,
 Button,
 Image,
 Form
} from "@govhhs/govhhs-design-system-react";

class App extends Component {
 render() {
 return (
 <div>
 <Header
 title="Agency name"
 logo={}
 >
 <PrimaryNavigation>
 <NavigationLink
 title="Section One"
 id="basic-nav-section-one"
 >
 <Link>
 Sub-Link One
 </Link>
 <Link>
 Sub-Link Two
 </Link>
 <Link>
 Sub-Link Three
 </Link>
 </NavigationLink>
 <NavigationLink
 title="Section Two"
 id="basic-nav-section-two"
 >
 <Link>
 Sub-Link One
 </Link>
 <Link>
 Sub-Link Two
 </Link>
 <Link>
 Sub-Link Three
 </Link>
 </NavigationLink>
 <NavigationLink
 title="Link Three"
 id="basic-nav-section-three"
 />
 <NavigationLink
 title="Link Four"
 id="basic-nav-section-four"
 />
 </PrimaryNavigation>
 </Header>
 <Hero />
 <Section>
 <Grid>
 <h2>Card Actions</h2>
 <p>Before using cards in your project, have a look at the guidance in
 Storybook on how to use cards correctly.</p>
 <Column width="1/3">
 <Card href="/404" className="wds-u-mr--small wds-u-mt--small">
 <CardHeader title="Card header" highlight/>
 <CardBody>
 <p>
 Neque porro quisquam est qui dolorem ipsum quia dolor sit amet,
 consectetur, adipisci velit.
 </p>
 </CardBody>
 <CardFooter>
 </CardFooter>
 </Card>
 </Column>
 <Column width="1/3">
 <Card href="" className="wds-u-mt--small">
 <CardHeader title="Card header" highlight/>
 <CardBody>
 <p>
 Neque porro quisquam est qui dolorem ipsum quia dolor sit amet,
 consectetur, adipisci velit.
 </p>
 </CardBody>
 <CardFooter>
 </CardFooter>
 </Card>
 </Column>
 <Column width="1/3">
 <Card href="" className="wds-u-mt--small">
 <CardHeader title="Card header" highlight/>
 <CardBody>
 <p>
 Neque porro quisquam est qui dolorem ipsum quia dolor sit amet,
 consectetur, adipisci velit.
 </p>
 </CardBody>
 <CardFooter>
 </CardFooter>
 </Card>
 </Column>
 </Grid>
 </Section>
 <Section className="wds-c-section--light">
 <Grid>
 <Column width="1/2">
 <Content>
 <h3 className="wds-u-mt--small">About</h3>
 <p>All design system components are fully responsive and will work on
 mobile, tablet and desktop browsers.
 Try it out by resizing the browser window.</p>
 <Image
 src={img}
 alt="Error loading Image"
 fallback={}
 />
 </Content>
 </Column>
 <Column width="1/2">
 <h3 className="wds-u-mt--small">Form title</h3>
 <form>
 <FieldSet>
 <TextInput
 label="Text input"
 value="Input text"
 />
 <TextInput
 label="Text input"
 value="Input text"
 />
 <TextArea label="Text area label"></TextArea>
 <Button category="primary" style={{float: "right"}}>Sign up</
Button>
 </FieldSet>
 </form>
 </Column>
 </Grid>
 </Section>
 </div>
);
 }
}

export default App;

© Merative US L.P. 2012, 2025

6 Developing your web application 31

6.2 JavaScript™ development environment

You can use any JavaScript™ development environment to develop your application, for example,
Microsoft™ Visual Studio Code, Atom, or Sublime. Choose the tools that suits you best.

The Cúram Design System does not depend on any specific tools, so you can choose your
own environment. However, Microsoft™ Visual Studio Code supports many plug ins that make
development faster and easier, for example:

• Linting tools (ESLint)
• Code formatters (Prettier)
• Debugging tools (Debugger for Chrome)
• Documentation tools (JSDoc)

Merative ™ does not own, develop, or support any of the tools.

6.3 Design system packages

Use the design system packages to help you to develop and test your web client.

govhhs-design-system-core

This package contains a style guide, a library of user interface components, and front-end
development resources that you can use to create Section 508-compliant, responsive, consistent
web applications. The design system provides CSS, utility classes, and a grid framework so that
you can quickly build accessible, responsive, production-ready websites.

govhhs-design-system-react

This package contains a React component library in Storybook to help you to build your
application. It provides a collection of React components that align with the Cúram Design
System.

For more information about the design guidelines, utility classes, and React components, see
govhhs/govhhs-design-system-react/doc.

core

This package provides JavaScript™ utilities to help you develop your application. For example,
use the RESTService utility to connect to a Cúram server-side REST API. Use IntlUtils to
format numbers and dates for globalization.

For more information about the core package utilities, see the JSDoc API documentation in
spm/core/doc.

core-ui

This package provides common React UI components to help you develop your application. For
example, use the AppSpinner component to display a spinning animation while a page loads, or
use the Toaster component to display notifications to the user.

© Merative US L.P. 2012, 2025

Cúram 8.2.1 32

For more information about the core-ui components, see the JSDoc API documentation in
spm/core-ui/doc.

core-ui-locales

This package provides translated artifacts for the core-ui components.

intelligent-evidence-gathering

This package enables IEG scripts that are configured in the Cúram application to run in your
application. An API is provided to call the IEG scripts.

For more information, see the API documentation in spm/intelligent-evidence-
gathering/doc.

intelligent-evidence-gathering-locales

This package contains translated artifacts for the intelligent-evidence-gathering
package.

spm-web-dev-accelerator

This package contains the Web Development Accelerator rapid feature development tool, which
generates Redux modules to handle the communication between your application and Cúram
REST APIs.

spm-web-dev-accelerator-scripts

This package contains a Swagger parser to retrieve information from Cúram REST APIs, and
scripts to generate the features and modules code from configuration information in the spm-
web-dev-accelerator package.

spm-test-framework

This package contains a number of reusable files to help you to set up a test environment for
testing with Test Cafe, Jest, and Enzyme. You can use the provided helper files to help you to
develop and write end-to-end tests, unit tests, or snapshot tests for your project.

spm-eslint-config

This package contains an ESLint configuration with predefined coding style rules and an
EditorConfig configuration file.

6.4 Connecting to REST APIs

You can connect your web application to REST APIs, such as the Cúram REST APIs.

For more information about customizing Cúram REST APIs, see the Cúram accelerators guide.

© Merative US L.P. 2012, 2025

6 Developing your web application 33

The RESTService utility

The @spm/core package provides the RESTService utility, which you can use to connect your
application to a REST API. The RESTService utility provides important functions for securing
and connecting to Cúram REST APIs, such as CSRF protection and SSO support. You can fetch
resources with alternatives such as Fetch API, SuperAgent, or Axis, but you must consider
implementing functionality that is handled by the RESTService utility, like CSRF protection and
SSO support.

The RESTService utility supports the GET, POST, and DELETE HTTP methods through the
following JavaScript methods:

• RESTService.get(url, callback, params)

• RESTService.post(url, data, callback)

• RESTService.del(url, callback)

See the full RESTService class documentation in the doc folder in the @spm/core package.

The RESTService utility hides details of calls, such as passing credentials, language, and errors.
The callback that is passed to the GET, POST, or DELETE methods is started after the API calls
return. API calls are asynchronous, so write your code to expect and handle a delay in receiving a
response.

The RESTService utility provides functions during communications for authentication, handling
responses, and user language.

Authentication

Authentication of the user is handled transparently by the RESTService utility. After a
user is authenticated, the REST APIs automatically send the needed 'credentials', that is, the
authentication cookies, with each request. For information about how authentication is handled
for REST, see the Universal Access Responsive Web Application Guide.

If a user's session is invalidated before a new request is made to a REST API, then the '401
unauthorized' response is returned by the server. The RESTService utility relays the response to
the callback function passed by the caller.

Handling responses

The RESTService utility formats the response from the server to ensure that callbacks receive
the response in a consistent manner.

Each GET, POST, and DELETE method accepts a callback function from the caller. When called
by the RESTService utility, the callback function receives a Boolean value that indicates the
success or failure of the API call and the response. The callback function can then deal with the
result. For example, a failure can be used to trigger your code to throw an error with the response
data that can be used to trigger an error boundary. For more information about the callback
function parameters, see the API documentation for the RESTService utility.

User Language

The 'Accept-Language' HTTP header is automatically set by the RESTService utility based on
the user's selected language, which the user can select with the language picker in the application.

© Merative US L.P. 2012, 2025

Cúram 8.2.1 34

This approach lets the server respond in the correct locale where locale sensitive information is
being handled on the server.

The locale that is passed in the header is set in the transaction that is initiated by that REST
request, and is used for the duration of that transaction. For more on transactions, see the Server
Developer's Guide.

Cross-Site Request Forgery (CSRF)

The RESTService utility manages REST API CSRF protection for Universal Access that
includes:

• Managing conditions on when to fetch a CSRF token.
• Pausing requests to fetch the CSRF token from the SPM server when needed.
• Storing the CSRF token in the application.
• Appending the CSRF token to the HTTP request header when appropriate.

Handling timeouts

The RESTService utility can manage unresponsive calls to the server. You can set environment
variables in the .env files to set thresholds for timeouts.

• REACT_APP_RESPONSE_TIMEOUT=10 Wait 10 seconds for the server to start sending.
• REACT_APP_RESPONSE_DEADLINE=60 but allow 1 minute for the file to finish loading.

Simulating slow responses

During development, it is important to test that your application continues to operate in an
acceptable way even when network responses are slow. You can simulate a slow network
connection by setting a property in the .env.development file in the root of your project.

For example, set REACT_APP_DELAY_REST_API=2 to delay the response from all GET requests
for 2 seconds. The value can be set to any positive integer to adjust the delay.

Communicating with multiple API servers
Cúram Design System is configured to connect and communicate with a single Cúram server.
However, it is possible to communicate with multiple API servers through the RestService
utility.

About this task

To define where resource requests are directed, you can register a mapping function that is started
by the RESTService utility before it makes the eventual call to the server. You can use the
mapping function to map the requested resource, for example, /submitted_applications,
to a specific endpoint, for example, https://spm-server1.com. For all other resources,
the default server that is specified in the REACT_APP_REST_URL property is called. How the
mapping is achieved depends on the mapping function, as shown in the following example.

© Merative US L.P. 2012, 2025

6 Developing your web application 35

Note: Complexities with authentication and session management exist that you must
resolve separately from configuring the server that requests are directed to. Resolving the
authentication and session management issues are project-specific tasks, and are outside the
scope of this documentation.

Procedure

1. Edit the .env configuration file in the root of your application, and add the
REACT_APP_REST_URL1 and REACT_APP_REST_URL2 environment variables with the
hostname and port of the server where the REST services are deployed, for example:

REACT_APP_REST_URL=/Rest
REACT_APP_REST_URL1=https://spm-server1.com/Rest
REACT_APP_REST_URL2=https://spm-server2.com/Rest

2. Update the App.js file to enable users to register and hook in a custom apiEndPoints
function to determine the API endpoint URL for a particular resource, as shown in the
following example:

import get from 'lodash.get';
 import REACT_APP_REST_URL from './REACT_APP_REST_URL';

 function isResourceMatchingDomainList(resource, domainItem) {
 const domainsDetailsList = JSON.parse(JSON.stringify(domainItem));
 const resArr = domainsDetailsList.map(x => x[Object.keys(x)[0]]);
 return resArr.find(y => resource.match(y));
 }

 const apiEndPoints = resource => {
 if (process.env.REACT_APP_REST_URL1 &&
 get(REACT_APP_REST_URL, 'data[0].REACT_APP_REST_URL1') &&
 isResourceMatchingDomainList(resource,
 REACT_APP_REST_URL.data[0].REACT_APP_REST_URL1)) {
 return `${process.env.REACT_APP_REST_URL1}/${resource}`;
 }
 if (process.env.REACT_APP_REST_URL2 &&
 get(REACT_APP_REST_URL, 'data[0].REACT_APP_REST_URL2') &&
 isResourceMatchingDomainList(resource,
 REACT_APP_REST_URL.data[0].REACT_APP_REST_URL2)) {
 return `${process.env.REACT_APP_REST_URL2}/${resource}`;
 }
 return `${process.env.REACT_APP_REST_URL}/${resource}`;
 };

 RESTService.registerApiEndPointsFunction(apiEndPoints);

© Merative US L.P. 2012, 2025

Cúram 8.2.1 36

3. Create the SPM-WebApps\packages\universal-access-sample-app\src
\REACT_APP_REST_URL.js file that contains the resource URL per domain to be
retrieved, as shown in the following example:

const REACT_APP_REST_URL = {
 data: [
 {
 REACT_APP_REST_URL1: [
 {
 url: '^v1/activities',
 },
 {
 url: '^v1/ua/messages$',
 },
 {
 url: '^v1/ua/public_messages$',
 },
 {
 url: 'v1/ua/communications/',
 },
],
 REACT_APP_REST_URL2: [
 {
 url: '^v1/ua/appeals',
 },
],
 },
],
 };
 export default REACT_APP_REST_URL;

4. Use regex expressions to match the URL to the JSON defined content.
5. Enter the following command to install dependent packages:

npm install

6. Enter the following command to build the application into a build folder in the universal-
access-starter-pack:

npm run build

7. Copy the build folder to the HTTP server and deploy it.
For more information, see 7 Deploying your web application to a web server on page 39.

Connecting to REST APIs on Tomcat

If you have deployed REST APIs to Tomcat in your Eclipse development environment, you can
connect to them from your application.

Before you begin
For more information about building and deploying Cúram REST APIs, see the Cúram™ REST
API Guide.

© Merative US L.P. 2012, 2025

6 Developing your web application 37

About this task

Use the API for Tomcat in the URL for your call to the RESTService utility. See the following
example RESTService call.

RESTService.get('http://localhost:9080/Rest/v1/myAPI', (success, response) => {
 if (success) {
 // deal with response containing the json body
 } else {
 // deal with error contained in response
 }
});

Authenticating against REST APIs

You can authenticate against REST APIs by using the RESTService utility or by using the Cúram
REST API security feature.

Authenticating against REST APIs by using the RESTService utility

Start the authentication URL j_security_check by using the POST function on the RESTService
utility.

The following example shows a sample log-in invocation:

const callbackAfterLogin = (success, response) => {
 if (success) {
 // Login succeeded
 } else {
 // Login failed
 }
};
const loginUrl = 'http://localhost:9080/Rest/j_security_check';
const loginData = {
 j_username: username,
 j_password: password,
 user_type: 'EXTERNAL',
};
RESTService.post(loginUrl, loginData, callbackAfterLogin, 'form');

Authenticating against REST APIs by using the Cúram REST API security feature

For more information about REST API security, see the Cúram™ REST API Guide.

Authenticating against REST APIs in Tomcat
A JAAS authentication mechanism is not exposed by the Tomcat and Eclipse environment, so
you cannot authenticate your web application through the RESTService utility. To authenticate
against a REST API in a Tomcat and Eclipse environment, use the Eclipse RMILoginClient class.

For more information about authenticating against REST APIs in a Tomcat and Eclipse
environment by using the Eclipse RMILoginClient class, see the .

When you authenticate, log in by using your external user name and password to authenticate
against the server. Subsequent calls to your REST API simulate this user.

© Merative US L.P. 2012, 2025

Cúram 8.2.1 38

© Merative US L.P. 2012, 2025

7 Deploying your web application to a web server 39

7 Deploying your web application to a web server

You can deploy your web application on a web server in a production-like environment as part of
your development process. Deployment in a production environment is outside the scope of this
documentation, but you can use the instructions in this section for guidance.

7.1 Install and configure IBM® HTTP Server with WebSphere®

Application Server

Install and configure IBM® HTTP Server either on the same server as WebSphere® Application
Server or on a remote server. To enable cross-origin resource sharing (CORS), you can set the
curam.rest.allowedOrigins property for the REST application on your application server, or install
the IBM® HTTP Server plug-in for WebSphere® Application Server.

Before you begin

WebSphere® Application Server must be installed and configured.

You must install IBM® Installation Manager. For more information, see the IBM® Installation
Manager documentation. You can download IBM® Installation Manager from Installation
Manager and Packaging Utility download documents.

Note:

When the React application and the Cúram server are deployed in different hosts that don't
share the same top-level domain+1, and the web server where the React app is hosted doesn't
run a proxy plug-in towards the Cúram application servers, you must change the Cross-Site
Request Forgery (CSRF) and session cookies for cross-origin requests, from the default
Samesite=Lax to Samesite=None.

An alternative solution is to deploy a gateway web server in front of Cúram to modify the
cookie by using this directive:

Header edit Set-Cookie ^(.*)$ $1;SameSite=None;Secure

For Cúram clusters, place this directive in the web servers where Cúram applications are
mapped.

About this task

To enable cross-origin resource sharing (CORS), choose one of the following options:

• Set the curam.rest.allowedOrigins property for the REST application that is deployed on the
application server. For more information about setting the curam.rest.allowedOrigins property,
see the Cúram™ REST API Guide.

© Merative US L.P. 2012, 2025

https://www.ibm.com/support/knowledgecenter/en/SSDV2W/im_family_welcome.html
https://www.ibm.com/support/knowledgecenter/en/SSDV2W/im_family_welcome.html
http://www-01.ibm.com/support/docview.wss?uid=swg27025142
http://www-01.ibm.com/support/docview.wss?uid=swg27025142

Cúram 8.2.1 40

• Install and configure the IBM® HTTP Server plug-in for WebSphere® Application Server
to enable IBM® HTTP Server to communicate with WebSphere® Application Server.
WebSphere® Customization Toolbox is needed to configure the plug-in.

Procedure

1. Install IBM® HTTP Server. For more information, see Migrating and installing IBM HTTP
Server.

2. Optional: If you don't set the curam.rest.allowedOrigins property, you must install the
following software:
a) Install the IBM® HTTP Server plug-in for WebSphere® Application Server.

For more information, see Installing and configuring web server plug-ins.
b) Install the WebSphere® Customization Toolbox.

For more information, see Installing and using the WebSphere Customization Toolbox.
3. Start IBM® HTTP Server. For more information, see Starting and stopping the IBM HTTP

Server administration server.
4. To secure IBM® HTTP Server, see Securing IBM® HTTP Server.

Generating an IBM® HTTP Server plug-in configuration

This task is needed only if you install the IBM® HTTP Server plug-in for WebSphere®

Application Server. Use WebSphere® Customization Toolbox to generate a plug-in configuration.

Before you begin
Start WebSphere® Application Server. For more information, see Starting a WebSphere®

Application Server traditional server.

Procedure

To generate the IBM® HTTP Server plug-in configuration, complete the steps at the WebSphere®

Application Server Network Deployment plug-ins configuration topic.

Configuring the IBM® HTTP Server plug-in

Configure the IBM® HTTP Server plug-in for WebSphere® Application Server and WebSphere®

Customization Toolbox. This task is necessary only if you have chosen to install the IBM®

HTTP Server plug-in, instead of setting the curam.rest.allowedOrigins property for the REST
application that is deployed on the application server. Also, for information about how to
configure the web server's HTTP verb permissions to mitigate verb tampering, see the Security
Guide.

About this task
You can run the configurewebserverplugin target to complete the following tasks:

• Add the web server virtual hosts to the client hosts configuration in WebSphere® Application
Server.

© Merative US L.P. 2012, 2025

https://www.ibm.com/support/knowledgecenter/en/SSEQTJ_8.5.5/com.ibm.websphere.ihs.doc/ihs/welc6top_miginstall_ihs_container.html
https://www.ibm.com/support/knowledgecenter/en/SSEQTJ_8.5.5/com.ibm.websphere.ihs.doc/ihs/welc6top_miginstall_ihs_container.html
https://www.ibm.com/support/knowledgecenter/en/SSAW57_8.5.5/com.ibm.websphere.nd.multiplatform.doc/ae/tins_webplugins.html
https://www.ibm.com/support/knowledgecenter/en/SSEQTP_8.5.5/com.ibm.websphere.installation.base.doc/ae/tins_wct.html
https://www.ibm.com/support/knowledgecenter/en/SSEQTP_8.5.5/com.ibm.websphere.ihs.doc/ihs/tihs_startadmserv.html
https://www.ibm.com/support/knowledgecenter/en/SSEQTP_8.5.5/com.ibm.websphere.ihs.doc/ihs/tihs_startadmserv.html
https://www.ibm.com/support/knowledgecenter/en/SSEQTJ_9.0.0/com.ibm.websphere.ihs.doc/ihs/tihs_sectaskov.html
https://www.ibm.com/support/knowledgecenter/en/SSEQTP_8.5.5/com.ibm.websphere.wdt.doc/topics/twsrtins.htm
https://www.ibm.com/support/knowledgecenter/en/SSEQTP_8.5.5/com.ibm.websphere.wdt.doc/topics/twsrtins.htm
https://www.ibm.com/support/knowledgecenter/en/SSAW57_8.5.5/com.ibm.websphere.nd.multiplatform.doc/ae/cins_webplugins.html
https://www.ibm.com/support/knowledgecenter/en/SSAW57_8.5.5/com.ibm.websphere.nd.multiplatform.doc/ae/cins_webplugins.html

7 Deploying your web application to a web server 41

• Propagate the plug-in key ring for the web server.
• Map the modules of any deployed applications to the web server.

Procedure

1. Start IBM® HTTP Server.

For more information, see Starting and stopping the IBM® HTTP Server administration
server.

2. On the remote WebSphere® Application Server, run the following command.

build configurewebserverplugin -Dserver.name=server_name

The configurewebserverplugin target requires a mandatory server.name argument
that specifies the name of the server when the target is invoked. For more information
about the configurewebserverplugin target, see Configuring a web server plug-in in
WebSphere® Application Server.

3. Consider adding extra aliases to the client_host, as shown in the following examples:

• For WebSphere® Application Server, add port number 9044.
• For the default HTTP port, add port number 80.
• For HTTPS ports, add port number 433.

For more information about client host setup, see step 19 in the WebSphere® Application
Server port access setup topic.

4. To avoid port mapping issues from web applications, restart WebSphere® Application Server
and IBM® HTTP Server.

For more information, see Starting and stopping the IBM® HTTP Server administration
server.

7.2 Install and configure Oracle HTTP Server with Oracle
WebLogic Server

Install and configure Oracle HTTP Server on either the same server as Oracle WebLogic Server
or on a remote server.

Before you begin

Oracle WebLogic Server must be installed and configured. For more information, see Installing
and Configuring Oracle WebLogic Server and Coherence for Oracle HTTP Server 12.1.3, and
Installing and Configuring Oracle HTTP Server for Oracle HTTP Server 12.2.1.3.

© Merative US L.P. 2012, 2025

https://www.ibm.com/support/knowledgecenter/en/SSEQTP_8.5.5/com.ibm.websphere.ihs.doc/ihs/tihs_startadmserv.html
https://www.ibm.com/support/knowledgecenter/en/SSEQTP_8.5.5/com.ibm.websphere.ihs.doc/ihs/tihs_startadmserv.html
../Deployment_WebsphereApplicationServer/t_WEBSPHAPS_configwebsvrplugin.html
../Deployment_WebsphereApplicationServer/t_WEBSPHAPS_configwebsvrplugin.html
../Deployment_WebsphereApplicationServerOnZOS/t_WEBSPHZOS_Configuration5SetUpPortAccess1.dita#d1e1/step_clienthost
../Deployment_WebsphereApplicationServerOnZOS/t_WEBSPHZOS_Configuration5SetUpPortAccess1.dita#d1e1/step_clienthost
https://www.ibm.com/support/knowledgecenter/en/SSEQTP_8.5.5/com.ibm.websphere.ihs.doc/ihs/tihs_startadmserv.html
https://www.ibm.com/support/knowledgecenter/en/SSEQTP_8.5.5/com.ibm.websphere.ihs.doc/ihs/tihs_startadmserv.html
https://docs.oracle.com/middleware/1213/core/WLSIG/toc.htm
https://docs.oracle.com/middleware/1213/core/WLSIG/toc.htm
https://docs.oracle.com/en/middleware/fusion-middleware/12.2.1.3/wtins/index.html

Cúram 8.2.1 42

Note:

When the React application and the Cúram server are deployed in different hosts that don't
share the same top-level domain+1, and the web server where the React application is hosted
doesn't run a proxy plug-in towards the Cúram application servers, you must change the Cross-
Site Request Forgery (CSRF) and session cookies for cross-origin requests, from the default
Samesite=Lax to Samesite=None.

An alternative solution is to deploy a gateway web server in front of Cúram to modify the
cookie by using this directive:

Header edit Set-Cookie ^(.*)$ $1;SameSite=None;Secure

For Cúram clusters, place this directive in the web servers where Cúram applications are
mapped.

Installing Oracle HTTP Server and its components

Install and configure Oracle HTTP Server in either a stand-alone domain, or in an Oracle
WebLogic Server domain. You must install and configure an Oracle web server plug-in for
proxying requests.

About this task

The Oracle web server plug-in allows requests to be proxied from Oracle HTTP Server to Oracle
WebLogic Server. If you install and configure the Oracle web server plug-in, requests that are
delegated to Oracle WebLogic Server still appear to originate from the Oracle HTTP Server, even
if Oracle HTTP Server and Oracle WebLogic Server are hosted on two different servers.

Because of the web browser same-origin policy, cross-origin resource sharing (CORS) is
restricted in many browsers by default. The web server plug-in enables CORS where Oracle
HTTP Server and Oracle WebLogic Server are installed on different computers.

CORS enables an instance of your web application that is deployed on Oracle HTTP Server
in one domain to request the REST services that are deployed on Oracle WebLogic Server in
another domain.

Procedure

1. Install Oracle HTTP Server for Oracle WebLogic Server. For more information, see Installing
and Configuring Oracle HTTP Server for Oracle HTTP Server 12.1.3, and Installing and
Configuring Oracle HTTP Server for Oracle HTTP Server 12.2.1.3.

2. To configure Oracle HTTP Server, choose one of the following options:

• To configure Oracle HTTP Server in a stand-alone domain, follow the instructions at
Configuring Oracle HTTP Server in a Standalone Domain for Oracle HTTP Server 12.1.3,
or Configuring Oracle HTTP Server in a Standalone Domain for Oracle HTTP Server
12.2.1.3.

• To configure Oracle HTTP Server in an Oracle WebLogic Server domain, follow the
instructions at Configuring Oracle HTTP Server in a WebLogic Server Domain for Oracle

© Merative US L.P. 2012, 2025

https://docs.oracle.com/middleware/1213/core/install-ohs/install_gui.htm#WTINS125
https://docs.oracle.com/middleware/1213/core/install-ohs/install_gui.htm#WTINS125
https://docs.oracle.com/en/middleware/fusion-middleware/12.2.1.3/wtins/index.html
https://docs.oracle.com/en/middleware/fusion-middleware/12.2.1.3/wtins/index.html
https://docs.oracle.com/middleware/1213/core/install-ohs/standalone_domain.htm#WTINS333
https://www.ibm.com/links?url=https%3A%2F%2Fdocs.oracle.com%2Fen%2Fmiddleware%2Ffusion-middleware%2F12.2.1.3%2Fwtins%2Fconfiguring-standalone-domain.html
https://docs.oracle.com/middleware/1213/core/install-ohs/colocated_domain.htm#WTINS280

7 Deploying your web application to a web server 43

HTTP Server 12.1.3, or Configuring Oracle HTTP Server in a WebLogic Server Domain
for Oracle HTTP Server 12.2.1.3.

3. If Oracle HTTP Server and Oracle WebLogic Server are installed in different domains, to
enable CORS, install a web server plug-in.
For more information about configuring an Oracle WebLogic Server proxy plug-in, see
Configuring the Plug-In for Oracle HTTP Server for Oracle HTTP Server 12.1.3, or
Configuring the Plug-In for Oracle HTTP Server for Oracle HTTP Server 12.2.1.3.

4. To secure Oracle HTTP Server, follow the procedure at Managing Application Security
12.1.3, or Managing Application Security for Oracle HTTP Server 12.2.1.3.

Results
The Oracle HTTP Server instance is now ready to for you to deploy the application. The
default location for deploying the application is OHS_INSTANCE/config/fmwconfig/
components/${COMPONENT_TYPE}/instances/${COMPONENT_NAME}/htdocs.
However, you can configure the default location value to a different location.

What to do next
Start Oracle HTTP Server. For more information, see Next Steps After Configuring an Oracle
HTTP Server Domain for Oracle HTTP Server 12.1.3, and Next Steps After Configuring the
Domain for Oracle HTTP Server 12.2.1.3.

Configuring the Oracle HTTP Server plug-in

If a web server such as Oracle HTTP Server is configured in the topology, you must configure a
web server plug-in in Oracle WebLogic Server. The web server plug-in enables Oracle WebLogic
Server to communicate with Oracle HTTP Server. Also, for information about how to configure
the web server's HTTP verb permissions to mitigate verb tampering, see the Security Guide.

About this task
To enable an Oracle HTTP Server web server plug-in in Oracle WebLogic Server, you can run the
configurewebserverplugin target.

Procedure

1. Ensure the remote Oracle WebLogic Server Oracle WebLogic Server is running.
For more information, see Deploying the application (Oracle WebLogic Server).

2. On the remote Oracle WebLogic Server, run the following command.
The configurewebserverplugin target requires a mandatory server.name argument
that specifies the name of the server when the target is invoked.

build configurewebserverplugin -Dserver.name=server_name

For more information about the configurewebserverplugin target, see Deploying the
application (Oracle WebLogic Server).

3. Restart the remote Oracle WebLogic Server.
For more information, see Deploying the application (Oracle WebLogic Server).

© Merative US L.P. 2012, 2025

https://www.ibm.com/links?url=https%3A%2F%2Fdocs.oracle.com%2Fen%2Fmiddleware%2Ffusion-middleware%2F12.2.1.3%2Fwtins%2Fconfiguring-collocated-domain.html
https://docs.oracle.com/middleware/1213/webtier/develop-plugin/oracle.htm#PLGWL510
https://www.ibm.com/links?url=https%3A%2F%2Fdocs.oracle.com%2Fmiddleware%2F12213%2Fwebtier%2Fdevelop-plugin%2Foracle.htm%23PLGWL510
https://docs.oracle.com/middleware/1213/webtier/administer-ohs/security.htm#HSADM900
https://docs.oracle.com/middleware/12213/webtier/administer-ohs/security.htm#HSADM901
https://docs.oracle.com/middleware/1213/core/install-ohs/postins.htm#WTINS137
https://docs.oracle.com/middleware/1213/core/install-ohs/postins.htm#WTINS137
https://docs.oracle.com/en/middleware/fusion-middleware/12.2.1.3/wtins/next-steps-configuring-domain.html#GUID-16C01B4A-5054-473E-8C99-FB56E091D2E9
https://docs.oracle.com/en/middleware/fusion-middleware/12.2.1.3/wtins/next-steps-configuring-domain.html#GUID-16C01B4A-5054-473E-8C99-FB56E091D2E9
https://www.ibm.com/docs/en/atlas-policy-suite/6.0.3?topic=server-deploying-application-oracle-weblogic
https://www.ibm.com/docs/en/atlas-policy-suite/6.0.3?topic=server-deploying-application-oracle-weblogic
https://www.ibm.com/docs/en/atlas-policy-suite/6.0.3?topic=server-deploying-application-oracle-weblogic
https://www.ibm.com/docs/en/atlas-policy-suite/6.0.3?topic=server-deploying-application-oracle-weblogic

Cúram 8.2.1 44

7.3 Installing and configuring Apache HTTP Server

Install and configure Apache HTTP Server on either the same server as the application server
or on a remote server. To enable cross-origin resource sharing (CORS), you can set the
curam.rest.allowedOrigins property for the REST application on your application server, or install
the appropriate plug-in for your web server. Also, for information about how to configure the web
server's HTTP verb permissions to mitigate verb tampering, see the Security Guide.

Before you begin

An application server must be installed and configured.

Note:

When the React application and the Cúram server are deployed in different hosts that don't
share the same top-level domain+1, and the web server where the React application is hosted
doesn't run a proxy plug-in towards the Cúram application servers, you must change the Cross-
Site Request Forgery (CSRF) and session cookies for cross-origin requests, from the default
Samesite=Lax to Samesite=None.

An alternative solution is to deploy a gateway web server in front of Cúram to modify the
cookie by using this directive:

Header edit Set-Cookie ^(.*)$ $1;SameSite=None;Secure

For Cúram clusters, place this directive in the web servers where Cúram applications are
mapped.

About this task

To enable cross-origin resource sharing (CORS), choose one of the following options:

• Set the curam.rest.allowedOrigins property for the REST application that is deployed on the
application server. For more information about setting the curam.rest.allowedOrigins property,
see the Developing Outbound REST APIs Guide.

• Install and configure the plug-in for your server.

Procedure

1. Install Apache HTTP Server. For more information, see Compiling and Installing in the
Apache HTTP Server documentation.

2. Optional: If you don't set the curam.rest.allowedOrigins property, you must choose one of the
following options:

• WebSphere® Application Server

Install the plug-in for WebSphere® Application Server, see Installing and configuring web
server plug-ins.

Install the WebSphere® Customization Toolbox, see Installing and using the WebSphere
Customization Toolbox.

© Merative US L.P. 2012, 2025

https://httpd.apache.org/docs/2.4/install.html
https://www.ibm.com/support/knowledgecenter/en/SSAW57_8.5.5/com.ibm.websphere.nd.multiplatform.doc/ae/tins_webplugins.html
https://www.ibm.com/support/knowledgecenter/en/SSAW57_8.5.5/com.ibm.websphere.nd.multiplatform.doc/ae/tins_webplugins.html
https://www.ibm.com/support/knowledgecenter/en/SSEQTP_8.5.5/com.ibm.websphere.installation.base.doc/ae/tins_wct.html
https://www.ibm.com/support/knowledgecenter/en/SSEQTP_8.5.5/com.ibm.websphere.installation.base.doc/ae/tins_wct.html

7 Deploying your web application to a web server 45

To configure Apache HTTP Server with WebSphere® Application Server, see Configuring
Apache HTTP Server.

• Oracle WebLogic Server 12cR1 (12.1.3):

For more information about configuring an Oracle WebLogic Server proxy plug-in, see
Configuring the Plug-In for Oracle HTTP Server.

To configure Apache HTTP Server with Oracle WebLogic Server, see Configuring the
Plug-In for Apache HTTP Server.

• Oracle WebLogic Server 12cR2 (12.2.1.3):

For more information about configuring an Oracle WebLogic Server proxy plug-in, see
Configuring the Plug-In for Oracle HTTP Server.

To configure Apache HTTP Server with Oracle WebLogic Server, see Configuring the
Plug-In for Apache HTTP Server.

3. Start Apache HTTP Server. For more information, see Starting Apache in the Apache HTTP
Server documentation.

4. To secure Apache HTTP Server server, see Security Tips and Apache SSL/TLS Encryption in
the Apache HTTP Server documentation.

7.4 Building your web application for deployment

You must build your web application for deployment on a web server. A build directory is
created that contains all of the required files for your web application.

About this task

For more information about npm build and deployment, see npm run build in the create-
react-app GitHub documentation.

Procedure

From your application root directory, run the following command to create the build directory.

npm run build

7.5 Deploying your web application to a web server

To test your web application against an existing Cúram application that is deployed on an
enterprise application server, you can deploy the web application on one of the supported web
servers. The supported web servers are all based on Apache HTTP server so the deployment
procedure is similar.

Before you begin

You must have built your application for deployment.

© Merative US L.P. 2012, 2025

https://www.ibm.com/support/knowledgecenter/en/SSAW57_9.0.5/com.ibm.websphere.nd.multiplatform.doc/ae/tins_manualWebApache22.html
https://www.ibm.com/support/knowledgecenter/en/SSAW57_9.0.5/com.ibm.websphere.nd.multiplatform.doc/ae/tins_manualWebApache22.html
https://docs.oracle.com/middleware/1213/webtier/develop-plugin/oracle.htm#PLGWL510
https://docs.oracle.com/middleware/1213/webtier/develop-plugin/apache.htm#PLGWL395
https://docs.oracle.com/middleware/1213/webtier/develop-plugin/apache.htm#PLGWL395
https://docs.oracle.com/middleware/12213/webtier/develop-plugin/oracle.htm#PLGWL510
https://docs.oracle.com/middleware/12213/webtier/develop-plugin/apache.htm#PLGWL395
https://docs.oracle.com/middleware/12213/webtier/develop-plugin/apache.htm#PLGWL395
http://httpd.apache.org/docs/2.4/invoking.html
http://httpd.apache.org/docs/2.4/misc/security_tips.html
http://httpd.apache.org/docs/2.4/ssl/
https://github.com/facebook/create-react-app/blob/main/packages/cra-template/template/README.md

Cúram 8.2.1 46

About this task

The universal-access-starter-pack package includes a preconfigured .htaccess
file under the public folder that gets added to the built application. This file contains comments
to explain the web server configuration requirements for React Router BrowserRouter
enablement.

For more information about how to configure .htaccess files in a web server, see the Apache
HTTP Server Tutorial: .htaccess files related link.

For more information about React Router BrowserRouter, see Serving Apps with Client-Side
Routing.

Procedure

1. Copy the contents of the build directory to the appropriate directory for your HTTP server.

For more information about the <directory> directive, see the related links.
2. Configure the web server.

• If you use .htaccess, enable the directives in .htaccess by editing httpd.conf
and setting an appropriate value for the AllowOverride directive in the Directory section
for the HTTP server's DocumentRoot, or the corresponding directory where the resources
are being deployed.

In addition, you must load the mod_rewrite module for the React Router
BrowserRouter.

Enables mod_rewrite for React Router's BrowserRouter directives
<IfModule !mod_rewrite.c>
 LoadModule rewrite_module modules/mod_rewrite.so
</IfModule>
"/opt/IBM/HTTPServer/htdocs/universal" is the location
where the web application is deployed under the DocumentRoot.
Alternatively you can specify the DocumentRoot "/opt/IBM/HTTPServer/htdocs"
<Directory "/opt/IBM/HTTPServer/htdocs/universal">
 AllowOverride FileInfo Options=MultiViews
</Directory>

• If you do not use .htaccess, you can copy the directives in .htaccess and put them in
a LocationMatch section for your application in httpd.conf.

Enables mod_rewrite for React Router's BrowserRouter directives
<IfModule !mod_rewrite.c>
 LoadModule rewrite_module modules/mod_rewrite.so
</IfModule>
Below LocationMatch is set to "/universal" because the application
will be served from https://youhostname.com/universal
<LocationMatch /universal>
 #
 # place here your .htaccess directives
 #
</LocationMatch>

3. Tune your HTTP server for improved performance, see the Performance Tuning guide.

Related information
GitHub documentation: npm run build
Content Security Policy Quick Reference Guide
Apache core features V2.0: <Directory> Directive

© Merative US L.P. 2012, 2025

https://www.ibm.com/links?url=https%3A%2F%2Fcreate-react-app.dev%2Fdocs%2Fdeployment%2F%23serving-apps-with-client-side-routing
https://www.ibm.com/links?url=https%3A%2F%2Fcreate-react-app.dev%2Fdocs%2Fdeployment%2F%23serving-apps-with-client-side-routing
https://merative.github.io/spm-performance-tuning
https://github.com/facebook/create-react-app/blob/master/packages/react-scripts/template/README.md#npm-run-build
https://content-security-policy.com
https://docs.oracle.com/cd/B14099_19/web.1012/q20206/mod/core.html#directory

7 Deploying your web application to a web server 47

Apache core features V2.4: <Directory> Directive
Apache HTTP Server Tutorial: .htaccess files

© Merative US L.P. 2012, 2025

http://publib.boulder.ibm.com/httpserv/manual24/mod/core.html#directory
http://httpd.apache.org/docs/current/howto/htaccess.html

Cúram 8.2.1 48

© Merative US L.P. 2012, 2025

8 Troubleshooting and support 49

8 Troubleshooting and support

Use this information to help you to troubleshoot issues with the Merative ™ Cúram Universal
Access Responsive Web Application or Cúram Design System.

The Cúram supported assets can be installed, customized, and deployed separately from Cúram,
before being integrated into the system.

When troubleshooting web applications that are integrated with Cúram, use this troubleshooting
information in conjunction with the troubleshooting information for Cúram.

For more information about troubleshooting, see the Troubleshooting Guide guide.

8.1 Citizen Engagement components and licensing

You can use and customize the Merative ™ Cúram Universal Access Responsive Web Application
for your organization, or develop your own custom web applications in addition to the standard
Cúram application. Use this information to understand the Cúram components, supported assets,
and licenses that you need.

Installable components

• Cúram Design System supported asset
The design system provides foundational packages for building accessible and responsive web
applications. It consists of a React UI component library, React development resources, and a
style guide for creating web applications.

• Merative ™ Cúram Universal Access Responsive Web Application supported asset
The Merative ™ Cúram Universal Access Responsive Web Application provides a reference
web application, which you can use and customize for your organization. The Merative ™
Cúram Universal Access Responsive Web Application requires the Cúram Design System and
the Universal Access application module.

• Universal Access application module
The Universal Access (UA) application module provides the Universal Access administrator
application and the Universal Access REST APIs that expose interfaces to Universal Access
functions for consumption by the Merative ™ Cúram Universal Access Responsive Web
Application. Universal Access requires the Cúram Platform.

Licensing Universal Access

You can buy the Universal Access application module, which entitles the Merative ™ Cúram
Universal Access Responsive Web Application asset, and Cúram Platform, which entitles the
Cúram Design System asset.

Alternatively, you can buy Citizen Engagement, which includes the Universal Access application
module, the Cúram Platform, and both assets.

© Merative US L.P. 2012, 2025

Cúram 8.2.1 50

Licensing the Cúram Design System

To develop custom web applications to complement the Cúram Platform, you can buy the Cúram
Platform, which entitles the Cúram Design System asset.

8.2 Citizen Engagement support strategy

The Citizen Engagement assets are typically released monthly, and they can be upgraded
independently of Cúram . Each release is a full release and not a delta release.

The assets are supported for the lifetime of the latest supported Cúram version available at the
time of the asset release.

• The main asset line is released monthly and contains new features, enhancements, security
updates, defects, and support for the latest Cúram version.

• Merative ™ Cúram Universal Access Responsive Web Application 2.6 continues to be
supported with security updates and critical defect fixes for older compatible Cúram versions.

Although new features can be delivered in any asset release, they are typically delivered at the
same time as the Universal Access application module release that contains the new APIs for
those features. Where possible, Universal Access REST API changes are delivered in refresh
pack or other impact-free releases that impose no forced upgrade impact.

Semantic versioning

The assets use semantic versioning. As a general guideline, this means:

• MAJOR version for incompatible API changes
• MINOR version for adding functionality in a backwards-compatible manner
• PATCH version for backwards-compatible bug fixes

8.3 Examining log files

Log files are a useful resource for troubleshooting problems.

Examining the browser console logs

For JavaScript applications, you can examine the browser console logs for errors that might be
relevant to investigating problems. For the exact details about how to locate the console logs
within the browser, see your browser documentation.

Note: When you are developing applications with the Cúram Design System, console
logging information might also be displayed in the console that runs the start process for the
application.

Examining the HTTP Server log files

When you deploy a built application on an HTTP Server, the built application introduces a new
point with which logging is captured in your system topology. The IBM® HTTP Server, Oracle

© Merative US L.P. 2012, 2025

https://semver.org/

8 Troubleshooting and support 51

HTTP Server, and the Apache HTTP Server include comprehensive logging system and related
information.

For more information about troubleshooting the IBM® HTTP Server, see Troubleshooting IBM
HTTP Server.

For more information about troubleshooting the Oracle HTTP Server, see Managing Oracle
HTTP Server Logs.

For more information about troubleshooting the Apache HTTP Server, see Log Files.

Examining the IEG log files

System administrators can enable improved logging by setting the curam.trace system
administration property to trace_on or higher, and you can then check the server logs after you
call the datastore prepopulation feature. You can view detailed logs that are generated during
the population of data during screening, application intake, and life events to better explain
what interactions have taken place. Information is output to the server logs during datastore
prepopulation to describe which code path was taken and why.

The following information is written to the server logs during datastore prepopulation:

• Information about which code path was taken and why.
• The values of the relevant system administration properties.
• The schema names of the relevant IEG scripts.
• The number of records in the ViewProcessor table.

© Merative US L.P. 2012, 2025

https://www.ibm.com/support/knowledgecenter/en/SSEQTJ_9.0.0/com.ibm.websphere.ihs.doc/ihs/tihs_troubsteps.html
https://www.ibm.com/support/knowledgecenter/en/SSEQTJ_9.0.0/com.ibm.websphere.ihs.doc/ihs/tihs_troubsteps.html
https://docs.oracle.com/middleware/1212/webtier/HSADM/man_logs.htm#HSADM218
https://docs.oracle.com/middleware/1212/webtier/HSADM/man_logs.htm#HSADM218
https://httpd.apache.org/docs/2.4/logs.html

Cúram 8.2.1 52

© Merative US L.P. 2012, 2025

Notices

Permissions for the use of these publications are granted subject to the following terms and
conditions.

Applicability

These terms and conditions are in addition to any terms of use for the Merative website.

Personal use

You may reproduce these publications for your personal, noncommercial use provided that all
proprietary notices are preserved. You may not distribute, display or make derivative work of
these publications, or any portion thereof, without the express consent of Merative

Commercial use

You may reproduce, distribute and display these publications solely within your enterprise
provided that all proprietary notices are preserved. You may not make derivative works of these
publications, or reproduce, distribute or display these publications or any portion thereof outside
your enterprise, without the express consent of Merative.

Rights

Except as expressly granted in this permission, no other permissions, licenses or rights are
granted, either express or implied, to the publications or any information, data, software or other
intellectual property contained therein.

Merative reserves the right to withdraw the permissions granted herein whenever, in its
discretion, the use of the publications is detrimental to its interest or, as determined by Merative,
the above instructions are not being properly followed.

You may not download, export or re-export this information except in full compliance with all
applicable laws and regulations, including all United States export laws and regulations.

MERATIVE MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE
PUBLICATIONS. THE PUBLICATIONS ARE PROVIDED "AS-IS" AND WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT
LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT,
AND FITNESS FOR A PARTICULAR PURPOSE.

Merative or its licensors may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this documentation does not grant you any license
to these patents.

Information concerning non-Merative products was obtained from the suppliers of those products,
their published announcements or other publicly available sources. Merative has not tested those
products and cannot confirm the accuracy of performance, compatibility or any other claims
related to non-Merative products. Questions on the capabilities of non-Merative products should
be addressed to the suppliers of those products.

Any references in this information to non-Merative websites are provided for convenience only
and do not in any manner serve as an endorsement of those websites. The materials at those

© Merative US L.P. 2012, 2025

websites are not part of the materials for this Merative product and use of those websites is at
your own risk.

This information contains examples of data and reports used in daily business operations.
To illustrate them as completely as possible, the examples include the names of individuals,
companies, brands, and products. All of these names are fictitious and any similarity to actual
people or business enterprises is entirely coincidental.

The licensed program described in this document and all licensed material available for it are
provided by Merative under terms of the Merative Client Agreement.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate
programming techniques on various operating platforms. You may copy, modify, and distribute
these sample programs in any form without payment to Merative, for the purposes of developing,
using, marketing or distributing application programs conforming to the application programming
interface for the operating platform for which the sample programs are written. These examples
have not been thoroughly tested under all conditions. Merative, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample programs are provided
"AS IS", without warranty of any kind. Merative shall not be liable for any damages arising out of
your use of the sample programs.

Privacy policy

The Merative privacy policy is available at https://www.merative.com/privacy.

Trademarks

Merative ™ and the Merative ™ logo are trademarks of Merative US L.P. in the United States and
other countries.

IBM®, the IBM® logo, and ibm.com® are trademarks or registered trademarks of International
Business Machines Corp., registered in many jurisdictions worldwide.

Adobe™, the Adobe™ logo, PostScript™, and the PostScript™ logo are either registered
trademarks or trademarks of Adobe™ Systems Incorporated in the United States, and/or other
countries.

Oracle and Java are registered trademarks of Oracle and/or its affiliates.

The registered trademark Linux® is used pursuant to a sublicense from the Linux Foundation, the
exclusive licensee of Linus Torvalds, owner of the mark on a worldwide basis.

Microsoft™, Windows™, and the Windows™ logo are trademarks of Microsoft™ Corporation in
the United States, other countries, or both.

UNIX™ is a registered trademark of The Open Group in the United States and other countries.

Other company, product, and service names may be trademarks or service marks of others.

© Merative US L.P. 2012, 2025

https://www.merative.com/privacy

	Note
	Edition
	Notices
	Privacy policy
	Trademarks

	Contents
	1 Cúram Design System
	2 What's new and release notes for Cúram Design System
	2.1 What's new in the Cúram Design System
	2.2 Cúram Design System release notes

	3 Prerequisites and supported software
	4 Installing and getting started with the design system
	5 Upgrading the design system
	6 Developing your web application
	6.1 Tutorial: Creating a page in your application
	6.2 JavaScript™ development environment
	6.3 Design system packages
	6.4 Connecting to REST APIs
	The RESTService utility
	Communicating with multiple API servers

	Connecting to REST APIs on Tomcat
	Authenticating against REST APIs
	Authenticating against REST APIs in Tomcat

	7 Deploying your web application to a web server
	7.1 Install and configure IBM® HTTP Server with WebSphere® Application Server
	Generating an IBM® HTTP Server plug-in configuration
	Configuring the IBM® HTTP Server plug-in

	7.2 Install and configure Oracle HTTP Server with Oracle WebLogic Server
	Installing Oracle HTTP Server and its components
	Configuring the Oracle HTTP Server plug-in

	7.3 Installing and configuring Apache HTTP Server
	7.4 Building your web application for deployment
	7.5 Deploying your web application to a web server

	8 Troubleshooting and support
	8.1 Citizen Engagement components and licensing
	8.2 Citizen Engagement support strategy
	8.3 Examining log files

