IBM Curam Social Program Management 7.0.11
IBM Universal Access Responsive Web Application 3.0.8

Note

Before using this information and the product it supports, read the information in Notices (on page cdix)

Edition
This edition applies to IBM Curam Social Program Management 7.0.11.

© Merative US L.P. 2078, 2022

Contents

[0 (< PSPPSR ii
Lo 14 o OO TSRO US USRS iii
Chapter 1. UNIVEIrSal ACCESS.......uuuuuueiiieiiieieeeiiiiiieieeeeeeeeeeeeaaseaeeseeesssssssssassassseesesssssssssssssssssssssssssssnnnnns 13
Chapter 2. What's new and release notes for Universal ACCESS.........ccccoevruueeereeiiieeeinrerisssrneeeeeeeeeeeeanns 14
What's NeW iN UNIVEISAl ACCESS.ccuiiuiiieieiete ettt ettt sttt et sae b 14
REIEASE NOTES......eiieeie ettt b e bttt b e st b e bt s ettt ebe e nes 14
Chapter 3. Business overview of the Universal Access Responsive Web Application..............ccccce....ccc. 15
R Te (=1 o TR OO OO OO O P OO PSSOV PPORPPRPPIP 15
Filtered and eligibility SCreening tyPeS.........oouviuiiiiiiiieee e 15
Anonymous or authenticated SCreeNING.........ccueviiiiirieeeee e 17

The Check what you might get PAge......c.oeviiiiiiieeeeee e 19

The Here's what you might get screening results page...........ccccveevieevieeiiceeeeeeeeeeee e 20
Screening from @ CitiZEN @CCOUNT..........coviiiiiieiceee ettt aeneas 21

PN o] o] |2 SRUUURPO 22
Start an APPHCATION........oviiiii ettt ettt e 23
Complete the application fOMM........cc.oiiiieeee e 23

SIgN AN SUBMIUT.....eiiie ettt ettt et e beebeeebeeseesseesbeesbeenseensenns 26

Submit application-specific dOCUMENTS.............ociiiiiiiieiicece et 30

KT 2O 31
Citizen alerts and t0-00 MESSAGES.......civeiieriieiietieteete ettt ettt se et beebeenbessbesnaesseeseeenes 32

VIEWING VEI{ICAIONS......ooiiiiiiiiceec ettt ettt ettt et e e e e e s e saeeeteeteeaeenns 33
SUDMITEING OCUMENTS......ceiiiee ettt sttt et eee e 33
CaSEWOTKET TASKS. ...ttt b bbbt ae bt ebe et e bbbt saeeneeneens 34

TTACK- ettt ettt h et bbbt bbbkt n b b n bt bt n et et neene 35
Creating a citizen account and [0gQiNg iN........cccceiiriiiiieeee et 35

The Dashboard PAge..........ooeiiiiiee ettt et e et saeesbeebe s ens 36

The YOUr DENETITS PAGE.......oieiceieeeeee ettt ettt ae s 40

Contents | v

The "'YOUr dOCUMENTS' PAGE.ccuiiiieiieeiicieeeeet ettt ettt ettt ebe et e s b e ssbesseesseebeensesnbesnsenns 40
THE NOTICES PAGE. ...ttt ettt e e et et eteete e e e e aeeeaeeeteeeaeenns 42
THE PrOflE PAgE.. .ottt ettt b e et e e et e e te e ae e teeabeeabeeasesasesseeren 43
Selecting @ [ANQUAGE........c.oieieieee ettt ettt ettt ettt eesbeeraesreesre e reenbeens 44
U@Lttt et ettt ettt et e et e et e e ateete e te e beeteete et e etteateeeteeteeteenteeaeeens 44
ENTEr @ [if@ @VENT... .ottt sttt 44
AAPPEAL. ..ottt et ettt e be e be e aearteeteeahe e te e beenbeenteetteete e teenbeenbeesaenreenreans 46
DECIAE 1O APPEAN. ... ettt et ettt et e et eeae s 47
Submit @n @pPPEAI FEQUEST.........oceeiiiiteeteee ettt et ettt es 48
VIBW YOUF APPEAIS....cvieiieeieeie ettt ettt ettt et et e st esteesteesbeesseesbesseesseesbeenseensesssesssesseeseenns 49
Appeals notices and NOtIfICAtIONS.c.ooiiiiiiie e 49
Requesting an appeal from the citizen acCouNt.............ccoooviiiiiiiiiiieece e 50
Chapter 4. Installing the application development environment and web server................cccceeeeeeennn..... 51
Prerequisites and sUpported SOftWArE.............ccooiuiiiiiecece et 51
Installing the IBM® Curam Universal Access development environment...........c.cccoeeveeieieiecieneennenne. 58
Upgrading the IBM Universal Access Responsive Web Application............ccccocvevieciiiieneeniene e 61
Install and configure IBM® HTTP Server with WebSphere® Application Server...........cccccocevveevvennn... 63
Generating an IBM® HTTP Server plug-in configuration..............cccoceevieiiiiiiiiiiecececeee e 64
Configuring the IBM® HTTP Server PlUg-in........cccccoooieiiieiieieeeieeteee e 64
Install and configure Oracle HTTP Server with Oracle WebLogic Server.........c..cccoovoiiiiiiiiccicee 65
Installing Oracle HTTP Server and its COMPONENTS..........cc.occviivieiiieiieieeieciece e 66
Configuring the Oracle HTTP Server plug-in...........c.ooioviiuieieieeeeee e 67
Installing and configuring APache HTTP SEIVET..........ccuoii it 68
Building the Universal Access Responsive Web Application for deployment...........cccccveeviiiiiiiiniennen. 69
Deploying your web application t0 @ Web SEIVEr.........cc.oociiiiiiiiceeeeece e 70
Chapter 5. Developing with the Universal Access Responsive Web Application...........ccccceuuenennnnnnnnne.. 73
Starter PaCk and PACKAGES........ccviivieiieeeeeee ettt et ettt ettt b e be e e aaeeaeeas 73
Sample application ProjECt SITUCTUNE..........ccuiiiiiiiieeeeee ettt esaaeeees 75

Developing COMPIIANTIY........ccoiiiiiice ettt ettt ettt et ss e bt e st e eteeseesaessessennas 78

Contents | vi

Enforce good code style with ESLint and EitorConfig.............ccoeveieiiiiiiiiceceeeeeee e 79
Universal Access Ul coding CONVENTIONS...........c.ooiuiiiiiiieee ettt et 80
The sampleApplication fEATUIE.............cciiiiiie ettt 84
Manage state With REACT HOOKS.........c.cocuiiiiiieieeeee ettt et ae e 86
REAUX iN UNIVEISAl ACCESS.ottt sttt et e sttt s e et ae et e e eneene e 89
Universal Access RedUX MOAUIES..........ooiiiiiiiiiiirei e 92
Social Program Management Web Development Accelerator...........ccooveviieienienieseecie e, 98
Error handling with a React higher-order component (HOC)............cccceviiiiiieiciieeeeceeeeceee e 100
ConNECTIVITY NANAIING......iiiiiiiieicee ettt ettt et et eabeeeb e s eete e beebeeareenns 102
Implementing a connectivity handler.............c.oouoiiiiiiiiiiceee s 103
DeVveloping WIth FOULES.........ocoiiiiee ettt ettt ete et e e e eaeeeteeeaeeaaeens 108
The ROULES COMPONENT......c.oiiiiitiiiticte ettt ettt ettt et v e eeaeetaesteesbeebeeabeenseerneereens 108
AQAING FOULES ...ttt ettt ettt e e e bt et e e sbeessessa e sa e seesseesseesseessessseseenseenseensensses 109
REPIACING FOULES.......ooeiieeeeee ettt ettt te et e e et e e e eaeeeteeeteeeteeaaeens 109
REAIFECTING FOULES.oviiiiciecece ettt et ettt et e et e et e e b e easesaeesteebeeaseenseans 110
REMOVING FOUTES.....cniiieiieie ettt ettt et te et e et e et e et e eenseeeaseesaseesnseasnseesnseessseeanseenseenn 111
AAVANCEA FOULING. ..ottt ettt ettt e e e et e eteeeteeeseeteeaeeareeneas 111
Connecting to Universal ACCESS REST APIS........coouiiiiiiiiieeeee ettt 114
The MOCK SEIVEr API SEIVICE.c.i ittt st e e 114
The RESTSEIVICE ULIHITY.....ccviiiiieieeieieieee ettt ettt 117
Adding metadata to file UPloads.........cc.ocviiiiiiiiiiee e 119
Universal Access REST API refEr&NCE........coiuiiiiieeieieieeeee ettt 120
Developing toast NOtIfICAtIONS.ooiiiiiee ettt ens 128
LOCAIIZATION. ...ttt b bbb et b et ne e 131
Configuring languages in the application..............cccccoeieiioiiiiiciceeeeeee e 131
REGIONAI SEHHINGS. ...ttt ettt e e e et e et e ete e aeeaeennas 136
Customizing the @appliCatioN..........c.ocoiiiiiiiccceee ettt ettt eveereeaae e 136
Changing text in the appliCation..........ccooiiiiiiiei et 137

Adding content to the appliCation..............coooiiiioie e 144

Contents | vii

Styling content with the Social Program Management Design System.........ccccccoevvevieviieieenennne. 147
Changing the application header or fOOTEr...........cooiuiiiiiieeeeeeeee e 148
Creating an IBM Curam Social Program Management APL...........cccocoiiiiiiiiieiieececeeeeee 155
Connecting to REST APIs from the application..............ccccceeieiioiieiciceeeeeeee e 155
Testing REST API connections with TOMCat...........c..coiiiiiiiiieeeceeeeeee e 161
Handling failures in the application...........c..ccoooiiiiiiiieiice e 163
Implementing @ 10ading M@sSK..........cciiiiiiiiieeece ettt et e sreesaeens 167
Reusing eXiSting fEATUMES...........ooeiiieeeeee ettt eae e eaee 170
Implementing page VIEW @nalytiCS.........ccoooiiiiiiiiiii ettt ettt e e 173
Implementing @ teSt ENVIFONMIENT.........ccuiiiiiiiciecieee ettt seebeesseesbessaessaenneas 175
End-to-end teSt @NVIFONMENT........oiiiitiieee ettt s 175
Jest and Enzyme test €NVIFONMENT..........c.ocouiiiiiiiiiiie ettt e e 196
React environment variable refEr@NCE............ccuovviiuiiiiceieeeeeeee ettt 204
Chapter 6. Security for the Universal Access Responsive Web Application.............ccccovevuueerreeeereennnne. 217
Build secure web apps with the Social Program Management Design System............cccccceveevvennnnen. 217
Protect yourself during development............ccooviiiiiiiiceieiceeeeeeeee e 218
Protect your production €NVIFONMENT..........cc.ooiiuiiiieieieiiccceeee ettt 219
How to address security vulnerabilities.............coocouiiiiiiiiiiiicecceeeeee e 221
Securing access to Universal ACCESS REST APIS.......c.cocoiiiiiiiieiceceeeeeee e 221
Enabling Cross-Site Request Forgery (CSRF) protection for Universal Access...........cccccveuennee. 221

Applies to version 7.0.11.0

Universal Access authentiCation............cooieieiiiiieceeee e 222
Customizing the authentication Method.............ccoooiiiii i 225
Authenticating with external SecuUrity SYStEMIS.........coioiviiiiiiiiee e 226
Integrating with 1dPs for multifactor authentication.............ccccooeciiirieciniieiceee e 227
External security authentication example for Universal ACCESS.........ccoovvvievieeeieciiiiiieeeeeeee 227
USEI @CCOUNT TYPES....oeiiiiiieiiieeiieeeetee ettt ettt ettt ettt e et e e tae et eeateeeabeeeabeeesbeeesseeesseeseseesabeessseesseesseensseenses 234
User account authorization roles and groUpPsS...........ccecuerereriiieieeeese et 235

Authorization for the CItiZEN @CCOUNT..........cc.eiiieee e e 236

Contents | viii

Customizing account creation and ManagEMENT............ccveiiiiirieiieeee et be e e 238
Account management CoONfIQUIrAtioNS............ccoiiiiiiiiee e 238
Account ManNaAgeMENT EVENTS.........ii ittt et ebe e b e e b e e ssbeessbeessseessseessneas 238
CitizenWorkspaceAccountManager APL...........ocuiiiiiiiiieiieeeie ettt 239

DAtA CACKING . ..c et ettt ettt e e te e e te et et e et e etteete e eteeeteeteeteereeeaeea 239

Chapter 7. Configuring the Universal Access Responsive Web Application...........ccccccceeeriiiiiiiinneennnnn. 241

CoNfIGUIING The DIOWSEN........ieiieiieeeeeeeeeeee ettt ettt ettt et ettt e aeeteeteessensensens 241

CONFIGUIING SEIVICE @IEAS......ccueicteeetieete ettt ettt ete et eete e e e et e e teeeteeeteeateeaeeeaeeeseeeaseessenseenseeaeeesseanean 242

CONTIGUIING PDFS......ciiiiitieeeee ettt et ettt ettt et e et e et e eaeeeteesteesbeesbeesseeasestaessseseesseenseensenseaas 242
DefiNiNG PDF fOIMIS....c.viiiieieeieeeeeeeee ettt ettt ettt ettt a et et eee e s e se e 244
Specifying a PDF application form for program applications..............ccceceeeieveniniiicieieieee, 244
Specifying a PDF application form for screening results............cccoceviiiiecicciicciececeeee e 244
Defining PDF summary mappings for @ program.............cccoecveveeuiiiirieeeeeeeeeeeee e 244

CONTIGUIING PIOGIAMS.oiitiiitieete ettt ettt et e et eteeteeteeae e e e e eteeeseeteeaseeseeeaeeeaeeesseseenseenseenseesseeseeaseensean 245
CONFIGUIING @ PIrOGIaAM....cvicuiieeiietieeteeete ettt ettt ettt e steeeteeaseeaseetsestseseesseenseenseesseessessseseenseenseennas 245
Defining local offices for @ Program..........c.ooocuieuiiuieiiieieece e 251
Defining program eVIAENCE tYPES.....ccviiviiiiieieiieeeieieete ettt ettt be et sa e sesae e 252

CONTIGUIING SCIEEMINGS.uiiviitieetieeie ettt ettt ettt e e be et e et e te e beebeeabeesbesasessseseeseenseenbesssesssesseenseenns 252
Configuring @ NEW SCIEENING.coviiviiuiitieeieeieeteet ettt ettt ettt ete e et e teeteeaeessesseseeteeteessensensenns 253
Configuring eligibility and screening details..........c.ccooiiieieieiiiiiceeeeee e 253
Configuring screening display information.............cc.occiiiiiiiiiici e 254
Defining programs fOr @ SCrEENING.........ccuoiviiiiieiceeeeeeeeeeete ettt ettt et as s 255
The SCreening autO-SAVE PrOPEITY.......cceciiiiiiiiieeteeeteetet ettt ettt e ste et te e s ssesbeeaeeteeseessessenes 255
CONfIGUIING FESCIEEMING.ecvieetiieiiitieete et ettt et e et e vt eeteebeebeeaseesseeasesseeseenbeenbeenseessesssesseeseenns 255
Prepopulating the SCre@ning SCrIPL........cc.oiiiiiiiieieeee ettt 256
Resetting data captured from a previous SCre€NiNG..........cc.ocoveiuieiiieciiceieeee et 256
Writing Rule Sets FOr SCIreENING.......cc.iiviiiiciiceieteee ettt ettt ve v eene e eaee s 257

Configuring @PPlCAtIONS.ocueiiiiiiiicee ettt ettt ettt e as et ereere e 260

Configuring applications in the administration application...............cc.cooovieoieiiiiiiieee, 260

Contents | ix

Configuring application ProPerti€Ss.........ccicuieuieieeieiiciecece ettt 262
Configuring other application SEttNGS.........ccvoiiiiiceeeee e 263
Configuring ONlINE CAtEQOTIES.c.eiivieieeieceie ettt ettt ettt et te e s teesteebeeebeeaaesasesreesreans 264
CoNfIQUIING [If8 EVENTS.......oeiieiieeee ettt ettt ettt et ettt s e teete e e 265
ConfigurNg @ lifE EVENT........ooeiiee et ettt et et eae e 265
Mapping life event information to evidence entities...........ccccocveiieiieiiiiicecee e 267
Defining a question script, answer script, and schema............c..cccooeieiecieicicececeeee 268
Categorizing lifE BVENTS.......c.oo ettt et ae e eaeeeaean 269
DefiNing REMOTE SYSTEMIS.......coiuiiiieiiceieceeecte ettt et ettt ettt e veeae e e e aeesaeesaeeaveenns 269
Configuring the CitiZEN @CCOUNT...........cc.oiviiiieicecee ettt 269
CONTIGUIING MESSAGES. .. .ceeiieeieteeete ettt ettt ettt ettt et e e e e et e e ae e teeeteeeteeteeateeseeeseeeseeseenreenns 270
Configuring last logged in information.............cocooiiiiieicicc e 279
Configuring contact iNformation...............ccooiiiioiii e 280
Configuring USer SeSSION tIMEOUL...........ccoiiiiiieciee ettt et 281
Configuring apPeal FEQUESTS........ocvieeiieiiicieecte ettt ettt ettt ettt et e et e eabeeeaeeteesteesbeenreens 282
Configuring communications on the NOtiCES Page.........cccveviiiiiiiiiieiicieeeeeeeeee e 283
Chapter 8. Customizing the Universal Access Responsive Web Application.............ccccceeeeiiiiiiinnnnnnnnnns 284
CUSTOMIZING SCIEENINGS. .. ceiutieiiieiiieeteeeie et ettt ettt estte e teeestteetaeessseessaeasseessseesssesssseessseessseessseessseessseanes 284
Track the volume, quality, and results of SCreeniNgs............ccoevveviiiiiicieieeeeeee e 284
Populating a custom screening resultS Page........ccooovioiioieiecce e 284
CUSTOMIZING @PPIICATIONS.cviiiiiieeieee ettt ettt sttt et e ve b e easesaaesaeeaes 285
Linking directly to an @ppliCation..........ccuieiiiiiiiiiieeceee e 286
Customizing application OVErVIEW PAgES..........coieiuieiuieiieeeeeeeeeeee et 287
Customizing the intake application WOrKflOW...........c.ccouiiiiiiiiiiiecce e 288
Using events to extend intake application proCessing..........cccocvveviieeiieiiiiesieseeie e 293
Customizing the concern role Mapping PrOCESS.........ccieouieieeieeieeeeee ettt 293
How to send applications to remote systems for processing.........cccoceeeevieciiecieceesecceeieee 294
CUSTOMIZING lif@ BVENTS......oiiiicieceeceeeee ettt ettt ettt aeeteeteeseesenens 295

Enabling and disabling [ife @VENTS.............ooiiiiiee e 295

Contents | x

HOW t0 BUIld @ life @VENT... ..ottt 295
Customizing advanced life @VENTS.........c..oouiieiiieceeee e 296
CUSTOMIZING VEFTICATIONS.cuiiiiiiceiicie ettt ettt v e et ea e e eete e s teesbeeseeaseeaneeanaa 325
Enabling or disabling VeriflcationS..........c.ccoouiiiiiieieceecceeeee e 325
Customizing file formats and size limits for file uploads...........c.cocoeovieiiiiiiiceeceee 327
Customizing a file upload lead time for verifications.............cccooiieiiiciiciccceee e 327
Customizing how verification information is presented.............ccocooeiiiiieiciicceecceeeee, 328
Customizing Verification NAMES...........coviiiiieeeeeee ettt ettt et e e et aean 329
Customizing CaASEWOTKET TaSKS........ccuiiiiiiiciccteecte ettt et e re e 330
Customizing application-specific verification polling.............ccoooveieiiiiiiiicceeeeeeeeeeee 331
CUStOMIZING With WED SEIVICES.......oiiiiieeeee ettt 332
Inbound and outboUNd WED SEIVICES.........cciriiuiiiirieieirieeseee et 332
WED SEIVICES SECUNLY.....ciiiiieiieieiecieee ettt ettt sttt te et e enaeesaesteesbeebeesseensensnessnans 332
Process appliCation SEIVICE.........c.oooui ittt ettt e 333
Update ApPliCation SEIVICE..........ccvoiiiiiiieiieee ettt ettt et e ae e e eae e 335
[IfE EVENT SEIVICE. ... ettt e et s et e ae st te b et eneesenseneesensens 337
Create @CCOUNT SEIVICE.....coiiiiiiiitieteet ettt ettt st st sttt et ettt sbe bt et eae 338
LINK SIVICE. ...ttt sttt sttt eb ettt eeenen 339
L0] g1 SQE=TT Y o= TSR 340
(O711V4=] a0 1= TS Y= o = ST SUPPTRPPPR 340
PAYMENT SEIVICE. ... uiiiiii ettt et e et et e e st e e e b e e tbeestb e e tbeetbeessbeessseansaeessaesssaeesseenssens 341
CONTACT SEIVICE. ... ittt et b et ettt s bt e s bt et e e bt eatesatesbeesbeenbeenteeaneans 343
CASE SEIVICE.....eiieiiteie ettt ettt b ettt sttt et e bbbt ettt s nbe e 343
SAMPIE SOAP FTEQUESTS.....ooviiitietietecee ettt ettt ettt ettt e b e e s e e aaesasesseeseebeenseeasesaseneean 344
CUSTOMIZING @PPEAIS. .. oo itiiiiieie ettt ettt ettt ettt e et e et e estesteesbeesteesseesseessessaesseessaesseenseessenseens 355
Enabling and disabling @ppeals...........cooo i 356
Customizing the CitiZEN @CCOUNT............ooviiiiiiice ettt ve e e 357
Y TS Vo =TRSOOSR 357

Customizing the NOtICES PAGE.......ooviceeeeeeeeeee et 367

Contents | xi

Customizing appeal reqUESt STAtUSES.........ooieiiieriieiieieceeeeeee ettt nees 368

Error logging in the Citizen aCCOUNt............ccoiiiiiiiee e 369
Artifacts with limited customization SCOPE.........c.coovieviiiiiiiceeeeeee e 372
Chapter 9. IEG in the Universal Access Responsive Web Application...........cccceeeeererereeeeeennrnreeeeenennnn. 373

IEG elements and attributes specific to the design system and Universal Access Responsive Web
APPIICALION.....ceeieice ettt ettt et e ettt et e et e e te et e eat e teeeteebeenreenes 373

IEG configuration not currently supported for the Universal Access Responsive Web Application....374

Customizing the Back button in IEG fOrMS..........ccoouiiiiiiieiiecececceee et 376
Configuring section navigation for fOrMS...........ccoiiiiiiii e 378
Configuring progress information for fOrMS..........ccciiiiiieiiiiee s 378
Configuring dynamic titles 0N fOMMS........c.ooiiiiieiccceeee et 378
Configuring Fich Xt ON FOIMIS......ocoiiii ettt e 380
Configuring external links to open in @ new tab or Window..........ccccooeeieiiiinieiiieeeee e, 380
Configuring hint teXt fOr FOrMS........ciiiiieeee ettt ea e 381
Configuring explainer text fOr fOrMS..........ooiiiiiicecee et 382
Configuring the 'Help' [abel fOr fOrMS........ciiiieieieee et 383
Configuring required or optional labels for form fields............ccccooviiiiiiiiiicceeeeee 384
Configuring input formats and constraints for form fields............c.coooieiiiiiiiiiice 384
Configuring PhONE NUMDBETS.........ooviiiiieieieeet ettt sttt seseseeseesens 387
Configuring date fOrMALS........cciiiiiee ettt ae e 388
Configuring CUITENCY SYMDOIS.......oouiiiieiieieeee ettt ettt teeaeeaeeanas 389
Configuring inputs to be obscured for PriVacCy..........ccceiirieiiirieiceee e 389
Configuring code-table hierarchies for form fields............cccooiiiiiiieieciceee e 391
Implementing a combo box for form flelds.............cooiiiiiei e 392
Implementing search functions for ComboBox components............ccccocveieienineninceieee 392
Configuring combo box scripts and SChEMAS............ccuovviiiiiieieieieeeeeeeee e 394
Customizing script behavior with BaseFormContainer..............ccooveivieiiiiciieiiciceeeeceeeee e 397
Merging clusters with the cluster element grouping-id attribute..............cccoooiiiiininiiii e 399

Configuring relationship pages QUESTIONS..........c.ooiiiiiiiiiececeeee et 400

Contents | xii

Configuring relationship starting dates on relationship summary pages...........ccccoeeeevevieiiiicveeneennn. 401
Configuring QUICK-add-liSt..........c.oooieeeee ettt ettt eveeaeens 402
Chapter 10. Troubleshooting and SUPPOIt............. e iiiiiiiiieeieecceeeeeeeeeeeeeeeeeeeeeee e sssssseeseaseeeesseaseneanes 405
EXAMINING 10G FIES.......oieieieieeeeeeee ettt ettt ettt aeere e aseeaeeaeeteeseensennens 405
Connect a React development environment to an SPM SEIVEN...........ccooeouieuieiieiieeeeeeee e 406
Citizen Engagement components and liCENSING........c..ccooviiiiiiiiiiieiecece e 406
Citizen Engagement SUPPOIT STratEY......cceouieiiuieiiieeiteeie ettt ettt ettt e e seeeesaeeseesnneeeneeeens 407
KNOWRN IMITATIONS. ...ttt ettt e e ne b e 408
INOTICES. ..ttt bttt a bbbttt b et et b e bttt e b et et h e bbbt bbbttt ene bt cdix
=T [0 =T o TSRS cdxi

d2696e56698
d2696e56698
d2696e56698
d2696e56698

Chapter 1. Universal Access

IBM® Citizen Engagement provides a configurable citizen-facing application that enables agencies

to offer a web self-service solution to their citizens. It uses the IBM Universal Access Responsive Web
Application, a citizen-facing web application to provide citizens with online facilities. The Universal
Access Responsive Web Application client uses modern technologies, such as React JavaScript, and the
IBM Social Program Management Design System to enable citizens to better access services in a browser

from desktop, tablet, and mobile devices.

IBM® Curam Social Program Management Platform and the IBM® Curam Universal Access application
module provide the configurable business processes on the IBM Ciuram Social Program Management

server.

The IBM Universal Access Responsive Web Application client asset is updated at more regular intervals
than IBM® Curam Social Program Management Platform and the IBM® Curam Universal Access

application module and has its own version number scheme.

(L ™
Note:
Online documentation for Universal Access is provided for the most recent version only. To read
the documentation for older versions of the Universal Access Responsive Web Application asset,

or IBM® Curam Universal Access with the classic client application, see the Social Program

Management PDF library.

http://www.ibm.com/support/docview.wss?uid=swg27041327
http://www.ibm.com/support/docview.wss?uid=swg27041327
http://www.ibm.com/support/docview.wss?uid=swg27041327

Chapter 2. What's new and release notes for
Universal Access

Read about what's new and the release notes for recent versions of IBM® Curam Universal Access.

What's new in Universal Access

Read about the enhancements and improvements in IBM® Cdram Universal Access with the IBM

Universal Access Responsive Web Application.

Release notes

Read about enhancements and defect fixes in IBM® Curam Universal Access with the IBM Universal

Access Responsive Web Application.

For more information about changes that depend on server-side updates, see the release notes for your
specific version of IBM Curam Social Program Management at (https://www-01.ibm.com/support/
docview.wss?uid=swg27037963).

For more information about compatibility with IBM Cdram Social Program Management versions, see

Prerequisites and supported software (on page 57).

Fix related to deselected list-question relationship not stored (7794)

Previously, when a user deselected a list-question relationship, that is, a list-question element with a link-
entity attribute, it was not stored by the system. This issue has been fixed and when a user deselects a

list-question relationship it is now stored by the system. (DT036318)

https://www-01.ibm.com/support/docview.wss?uid=swg27037963
https://www-01.ibm.com/support/docview.wss?uid=swg27037963

Chapter 3. Business overview of the Universal
Access Responsive Web Application

Citizen Engagement uses the IBM Universal Access Responsive Web Application, a citizen-facing web
application to provide citizens with online facilities. Citizen Engagement provides domain-specific

predefined business processes that you can configure to meet your organization's needs.

IBM® Curam Social Program Management Platform and the IBM® Curam Universal Access application

module provide the configurable predefined business processes on the server.

Screen

Citizens can self-check their eligibility for benefits and services before they submit an application.

Checking for eligibility is implemented by using the Screening feature.

Screening has many advantages for both citizens and agencies:

- Citizens can check their eligibility for the benefits that the agency offers before they apply, and
without having to go through the whole application process.

« Screening reduces the need for citizens to interact with the agency.

- Screening reduces the time and effort that caseworkers need to spend on screening tasks, freeing
them up to concentrate on their core duties.

- Screening can quickly determine whether citizens are potentially eligible for one or more benefits
based on a short set of guided questions and eligibility rules. Based on this determination, citizens

can then decide whether to apply for the benefits.

ﬁ Click here for a video presentation that gives an overview of Screening.

Related information
Configuring screenings (on page 252)

Filtered and eligibility screening types

To balance the need for quick screening results against the need to gather detailed citizen information,
IBM® Curam Universal Access supports two types of screening. Screening results indicate the programs

for which citizens might be eligible.

https://mediacenter.ibm.com/media/t/1_xkhyr9qd

IBM Curam Social Program Management 7.0.11 | 3 - Business overview of the Universal Access
Responsive Web Application | 16

Filtered screening

Filtered screening allows citizens to quickly see whether they are eligible for benefits before they
go through the more detailed eligibility screening process. Asking questions about their marriage or
pregnancy status can quickly identify and eliminate programs for which citizens are unlikely to be eligible.

Filtered screening is defined by specifying a simple filter script and rules. Typically, a filtered screening
script is not longer than two pages. If filtered screening is defined, the system immediately displays the
filtered screening script when citizens select the screening. The system does not prompt citizens to select
programs. Instead, the system runs the rules for all programs that are defined in the filtered screening rule

set.

You can easily and quickly customize a filtered screening. For each screening, you configure the available
programs and eligibility requirements. You then configure the script, rules, and data schema to collect and
process citizen information, and define what information is displayed to citizens. When defined, citizens
can screen themselves to identify programs that they might be eligible to receive. For more information,

see Configuring screenings (on page 252).

Program selection takes precedence over filtered screening. For more information about program
selection, see Screen (on page 15).

Eligibility screening

Eligibility screening determines citizens' potential eligibility to receive a program or programs. To gather
the more detailed information that is needed to determine whether citizens qualify for benefits, eligibility
screening uses a longer and more detailed IEG script. Typical questions can relate to the citizen's income,

or resources, for example, savings, stocks, or bonds.

Eligibility screening consists of a script to collect data and a rule set to determine the citizen's potential
eligibility for one or more programs.

Eligibility screening rules are run upon completion of the screening script and the results are displayed for

citizens on the Here's what you might get page.

The eligibility screening rules are run only for programs that are associated with the screening.

The relationship between filtered and eligibility screening

Some points to note regarding the two screening types:

IBM Curam Social Program Management 7.0.11 | 3 - Business overview of the Universal Access
Responsive Web Application | 17

« Filtered screening is a precursor to eligibility screening.

- Filtered screening is optional. Citizens can screen for eligibility without doing a filtered screening.

- After they complete a filtered screening, citizens must then complete an eligibility screening before
they can apply for benefits.

Related information

The screening auto-save property (on page 255)
Configuring screenings (on page 252)

Natural Flow of an IEG Script

Anonymous or authenticated screening

IBM® Curam Universal Access supports both anonymous and authenticated screening. Citizens who are
not logged in, and want to retain a degree of anonymity, can screen themselves for benefit eligibility while
unauthenticated. Citizens who are logged in can complete an authenticated screening.

Anonymous screening

Unauthenticated citizens can screen themselves for benefits without logging in but they cannot save their
screening until they log in. Administrators can use an IEG script configuration to set if citizens have an
option to save their progress. If an administrator sets the option to save progress on a particular script,
unauthenticated citizens are taken to the Log in page when they select to save. When logged in or signed
up, citizens' screening progress is saved and they are taken to the Dashboard. For more information on
IEG script configuration, see Configuring IEG.

Related information
Configuring IEG

Authenticated screening
Citizens who are logged in to Universal Access can complete an authenticated screening.
Pre-populating citizen data

Citizens might want the convenience of having their data pre-populated when they start screening. Use
the curam.citizenaccount.prepopulate.screening system property to pre-populate citizen data into a

screening form for linked users:

- If enabled, basic details for citizens are populated in the script.
« If disabled, citizens must complete their details.

../AuthoringScriptsUsingIEG/c_AUTHIEG_Control1NaturalFlowIegScript1.html
../AuthoringScriptsUsingIEG/c_AUTHIEG_Configuration9ConfiguringIeg1.html

IBM Curam Social Program Management 7.0.11 | 3 - Business overview of the Universal Access
Responsive Web Application | 18

For more information, see Prepopulating the screening script (on page 256).

Saving screenings for authenticated citizens

Authenticated citizens can save a screening and resume it later. As citizens progress through

the script, information that is entered on the previous page is automatically saved each time that
citizens click Next in the IEG script. If there is a timeout or the browser is closed accidentally,
automatically saving the information prevents the loss of the screening information. Use the
curam.citizenworkspace.auto.save.screening system property to set whether screenings are
automatically saved in the citizen account. For more information, see The screening auto-save property

(on page 255).
In-progress screenings

When citizens save an in-progress screening, or it is automatically saved by the system, an in-progress
screening message is displayed in the citizens' dashboard as a reminder. Citizens can complete an
in-progress screening or they can delete it. When citizens complete a screening, the Here's what you
might get page is displayed and the in-progress message is removed. The screening also appears on the

Benefits checker page on the Dashboard.

The Benefits you might get pane

Citizens can view completed screenings on the Benefits you might get pane in the citizen Dashboard. To
ensure that the most recent results of a screening are kept relevant for the citizen, one screening of the
same type can be in the complete state at a time. Citizens can use the Benefits you might get pane to
view the results of the screening or delete the screening from the pane.

Configuring rescreening

Citizens might need to change a screening if they forget to provide some information or their
circumstances change. In the administration application, you can set whether to allow citizens to change
and resubmit their screening.

- If the setting is set to Yes, citizens can rescreen from the Benefits you might get pane or from the
Screening results page.

« If the setting is No, citizens do not see these links, in this case if the citizen wants to rescreen, they
must delete their screening and start again.

For more information, see Configuring rescreening (on page 255).

IBM Curam Social Program Management 7.0.11 | 3 - Business overview of the Universal Access
Responsive Web Application | 19

Related information
Prepopulating the screening script (on page 256)
The screening auto-save property (on page 255)

Configuring rescreening (on page 255)

The Check what you might get page
Screening starts when citizens select Check what you might get on the organization Home page.
When citizens select to create a new account, an account creation screen is displayed. After the citizen

successfully creates the account, the citizen is automatically logged in to the system and the screening

process proceeds.

If citizens are logged in and they click Check on any screening where they have a previously completed
or in-progress screening of that type, they are alerted to the existence of that previous screening. Citizens

can then either view the current progress of that screening or they can start screening again.

If citizens start screening again, any in progress screenings are overwritten. Any completed screening is

only overwritten when citizens get to the screening results page.

The Check what you might get page lists and describes each of the screenings that are available.

(Note:)

The Check what you might get page is laid out as follows:

- Page description - a banner indicating to citizens that they can screen themselves.
- A list of screenings with a description of what each screening is.
« A list of benefits with a description of what each benefit offers.

- J

A screening might allow citizens to screen for one or more programs. Citizens are prompted to select the
programs for which they want to be screened. However, there are three situations when citizens are not

prompted to select programs:

« If filtered screening is defined for the screening. In this instance, citizens are prompted to select the
programs for which they want to be screened when filtered screening is complete.

- If a single program is defined for the screening.

- If a screening has been configured to disable program selection by citizens. The Program Selection
indicator determines whether citizens can select specific programs to screen for or whether they

IBM Curam Social Program Management 7.0.11 | 3 - Business overview of the Universal Access
Responsive Web Application | 20

are brought directly into a screening script where they are screened for all programs associated

with the screening. For more information, see Defining Program Selection.

(L ™
Note:
Program selection takes precedence over filtered screening. Also, if filtered screening
is enabled but only one program configured, citizens are brought directly to eligibility

screening for that single program.
- J

Citizens select the screening and the programs for which they want to be screened and then click Check.
The system then starts the associated IEG script so that screening can start.

Related information

Configuring screenings (on page 252)

The Here's what you might get screening results page

When a screening is submitted, the eligibility rules run and the list of programs is displayed with the

results on Here's what you might get page.

v

can click Apply to apply for these programs online through the Apply for benefits flow.

« Programs that the citizens might be eligible for are marked with the Eligible icon. Citizens

 Programs for which eligibility cannot be determined are listed with a suitable message, which can
be configured in the administration application. For example:

Based on what you have told us, we are unable to make a determi nation for Child Care

Assi st ance.

Administrators can use Cturam Express® Rules (CER) to provide detailed explanatory text to help citizens
understand the decisions that are made about potential eligibility.

If citizens' circumstances change, they can screen again at any time by clicking Check again for what you
might get.

How to apply

For each screening type, you can configure helpful, informative text to display on the Here's what you
might get page header. For example, "You can apply online using the Apply button, print the application
and mail it to the office, or visit our office and speak to a caseworker."

IBM Curam Social Program Management 7.0.11 | 3 - Business overview of the Universal Access
Responsive Web Application | 21

You can configure this text in the How to apply rich text editor in the administration application. For more

information, see Configuring screening display information (on page 254).

The How to apply editor can include links. This is useful if the agency wants citizens to visit their local
office. For example, the agency might choose to use Google Maps, or any maps provider of their choice,

to show citizens where their local office is.

Applying for benefits offline

The Here's what you might get page also indicates whether benefits can be applied for offline. Benefits
that can be applied for offline typically have a Download application link to download the application form,

see Specifying a PDF application form for screening results (on page 244).

Transferring data from screening to application

You can configure the application so that citizens' screening data can be reused when they apply directly
from the Here's what you might get page. When configured, some details based on the schema that is
applied are transferred into the application. This existing information saves the citizen time when they are
completing their application.

Related information
Working with Cdram Express Rules

Configuring screening display information (on page 254)

Screening from a citizen account

Citizens can screen themselves for programs while logged in to their citizen account.

By using a short set of guided questions and eligibility rules, citizens can determine whether they might
be eligible for one or more programs. Based on this determination, the citizen can decide whether to apply
for the programs identified.

To perform a screening, citizens take the following steps:

1. Select Check what you might get on the organization Home page.

2. Select Check on the eligibility category.

3. Select the benefits they think they might get on the Include benefits page
4. Select Continue to start the check eligibility process.

5. Citizens then answer the questions on the screening script.

6. Select Next to navigate through the pages in the script.

https://www.ibm.com/support/knowledgecenter/SS8S5A_7.0.11/com.ibm.curam.content.doc/WorkingWithCER/ctr_WorkingWithCER.html

IBM Curam Social Program Management 7.0.11 | 3 - Business overview of the Universal Access
Responsive Web Application | 22

7. When the process is complete, citizens are shown the benefits they might be eligible for on the
Here's what you might get page.
8. Citizens can then Apply for benefits.

Related information
Prepopulating the screening script (on page 256)

Apply

Citizens can apply for benefits online by submitting an application form that includes personal details
like income, expenses, employment, and education. This information becomes evidence on the citizen's
case that agencies can use to determine their eligibility for benefits. Citizens can also apply offline by
downloading the application form to send to the agency or to bring to their local agency office.

Figure 1. Key business flow for Apply

Complete the
application form

Start an application

Sign and Submit

Submit
application-specific

documents
for verification

Related information

Configuring applications (on page 260)

IBM Curam Social Program Management 7.0.11 | 3 - Business overview of the Universal Access
Responsive Web Application | 23

Start an application

Citizens can browse the available benefits and apply for the benefits that they need. Benefit applications

can include single or multiple benefits.

Note:

The term benefit in IBM Universal Access Responsive Web Application is synonymous with

program in IBM Curam Social Program Management.

If configured, citizens can apply for multiple benefits with a single application. For example, citizens might
use the Income Support application to apply for the Food Assistance and Cash Assistance benefits.

Applications for benefits can be grouped into categories, for example Unemployment services. A
customizable icon can be displayed for each benefit type along with the benefit name and a description of
the benefit.

Citizens can also click Learn more to learn more about each application or can click Download
application to print the application form, complete it by hand and mail it or bring it to the agency.

What can | configure or customize?

- Administrators can define the applications, benefits, and categories in the Universal Access section
of the Administration Application. The application and benefit descriptions and benefit icons are
configurable. Benefits are displayed in alphabetical order by default, but you can override this order
when you configure the online categories.

- The configuration property Multiple application is available at the program level. If this property is
set to No and there is a pending decision for the program, the Apply option is disabled.

The multiple applications configuration property to allow multiple applications for the same benefit
is available at the benefit level. The Apply button is conditionally displayed if it is set to Yes or if
multiple applications set to No and the citizen has no pending applications.

- If the More Info URL setting is configured for the application, Learn more is displayed.

- If the PDF Application Form setting is configured for the application, Download application is
displayed, see Specifying a PDF application form for program applications (on page 244).

Complete the application form

Application forms in the Universal Access Responsive Web Application are created with IEG scripts
and rendered by IEG. When citizens click Start application to complete the form, they are starting an

IBM Curam Social Program Management 7.0.11 | 3 - Business overview of the Universal Access
Responsive Web Application | 24

IEG script, which is known as an intake script. Citizens complete the form to be ready to submit the

application.

Depending on how authentication is configured, applications are managed in one of the following ways:

« Citizens must log in to their account to apply. They are prompted to log in or sign up from the
application overview page, or at the end of the application form.
- Citizens can submit an application without an account.

Typically, an application form consists of an overview page, a form divided into sections, and a summary
page. If the application can be used for multiple benefits, a page where citizens are prompted to select the

benefits that they want to apply for can be shown.

By default, applications are automatically saved for logged-in citizens each time that they click Continue
in the application form. Citizens can also manually save in-progress applications. Applications are not

saved for citizens who are not logged in.

When citizens quit a benefit application, three options are available depending on how the intake

application is configured.

- Save the application.

If citizens try to save the application without being logged in, the login screen opens so they can
log in or create an account. If citizens create an account, they are automatically logged in to the
system and the intake process starts. The system also checks whether they have any existing

applications.

- Leave the application without saving.

If citizens try to quit the application without saving it, the application displays a warning dialog box

to prevent accidental loss of information.

- N
Note:
Citizens must click the application name on the page to see the Leave this application
dialog box. The application name is also conditionally enabled depending on whether the

quit and delete option is enabled in the IEG script.
- J

« Cancel the application.

IBM Curam Social Program Management 7.0.11 | 3 - Business overview of the Universal Access
Responsive Web Application | 25

Clicking Cancel returns citizens to the point at which they left the application script with the
previously entered data available. Citizens can cancel an application without saving at any point
before they submit. Citizens can cancel only when the application is in progress, if they Save and

Exit, they can then only Delete the application.

What can | configure or customize?

 The curam.citizenaccount.prepopulate.screening system property sets whether the IEG script is

pre-populated with any available citizen information.

» Where the system is configured to allow multiple benefits for an application, citizens are prompted
to select benefits, with the following exceptions.
o If a single benefit is defined for the application.
o Each application is configured so that the citizen can select a benefit or automatically select

all of the programs that are associated with the application.

The program selection configuration property is available at the application level:

o If set to Yes, an Include benefits page is displayed that allows a citizen to select some or all
of the benefits. If an application contains a single benefit, the Include benefits page is not
displayed.

o If set to No and the application contains multiple programs, all the benefits are

automatically applied for and the Include benefits page is not displayed.
- A system property specifies whether applications are automatically saved.
« You can configure the application to require citizens to log in to apply for benefits:

o Typically, citizens can start an application without logging in, but to save an application they
must log in or sign up for an account. Citizens who are logged in can save an application for
a benefit before they submit it and then return later to complete the application.

The agency can configure the system to specify whether citizens need to be authenticated
before they apply for benefits:
= If authentication is enabled, citizens must either create a new user account or log in
to an account before they start the application process.
= If authentication is disabled, citizens can proceed with the application without

authentication.

IBM Curam Social Program Management 7.0.11 | 3 - Business overview of the Universal Access
Responsive Web Application | 26

The curam.citizenworkspace.authenticated.intake configuration property specifies whether
citizens must log in to apply for benefits. If the property is set to NO, citizens do not have to
log in to apply for benefits. If the property is set to YES, citizens must create an account or
log in to an existing account to apply for benefits.

Sign and submit

Depending on the configuration, the application can be submitted when citizens complete the form or
when they exit a form before it completes. After citizens submit an application for a benefit, the way the
intake script is processed depends on how the benefit is configured.

An intake application can be configured so that it can be submitted before it is complete or only when
complete. If the property is enabled, citizens must log in to an existing account or create a new account
before the application can be sent to the agency.

When citizens send an application to the agency, either by exiting or completing a script, the screen that is

displayed depends on:

» Whether citizens are logged in.

- Whether citizens must either create or log in to an account before the application is submitted.

If citizens are not logged in, they are prompted to log in or create a new account. For more information,

see Manage existing applications (on page 29).
Log-in requirements

The system can be configured as follows:

- Citizens are not required to identify themselves to the system and can send an application to the
agency without logging in or creating an account.

« Citizens must log in or create an account.

In-progress and submitted applications

If citizens log in before they submit the application, the system can determine whether they have:

IBM Curam Social Program Management 7.0.11 | 3 - Business overview of the Universal Access
Responsive Web Application | 27

« In-progress application of the same type. Citizens can choose to submit the new application or
discard it and keep the saved application. The options available are to Start again or Resume the
in-progress application.

« Previously submitted applications for the same programs that are still pending disposition, that
is, awaiting a decision by the agency. If citizens submit applications for the same programs, the
system determines whether they can still submit any of the programs to the agency for processing.

- Benefits can be configured so that multiple applications can be submitted for the program at any
time. For example, submitting a new application for cash assistance for a different household unit
than a previously submitted application that the agency is processing. This screen indicates that
the application cannot be submitted for all of the programs for which the citizen wants to apply.
However, the application might still be sent to the agency. There are three options:

» Continue to submit the application for the programs for which the citizen can apply.
> Save the application.

o Delete the application.

Partial submissions
You can configure the application so citizens can submit a partial application without logging in.

If the Submit on Completion Only administration setting is selected, citizens can submit a partially
completed application. Citizens see the option to submit a partially completed application on the Save
and Exit modal when they save and exit an IEG script. If the Submit on Completion Only administration
setting is not selected, citizens cannot submit a partially completed application. Citizens don't need to be

logged in to submit the partial application.

Specify a submission script

To allow citizens to submit an application to the agency, you must specify a submission script for the
application in the administration system. The submission script is required because applications require
additional information, which does not form part of the application, to be captured before the applications

can be submitted.

For example, a Cash Assistance application requires information that relates to the citizen's ability to
attend an interview. This information would not be appropriate for another type of application that does
not require an interview to be conducted, for example, unemployment insurance. Electronic signatures are

another example of the type of information that would typically be captured by using a submission script.

This data might not be captured as part of the script, as citizens can submit the application before they

complete the script.

IBM Curam Social Program Management 7.0.11 | 3 - Business overview of the Universal Access
Responsive Web Application | 28

Processing a submitted script

The processing that happens on completion of the submission script depends upon the configuration of
the programs for which citizens are applying. Program eligibility can be configured such that it might be
determined by using IBM Cidram Social Program Management or a remote system.

If IBM Curam Social Program Management is specified as the eligibility system, an application case
creation process is started. The application case creation process includes a search and match capability,
which attempts to match citizens on a new application to registered persons on the system based on
configured search criteria. When search and match finishes, one or more application cases are created. If
the programs that are applied for are configured for different application case types, multiple application
cases are created. If the application was submitted within the business hours of the root location for

the organization, the application date on the application case is set to today's date. If the application

is submitted outside of the business hours of the organization, the application date is set to the next
business date.

Mapping application data to case evidence tables

The data that is entered for the application might be mapped to case evidence tables. The mappings are
configured for a particular program by using the Ciram Data Mapping Editor. A mapping configuration

is needed for a program so that evidence entities can be created and populated in response to an online
application submission for that program.

Association of requested programs with application cases

When the application case is created, the programs that are requested by the citizen are associated with
the relevant application case. Some organizations might impose time limits within which an application
for a program must be processed. A number of timer configuration options are available for a particular
program. These timers are set when a program is associated with an application case.

If the eligibility is determined by a remote system, configurations are provided to allow a web service to be

started on a remote system.

Display submission confirmation

A submission confirmation is displayed upon successful submission of an application, which displays
the reference number that is associated with the submitted application. Citizens can use this reference
number in any further correspondence about the application with the agency.

IBM Curam Social Program Management 7.0.11 | 3 - Business overview of the Universal Access
Responsive Web Application | 29

Submission confirmation

When citizens successfully sign and submit an application, they see an overview of their application. The
stages specific to the application process are now updated with a confirmation message to indicate that
the application was successfully submitted. The message can contain:

« A customizable icon.

« An application reference number.

- Informational message for the citizen.

- A Save submitted application PDF link that allows citizens to download a PDF summary of

information that is entered as part of the application, see Configuring PDFs (on page 242).

Manage existing applications

When a citizen logs in, their existing applications are listed and the citizen has different options that

depend on the state of the application.

Existing applications are in one of the following categories:

- Application in progress. The application is in progress but is not yet submitted. Citizens can either
continue or delete applications in this category.

« Pending decision. The application is awaiting a decision from the caseworker. Citizens can either
download or withdraw applications in this category.

« Active. The caseworker authorized the application.

- Denied The caseworker rejected the application.

- Authorization failed. Citizens can download applications in this state.

« Withdrawn. Citizens can withdraw an application if it is in Pending decision or Denied status.

The application lists are displayed only if there are items in the list, that is, if there are no saved

applications.

Citizens can resume or delete an incomplete application, withdraw a submitted application, or start a new

application. Citizens can apply for benefits that they previously applied for.

Citizens can:

IBM Curam Social Program Management 7.0.11 | 3 - Business overview of the Universal Access
Responsive Web Application | 30

» Resume an application from where it was last saved by selecting the Continue link on the Your
benefits page, or by selecting Continue on an in-progress application alert in the Dashboard. The
application is resumed from where it was last saved.

- Withdraw an application. If available, the withdraw option is displayed for the pending decision
application on the Your benefits page.

« Delete an application. Citizens can delete in-progress applications only that were not yet submitted

to the agency.

Withdrawing an application

Citizens can withdraw a successfully submitted application or they can also withdraw applications for all
or any one of the programs.

Citizens can withdraw each program individually. The reasons for withdrawing the program application
can be configured for the intake application in the administration system.

The Reason field contains a list of configurable code table values that are defined by the administrator.
The list of values is configured at application level.

The First name, Last name, and Reason fields are mandatory.

The submit action on the page withdraws the application. The system automatically updates the status of
the programs that are associated with the application case to Withdrawn and sends a notification to the

application caseworker.

Deleting an application

Citizens can delete applications before they are submitted to the agency. Deleting an application

physically deletes the application record.

Submit application-specific documents

Citizens with linked accounts can upload the required supporting documents for their application. After a
citizen signs and submits their application, they are shown the information that they need to verify and the
documents that they can upload to prove that information.

Citizens can add and submit one or more documents. If previously submitted documentation is suitable,

citizens can select and submit that documentation, or choose to submit new documentation.

When they add a document, they must specify the type of document from the list of eligible document
types. For phones or tablets, the file picker uses the native functionality of the device so they can take a
photo, select a picture, or select a file.

IBM Curam Social Program Management 7.0.11 | 3 - Business overview of the Universal Access
Responsive Web Application | 31

By default, the allowed file formats are JPG, JPEG, PNG, TIFF, and PDF and the file size limitis 5 MB. The
allowed file formats and file size limit can be customized by the organization. On desktop devices, they
select only valid file formats. On mobile devices, an error is shown if they select an unsupported file type.

Citizens can view or change their uploaded documents to check them before they submit them to the

agency.

When citizens successfully submit documents, the caseworker is notified that documents are ready to
verify. A task is generated for the caseworker in the IBM Curam Social Program Management caseworker

application.

Related information

Customizing application-specific verification polling (on page 3317)

Verify

If your organization includes the online submission of documents in their business process, citizens are
notified in the Universal Access Responsive Web Application when some of their information needs to
be verified with supporting documentation. They can then provide that supporting documentation online.
Both citizens and caseworkers receive notifications, alerting them to any steps to take. Case workers
control the verification of evidence, ensuring adherence to agency standards.

IBM Curam Social Program Management 7.0.11 | 3 - Business overview of the Universal Access
Responsive Web Application | 32

Figure 2. Key business flow for Verifications

Citizens view
the requested
documents

Citizens are notified
that documents
are needed

Case workers are
notified that
documents were
submitted

Citizens submit
documents

i Click here for a video presentation that includes an overview of Citizen Verification.

Related information
Customizing verifications (on page 325)

Verification Engine

Citizen alerts and to-do messages

When citizens must provide documentation to the agency, they see an alert in their dashboard, and a to-
do message for each application or benefit case where documents are needed. Only linked users see the

verification alert and to-do messages.
The alert is removed when there is at least one document submitted for each verification.

To-dos are grouped by case, so a citizen can have multiple to-dos if they have multiple applications or
cases. The to-do messages for a case are removed when all documents are provided for that case.

https://mediacenter.ibm.com/media/t/1_f9z3jkqs
https://www.ibm.com/support/knowledgecenter/SS8S5A_7.0.11/com.ibm.curam.nav.doc/common/t_ctr_verification.html

IBM Curam Social Program Management 7.0.11 | 3 - Business overview of the Universal Access
Responsive Web Application | 33

Viewing verifications

Citizens who are linked users can upload and submit documents to prove information that they provide.
For example, they can submit a birth certificate to prove a date of birth and a caseworker can then verify
the evidence with the submitted document.

Verifications are displayed whenever they are generated for that user, either by online or in-person
interactions with the organization. For example, verifications can be generated during an online benefit
application process, or on receipt of a postal application form, or when a caseworker meets with a client
in the office.

Verifications that are raised for any case members on a case or application for which the citizen is the
primary client are displayed to the citizen. If there are verifications raised on behalf of an entire family, the

verification is raised against the primary client and are displayed as such to the citizen.

Where there are multiple people on an application or case, you can see and can submit documentation for
each person's outstanding verification requirements.

Verified and non-verified verifications are displayed, but canceled verifications are not displayed. When
the information is verified, the verification's status is updated. If a verification item utilization expires, the
verification is shown here again and a message indicates that more recent documentation is needed.

Related information

The 'Your documents' page (on page 40)

Submitting documents

Citizens can add and submit one or more documents. For phones or tablets, the file picker uses the
native functionality of the device so they can take a photo, select a picture or select a file. When they
submit a document, they must specify the type of document from the list of eligible document types. The
caseworker is notified that documents are ready to verify.

To prevent unnecessary submissions, citizens cannot submit further documents when the verification
status is Verified.

A verification is displayed for each item of information for which caseworkers need documentation
to verify. Citizens can see a list of the information to be verified and the eligible documents that a
caseworker can use to verify that information.

When submitting documents on desktop devices, Citizens can select only files in valid file formats. If you

are using a phone or tablet, the file picker uses the native functionality of the device so you can take a

IBM Curam Social Program Management 7.0.11 | 3 - Business overview of the Universal Access
Responsive Web Application | 34

photo, select a picture or select a file. On mobile devices, an error is shown if you select an unsupported
file format. By default, the allowed file formats are JPG, JPEG, PNG, TIFF, and PDF and the file size limit is
5 MB. You can customize the allowed file formats and file size limit.

Citizens specify the type of document from the list of eligible document types such as a passport. The

eligible document types are based on the verification item utilization.

Citizens can check a document before they submit by clicking the thumbnail image to see the document.

They can delete a document before they submit.

On submission, the verification status is updated and a task is generated for the caseworker in the IBM

Cudram Social Program Management caseworker application.

Sharing and reusing documents

You can configure whether documents of a certain type can be shared and reused across verifications

that require the same document type.

- If you choose that a document can only be used against that verification, and must be unique, then
the document is not shared across any other verifications that might use the same document type.
A citizen might need to resubmit the document multiple times if they have multiple cases with the
same information.

« If you chose that a document can be shared and reused, the submitted documents can be
associated with other relevant verification items. If previously submitted documentation is suitable,

citizens can select that documentation to reuse for the verification.

Administrators can configure a verification item utilization by setting the Usage Type to Shar ed or uni que,
see https://www.ibm.com/support/knowledgecenter/SS8S5A_7.0.11/com.ibm.curam.content.doc/

Verification/c_VER_AdministrationUtilizations.html.

Caseworker tasks

When documents are submitted for verification by a citizen, a task is generated for the caseworker that is

assigned to the citizen's case.

The task indicates that evidence on the case or for the person is now ready for verification, based on the

documents submitted.

A system configuration is available to determine whether the task is generated when all documents for an
evidence record are received, or when all documents for all evidence records on the case are received.

https://www.ibm.com/support/knowledgecenter/SS8S5A_7.0.11/com.ibm.curam.content.doc/Verification/c_VER_AdministrationUtilizations.html
https://www.ibm.com/support/knowledgecenter/SS8S5A_7.0.11/com.ibm.curam.content.doc/Verification/c_VER_AdministrationUtilizations.html

IBM Curam Social Program Management 7.0.11 | 3 - Business overview of the Universal Access
Responsive Web Application | 35

When the caseworker opens the task, details of the evidence, it's related documentation and whether it’s

ready for verification are visible to the caseworker for review.

ﬁ Click here for a video presentation that gives an overview of caseworker document verification.

Related information
Customizing caseworker tasks (on page 330)

Reviewing documents submitted for verifications

Track

When citizens create a secure citizen account, they can access a range of relevant information. Citizens
can also use the citizen account to track and manage their interactions with the agency.

Related information
Configuring the citizen account (on page 269)

Customizing the citizen account (on page 357)

Creating a citizen account and logging in

Citizens can create a citizen account at any time, including during the check eligibility and application

processes.

Creating an account

Citizens can select Sign up on the organization Home page to create an account. Citizens then enter their
first and last names, an optional email address, and an account password. If citizens select | don't have

an email address, they can specify a user name instead.
Administration configurations

» Number of login attempts before the account is locked out: 5

» Number of remaining login attempts before a user warning is displayed: 3
» Number of break-in attempts before an account is locked: 3

» Maximum and minimum characters in a user name

» Maximum and minimum characters in a password

For more information about user name and password length, see Account management configurations.

https://mediacenter.ibm.com/media/1_p18ryrnn
../Verification/c_VER_CaseworkersReviewing.html

IBM Curam Social Program Management 7.0.11 | 3 - Business overview of the Universal Access
Responsive Web Application | 36

Logging in

To log in to the citizen account, citizens select Log in on the organization Home page. Depending on how
they created their account, citizens enter either an email or user name. They then enter their passwor d and
click Next. You can configure the number of log-in attempts citizens have before their account is locked
out. For example, if you set the number of login attempts to three, the account is locked for citizens who

make more than three unsuccessful login attempts.

On a successful login, the Citizen account dashboard is displayed.

Related information
Screen (on page 15)
Account management configurations (on page 238)

The Dashboard page
When a citizen is logged in, their Dashboard shows an overview of their account.

If your organization uses Appeals, and a citizen has applied for at least one benefit, they also see an

Appeals page. For more information, see Requesting an appeal from the citizen account (on page 50).

If your organization uses Verifications, and a citizen is a linked user with at least one verification that
needs documentation, they also see a Your documents page. For more information, see The 'Your
documents' page (on page 40).
System messages
System messages are broadcast to all logged-in citizens and are displayed at the top of
the dashboard. For example, system messages can inform citizens about planned system
outages.
Citizens who are linked users can see system messages about their verifications.
In-progress applications messages

Messages about current in-progress applications are displayed at the top of the screen.
Citizens can either continue or delete their in-progress applications.

The 'Check what you might get' card

Citizens can click Check what you might get to check their own eligibility for benefits. For

more information, see The Check what you might get page (on page 79).

The 'Apply for benefits' card

IBM Curam Social Program Management 7.0.11 | 3 - Business overview of the Universal Access
Responsive Web Application | 37

Citizens can click Apply for benefits to apply for a benefit. For more information, see Start

an application (on page 23).
The 'Review your profile' card

Citizens can click Review your profile to update their profile with a change in circumstances.

For more information, see Enter a life event (on page 44).
The Payments pane

Lists a summary of the most recent payments to the citizen. Citizens can click All payments
to view the payment details or see their payment history. For more information, see The All
payments page (on page 37)

The 'Benefits you might get' pane

Lists a summary of any in-progress eligibility checks. Citizens can click recheck or delete
individual eligibility checks.

The To-Dos pane

Lists actions that citizens must take to complete an application, including action messages
that the caseworker creates for the citizen. For example, a citizen might need to provide
supplementary information to support a benefit application.
Citizens who are linked users can see messages about their verifications.

The Meetings pane

Lists a summary of meetings that citizens were invited to including the dates of the

meetings. The most recent meeting is shown first.
The Notifications pane

Lists acknowledgments for all of the applications that citizens make. A date is included for
most notifications. The most recent notification is shown first. Example notifications include

application acknowledgment, appeal request messages, or service request messages.

Related information

Customizing specific message types (on page 363)

The All payments page

The All payments page shows more details about payments to the citizen. The messages that are
associated with these payments can be retrieved from IBM Curam Social Program Management or

another remote system. Canceled or expired payments are also displayed.

IBM Curam Social Program Management 7.0.11 | 3 - Business overview of the Universal Access
Responsive Web Application | 38

Payment type
Payments can be by check, electronic funds transfer (EFT), cash, or voucher. Depending on the payment
type, the following details can be displayed for each payment:
Check
Payee address and check number
EFT
Bank sort code and bank account number
Cash
Payee address
Voucher

Payee address and voucher number

Citizen account messages

In addition to system messages and in-progress application messages, the Payments, To-Dos, Meetings,
and Notifications panes on the Dashboard display citizen account messages. Messages from remote
systems can also be displayed by using web services. For example, messages can be about meetings for
the citizen, or activities that are scheduled for the citizen.

Displaying a message

Each message has a title and an icon. In addition, the To-Dos and Notifications messages have an
effective date and time that specifies when the message is displayed. Usually the effective date of a

message is set to the current date, but you can set the effective date by configuration settings.

For example, you might not want to display a message immediately if a service is scheduled in the future.
You can configure the message to display a specified number of days before the start date of the service.
The system uses the number of days to populate the effective date.

Messages from remote systems are displayed based on the effective date that is specified in the web

service.

Prioritization and ordering
You can assign a priority to a message so that it is displayed at the top of the Meeting listing.

You can also configure the order of messages types in the administration system. For example, you can

configure payment messages to be displayed first and meeting messages to be displayed second.

IBM Curam Social Program Management 7.0.11 | 3 - Business overview of the Universal Access
Responsive Web Application | 39
Message duration

The message type determines the length of time that the message is displayed. You can set the message
duration by start and end dates or by replacing one message with another.

Where items have start and end dates, you can use them to specify the duration that message is
displayed. For example, service messages are displayed until the start date of the service.

In other cases, you can replace a message with another message. Use a configuration setting to

determine whether to:

« Specify the duration for when a message is replaced.
« Specify the number of days after which the message is removed.

The duration of messages from remote systems is based on the expiry date that is defined in the web

service.

System messages

For example, agencies can use system messages to provide information and help line numbers to
clients for a natural disaster, such as a flood. You can configure system messages in the Administration
application by using the New System Message page.

The Title and Message fields define the title of the message and the message body that is displayed to a
client in the citizen application.

The Effective Date and Time field defines an effective date for the message, such as when the message
is displayed in the dashboard page. The Expiry Date and Time field defines an expiry date for the
message, for instance, when the message no longer is to be displayed in the dashboard.

Messages are saved with a status of In-Edit. Messages must be published before they display in the

citizen account.

Predictive Response Manager

The Predictive Response Manager (PRM) is the infrastructure that is used to build and then generate and

display messages on the Citizen Account home page.

A number of default messages are provided and are described in this information along with their

associated configurations

For more information about configuring messages, see Customizing specific message types (on page
363).

IBM Curam Social Program Management 7.0.11 | 3 - Business overview of the Universal Access
Responsive Web Application | 40

Verifications messages

Verifications messages are displayed on the To-Dos pane. The messages are removed from the list when

documents for all verifiable data items are supplied.

Verifications are grouped by person or case, either application case or integrated case, rather than as
individual notifications. A case reference number is provided where appropriate. The verifiable data items

are displayed in a list.

The Your benefits page

When a citizen is logged in, they can see all of their benefits applications and the application status on the

Your benefits page.

The Your benefits page displays applications that can be in one of the following states:

- Application in progress. The application is in progress but is not yet submitted. Citizens can either
continue or delete applications in this category.

« Pending decision. The application is awaiting a decision from the caseworker. Citizens can either
download or withdraw applications in this category.

« Active. The caseworker authorized the application.

« Denied The caseworker rejected the application.

- Authorization failed. Citizens can download applications in this state.

 Withdrawn. Citizens can withdraw an application if it is in Pending decision or Denied status.

If a submitted application is approved by the caseworker and a product delivery case is created for that

application, the application is also displayed on the Your benefits page.

The 'Your documents' page

When a citizen who is a linked user is logged in, they see a Your documents page that provides a
consolidated view of their verifications and submitted documents. Citizens can see what information
they need to provide documentation for, information for which they have submitted documentation, and
verifications that were done in the past.

The verification items are organized based on their status:

Documents required

Verifications that require citizens to submit documentation so that their information can be

verified by a caseworker.

Documents received

IBM Curam Social Program Management 7.0.11 | 3 - Business overview of the Universal Access
Responsive Web Application | 41

Verifications for which citizens submitted documents for information to be verified by a
caseworker.

Documents accepted

Verifications for which a citizen submitted documents, and their information was verified by
a caseworker.

Verifications

Each item of information for verification is shown. If needed, you can customize how information is

presented for individual verifications, see Customizing how verification information is presented (on page
328).

Verifications show the following summary information:

- The information to be verified, which can be a single verifiable data item, or a group of verifiable
data items related to an evidence record.

« The status of the verification:

> Not yet submitted. One or more documents are required to verify this information but were
not yet submitted.

- Documentation submitted. The caseworker is reviewing the submitted documents or has
verified some of the required documents for multiple verifiable data items.

o Verified A caseworker has successfully verified this item of information with the submitted
documents.

- The person for which information needs to be verified, that is, the case participant. For example For
James Smith.

- The due date, that is, the date by which the documents are to be submitted by the citizen. For
example, Due 26 Sept. By default, this is the same date as the date that the information needs
to be verified by the caseworker. If needed, your organization can configure a lead time to the
due date so that document are submitted earlier to give caseworkers enough time to verify the
evidence and process the application.

- The names of any programs that are associated with an application case, or product deliveries that
are associated with an integrated case, depending on whether a citizen is applying for or receiving
benefits. Application for ... <program> is shown for application cases, for example, Application
for Rent Assistance. The program name is shown for product delivery cases, for example Food
Assistance.

Verification details

The following verification details are shown:

IBM Curam Social Program Management 7.0.11 | 3 - Business overview of the Universal Access
Responsive Web Application | 42

Provide documents that show

The details of the information that needs to be verified, which consists of the verifiable
data items, and a description of the evidence provided and what the verification was raised
against.

Eligible documents

A list of the documents that can be provided to prove the information. For example:

» Paid Medical Invoice
* Prescription Receipts
» Doctor's Letter

Add or reuse documents
To prove information is correct, you can add documents or reuse documents that you have
already submitted.

Your submitted documents
If documents were previously submitted for the validation, the documents are listed here.

You can download your previously submitted documents to see them in detail. A message
indicates any documents that are no longer valid.

Related information

Viewing verifications (on page 33)

The Notices page

When a citizen is logged in, they can see all communications that are relevant to them on the Notices
page, with sent, received, or normal status indicated. Notices are typically formal written communications
that are issued to meet legal, regulatory, or state requirements, which are created by using letterhead
templates.

For example, online appeal requests are shown on the Notices page.

By default, communications are listed where the logged-in citizen is the concern or is a correspondent on

the communication, in other words, for linked users.

Citizens can see the communication description and any attachment in the expanded view. They can view
or save attachments by clicking the View attachment link.

IBM Curam Social Program Management 7.0.11 | 3 - Business overview of the Universal Access
Responsive Web Application | 43

Citizens can request that notices are sent to them by mail. The system logs the request to send the
communication to the citizen. The request includes communication (ID), date, time, and status. After a
citizen requests a notice by mail, the Request this notice by mail link is disabled.

What can you configure or customize?

You can configure the number of communications that are listed. You can also create a custom
implementation to change what communications are shown, such as showing communications for other
family members.

The processing of requests for communications by mail is customizable, so customers can add their own
logic to deal with these requests.

Related information
Configuring communications on the Notices page (on page 283)

Customizing the Notices page (on page 367)

The Profile page

When a citizen is logged in, they can see their information, including contact information, on their Profile

page.
Citizen information

Citizens can see profile information, such as their contact information. Their contact information

can include information like their address, phone number, and email address. A configuration setting
determines whether the citizen's contact information is displayed on the citizen account. For example, an
agency can set the curam ci ti zenaccount . cont act i nf or mat i on. show. cl i ent . det ai | s property to f al se
to disable citizen contact information. For more information, see Configuring contact information (on
page 280).

Tell us what has changed

Citizens can submit updates to their profile information and contact details. For more information, see
Update (on page 44).

Related information

Configuring contact information (on page 280)

IBM Curam Social Program Management 7.0.11 | 3 - Business overview of the Universal Access
Responsive Web Application | 44

Selecting a language

Citizens can select a preferred language from the language drop-down in the footer of the application.
When citizens select a preferred language, the application is displayed in that language. The application
retains the preferred language setting based on a cached value in the browser.

o ™
Note:
The language drop-down only appears when more than one language is configured for the

application.
- J

(Note:)

A citizen's language preference is not saved if the browser is configured to block access to its

local storage, the application reverts to the default language (English) when the page is reloaded.
- J

Update

Citizens can update their details by submitting a change in their circumstances to the agency, which is
implemented by using the Life Events feature. Examples of changes in circumstances include a change
of address, a birth, or marriage. These significant events in citizens' lives might affect the benefits or

services that they are receiving or are due to receive.

Key business flow scenario

James Smith is in receipt of child benefit and is also working full time. However, he just lost his job as the
company that he works for is closing. James needs to tell the agency about losing his job so that he can
get his benefit reviewed. Life Events allows James to communicate this change to the agency without
visiting the office. This reduces the amount of interaction with the agency and saves valuable caseworker

time.
ﬁ Click here for a video presentation that gives an overview of Life Events.

Related information
Configuring life events (on page 265)

Enter a life event

Citizens who are logged in can review their existing profile information on the Profile page and make
any required changes. They can submit a change in their circumstances by selecting either Review your

profile on their dashboard or selecting Profile to open the Profile page.

https://mediacenter.ibm.com/media/1_pojonhs4

IBM Curam Social Program Management 7.0.11 | 3 - Business overview of the Universal Access
Responsive Web Application | 45

The Tell us if anything has changed' pane

The Tell us if anything has changed pane displays the available life events, for example, Change of
Address or Change in Employment Status. Each configured life event is a card, with a description that is
configurable by an administrator in Universal Access life event administration.

The administrator can categorize life events in Universal Access life event administration. For
example, you can categorize changing jobs, income changes, and change of address life events under
Employment. If a life event is not categorized, it appears in the All category tab. If citizens cannot
immediately see the life event that they want, they can select See more to see the life events across all

categories.

The life event Overview page
When citizens select a life event, the Overview page outlines the update process.

The steps list any information or documentation that they must provide, and approximately how long
the submission takes to complete. The steps can also include how the agency might inform them of the
change when the change of circumstance is complete.

When citizens read and understand the information that is presented, they can select Start to enter the
submission form.

When citizens begin a submission form, they are presented with a guided set of questions that use
Intelligent Evidence Gathering (IEG) to gather information. The IEG script for the form is defined in
Universal Access life event administration.

The life event Summary page

After they enter information, a Summary page displays so they can review their changes before

submission.
The life event Confirmation page
On successful submission of the life event, the Confirmation page is displayed.

The confirmation page can display information that is useful and relevant to the submitted life event. This

information can be defined in Universal Access life event administration.

IBM Curam Social Program Management 7.0.11 | 3 - Business overview of the Universal Access
Responsive Web Application | 46

« Text can be added. For example, agencies can say that a change might take some time as a
caseworker review is needed.

 The Next steps pane can display information such as actions that citizens might need to take after
they submit the change. For example, citizens might need to update their rent if they move into a
new home. The Next steps pane can also include links to external websites.

Citizens don't need to have a case on the system to submit a life event. If they don't, the submitted
information isn’'t transmitted to a case owner. Instead, the submitted information is stored internally and
the agency must decide what to do with the information.

The life event Consent page

An optional Consent page can be displayed so that citizens can consent to having their details sent to
selected other agencies or third parties. Administrators can configure the Consent page to display for
a life event in Universal Access life event administration. This action constitutes the citizens' consent

to send information to the selected agencies. The information can be transmitted to a remote system
through a web service or to the relevant case owners on an IBM Cdram Social Program Management

system through the evidence broker.

The life events change history

Citizens can access their previously submitted life events from the dashboard by clicking Review your
profile > Previous changes. The list of life events is sorted by the submission date. They can select a life
event record from the history list to view a summary of the information that they submitted to the agency.

Submit documents for verification

If your organization includes the online submission of documents in their business process, citizens can
upload and submit supporting documentation for information that they provide, so caseworkers can verify

their changes. For more information, see Submitting documents (on page 33).

Related information
Configuring a life event (on page 265)

Appeal

If your organization includes appeals in their business process, citizens can appeal decisions on their
benefits online from their citizen accounts on their own devices. If your organization uses the IBM®
Curam Appeals application module, your organization can process appeals through the full appeals life
cycle that is provided by that solution.

IBM Cdram Social Program Management 7.0.11 | 3 - Business overview of the Universal Access
Responsive Web Application | 47

Figure 3. Key business flow for Appeals

Submit an appeal

Decide to appeal request

Appeals notices
and
nofifications

Wiew your
appeals

1. Decide to appeal (on page 47)

2. Submit an appeal request (on page 48)

3. View your appeals (on page 49)

4. Appeals notices and notifications (on page 49)

! Click here for a video presentation that gives an overview of Appeals and Notices.
Related information

Customizing appeals (on page 355)

Decide to appeal

If citizens don't agree with a decision on their benefits, they can appeal the decision. They can appeal for
themselves or a family member, and can appeal online regardless of how they originally applied. A citizen
must have applied for at least one benefit in order to appeal.

By default, they can appeal:

https://mediacenter.ibm.com/media/t/1_vpoypyvw

IBM Curam Social Program Management 7.0.11 | 3 - Business overview of the Universal Access
Responsive Web Application | 48

« An eligibility determination.
* A change to their eligibility.
« Their calculated benefit.

Citizens are informed of their rights of appeal, and an overview page explains anything that citizens need

to know before they request an appeal.

Submit an appeal request

After they read their appeal rights and understand the appeals process, citizens complete a form with all
of the relevant information. This information can range from details of the benefit itself to supplemental
information needed to establish informal reviews and hearings such as interpreters or emergency needs.

You can configure the form to ask for the specific information that is needed by your organization. The
SPM Design System accommodates a wide range of question formats to enable the citizen to easily
complete this form. You can use a summary page to provide further information in the form to help the

citizen and to alleviate specific concerns.

After they enter and review their appeal request details, citizens sign and submit the request for appeal
and get a confirmation of the submission. The confirmation page outlines the next steps and sets out the

time frames for the organization to respond, and any communications to be expected.

Appeals processing

A caseworker or hearing official can receive notification of that appeal and begin processing.

» When the IBM® Curam Appeals application module is installed, the full appeals lifecycle and
statuses in that solution are supported. A task is created and assigned to an appeal request work
queue when the citizen submits the request. The appeal request is recorded against the citizen's
person record. A PDF file is generated from the IEG script and is stored for caseworker reference

as a communication against the appellant in the caseworker application.

A caseworker can then act on the request and either acknowledge the request and continue with
the appeal process or reject the request. An acknowledgment or rejection message is displayed in
the citizen's account. A list of submitted appeal requests is provided in the citizen's account and

provides a view of the request's status.

» When the IBM® Curam Appeals application module is not installed, a citizen can request
an appeal. They can receive an appeal request submitted status, and the organization must

IBM Curam Social Program Management 7.0.11 | 3 - Business overview of the Universal Access
Responsive Web Application | 49

implement an appeals solution to handle the submitted appeal requests and other appeal lifecycle

processing.

- Alternatively, an organization can implement a solution to have a third-party appeals system
process the appeal and to generate the appropriate appeal lifecycle processing, statuses, and

messaging.

View your appeals

Citizens can see their appeals on the Appeals page. All appeals that citizens submit are displayed and are
updated with the appropriate color-coded statuses as they move through the Appeals lifecycle of hearings

and decisions. At any stage, citizens can log in and understand what is happening with their appeal.

The Appeals page displays each appeal in a card, with copy of the original appeal details if needed.
Typically, the details that are provided in the earlier form are added to a PDF, both the citizen and the

caseworker receive a copy.

The statuses of appeals are updated as the appeal moves through the appeals lifecycle, as pre-configured
for the IBM® Curam Appeals application module, or as configured for your organization's custom appeals

process.

Appeals notices and notifications

Citizens receive both formal notices and informal notifications at specific milestones in the appeals
process. These updates provide them with instant status updates, while they wait for formal notice of a

decision or next steps.
Notices

Citizens can see communications in the Notices page, which are typically formal written
communications about the appeal or hearing, typically issued to meet legal, regulatory, or

state requirements. Notices are often created by using letterhead templates.
Notifications

Citizens can see messages in the Notifications pane on their dashboard, which are typically
informal messages that inform the citizen of any significant point in a process. For example,
for appeals, notification can inform citizens of any progression on their appeal request, such
as when their appeal request was first acknowledged, or if their appeal was accepted or
denied.

IBM Curam Social Program Management 7.0.11 | 3 - Business overview of the Universal Access
Responsive Web Application | 50

Requesting an appeal from the citizen account

When logged into their citizen account, a citizen can review their rights of appeal. They can request
an appeal on a benefit decision if they are a participant on a IBM Cdram Social Program Management

application or case.

For example, a citizen might be deemed ineligible on application, or have their benefit payments reduced.

If they don't agree with the decision or the circumstances of the decision, they can appeal the decision.

1. Go to the Appeals page.

2. Click Request an appeal. The appeals process overview page is displayed.

3. Review the overview of the appeals process, and when you are ready, click Start. The appeal
request form opens.

4. Complete the appeal request form.

5. Sign and submit the form.

6. Your appeal request is complete. Review the Confirmation and next steps information.

Chapter 4. Installing the application development
environment and web server

The IBM Universal Access Responsive Web Application requires a React JavaScript development
environment in addition to the IBM Cudram Social Program Management Java development environment.
You can deploy your web application on a web server in a production-like environment as part of
your development process. Deployment in a production environment is outside the scope of this

documentation, but you can refer to the instructions for guidance.

Note:

The IBM Universal Access Responsive Web Application installation includes the IBM Social

Program Management Design System so you don't need to install the design system separately.

Prerequisites and supported software

Before you install or upgrade, review the prerequisites and supported software to ensure compatibility.

IBM® Ciram Social Program Management Platform and the IBM® Cudram Universal
Access application module

IBM® Curam Social Program Management Platform and the IBM® Curam Universal Access application
modaule installed on the server are prerequisites for the IBM Universal Access Responsive Web

Application client asset that is needed for IBM Citizen Engagement.

IBM Universal Access Responsive Web Application is released at more frequent intervals and requires
specific IBM Cdram Social Program Management and IBM® Cudram Universal Access application module

versions to benefit from server-side enhancements, security updates, and defect fixes.

.)

Note:

« From IBM Universal Access Responsive Web Application 5.0.0 onwards, new features,
server-side enhancements, and defect fixes are supported only in the most recent IBM
Cudram Social Program Management version lines. Security fixes and defect fixes are

supported on IBM Curam Social Program Management 7.0.10-7.0.11.

IBM Curam Social Program Management 7.0.11 | 4 - Installing the application development environment
and web server | 52

N

» The IBM Universal Access Responsive Web Application 3.x.x version line continues to

be supported for security updates and critical defect fixes only on the older compatible

version lines of IBM Cdram Social Program Management, 7.0.10-7.0.11.

 The IBM Universal Access Responsive Web Application 2.6 version line continues to

be supported for security updates and critical defect fixes only on the older compatible

version lines of IBM Curam Social Program Management, 7.0.4 -7.0.9.

For more information about the support strategy, see Citizen Engagement support strategy (on page

407).

Table 1. Compatibility with Social Program Management

A list of the asset versions and their compatible Social Program Management versions.

Asset versions Compatible Social Program Management versions
- 8.0.2 for all new features, enhancements, and defect fixes.
532
« 7.0.10-7.0.11 for security fixes and defect fixes.
5.3.1
5.3.0
522
5.2.1
5.2.0
5.1.0
- 8.0.1 for all new features, enhancements, and defect fixes.
5.0.0
« 7.0.10-7.0.11 for security fixes and defect fixes.
- 7.0.11 iFix 5 for essential maintenance, security updates and criti-
3.0.8)
cal defect fixes.
307 + 7.0.10 iFix 8 for essential maintenance, security updates and criti-
cal defect fixes.
3.0.6

IBM Curam Social Program Management 7.0.11 | 4 - Installing the application development environment

and web server | 53

Table 1. Compatibility with Social Program Management

A list of the asset versions and their compatible Social Program Management versions.

(continued)

Asset versions

Compatible Social Program Management versions

« 7.0.11 iFix 3 for all new features, enhancements, and defect fixes.

(Including the 2.8.4 internal
release)

3.0.5
- 7.0.10 iFix 7 for essential maintenance, security updates and criti-
3.0.4 cal defect fixes.
« 7.0.11 iFix 3 for all new features, enhancements, and defect fixes.
3.0.3
- 7.0.10 iFix 6 for essential maintenance, security updates and criti-
cal defect fixes.
« 7.0.11 iFix 2 for all new features, enhancements, and defect fixes.
3.0.2
« 7.0.10 iFix 5 for essential maintenance, security updates and criti-
cal defect fixes.
« 7.0.11 iFix 1 for all new features, enhancements, and defect fixes.
3.0.1
- 7.0.10 iFix 4 essential maintenance, for security updates and criti-
3.0.0 cal defect fixes.
« 7.0.11 for all new features, enhancements, and defect fixes.
2.9.1
- 7.0.10 iFix 3 for essential maintenance, security updates and criti-
cal defect fixes.
29.0
« 7.0.10 iFix 3 for all new features, enhancements, and defect fixes.
2.8.6
2.8.5

2.8.3

28.2

IBM Curam Social Program Management 7.0.11 | 4 - Installing the application development environment

and web server | 54

Table 1. Compatibility with Social Program Management

A list of the asset versions and their compatible Social Program Management versions.

(continued)

Asset versions

Compatible Social Program Management versions

2.8.1

2.8.0

2.7.0

-~

Note:

N

concurrently access both clients.

Universal Access does not support the dual deployment of the classic client application and the
IBM Universal Access Responsive Web Application client against the same instance of the IBM
Cudram Social Program Management server. You can build and deploy your server without the
classic client application as described in Alternative Targets for IBM® WebSphere® Application
Server or Multiple EAR files for Oracle WebLogic Server. Alternatively, you must use another

strategy to block access to the classic client application URLs to ensure that users cannot

Node.js

Node.js is a prerequisite for installing the React application and for developing and deploying your web

application.

Compatible Node.js versions.

Supported software

Prerequisite

Node.js

Version . Operating system restrictions
minimum
14 LTS (latest) 14.16.0 LTS (Fer- |No
mium)
12 LTS (latest) 12.13.0 LTS (Er- No

bium)

../Deployment_WebsphereApplicationServer/c_WEBSPHAPS_Building2AlternativeTargets1.html
../Deployment_WeblogicServer/c_WEBLOGS_Building1MultipleEarFiles1.html

IBM Curam Social Program Management 7.0.11 | 4 - Installing the application development environment
and web server | 55

Platforms

There is no dependency on specific hardware platforms, but some minimum hardware requirements

apply:

- Desktop devices that meet Microsoft™ Windows™ 10 specifications.

Interactive Development Environment (IDE)

The Universal Access Responsive Web Application does not depend on a specific IDE, you can choose
your own. There are many IDEs that you can choose, for example Microsoft™ Visual Studio Code, Atom,
and Sublime. However, IBM® uses Microsoft™ Visual Studio Code to develop the reference application,
it supports many plugins that make development faster and easier, for example it supports the following

tools:

« Linting tools (ESLint)

« Code formatters (Prettier)

- Debugging tools (Debugger for Chrome)
« Documentation tools (JSDoc)

IBM® does not own, develop, or support these tools.

Application server, web server, and database

Deploying the web application requires a web server in the IBM Curam Social Program Management
topology. The following application server, web server, and database combinations are supported for

developing and deploying your custom application.

- IBM® WebSphere® Application Server, IBM® HTTP Server or Apache HTTP Server, and IBM®

Db2®
 IBM® WebSphere® Application Server, IBM® HTTP Server or Apache HTTP Server, and Oracle

Database
« Oracle WebLogic Server, Oracle HTTP Server or Apache HTTP Server, and Oracle Database

For more information about installing an application server or database for SPM, see Installing

prerequisite products.

HTTP servers

These HTTP servers are supported for deployment.

https://www.ibm.com/support/knowledgecenter/SS8S5A_7.0.11/com.ibm.curam.content.doc/install_DevelopmentEnvironment/c_install_prerequisite_software.dita
https://www.ibm.com/support/knowledgecenter/SS8S5A_7.0.11/com.ibm.curam.content.doc/install_DevelopmentEnvironment/c_install_prerequisite_software.dita

IBM Curam Social Program Management 7.0.11 | 4 - Installing the application development environment

and web server | 56

Compatible HTTP server versions

Supported software

Version

Prerequisite minimum

Operating sys-
tem restrictions

es

IBM® HTTP Server 9.0 9.0.0.5 No
8.5.5 8.5.5.9 No

Oracle HTTP Server 12.2.1.3.0 and future |12.2.1.3.190808 No
fix packs

Apache HTTP Server 2.4 and future patch- | 2.4 No

Web browsers

IBM® Curam Universal Access with the Universal Access Responsive Web Application is developed for

public-facing applications. Every effort was made to ensure that the application pages use standard web

technologies and formats to be compatible with all browsers that are listed. However, the browsers that

are listed in the following table are the only browsers that are officially supported.

-~

N

. I
Note:
The browser Back and Forward buttons, and browser refresh, are now supported on IEG pages
in the Universal Access Responsive Web Application. Information that is entered in IEG forms is
now retained when the citizen clicks Next or goes back or forward through a form.
J

Chrome, Firefox, Edge, and Safari release new versions more frequently than Internet Explorer, and they

install updates automatically by default. Universal Access Responsive Web Application releases are

tested on the latest browser versions that are available at the start of the IBM® development cycle.

Note:

Only stable Chrome releases are tested.

If no issues result from the tests, IBM® certifies the browser version.

For each new product release, the prerequisites list the version that is certified. If IBM® cannot certify that

version for any reason, you might need to revert to a previous version that is fully certified. While IBM®

supports customers who use newer versions of these browsers than the last certified version, customers

must understand that the versions are not fully tested.

IBM Curam Social Program Management 7.0.11 | 4 - Installing the application development environment
and web server | 57

Supported software Version Operating system restrictions

Apple Safari 14 and future fix No
packs

Google Chrome 91 and future fix No
packs

Microsoft™ Edge 91 and future fix No
packs

Microsoft™ Internet Explorer 11 and future fix No
packs

Mozilla Firefox 89 and future fix No
packs

Accessibility

This accessibility software is supported.

Support- . Prerequisite Operating sys-
Version Browser
ed software minimum tem restrictions
Freedom Scientific | 2020 and fu- 2020 No Microsoft™ Internet Ex-
JAWS screen read- | ture fix packs plorer 11

er

Apple VoiceOver | Any version Any version Any version
Microsoft Edge and

JAWS 2020 is the only
certified screen reader

and future fix

packs

and browser combina-

tion.

(g M
Note:
The combination of Internet Explorer 11 and JAWS 2019 is the only certified screen reader and

browser combination.

http://www.freedomscientific.com/products/blindness/jaws

IBM Curam Social Program Management 7.0.11 | 4 - Installing the application development environment
and web server | 58

Previous versions

To see the prerequisites and supported software for previous versions, see the Social Program

Management PDF library.

Installing the IBM® Curam Universal Access development
environment

You can install a lightweight or a full development environment. The IBM Social Program Management
Design System is installed as part of the IBM Universal Access Responsive Web Application installation

and doesn't need a separate installation.
Lightweight development environment

The lightweight development environment replaces the Social Program Management
application with a Node.js hosted mock server. This accelerates set up and development,
but can't fully replicate integration testing with the Social Program Management application.

Use this environment to get started quickly.

1. Install the IBM Universal Access Responsive Web Application React development
environment.
2. Configure the IBM Universal Access Responsive Web Application to connect to the

mock server, see The mock server API service (on page 114).

Full development environment

In the full development environment, you install the Social Program Management Java™
development environment to develop and test your APIs instead of using mock APIs. For
more information about installing the Social Program Management Java™ development

environment, see Installing a development environment.

Note:

If you are working with a non-English version, you must ensure that the appropriate

language is installed on Social Program Management.

1. Install the IBM Universal Access Responsive Web Application React development
environment.

2. Install the IBM® Curam Social Program Management Platform.

3. Install the IBM® Curam Universal Access Application Module.

4. Install any additional SPM components that you need:

http://www-01.ibm.com/support/docview.wss?uid=swg27041327
http://www-01.ibm.com/support/docview.wss?uid=swg27041327
http://www-01.ibm.com/support/docview.wss?uid=swg27041327
../common/t_ctr_install.html

IBM Curam Social Program Management 7.0.11 | 4 - Installing the application development environment

and web server | 59

> To use SPM Appeals, install IBM® Curam Appeals Application Module.
> To use SPM Verifications, IBM® Curam Verification Engine Application
Module.
5. Configure the REST APIs, see Connecting to Universal Access REST APIs (on page
114).

Figure 4. Universal Access React and Java™ application development environments

JavaScript IDE SPM Java |DE
(Visual Studio Code, Atom) (Eclipse and Tomcat)

Nodejs Apache Tomcat
universal-access-starter-pack
REST APIs Main SPM Client
Universal Access SPM Design System r
packages packages
v v
SPM Server

mock-server AP| service

Universal Access mock APIs
SPM Database

Troubleshooting environment

For troubleshooting, it can sometimes be useful to connect your lightweight or full
development environment directly to an SPM server. For more information, see Connect a

React development environment to an SPM server (on page 406).

To install the IBM Universal Access Responsive Web Application, first extract the spm uni ver sal -

access- st art er - pack React starter application. Then, install all of the IBM Social Program

Management Design System and IBM Universal Access Responsive Web Application Node packages into

the starter application.

Attention:

When you work with npm packages, it is important that you familiarize yourself with the npm
ecosystem and how package dependencies work so you can adopt a suitable security strategy
for your project.

. Download the IBM Universal Access Responsive Web Application and IBM Social Program

Management Design System Node packages. Open the Merative Support Community, under

Software Downloads, select Go to Downloads, and follow the instructions to download the

https://ibmwatsonhealth.force.com/mysupport/s/?language=en_US

IBM Curam Social Program Management 7.0.11 | 4 - Installing the application development environment
and web server | 60

SPM DS _<versi on>. zi pand UA_ Web_App_<ver si on>. zi p archive files. Then extract the
packages in the archive files to any directory.
2. Extract the spm uni ver sal - access-starter-pack _version.tgz file.

The extracted package directory forms the React starter application. You must install all of the

other packages into this directory.

3. Rename the extracted package directory to reflect your project.
For example, uni ver sal - access- cust om app.

4. From your custom application directory, install the IBM Social Program Management Design
System Node packages by entering the following commands:

npminstall <path>/govhhs-govhhs-desi gn-system core-<version>.tgz
npminstall <path>/govhhs-govhhs-desi gn-systemreact-<version>.tgz
npminstall <path>/spm core-<version>.tgz

npminstall <path>/spm core-ui-<version>.tgz

npminstall <path>/spmcore-ui-I|ocal es-<version>.tgz

npminstall <path>/spmintelligent-evidence-gathering-<version>. tgz

npminstall <path>/spmintelligent-evidence-gathering-Iocal es-<version>.tgz

Where <pat h> is the download path and <ver si on> is the package version.

Enter the remaining commands in this order:

npminstall <path>/spmeslint-config-<version>.tgz
npminstall <path>/spmtest-framework-<version>.tgz
npminstall <path>/spm web-dev-accel erator-scripts-<version>.tgz

npminstall <path>/spm web-dev-accel erator-<version>.tgz

Note:
Ignore any Node package dependency warnings for now. If needed, you can resolve them
later.

5. From your custom application directory, install the IBM Universal Access Responsive Web
Application Node packages by entering the following commands. Ignore any warnings for now.

npminstall <path>/spm universal -access-<version>.tgz
npminstall <path>/spm universal -access-ui-<version>.tgz

npminstall <path>/spm universal -access-ui-| ocal es-<version>.tgz

IBM Curam Social Program Management 7.0.11 | 4 - Installing the application development environment
and web server | 61

npminstall <path>/spm nock-server-<version>.tgz

npminstall <path>/spm universal -access- nbcks-<versi on>.tgz

Where <pat h> is the download path and <ver si on> is the package version.

6. Run the following command to install the package dependencies.

npm i nstal |

7. You can run the Universal Access starter application by entering the following command from your

application directory.

npm st art

If the local host does not start automatically, browse to http://localhost:3000/ to see the running

application.

You can now start to customize the Universal Access reference application for your organization.

Upgrading the IBM Universal Access Responsive Web
Application

You can upgrade your custom React application with the latest versions of the IBM Universal Access
Responsive Web Application and IBM Social Program Management Design System Node packages to

benefit from the most recent updates.

Before you upgrade, ensure that you review your custom application for any potential upgrade impacts.
For more information, see Developing compliantly (on page 78).

1. Download the IBM Universal Access Responsive Web Application and IBM Social Program
Management Design System Node packages. Open the Merative Support Community, under
Software Downloads, select Go to Downloads, and follow the instructions to download the
SPM DS <versi on>. zi pand UA Wb App <versi on>. zi p archive files. Then extract the
packages in the archive files to any directory.

2. Read all relevant What's new and release notes for Universal Access (on page 14) to review the
changes between your current version and the new version .

3. Extract the uni ver sal - access- st art er - pack package to a temporary directory and compare
it to your working custom application directory. Apply any differences you find to your custom

application directory.

http://localhost:3000/
https://ibmwatsonhealth.force.com/mysupport/s/?language=en_US

IBM Curam Social Program Management 7.0.11 | 4 - Installing the application development environment
and web server | 62

4. From your custom application directory, install the IBM Social Program Management Design

System Node packages by entering the following commands:

npminstal |l <path>/govhhs-govhhs-design-system core-<version>.tgz
npminstall <path>/govhhs-govhhs-desi gn-systemreact-<version>.tgz
npminstall <path>/spm core-<version>.tgz

npminstall <path>/spmcore-ui-<version>.tgz

npminstall <path>/spmcore-ui-I|ocal es-<version>.tgz

npminstall <path>/spmintelligent-evidence-gathering-<version>.tgz

npminstall <path>/spmintelligent-evidence-gathering-I|ocal es-<version>.tgz

Where <pat h> is the download path and <ver si on> is the package version.

Enter the remaining commands in this order:

npminstall <path>/spmeslint-config-<version>.tgz
npminstall <path>/spmtest-franework-<version>.tgz
npminstall <path>/spm web-dev-accel erator-scripts-<version>.tgz

npminstall <path>/spm web-dev-accel erator-<version>.tgz

Note:
Ignore any Node package dependency warnings for now. If needed, you can resolve them
later.

5. From your custom application directory, install the IBM Universal Access Responsive Web
Application Node packages by entering the following commands. Ignore any warnings for now.

npminstall <path>/spm universal -access-<version>.tgz

npminstall <path>/spm universal -access- ui-<version>.tgz
npminstall <path>/spm universal -access-ui-| ocal es-<version>.tgz
npminstall <path>/spm nock-server-<version>.tgz

npminstall <path>/spm universal -access-nocks-<version>.tgz

Where <pat h> is the download path and <ver si on> is the package version.

6. Run the following command to install the package dependencies.

npminstall

IBM Curam Social Program Management 7.0.11 | 4 - Installing the application development environment
and web server | 63

o ™
Note:
After an upgrade, the r eact - scri pt s@ 3. 0. O package can display an error when building the
application with npm run bui | d or starting webpack- dev- server with npm run start. This error is
due to optional package installation checks. To avoid this issue with r eact - scri pt s, use one of

the following options:

« Set the SKI P_PREFLI GHT_CHECK=t r ue environment variable in the . env file.
* Run npm updat e --no-save babel -eslint babel -jest babel -1 oader eslint jest webpack
webpack- dev- server to update the packages respecting the semver, and then run npm

dedupe.

For more information, see the creat e- r eact - app issue at https://github.com/facebook/create-

react-app/issues/4167.

Related information

Installing the IBM Curam Universal Access development environment (on page 58)

Install and configure IBM® HTTP Server with WebSphere®
Application Server

Install and configure IBM® HTTP Server either on the same server as WebSphere® Application
Server or on a remote server. To enable cross-origin resource sharing (CORS), you can set the
curam.rest.allowedOrigins property for the REST application on your application server, or install the
IBM® HTTP Server plug-in for WebSphere® Application Server.

WebSphere® Application Server must be installed and configured.

You must install IBM® Installation Manager. For more information, see the IBM® Installation Manager
documentation. You can download IBM® Installation Manager from Installation Manager and Packaging

Utility download documents.

.)

Note:

When the React application and the SPM server are deployed in different hosts that don't share
the same top-level domain+1, and the web server where the React app is hosted doesn't run a
proxy plug-in towards the SPM application servers, you must change the Cross-Site Request
Forgery (CSRF) and session cookies for cross-origin requests, from the default sanesi t e=Lax to

Sanesi t e=None.

https://github.com/facebook/create-react-app/issues/4167
https://github.com/facebook/create-react-app/issues/4167
https://www.ibm.com/support/knowledgecenter/en/SSDV2W/im_family_welcome.html
https://www.ibm.com/support/knowledgecenter/en/SSDV2W/im_family_welcome.html
https://www.ibm.com/support/knowledgecenter/en/SSDV2W/im_family_welcome.html
https://www.ibm.com/support/knowledgecenter/en/SSDV2W/im_family_welcome.html
https://www.ibm.com/support/knowledgecenter/en/SSDV2W/im_family_welcome.html
http://www-01.ibm.com/support/docview.wss?uid=swg27025142
http://www-01.ibm.com/support/docview.wss?uid=swg27025142

IBM Curam Social Program Management 7.0.11 | 4 - Installing the application development environment
and web server | 64

,', An alternative solution is to deploy a gateway web server in front of SPM to modify the cookie by

using this directive:

Header edit Set-Cookie 7(.*)$ $1; SaneSite=None; Secure

For SPM clusters, place this directive in the web servers where SPM applications are mapped.

1. Install IBM® HTTP Server. For more information, see Migrating and installing IBM HTTP Server.
2. Optional: If you don't set the curam.rest.allowedOrigins property, you must install the following

software:

a. Install the IBM® HTTP Server plug-in for WebSphere® Application Server.

For more information, see Installing and configuring web server plug-ins.

b. Install the WebSphere® Customization Toolbox.
For more information, see Installing and using the WebSphere Customization Toolbox.

3. Start IBM® HTTP Server. For more information, see Starting and stopping the IBM HTTP Server
administration server.
4. To secure IBM® HTTP Server, see Securing IBM® HTTP Server.

Generating an IBM® HTTP Server plug-in configuration

This task is needed only if you install the IBM® HTTP Server plug-in for WebSphere® Application Server.

Use WebSphere® Customization Toolbox to generate a plug-in configuration.

Start WebSphere® Application Server. For more information, see Starting a WebSphere® Application

Server traditional server.

To generate the IBM® HTTP Server plug-in configuration, complete the steps at the WebSphere®

Application Server Network Deployment plug-ins configuration topic.

Configuring the IBM® HTTP Server plug-in

Configure the IBM® HTTP Server plug-in for WebSphere® Application Server and WebSphere®
Customization Toolbox. This task is necessary only if you have chosen to install the IBM® HTTP Server
plug-in, instead of setting the curam.rest.allowedOrigins property for the REST application that is
deployed on the application server. Also, for information about how to configure the web server's HTTP

verb permissions to mitigate verb tampering, see Enabling HTTP verb permissions.

You can run the confi gur ewebser ver pl ugi n target to complete the following tasks:

https://www.ibm.com/support/knowledgecenter/en/SSEQTJ_8.5.5/com.ibm.websphere.ihs.doc/ihs/welc6top_miginstall_ihs_container.html
https://www.ibm.com/support/knowledgecenter/en/SSAW57_8.5.5/com.ibm.websphere.nd.multiplatform.doc/ae/tins_webplugins.html
https://www.ibm.com/support/knowledgecenter/en/SSEQTP_8.5.5/com.ibm.websphere.installation.base.doc/ae/tins_wct.html
https://www.ibm.com/support/knowledgecenter/en/SSEQTP_8.5.5/com.ibm.websphere.ihs.doc/ihs/tihs_startadmserv.html
https://www.ibm.com/support/knowledgecenter/en/SSEQTP_8.5.5/com.ibm.websphere.ihs.doc/ihs/tihs_startadmserv.html
https://www.ibm.com/support/knowledgecenter/en/SSEQTJ_9.0.0/com.ibm.websphere.ihs.doc/ihs/tihs_sectaskov.html
https://www.ibm.com/support/knowledgecenter/en/SSEQTJ_9.0.0/com.ibm.websphere.ihs.doc/ihs/tihs_sectaskov.html
https://www.ibm.com/support/knowledgecenter/en/SSEQTJ_9.0.0/com.ibm.websphere.ihs.doc/ihs/tihs_sectaskov.html
https://www.ibm.com/support/knowledgecenter/en/SSEQTJ_9.0.0/com.ibm.websphere.ihs.doc/ihs/tihs_sectaskov.html
https://www.ibm.com/support/knowledgecenter/en/SSEQTP_8.5.5/com.ibm.websphere.wdt.doc/topics/twsrtins.htm
https://www.ibm.com/support/knowledgecenter/en/SSEQTP_8.5.5/com.ibm.websphere.wdt.doc/topics/twsrtins.htm
https://www.ibm.com/support/knowledgecenter/en/SSEQTP_8.5.5/com.ibm.websphere.wdt.doc/topics/twsrtins.htm
https://www.ibm.com/support/knowledgecenter/en/SSEQTP_8.5.5/com.ibm.websphere.wdt.doc/topics/twsrtins.htm
https://www.ibm.com/support/knowledgecenter/en/SSEQTP_8.5.5/com.ibm.websphere.wdt.doc/topics/twsrtins.htm
https://www.ibm.com/support/knowledgecenter/en/SSAW57_8.5.5/com.ibm.websphere.nd.multiplatform.doc/ae/cins_webplugins.html
https://www.ibm.com/support/knowledgecenter/en/SSAW57_8.5.5/com.ibm.websphere.nd.multiplatform.doc/ae/cins_webplugins.html
https://www.ibm.com/support/knowledgecenter/en/SSAW57_8.5.5/com.ibm.websphere.nd.multiplatform.doc/ae/cins_webplugins.html
https://www.ibm.com/support/knowledgecenter/en/SSAW57_8.5.5/com.ibm.websphere.nd.multiplatform.doc/ae/cins_webplugins.html
https://www.ibm.com/support/knowledgecenter/en/SSAW57_8.5.5/com.ibm.websphere.nd.multiplatform.doc/ae/cins_webplugins.html
../SPMWDS/../Security/t_SECHAND_httpverbperms.html

IBM Curam Social Program Management 7.0.11 | 4 - Installing the application development environment
and web server | 65

« Add the web server virtual hosts to the client hosts configuration in WebSphere® Application
Server.

« Propagate the plug-in key ring for the web server.

- Map the modules of any deployed applications to the web server.

1. Start IBM® HTTP Server.
For more information, see Starting and stopping the IBM® HTTP Server administration server.

2. On the remote WebSphere® Application Server, run the following command.

bui | d confi gurewebserverpl ugi n - Dserver. nane=ser ver _name

The confi gur ewebser ver pl ugi n target requires a mandatory ser ver . name argument that
specifies the name of the server when the target is invoked. For more information about the
confi gur ewebser ver pl ugi n target, see Configuring a web server plug-in in WebSphere® Application
Server.
3. Consider adding extra aliases to the client_host, as shown in the following examples:
> For WebSphere® Application Server, add port number 9044.
o For the default HTTP port, add port number so.
> For HTTPS ports, add port number 433.
For more information about client host setup, see step 19 in the WebSphere® Application Server
port access setup topic.
4. To avoid port mapping issues from web applications, restart WebSphere® Application Server and
IBM® HTTP Server.
For more information, see Starting and stopping the IBM® HTTP Server administration server.

Install and configure Oracle HTTP Server with Oracle
WebLogic Server

Install and configure Oracle HTTP Server on either the same server as Oracle WebLogic Server oron a

remote server.

Oracle WebLogic Server must be installed and configured. For more information, see Installing and
Configuring Oracle WebLogic Server and Coherence for Oracle HTTP Server 12.1.3, and Installing and
Configuring Oracle HTTP Server for Oracle HTTP Server 12.2.1.3.

e N

Note:

When the React application and the SPM server are deployed in different hosts that don't share
the same top-level domain+1, and the web server where the React application is hosted doesn't

run a proxy plug-in towards the SPM application servers, you must change the Cross-Site Request

https://www.ibm.com/support/knowledgecenter/en/SSEQTP_8.5.5/com.ibm.websphere.ihs.doc/ihs/tihs_startadmserv.html
https://www.ibm.com/support/knowledgecenter/en/SSEQTP_8.5.5/com.ibm.websphere.ihs.doc/ihs/tihs_startadmserv.html
https://www.ibm.com/support/knowledgecenter/en/SSEQTP_8.5.5/com.ibm.websphere.ihs.doc/ihs/tihs_startadmserv.html
https://www.ibm.com/support/knowledgecenter/en/SSEQTP_8.5.5/com.ibm.websphere.ihs.doc/ihs/tihs_startadmserv.html
https://www.ibm.com/support/knowledgecenter/en/SSEQTP_8.5.5/com.ibm.websphere.ihs.doc/ihs/tihs_startadmserv.html
../SPMWDS/../Deployment_WebsphereApplicationServer/t_WEBSPHAPS_configwebsvrplugin.html
../SPMWDS/../Deployment_WebsphereApplicationServer/t_WEBSPHAPS_configwebsvrplugin.html
../SPMWDS/../Deployment_WebsphereApplicationServer/t_WEBSPHAPS_configwebsvrplugin.html
../SPMWDS/../Deployment_WebsphereApplicationServer/t_WEBSPHAPS_configwebsvrplugin.html
../SPMWDS/../Deployment_WebsphereApplicationServer/t_WEBSPHAPS_configwebsvrplugin.html
../SPMWDS/../Deployment_WebsphereApplicationServerOnZOS/t_WEBSPHZOS_Configuration5SetUpPortAccess1.dita#d1e1/step_clienthost
../SPMWDS/../Deployment_WebsphereApplicationServerOnZOS/t_WEBSPHZOS_Configuration5SetUpPortAccess1.dita#d1e1/step_clienthost
../SPMWDS/../Deployment_WebsphereApplicationServerOnZOS/t_WEBSPHZOS_Configuration5SetUpPortAccess1.dita#d1e1/step_clienthost
../SPMWDS/../Deployment_WebsphereApplicationServerOnZOS/t_WEBSPHZOS_Configuration5SetUpPortAccess1.dita#d1e1/step_clienthost
../SPMWDS/../Deployment_WebsphereApplicationServerOnZOS/t_WEBSPHZOS_Configuration5SetUpPortAccess1.dita#d1e1/step_clienthost
https://www.ibm.com/support/knowledgecenter/en/SSEQTP_8.5.5/com.ibm.websphere.ihs.doc/ihs/tihs_startadmserv.html
https://www.ibm.com/support/knowledgecenter/en/SSEQTP_8.5.5/com.ibm.websphere.ihs.doc/ihs/tihs_startadmserv.html
https://www.ibm.com/support/knowledgecenter/en/SSEQTP_8.5.5/com.ibm.websphere.ihs.doc/ihs/tihs_startadmserv.html
https://www.ibm.com/support/knowledgecenter/en/SSEQTP_8.5.5/com.ibm.websphere.ihs.doc/ihs/tihs_startadmserv.html
https://www.ibm.com/support/knowledgecenter/en/SSEQTP_8.5.5/com.ibm.websphere.ihs.doc/ihs/tihs_startadmserv.html
https://docs.oracle.com/middleware/1213/core/WLSIG/toc.htm
https://docs.oracle.com/middleware/1213/core/WLSIG/toc.htm
https://docs.oracle.com/en/middleware/fusion-middleware/12.2.1.3/wtins/index.html
https://docs.oracle.com/en/middleware/fusion-middleware/12.2.1.3/wtins/index.html

IBM Curam Social Program Management 7.0.11 | 4 - Installing the application development environment
and web server | 66

Forgery (CSRF) and session cookies for cross-origin requests, from the default sanesi t e=Lax to

Sanesi t e=None.

An alternative solution is to deploy a gateway web server in front of SPM to modify the cookie by

using this directive:

Header edit Set-Cookie ~(.*)$ $1; SaneSite=None; Secure

For SPM clusters, place this directive in the web servers where SPM applications are mapped.
- J

Installing Oracle HTTP Server and its components

Install and configure Oracle HTTP Server in either a stand-alone domain, or in an Oracle WebLogic Server

domain. You must install and configure an Oracle web server plug-in for proxying requests.

The Oracle web server plug-in allows requests to be proxied from Oracle HTTP Server to Oracle WebLogic
Server. If you install and configure the Oracle web server plug-in, requests that are delegated to Oracle
WebLogic Server still appear to originate from the Oracle HTTP Server, even if Oracle HTTP Server and

Oracle WebLogic Server are hosted on two different servers.

Because of the web browser same-origin policy, cross-origin resource sharing (CORS) is restricted in
many browsers by default. The web server plug-in enables CORS where Oracle HTTP Server and Oracle

WebLogic Server are installed on different computers.

CORS enables an instance of your web application that is deployed on Oracle HTTP Server in one domain
to request the REST services that are deployed on Oracle WebLogic Server in another domain.

1. Install Oracle HTTP Server for Oracle WebLogic Server. For more information, see Installing and
Configuring Oracle HTTP Server for Oracle HTTP Server 12.1.3, and Installing and Configuring
Oracle HTTP Server for Oracle HTTP Server 12.2.1.3.

2. To configure Oracle HTTP Server, choose one of the following options:

o To configure Oracle HTTP Server in a stand-alone domain, follow the instructions at
Configuring Oracle HTTP Server in a Standalone Domain for Oracle HTTP Server 12.1.3, or
Configuring Oracle HTTP Server in a Standalone Domain for Oracle HTTP Server 12.2.1.3.

» To configure Oracle HTTP Server in an Oracle WebLogic Server domain, follow the
instructions at Configuring Oracle HTTP Server in a WebLogic Server Domain for Oracle
HTTP Server 12.1.3, or Configuring Oracle HTTP Server in a WebLogic Server Domain for
Oracle HTTP Server 12.2.1.3.

3. If Oracle HTTP Server and Oracle WebLogic Server are installed in different domains, to enable

CORS, install a web server plug-in.

https://docs.oracle.com/middleware/1213/core/install-ohs/install_gui.htm#WTINS125
https://docs.oracle.com/middleware/1213/core/install-ohs/install_gui.htm#WTINS125
https://docs.oracle.com/en/middleware/fusion-middleware/12.2.1.3/wtins/index.html
https://docs.oracle.com/en/middleware/fusion-middleware/12.2.1.3/wtins/index.html
https://docs.oracle.com/middleware/1213/core/install-ohs/standalone_domain.htm#WTINS333
https://www.ibm.com/links?url=https%3A%2F%2Fdocs.oracle.com%2Fen%2Fmiddleware%2Ffusion-middleware%2F12.2.1.3%2Fwtins%2Fconfiguring-standalone-domain.html
https://docs.oracle.com/middleware/1213/core/install-ohs/colocated_domain.htm#WTINS280
https://www.ibm.com/links?url=https%3A%2F%2Fdocs.oracle.com%2Fen%2Fmiddleware%2Ffusion-middleware%2F12.2.1.3%2Fwtins%2Fconfiguring-collocated-domain.html

IBM Curam Social Program Management 7.0.11 | 4 - Installing the application development environment
and web server | 67

For more information about configuring an Oracle WebLogic Server proxy plug-in, see Configuring
the Plug-In for Oracle HTTP Server for Oracle HTTP Server 12.1.3, or Configuring the Plug-In for
Oracle HTTP Server for Oracle HTTP Server 12.2.1.3.

4. To secure Oracle HTTP Server, follow the procedure at Managing Application Security 12.1.3, or
Managing Application Security for Oracle HTTP Server 12.2.1.3.

The Oracle HTTP Server instance is now ready to for you to deploy the application. The default

location for deploying the application is OHS | NSTANCE/ conf i g/ f mmconfi g/ conponent s/

${ COVPONENT _TYPE} /i nst ances/ ${ COVPONENT NAME} / ht docs. However, you can configure the
default location value to a different location.

Start Oracle HTTP Server. For more information, see Next Steps After Configuring an Oracle HTTP Server
Domain for Oracle HTTP Server 12.1.3, and Next Steps After Configuring the Domain for Oracle HTTP
Server 12.2.1.3.

Configuring the Oracle HTTP Server plug-in

If a web server such as Oracle HTTP Server is configured in the topology, you must configure a web
server plug-in in Oracle WebLogic Server. The web server plug-in enables Oracle WebLogic Server to
communicate with Oracle HTTP Server. Also, for information about how to configure the web server's
HTTP verb permissions to mitigate verb tampering, see Enabling HTTP verb permissions.

To enable an Oracle HTTP Server web server plug-in in Oracle WebLogic Server, you can run the

confi gur ewebser ver pl ugi n target.

1. Ensure the remote Oracle WebLogic Server Oracle WebLogic Server is running.
For more information, see Starting and stopping Web Logic servers.
2. On the remote Oracle WebLogic Server, run the following command.
The conf i gur enebser ver pl ugi n target requires a mandatory ser ver . name argument that specifies

the name of the server when the target is invoked.

bui I d confi gurewebserverpl ugi n - Dserver. name=server _name

For more information about the conf i gur ewebser ver pl ugi n target, see Configuring a web server
plug-in in Oracle WebLogic Server.

3. Restart the remote Oracle WebLogic Server.
For more information, see Starting and stopping Web Logic servers .

https://docs.oracle.com/middleware/1213/webtier/develop-plugin/oracle.htm#PLGWL510
https://docs.oracle.com/middleware/1213/webtier/develop-plugin/oracle.htm#PLGWL510
https://www.ibm.com/links?url=https%3A%2F%2Fdocs.oracle.com%2Fmiddleware%2F12213%2Fwebtier%2Fdevelop-plugin%2Foracle.htm%23PLGWL510
https://www.ibm.com/links?url=https%3A%2F%2Fdocs.oracle.com%2Fmiddleware%2F12213%2Fwebtier%2Fdevelop-plugin%2Foracle.htm%23PLGWL510
https://docs.oracle.com/middleware/1213/webtier/administer-ohs/security.htm#HSADM900
https://docs.oracle.com/middleware/12213/webtier/administer-ohs/security.htm#HSADM901
https://docs.oracle.com/middleware/1213/core/install-ohs/postins.htm#WTINS137
https://docs.oracle.com/middleware/1213/core/install-ohs/postins.htm#WTINS137
https://docs.oracle.com/en/middleware/fusion-middleware/12.2.1.3/wtins/next-steps-configuring-domain.html#GUID-16C01B4A-5054-473E-8C99-FB56E091D2E9
../SPMWDS/../Security/t_SECHAND_httpverbperms.html
../SPMWDS/../Deployment_WeblogicServer/c_WEBLOGS_Configuration2StartingStoppingWeblogicServers1.html
../SPMWDS/../Deployment_WeblogicServer/t_WEBLOGS_configweblogicplugin.dita
../SPMWDS/../Deployment_WeblogicServer/t_WEBLOGS_configweblogicplugin.dita
../SPMWDS/../Deployment_WeblogicServer/t_WEBLOGS_configweblogicplugin.dita
../SPMWDS/../Deployment_WeblogicServer/c_WEBLOGS_Configuration2StartingStoppingWeblogicServers1.html

IBM Curam Social Program Management 7.0.11 | 4 - Installing the application development environment
and web server | 68

Installing and configuring Apache HTTP Server

Install and configure Apache HTTP Server on either the same server as the application

server or on a remote server. To enable cross-origin resource sharing (CORS), you can set the
curam.rest.allowedOrigins property for the REST application on your application server, or install the
appropriate plug-in for your web server. Also, for information about how to configure the web server's
HTTP verb permissions to mitigate verb tampering, see Enabling HTTP verb permissions for guidance.

An application server must be installed and configured.

- ™
Note:
When the React application and the SPM server are deployed in different hosts that don't share
the same top-level domain+1, and the web server where the React application is hosted doesn't
run a proxy plug-in towards the SPM application servers, you must change the Cross-Site Request
Forgery (CSRF) and session cookies for cross-origin requests, from the default sanesi t e=Lax to

Sanesi t e=None.

An alternative solution is to deploy a gateway web server in front of SPM to modify the cookie by

using this directive:

Header edit Set-Cookie ~(.*)$ $1; SaneSite=None; Secure

For SPM clusters, place this directive in the web servers where SPM applications are mapped.
N /

To enable cross-origin resource sharing (CORS), choose one of the following options:

- Set the curam.rest.allowedOrigins property for the REST application that is deployed on the
application server. For more information about setting the curam.rest.allowedOrigins property, see
Curam REST configuration properties.

« Install and configure the plug-in for your server.

1. Install Apache HTTP Server. For more information, see Compiling and Installing in the Apache
HTTP Server documentation.

2. Optional: If you don't set the curam.rest.allowedOrigins property, you must choose one of the
following options:

> WebSphere® Application Server

Install the plug-in for WebSphere® Application Server, see Installing and configuring web

server plug-ins.

../Security/t_SECHAND_httpverbperms.html
../MSDK/r_custom_rest_properties.html
https://httpd.apache.org/docs/2.4/install.html
https://www.ibm.com/support/knowledgecenter/en/SSAW57_8.5.5/com.ibm.websphere.nd.multiplatform.doc/ae/tins_webplugins.html
https://www.ibm.com/support/knowledgecenter/en/SSAW57_8.5.5/com.ibm.websphere.nd.multiplatform.doc/ae/tins_webplugins.html

IBM Curam Social Program Management 7.0.11 | 4 - Installing the application development environment
and web server | 69

Install the WebSphere® Customization Toolbox, see Installing and using the WebSphere

Customization Toolbox.

To configure Apache HTTP Server with WebSphere® Application Server, see Configuring
Apache HTTP Server.

> Oracle WebLogic Server 12cR1 (12.1.3):

For more information about configuring an Oracle WebLogic Server proxy plug-in, see
Configuring the Plug-In for Oracle HTTP Server.

To configure Apache HTTP Server with Oracle WebLogic Server, see Configuring the Plug-In
for Apache HTTP Server.

> Oracle WebLogic Server 12cR2 (12.2.1.3):

For more information about configuring an Oracle WebLogic Server proxy plug-in, see
Configuring the Plug-In for Oracle HTTP Server.

To configure Apache HTTP Server with Oracle WebLogic Server, see Configuring the Plug-In
for Apache HTTP Server.

3. Start Apache HTTP Server. For more information, see Starting Apache in the Apache HTTP Server
documentation.

4. To secure Apache HTTP Server server, see Security Tips and Apache SSL/TLS Encryption in the
Apache HTTP Server documentation.

Building the Universal Access Responsive Web Application for
deployment

Build the Universal Access Responsive Web Application for deployment on an HTTP server. To quickly
configure the uni ver sal - access- st ar t er - pack application for deployment, follow these basic

steps.

For the relative URL, assuming that you want to deploy the application in ht t ps: // your host nane. com
uni ver sal , set the environmental variable PUBLI C_URL=/ uni ver sal for the application build, or set the
package. j son honepage attribute to "/ uni versal *. Otherwise, set your own specific value. For more
information about build location options, see Building for Relative Paths in the Create React App

documentation.

For production builds, review all of the environment variables in your . env files, and check the order of
the environment variables where you have multiple . env files. For more information about the priority of

https://www.ibm.com/support/knowledgecenter/en/SSEQTP_8.5.5/com.ibm.websphere.installation.base.doc/ae/tins_wct.html
https://www.ibm.com/support/knowledgecenter/en/SSEQTP_8.5.5/com.ibm.websphere.installation.base.doc/ae/tins_wct.html
https://www.ibm.com/support/knowledgecenter/en/SSAW57_9.0.5/com.ibm.websphere.nd.multiplatform.doc/ae/tins_manualWebApache22.html
https://www.ibm.com/support/knowledgecenter/en/SSAW57_9.0.5/com.ibm.websphere.nd.multiplatform.doc/ae/tins_manualWebApache22.html
https://docs.oracle.com/middleware/1213/webtier/develop-plugin/oracle.htm#PLGWL510
https://docs.oracle.com/middleware/1213/webtier/develop-plugin/apache.htm#PLGWL395
https://docs.oracle.com/middleware/1213/webtier/develop-plugin/apache.htm#PLGWL395
https://docs.oracle.com/middleware/12213/webtier/develop-plugin/oracle.htm#PLGWL510
https://docs.oracle.com/middleware/12213/webtier/develop-plugin/apache.htm#PLGWL395
https://docs.oracle.com/middleware/12213/webtier/develop-plugin/apache.htm#PLGWL395
http://httpd.apache.org/docs/2.4/invoking.html
http://httpd.apache.org/docs/2.4/misc/security_tips.html
http://httpd.apache.org/docs/2.4/ssl/
https://www.ibm.com/links?url=https%3A%2F%2Fcreate-react-app.dev%2Fdocs%2Fdeployment%2F%23building-for-relative-paths

IBM Curam Social Program Management 7.0.11 | 4 - Installing the application development environment
and web server | 70

different . env filesinreact - scri pt s, see What other .env files can be used? in the Create React App

documentation.

1. Edit the . env configuration file in the root of your app, and update the REACT_APP_REST_URL
environment variable with the hostname and port of the server where the REST services are
deployed, for example:

Where the Curam SPM Rest APl application is hosted/ mapped
in the sane server or dommin as the Universal Access Responsive Wb Application:

REACT_APP_REST_URL=/ Rest

Where the Curam SPM Rest APl application is hosted/ mapped in a different server or donmin:

REACT_APP_REST_URL=htt ps://restapplication.conl Rest

2. Enter the following command to install dependent packages:

npminstal |

3. Enter the following command to build the application into a bui | d folder in the uni ver sal -

access-starter- pack:

npm run build

4. Copy the bui | d folder to the HTTP Server and deploy, see Deploying your web application to a web

server (on page 70).

Deploying your web application to a web server

To test your web application against an existing IBM Curam Social Program Management application
that is deployed on an enterprise application server, you can deploy the web application on one of
the supported web servers. The supported web servers are all based on Apache HTTP server so the
deployment procedure is similar.

You must have built your application for deployment.

The uni versal - access- st art er - pack package includes a preconfigured . ht access file under the public
folder that gets added to the built application. This file contains comments to explain the web server

configuration requirements for React Router Br owser Rout er enablement.

For more information about how to configure . ht access files in a web server, see the Apache HTTP
Server Tutorial: .htaccess files related link.

For more information about React Router Br owser Rout er, see Serving Apps with Client-Side Routing.

https://facebook.github.io/create-react-app/docs/adding-custom-environment-variables#what-other-env-files-can-be-used
https://www.ibm.com/links?url=https%3A%2F%2Fcreate-react-app.dev%2Fdocs%2Fdeployment%2F%23serving-apps-with-client-side-routing

IBM Curam Social Program Management 7.0.11 | 4 - Installing the application development environment

and web server | 71

1. Copy the contents of the bui | d directory to the appropriate directory for your HTTP server.

For more information about the <di r ect or y> directive, see the related links.

2. Configure the web server.

o If you use . ht access, enable the directives in . ht access by editing ht t pd. conf and

setting an appropriate value for the Al | owoverri de directive in the Directory section for the

HTTP server's Docunent Root , or the corresponding directory where the resources are being

deployed.

In addition, you must load the nod_r ewr i t e module for the React Router Br owser Rout er .

Enables nod_rewite for React Router's BrowserRouter directives
<IfMdule !nmod_rewite.c>
LoadModul e rewite_nodul e nodul es/ nod_rewite. so
</ f Modul e>
"/opt/| BM HTTPSer ver/ ht docs/ uni versal " is the |ocation
where the web application is deployed under the Docunent Root.
Alternatively you can specify the Document Root "/opt/|BM HTTPServer/htdocs"
<Directory "/opt/|BM HTTPServer/ ht docs/ uni versal ">
Al'l owOverride Filelnfo Options=MiltiViews

</Directory>

o If you do not use . ht access, you can copy the directives in . ht access and put them in a

Locat i onMat ch section for your application in ht t pd. conf .

Enables nod_rewite for React Router's BrowserRouter directives
<IfMdule !nmod_rewite.c>

LoadModul e rewite_nodul e nodul es/ nod_rewite. so
</ f Modul e>
Bel ow LocationMatch is set to "/universal" because the application
will be served from https://youhostnane. conf uni versal
<Locati onMat ch /uni versal >

#

place here your .htaccess directives

#

</ Locat i onMat ch>

3. Tune your HTTP server for improved performance, see the .

IBM Curam Social Program Management 7.0.11 | 4 - Installing the application development environment
and web server | 72

Related information

GitHub documentation: npm run build

Content Security Policy Quick Reference Guide
Apache core features V2.0: <Directory> Directive
Apache core features V2.4: <Directory> Directive
Apache HTTP Server Tutorial: .htaccess files

https://github.com/facebook/create-react-app/blob/master/packages/cra-template/template/README.md#npm-run-build
https://content-security-policy.com
https://docs.oracle.com/cd/B14099_19/web.1012/q20206/mod/core.html#directory
http://publib.boulder.ibm.com/httpserv/manual24/mod/core.html#directory
http://httpd.apache.org/docs/current/howto/htaccess.html

Chapter 5. Developing with the Universal Access
Responsive Web Application

Find out how to use the provided development resources to customize the IBM Universal Access

Responsive Web Application reference application and build your custom application.

Related information

IEG in the Universal Access Responsive Web Application

Starter pack and packages

Using the IBM Universal Access Responsive Web Application starter pack and packages, and Social
Program Management Design System packages, as your starting point, you can customize Universal

Access for your organization.

Each package includes a package- | ock. j son. sanpl e file, which lists the packages and versions that the

release was built with. This file is for reference only and is not to be used directly for building.

uni ver sal - access-starter-pack

This package contains a development environment and a fully functional and deployable reference
application. The starter application uses the other provided modules to provide an external web

application for Universal Access.

The starter pack demonstrates how a modern and responsive Universal Access client can be built by
using React, Redux, and the IBM Social Program Management Design System. It includes a sample
feature that demonstrates coding conventions and the correct usage of the IBM® Social Program
Management Web Development Accelerator tool to help you to get started with developing your own
custom features, see The sampleApplication feature (on page 84). You can rename, modify, and extend

the starter application to suit the needs of your organization.

uni ver sal - access

This package contains a module that connects the Universal Access Responsive Web Application to the
IBM Cudram Social Program Management server. uni ver sal - access makes HTTP requests to the server

to allow the web application to interact with the IBM® Curam Universal Access installation. Redux is the
storage mechanism for requests and responses. For more information, see Redux in Universal Access (on
page 89) and Universal Access Redux modules (on page 92). This module does not render content,

it depends on uni ver sal - access-ui to render the content.

../CitizenEngagement/t_CECUST_config_ieg.html

IBM Curam Social Program Management 7.0.11 | 5 - Developing with the Universal Access Responsive
Web Application | 74
uni ver sal - access- ui

This package contains a set of Universal Access Responsive Web Application features that presents
views to the user, it depends on uni ver sal - access to provide the data that it needs for those views.

uni ver sal - access-ui -1 ocal es

This package contains translated Ul artifacts for the uni versal - access-ui package.

uni ver sal - access- nocks

This package contains a module that provides mock data specific to Universal Access business scenarios
for testing purposes. It is used by the mock server to provide mock APIs in the development environment
so you don't need to host an IBM Curam Social Program Management server during development.

nmock- server

This package contains a lightweight server that can serve HTTP requests and return mock data as a
response. You can use nock- server during client development as a substitute for a real server to test
features.

core

This package provides JavaScript™ utilities to help you develop your application. For example, use the
RESTService utility to connect to a IBM Curam Social Program Management server-side REST API. Use

IntlUils toformat numbers and dates for globalization.

For more information about the cor e package utilities, see the JSDoc API documentation in spni cor e/

doc.

core- ui

This package provides common React Ul components to help you develop your application. For example,
use the AppSpinner component to display a spinning animation while a page loads, or use the Toaster
component to display notifications to the user.

For more information about the cor e- ui components, see the JSDoc APl documentation in spni cor e-

ui / doc.

core-ui -1l ocal es

This package provides translated artifacts for the cor e- ui components.

IBM Curam Social Program Management 7.0.11 | 5 - Developing with the Universal Access Responsive
Web Application | 75
intelligent-evidence-gathering

This package enables IEG scripts that are configured in the IBM Curam Social Program Management

application to run in your application. An APl is provided to call the IEG scripts.

For more information, see the APl documentationin spni i nt el | i gent - evi dence- gat heri ng/ doc.

intelligent-evidence-gathering-1|ocal es

This package contains translated artifacts for thei nt el | i gent - evi dence- gat her i ng package.

spm web- dev- accel erat or

This package contains the Social Program Management Web Development Accelerator rapid feature
development tool, which generates Redux modules to handle the communication between your
application and IBM Curam Social Program Management REST APIs.

spm web- dev-accel erator-scripts

This package contains a Swagger parser to retrieve information from IBM Curam Social Program
Management REST APIs, and scripts to generate the features and modules code from configuration

information in the spm web- dev- accel er at or package.

spmtest-framework

This package contains a number of reusable files to help you to set up a test environment for testing with
Test Cafe, Jest, and Enzyme. You can use the provided helper files to help you to develop and write end-to-

end tests, unit tests, or snapshot tests for your project.

spmeslint-config

This package contains an ESLint configuration with predefined coding style rules and an EditorConfig

configuration file.

Related information

Design system packages

Sample application project structure

The project structure is based on the Facebook creat e- react - app.

For more information about cr eat e- r eact - app, see create-react-app.

../SPMWDS/r_CE_dev_res_new.html
https://github.com/facebookincubator/create-react-app

IBM Curam Social Program Management 7.0.11 | 5 - Developing with the Universal Access Responsive
Web Application | 76

}— nock

|— node_nodul es

|— package. j son

}— public

}— src

| App.js

| L Config

| L css

| L Features

| | L— sanpl eAppl i cation

| | | L— confirmation

| | | | L Sanpl eApplicationConfirmation.js
| | | L form

| | | | L Sanpl eAppl i cationFormjs
| | | L overview

| | | | L Sanpl eAppl i cati onOverview.js
| L— index.js

| L intl

| L nodul es

| L_ paths.js

| L redux

| L routes.js

| L rout esMessages. j s

| L /sass

| L serviceWrker.js

|— tests
— .env

|— .env.devel opnent
The main files in the project are as follows:

package. j son

The package. j son file is customized to support the Universal Access starter application. For more

information on standard package. j son, see package.json.

https://docs.npmjs.com/files/package.json

IBM Curam Social Program Management 7.0.11 | 5 - Developing with the Universal Access Responsive
Web Application | 77

/ mock

/ mock contains the wiring that is needed to interact with the mock-server module. The mock server
replicates the SPM APIs, providing the mocked end points that are used by the sample application.

For more information about the mock server, see The mock server API service (on page 1174).
[public
/ publ i c is part of the create-react-app boilerplate. For more information, see create-react-app.

/src

/ sr c is your working folder. The starter pack provides the basic infrastructure that interacts with the
universal-access modules that are the platform for your development effort. / sr c contains the following
components:

«/ src/index. | s Initiates the application and adds the following capabilities:
> Connection to a Redux store by using the react - r edux module Provider component.
o Globalization is added by using react -i nt1 and the LanguagePr ovi der component.
> The universal-access module has a limited set of configurations that can be modified by
using the AppConf i g component.
» src/ App. j s is launched from the i ndex. j s file and wraps the main application in the r eact -
router.
* src/ css contains the compiled CSS styles.
= src/ confi g contains thei ntI configuration files.
» src/ f eat ur es contains a sample feature to demonstrate how to implement a simple version of
the Apply for benefits feature, see The sampleApplication feature (on page 84).
« sr ¢/ r edux contains the configuration for Redux reducers and the store.
e src/intl handles React-Intl Initialization.
e src/ routes. s provides a point of customization for adding, replacing, or removing routes in
your application.
» src/ pat hs. j s provides access the URLs that are mapped to each page by the route
configuration.
e src/ rout esMessages. j s contains the text Routes to be displayed on the window's title.
e src/appconfig. sanpl e. j son allows parts of uni ver sal - access to be customized, for example,
specifying the default and other supported languages.
e src/ sass/ styl es. scss contains the SCSS style definitions.

»src/sass/ custom vari abl es. css provides a configuration point for CSS variables.

https://github.com/facebookincubator/create-react-app

IBM Curam Social Program Management 7.0.11 | 5 - Developing with the Universal Access Responsive
Web Application | 78

.env and . env. devel oprent

The . env file contains the environment variables for production. The . env. devel opnent file
supersedes the environment variables in . env and sets specific environment variables for development.
For more information about environment variables, see the React environment variable reference (on page
204).

Developing compliantly

Follow these guidelines to protect your project from making customization changes that are incompatible
with the base product, or have the potential to incur upgrade impacts.

Never use undocumented APIs

JavaScript does not have access modifiers such as public, private. or protected. It is possible to call
functions in SPM modules that are not intended for public use. Calling these functions is not supported
as those APIs can change in a future release and break your code.

The only JavaScript APIs that are intended for public use are documented in the docs folder of the SPM

node_nodul es. For example, node_modul es/ @pni cor e/ docs/ i ndex. htmi .

Observe the Redux reducer namespace

If you use Redux, your Reducer names must not infringe on the namespace for Universal Access reducers.
All Universal Access reducers are prefixed with UA, for example. UABenef i t Sel ect i on. When Universal
Access and custom reducers are combined, clashing names override the Universal Access reducers.
Customizing uni ver sal - access reducers is not supported.

Don't modify the starter application files

While you can modify the starter application files in place, it is better to copy the files and change the
copy. Your upgrades will then be easier as you can compare files between the current and previous
version of the product without the added complexity of your customization changes. Where upgrade

changes are needed, manually apply the changes to your custom version.

Don't modify or source control any code that is generated

The IBM® Social Program Management Web Development Accelerator tool generates code from the
metadata in the nodul es_confi g. j son file, which is the only file that you need to source control. The code
is generated each time that you click Generate in the tool, or runthe npm i nstal | ,npm run buil d, or
npm run wda- gener at e commands.

IBM Curam Social Program Management 7.0.11 | 5 - Developing with the Universal Access Responsive
Web Application | 79

Enforce good code style with ESLint and EditorConfig

To help you to run static code analysis on your code, the spm esl i nt - conf i g package contains an
ESLint configuration with predefined coding style rules and an EditorConfig configuration file.

ESLint

Most code editors support plug-ins for linting. ESLint plugin is a useful plug-in for Microsoft Visual Studio
Code. Code editor plug-ins highlight errors in the editor so they can be seen and fixed during development.

When all the developers in a team use a plug-in, it helps to maintain a consistent code style.

If you use Microsoft™ Visual Studio Code, the provided configuration files prompt you to install the
recommended ESLint plug-in for code styling. If you use a different editor, you can manually configure the

plug-in. For example, for Atom you can configure the Atom ESLint plug-in.

The first time that you run a static code analyzer on your code, particularly if coding style was not
previously enforced, you might see numerous errors. Don't get discouraged, while it might take some time
to fix all of the violations, ensuring that your team uses a consistent coding style has significant long-term
benefits.
The ESLint configuration is in the . / node_rodul es/ @pm esl i nt-confi g/ i ndex. | s file.
Running ESLint
To check the code for ESLint violations, run the following command in the application root

directory. Errors are listed in the console.

npmrun |int
Fixing ESLint violations

Run the following command for ESLint to fix syntactic problems automatically:

npmrun lint -- --fix
You must manually fix any violations that can't be resolved automatically.

Overriding ESLint config rules in the sample config

The sample . eslintrc.js file in the uni ver sal - access- sanpl e- app is used for linting by default when

you run ESLint through an npm script or by using an editor ESLint plug-in. The sample extends the
configuration file in the spm esl i nt - conf i g package, which contains a set of predefined coding style rules.
You can override rules that are inherited from this configuration file by using the instructions at https://

eslint.org/docs/user-guide/configuring/configuration-files#configuration-based-on-glob-patterns.

https://marketplace.visualstudio.com/items?itemName=dbaeumer.vscode-eslint
https://atom.io/packages/eslint
https://eslint.org/docs/user-guide/configuring/configuration-files#configuration-based-on-glob-patterns
https://eslint.org/docs/user-guide/configuring/configuration-files#configuration-based-on-glob-patterns

IBM Curam Social Program Management 7.0.11 | 5 - Developing with the Universal Access Responsive
Web Application | 80

An example of overriding a rule is shown.

nodul e. exports = {

extends: ["./node_nodul es/ @pnieslint-config/index.js"],
overrides: [
{
files: ['src/**/*.js'],
rules: {

/Il 0is off / 1is warn/ 2 is error

' react - hooks/ exhaust i ve-deps': 2,

EditorConfig

EditorConfig helps maintain consistent coding styles for multiple developers who work on the same
project. The . edi t or conf i g EditorConfig setup file is in the root directory of the sample application.

The included EditorConfig configuration file ensures consistent coding style when it comes to indentation,
spacing, and quotation types. For more information about available Editor Config plug-ins, see the
EditorConfig downloads.

Automation

If you have a CD/CI pipeline, you can include linting as part of the testing phase. It is a good idea to
correct code with linting issues before you merge it into the codebase.

Universal Access Ul coding conventions

The uni versal - access-ui package is responsible for the presentation of the Ul in the application. Coding
conventions ensure that the Ul code is separated by responsibilities, which gives benefits such as easier

maintenance. Features, Components, and Messages are coded to render each page of the application.

Each page represents a business process function along a specific URL route. It is presented by using
individual IBM Social Program Management Design System components, embedded with localizable
messages, and connected to the Redux store, in the uni ver sal - access package, to access and manage
data in the application state (where applicable).

https://editorconfig.org/
https://editorconfig.org/#download

IBM Curam Social Program Management 7.0.11 | 5 - Developing with the Universal Access Responsive
Web Application | 81

Features

A feature is an intangible concept of individual business functionality that is translated into a view
navigable by a route.

A feature maps a particular business process or functionality, such as showing a user their payments, and
makes it visible to the user in a collection of files that work together and are navigable by a URL route. For

example / paynent s.

Multiple features can be used to implement a larger or more encompassing business process, such as

Life Events, depending on how many separate views or business process functions are required.
Features are mainly defined through a path, a Routes.js entry, and a directory that references the feature’s
top-level React component.
Paths.js
A simple JavaScript file that exports a JSON object that contains the properties with each
navigable path a user might traverse to in the application.
For a feature, the first step is to declare the appropriate navigable route here, for example:

const PATHS = {

USER_ENROLMENT: '/ user_enrol nent'

Routes.js entry

At a high-level, the Rout es. j s file in uni ver sal - access-ui (not the customizable Routes. j s
file in the sample application) renders the feature’s top-level React component (which is

exported from the feature’s i ndex. s file) depending on the current URL route.

react-loadable is used for component-centric code splitting. The feature’s top-level React
component is dynamically imported.

/1 User Enr ol ment Cont ai ner exported by /features/UserEnrol ment/index.js
const User Enrol nent = Loadabl e({
| oader: () =>
inport (/* webpackChunkNanme: "SonmeFeature" */ "../features/UserEnrol nent"),
| oadi ng: Loadi ngPage

b

https://github.com/jamiebuilds/react-loadable

IBM Curam Social Program Management 7.0.11 | 5 - Developing with the Universal Access Responsive
Web Application | 82

Declare the route within the render () function, either as a Ti t1 edRout e Or an

Aut hent i cat edRout e. Those familiar with React-Router might recognize some of the props.

render () {

return (

<Titl edRout e
conponent ={ User Enr ol nent }
exact
pat h={ PATHS. USER_ENROLMENT}
title={l ocal i sabl eRout esMessageFi | e. user Enrol nent Ti t| e}

/>

This effectively wires up the feature’s route to the feature’s React components in the internal

Rout es. j s file.

Adding features, or customizing existing features, for example overriding the FAQs, require
some implementation in your sanpl e- app/ src/ rout es. j s file. You must add the new feature
or redirect a route of an existing feature to your custom feature. For information about

implementing similar routing in your custom application, see Developing with routes.

Directory reference

The location of the feature in the file system. Each feature in uni ver sal - access-ui isa
directory within / uni ver sal - access-ui / src/ f eat ures. The directory is named after the
business process function. It contains the files responsible for rendering the actual view
to the user. A single React component, typically the Container, is exported by the feature’s
i ndex. j s to represent the feature at higher levels, for example Rout es. j s.

The uni versal - access-ui package does contain other high-level directories that are
responsible for other functionality, but these are separate or complementary to the base

feature concept.

https://reacttraining.com/react-router/web/guides/quick-start
https://www.ibm.com/support/knowledgecenter/SS8S5A_7.0.6/com.ibm.curam.universalaccess.doc/CitizenEngagement/c_CECUST_navigation.html

IBM Curam Social Program Management 7.0.11 | 5 - Developing with the Universal Access Responsive
Web Application | 83

Components

A component is a React component whose responsibility is to manage the data concerns for the piece of
business functionality and render the user’s view of the business functionality by using the data passed
as props, text defined in Messages, and components from the IBM Social Program Management Design
System.

Components are typically the highest-level React component that are exported from a feature (and act as
the starting renderable component) as generally every business process function requires some type of
data to retrieve, manipulate, and display. There are a few exceptions to this rule when the feature is only

an informational or static text view.
Components render the view of the business process function to the user.

By default, layouts, HTML elements, and more complex Ul widgets (like buttons, cards, badges, panels,
sections, headers, etc.) are taken from the IBM Social Program Management Design System. This
provides a standardized theme to the look-and-feel of all our features and benefit from common concerns,
such as accessibility and differing screen size layouts. We reference text defined in a separate Messages
file to render any text content.

Messages

Messages files define a JSON object that contains individual properties for each portion of text that is
used by a component and exported as a parameter to an APl of the react-int! library.

Typically, every component renders text as part of it's view. Each portion of text must be translatable
depending on the user’s language. Universal Access uses the react-intl library to help manage the text
content for translation.

For each component, there is a similarly created messages file, which contains the text that is wrapped in

the react-intl defineMessages() API. For example, User Enr ol ment Corponent Messages. j s.

inport { defineMessages } from'react-intl';

export default defineMessages({
userEnrolment Title: {
id: 'UserEnrolnment _Title',
def aul t Message: ' User Enrol nent',
H
user Enr ol ment Descri ption: {

id: 'UserEnrol ment_Description',

https://github.com/yahoo/react-intl
https://github.com/yahoo/react-intl/wiki/API#definemessages

IBM Curam Social Program Management 7.0.11 | 5 - Developing with the Universal Access Responsive
Web Application | 84

def aul t Message: "You can enrol in our user's program",
)
user Enr ol ment But t onLabel : {

id: 'UserEnrol ment _Button',

def aul t Message: ' Conti nue',

The sanpl eAppl i cati on feature

The sample feature illustrates the principles, tools, and technologies for developing features in
the application. It implements a simple Apply for Benefits workflow that complies with the coding

conventions.

The IBM® Social Program Management Web Development Accelerator tool significantly speeds up the
development of the Redux modules that connect the application to the REST APIs. The BaseFor nCont ai ner
component is used to implement IEG forms. The test framework speeds up the development of tests with
less code. Where possible, replacing React containers with standard and custom React hooks can reduce
complexity and further speeds up development.

Apply for Benefits workflow

Landing page

The / sanpl e- appl i cat i on page shows a list of application types, which were obtained

by using an API call. The code for that API call was generated with the Social Program
Management Web Development Accelerator tool. Select an application type to go the
Overview page. When you select the application type, the type is stored in a custom Redux
store object that was also configured with the tool.

Overview page

The / sanpl e- appl i cat i on/ over vi ew page describes the benefit and provides the option
to start the application. Applying for the benefit starts an IEG script with a script ID that
is obtained from an API call. This API call is configured by using the Social Program
Management Web Development Accelerator.

The Apply for Benefits form

IBM Curam Social Program Management 7.0.11 | 5 - Developing with the Universal Access Responsive
Web Application | 85

The form is rendered from the IEG script by using the BaseFor nCont ai ner component. Enter
any needed values to complete the form. When the form is complete, the confirmation page

opens.
Confirmation page

The / sanpl e-appl i cat i on/ confirmat i on page summarizes the information that you entered.

Looking at the SampleModule module

To review the Redux module for the sample feature in Social Program Management Web Development
Accelerator, start the tool by running npm run wda. From the home page, select View Modules and then
Edit on Sanpl eModul e module. On the APIs tab, you can see the two APIs for the Apply for Benefits

workflow.

» The vi/ ua/ onl i ne_cat egori es API returns a list of online categories where each online category
includes details of applications that a user can apply for. This API is used on the landing page.

» The vi/ ua/ appl i cati on_f or mAPI is used to start a new application form for the logged in user. The
sel ect edAppl i cat i onType value is defined when you click an application type on the landing

page and is then used on subsequent pages.
On the Store tab, you can see the selector and action for the sel ect edAppl i cat i onType.

Overview of the sample application code

Sanpl eAppl i cati onConponent . js

Displays a list of benefit application types. This component shows you how to do the

following tasks:

« To generate a temporary user if the current user is not logged-in by using the
useGener at edUser | f Not Logged| n React hook.

« To retrieve information from the APl and Redux store state by using the
Sanpl eMbdul eHooks. useFet chOnl i neCat egori es hook.

« To verify whether the Rest APl is still fetching information by using the
Sanpl eModul eHooks. useFet chOnl i neCat egor i es hook.

« To wrap the complete component with a React Higher Order Component (HOC). In

this case, the wi t hEr r or Boundar y error boundary HOC.

Sanpl eAppl i cati onConfirmation.js

A confirmation page with the identifier of the application submitted.

IBM Curam Social Program Management 7.0.11 | 5 - Developing with the Universal Access Responsive
Web Application | 86

Sanpl eAppl i cati onFor mConponent . j s

This component handles the application IEG scripts. General rendering and handling for IEG

is delegated to the BaseFor nCont ai ner component.
Sanpl eAppl i cati onOver vi ewConponent . j s

This component gives an end-to-end view of the application process to the user, along
with a summary of the application type and program types that they are applying for. This
component shows how to dispatch an action and create an application form by calling the

useCal | back hook that is associated with a button ond i ck handler.

Related information

Generating custom hooks (on page 98)

Manage state with React Hooks

React Hooks enable you to use state, execute effects, and other React features without writing a class.
You can use hooks to subscribe to the Redux store and dispatch actions, without having to wrap your

components in connect () .

For more information about React Hooks, see Introducing Hooks in the React documentationintroducing

Hooks in the React documentation at https://reactjs.org/docs/hooks-intro.html.

If you use containers, you need to:

« Use a React Class Component.

+ Implement mapDi spat chToPr ops t0 have access to the di spat ch object to call actions.
 Implement mapst at eToPr ops 10 have access to the st at e object to call selectors.

* Use the connect higher-order component when you export the component to wire it with Redux.

For example:

cl ass Sanpl eCont ai ner extends Conponent {

conponent Di dMbunt () {
//lnitializations
//Calling Action

t his. props. sanpl eAction();

https://reactjs.org/docs/hooks-intro.html
https://reactjs.org/docs/hooks-intro.html

IBM Curam Social Program Management 7.0.11 | 5 - Developing with the Universal Access Responsive
Web Application | 87

render () {
//Calling selector

const sel ectorValue = this.props.sanpleSelector();

return <>Conponent body</>;

/1l W need to inplenment this function to have access to the "dispatch™ object
const napDi spatchToprops = dispatch => ({
/] Call actions using the dispatch object

sanpl eAction: () => Sanpl eModul eActi ons. acti onNanme(di spatch);

/1l W need to inplenment this function to have access to the “state’ object
const nmapStateToProps = state => ({
I/ Call selectors using the state object

sanpl eSel ector : () => Sanpl eMbdul eSel ectors. sel ect or Nane(state);

/Il To do the wiring with redux, we need to use the “connect’™ HOC passing the two functions: "nmapStateToProps’ and
" mapDi spat chToPr ops™

export connect (nmapSt at eToProps, mapDi spat chToProps) (Sanpl eCont ai ner) ;
To do the same with hooks:

« You don't use class components.

« You don't need to use connect, napSt at eToPr ops OF mapDi spat chToPr ops.
* Use useDi spat ch to get the di spat ch objects and call the actions.

» Use useSel ect or 10 get the st at e object and call the selectors.

- Use useEf fect to simulate the life cycle events, for example conponent Di dvbunt

For example:

IBM Curam Social Program Management 7.0.11 | 5 - Developing with the Universal Access Responsive
Web Application | 88

const Sanpl eConponent = props => {
/1 Get the dispatch object to call actions

const di spatch = useDi spatch();

I/l Initializations - Calls on initial render (like conponentDi dvMount) and only if dispatch function ever changes
useEffect (() => {

//Calling action

Sanpl eAct i ons. act i onNane(di spat ch);

} . [dispatch])

/1 To call the selectors you do:

const sel ectorVal ue = useSel ector(state => Sanpl eSel ectors. sel ect or Nange(state));

return (<>Conponent body</>);

In addition to the reduced code, you can create custom hooks to further reduce the amount of code.

Custom hooks

The following custom login hooks are provided.

* useGener at edUser | f Not Logged! n: On mounting a component, checks whether the user is logged in.
If not, calls REST APIs to create a temporary user and automatically authenticate the user. This is
useful for anonymous IEG forms.

* usePubl i cGi ti zenl f Not Logged! n: On mounting a component, checks whether the user is logged
in. If not, automatically authenticates the user as a publ i cGi ti zen. For example, this is useful for

landing pages that need to call REST APIs to populate lists.

If you don't want to log out the existing generated user, you can set the keepExi st i ngGener at edUser

argument for these login hooks to t rue. By default, it is set to f al se.

It is not possible to implement these two custom functions without hooks, as a utility JavaScript™ file for
example, because they need to modify the React component state.

IBM Curam Social Program Management 7.0.11 | 5 - Developing with the Universal Access Responsive
Web Application | 89

Redux in Universal Access

Redux is used as a client-side store to store data that is retrieved by IBM Curam Social Program

Management APIs and data that is used to present a consistent user experience.

What is Redux?

Redux is a client-side store that provides a mechanism for holding data in the browser.

- The store is typically used to manage state in the client application. State can include the following
types of data:

o System data that is returned from an API request.

> User input data that is collected before it is posted to APIs.

- Application data that is not sent from or to the server, but is created and maintained to
control how the application works. For example, transient user selections like hiding or
showing a side pane.

» Redux uses a unidirectional architecture, which simplifies the process of managing state.

« Redux can be used as a caching mechanism to avoid unnecessary network round-trips, although
consider this usage carefully to ensure the data that is presented is always current.

« Redux proves to be beneficial as your application grows and becomes more complex. By
centralizing state management and offering tools that give a holistic view of the application state,

development can scale more easily.

(g N
Note:
This topic assumes that you are familiar with Redux and using Redux with React components. If
you are not familiar with these technologies and how they work together, you should complete

tutorials from the official sources for these technologies.
- _/

How is Redux used in Universal Access?

IBM® Curam Universal Access uses Redux to store the data that is retrieved by the IBM Curam Social

Program Management APIs.

Each GET API used by Universal Access has an associated ‘store slice’ where the response of the API
is stored. React components can monitor the store for updates relevant to them and automatically
update as data changes. The store is also used for collecting user input, such as user information that
is requested while users sign up. This data can then be retrieved from the store and posted to the IBM

Cudram Social Program Management server.

IBM Curam Social Program Management 7.0.11 | 5 - Developing with the Universal Access Responsive
Web Application | 90

Other parts of the store are not tied to IBM Ciuram Social Program Management APls, and track data that

is used to present a consistent user experience.

Creating a Redux store

By default, the Universal Access starter pack is configured to use a Redux store. This configuration is
needed to allow it to use the uni ver sal - access and uni ver sal - access- ui packages. The store

configuration is initiated from the sr ¢/ r edux/ ReduxI ni t . j s file in the starter pack.

inport store from'./store';

11

/1 1. Create the store and initialize the universal-access npdul e.

11

/Il Create the app Redux store

this.appStore = store;

/'l Configure the Core package
Cor eReduxSt ore. createStore(this.appStore);

}

For more information on Redux, see https://redux.js.org/.

Configuring the store

Configure the store in the sr ¢/ r edux/ st or e. | s file, which exports the confi gur eSt or e function that
can be called to create a new Redux store. The configure store function can be modified to:

https://redux.js.org/

IBM Curam Social Program Management 7.0.11 | 5 - Developing with the Universal Access Responsive
Web Application | 91

» Add Redux 'middleware'.

« Provide a custom set of reducers.

Note:

To work with the uni ver sal - access packages, the store must use the reducers that are

exported from the uni ver sal - access package.

Clearing Redux store data

The Redux store is a JavaScript object that is stored in the global object for the browser window. The
content of the store is visible through inspection, either programmatically or by browser plug-in tools,
such as the developer tools. It is critical that the store is cleared for the current user when they log out
to ensure that no sensitive user data is left on the device for malicious actors. The log-out feature that is

provided by the starter app triggers a Redux action that clears the store.

Adding reducers

If you decide to use Redux with your custom React components, you must create custom reducers and
add them to the store. All Universal Access reducers are prefixed with UA, for example uaPaynent sReducer .
Theintel ligent-evidence-gatheri ng package also exposes IEGReduxReducers reducers,
prefixed with IEG. When adding custom reducers, you can combine your custom reducers with existing
reducers. Do not use the UA or IEG prefixes in custom reducers to avoid overriding existing reducers.
Overriding reducers is not supported, see Developing compliantly (on page 78).

The src/ redux/ root Reducer. j s file defines the set of reducers for the store, and combines them into
a single root reducer that can be passed to the confi gureSt ore function inthe src/ redux/ store. s
file.

For convenience, the file defines an AppReducer s object where you can add custom reducers. The custom
reducers that are defined in the AppReducer s object are combined with the uaReducer s imported from the
uni ver sal - access package, and the superset of reducers is returned.

The following code excerpt shows the r oot Reducer function that returns the combination of Universal
Access reducers and custom reducers.

const AppReducers = {
// Add custom reducers here...

I/ custonReducer: (state, action) => state,

IBM Curam Social Program Management 7.0.11 | 5 - Developing with the Universal Access Responsive
Web Application | 92

BT
* Conbi nes the App reducers with those provided by the universal -access package
*/
const appReducer = conbi neReducers({

... AppReducers,
... UAReduxReducers,

)

] x*
* Returns the rootRReducer for the Redux store.
* @aram {*} state
* @aram {*} action
*/

const root Reducer = (state, action = { type: 'unknown' }) => {

return appReducer (state, action);

Universal Access Redux modules

Modules in the Universal Access Responsive Web Application communicate between the application and
the IBM Curam Social Program Management REST APIs and manage data for the API in the Redux store.

This design allows the React components to focus on presentation and reduces the complexity of the
code in the presentation layer. Modules manage the communication between the client application and
the IBM Curam Social Program Management REST APIs, including authentication, locale management,

asynchronous communication, error handling, Redux store management and more.

Modules typically follow the re-ducks pattern for scaling with Redux

Modules and APIs

Modules consist of collection of artifacts that work together to communicate withIBM Curam Social
Program Management REST APIs and manage the storage and retrieval of the response in the application
state. For example, the Payments module is responsible for communicating with the / v1/ ua/ paynment s
API. For more information about IBM Curam Social Program Management APIs, see Connecting to a
Cdram REST API.

https://medium.freecodecamp.org/scaling-your-redux-app-with-ducks-6115955638be

IBM Curam Social Program Management 7.0.11 | 5 - Developing with the Universal Access Responsive
Web Application | 93

Models

The model s. j s file is your data representation of the response from the API. It must map the
JSON response properties to an object that can be referenced within your web application.

class UserProfile {
constructor(json = null) {
if (json) {
t hi s. personFirstName = json. personFirst Nane;
t hi s. personM ddl eName = j son. per sonM ddl eNane;
thi s. personSurname = j son. per sonSur nane;
t hi s. personDOB = j son. per sonDOB
t hi s. user Nanme = j son. user Nang;

t his. user Type = json. user Type;

export default UserProfile;

Utils

The utils.|s file is responsible for the actual communication to the required API. On
successful contact with the AP, it constructs the model with the response. For simple GET
calls, you can use RESTSer vi ce. get to handle the API call. For more information, see the
RESTService utility.

inport { RESTService } from"@pn core";

inport UserProfile from™"./nodel s";

const fetchUserProfileltil = callback => {
const url = "“${process. env. REACT_APP_REST_URL}/user_profile";
RESTSer vi ce. get (url, (success, response) => {
const nodel | edResponse = new User Profil e(response);
cal | back(success, nodel | edResponse);
1)
b

export { fetchUserProfileltil };

IBM Curam Social Program Management 7.0.11 | 5 - Developing with the Universal Access Responsive
Web Application | 94

ActionTypes and Actions

Module actions are used to modify the Redux store, like inserting, modifying, or deleting
data from the store. For example, the Paynent sAct i ons action modifies the payments slice of

the store.

Some actions include calls to APIs. For example, Payment sAct i ons. get Dat a action calls the
v1/ ual/ paynment s APl and dispatches the result to the payments slice of the store, or sets

an error if the API call fails.

The acti onTypes. j s file represents the type of action that is being performed. At its core,

they are simple string types. For more information, see the Redux Glossary.

const FETCH _USER PRCFI LE = "UA- CUSTOM USER_PROFI LE/ FETCH_USER_PROFI LE";

export { FETCH USER PROFILE };

The acti ons. j s file contains the Redux actions, which are objects that represent an intention
to change the application state. They are exported to be accessible to call from a Container

component.

The following example is a representation of the action that calls the APl and attaches the
response to the dispatch, but you might further improve by adding fallback behavior.

inport { FETCH USER PROFILE } from"./actionTypes";

inport { fetchUserProfilelWtil } from"./utils";

export default class actions {
static fetchUserProfile = dispatch => {
fetchUserProfileUtil ((success, payload) => {
if (success) {
di spat ch({
type: FETCH USER PROFI LE,

payl oad: payl oad

Reducer

https://redux.js.org/glossary#action

IBM Curam Social Program Management 7.0.11 | 5 - Developing with the Universal Access Responsive
Web Application | 95

The reducers. j s file contains the Redux Reducers. Redux Reducers are just functions that
take the existing state and current actions and calculate a new state, thus updating the
application state.

The following example represents a data reducer that updates the state based on the API
result. You can implement more complex reducers based on the action to represent API

errors or failures or if the APl is awaiting a response, like an i sFet chi ngUser Prof i | e reducer.

Reducers aren’t called from Container components.

inport { conbineReducers } from "redux";

inport { FETCH USER PROFILE } from"./actionTypes";

const fetchUserProfil eReducer = (state = {}, action) => {

if (action.type === FETCH_USER_PROFI LE) {
return { ...state, payload: action.payload };
} else {

return state,;

const reducers = conbi neReducers({
fetchUserProfile: fetchUserProfileReducer
/1 room for nore reducers!

DE

export default { reducers };

Selectors

Module selectors are used to query the Redux store. They provide the response to
predefined store queries. For example, the Paynent sSel ect or . sel ect Dat a selector returns
the / paynent s/ dat a slice from the store, and the Paynent sSel ect or . sel ect Error selector
returns the value of the / paynent s/ err or slice of the store.

The sel ectors. j s file is responsible for retrieving the data from the application state for use
in the Container component (and likely passed as props to the Presentational component). It
selects information from the state by using the state’s ‘slice’ identifier.

https://redux.js.org/basics/reducers

IBM Curam Social Program Management 7.0.11 | 5 - Developing with the Universal Access Responsive
Web Application | 96

export default class selectors {

static nodul el dentifier = "UACustonlserProfile";

static fetchUserProfile = state =>

state[sel ectors. nodul el dentifier].fetchUserProfile. payl oad;

Index

You must export the parts of a module that must be accessible. Instead of creating an

i ndex. j s per module, create one in the module directory that exports the Actions, Model,
and Selectors of each custom module. These classes or functions are the only ones that
need to be accessed from the container components.

/1 Mbdul es
export { default as UserProfileActions } from"./UserProfile/actions";
export { default as UserProfileSelectors } from®"./UserProfile/selectors”;

export { default as UserProfileMddels } from"./UserProfile/nodels";

Blackbox

Modules are blackbox so are not open to customization or extension. The modules expose actions and
selectors to interact with the module. The actions and selectors are APIs that are documented in the

<your - proj ect - r oot >/ node_nodul es/ @pn uni ver sal - access/ docs/i ndex. ht i file.

Reusing Universal Access modules in your custom components

You can use the actions and selectors from the universal-access package to connect your custom
components to existing IBM Curam Social Program Management APIs and the Redux store. You can use
ther eact - r edux module to connect your components. Examples of this technique can be found in the

uni ver sal - access- ui features.

For example, the following code is from the Paynent sCont ai ner file in the Payments feature. The code
shows how the actions and selectors from the Payments module are connected to the properties of the

Payments component.

This pattern is documented extensively in the official Redux documentation.

inport { connect } from'react-redux';

inport React, { Conponent } from'react';

IBM Curam Social Program Management 7.0.11 | 5 - Developing with the Universal Access Responsive
Web Application | 97

[**

* Retrieves data fromthe Redux store.

* @aramstate the redux store state
* @enber of Paynent sCont ai ner
*/
const nmapStateToProps = state => ({
paynments: PaynentsSel ectors. sel ect Data(state),
i sFet chi ngPaynents: PaynentsSel ectors.isProcessing(state),
paynment sError: PaynentsSel ectors. sel ectError(state),
1)

| **

* Retrieve data fromrelated rest APIs and updates the Redux store.

* @xport
* @aram {*} dispatch the dispatch function
* @eturns {Qbject} the mappings.
* @enber of Paynment sCont ai ner
*/
export const mapDi spatchToProps = di spatch => ({
| oadPaynents: () => PaynentsActions. get Dat a(di spatch),
resetError: () => PaymentsActions.resetError(dispatch),
1)
BT
* Payment sContai ner initiates the rendering the paynents |ist.
* This conponent holds the user's paynent details |ist.
* @xport
* @anespace
* @enber of Paynent sCont ai ner
*/
export default connect (
mapSt at eToPr ops,
mapDi spat chToPr ops

) (Paynent sCont ai ner) ;

IBM Curam Social Program Management 7.0.11 | 5 - Developing with the Universal Access Responsive
Web Application | 98

Related information
Connecting to a Cdram REST API

Social Program Management Web Development Accelerator

The IBM® Social Program Management Web Development Accelerator is a tool that automatically

generates code for application state, such as custom hooks and Redux modules. Select and configure

Social Program Management REST APIs and automatically generate all of the hook or module code.

ﬁ Click here for a video presentation that gives a deep dive for the Social Program Management Web

Development Accelerator.

How it works

1. Add a module and provide a module name and description.

. Click Add API and select and configure the Social Program Management REST APIs that are

required for the module.

. Select the Store the API response in Redux? checkbox if you want to store the API response in the

Redux store. If you select this option, hooks cache the responses of APIs.

. Save the module. Your configuration is saved as metadata in a JSON file, which is the only code

that you need to source control.

. Generate the code. The module and hooks code is generated from the metadata and placed into a

specified directory in the project.

. Review the generated code in the Code preview tab. The tab contain the following sub-tabs, Hooks,

Actions, ActionTypes, Utils, Models, Reducers, and Selectors.

7. Import the module or hook into your React components.
(L N
Note:
You don't need to source control the generated code. The code is generated each time that you
click Generate in the tool, or when you run npm i nstal | ,npm run bui |l d ornpm run wda-
gener at e.
- J

Generating custom hooks

To abstract the complexity of working with Redux, the IBM® Social Program Management Web

Development Accelerator automatically generates React Hooks to be imported directly into React
components. You don't need to know about Redux to use these hooks for state management in the
application.

../MSDK/msdk_ctr_t_integrating.html
https://mediacenter.ibm.com/media/t/1_4j2t82kx
https://mediacenter.ibm.com/media/t/1_4j2t82kx
https://mediacenter.ibm.com/media/t/1_4j2t82kx

IBM Curam Social Program Management 7.0.11 | 5 - Developing with the Universal Access Responsive
Web Application | 99

The generated hooks are responsible for the integration with the Redux modules, and handle all the

caching that is needed to avoid unnecessary HTTP calls to REST APIs.

React Hooks are generated for each API and store objects that are added to the modules by using the
IBM® Social Program Management Web Development Accelerator. The hooks provide all data and
functions that are needed by the React components. There is no need to interact directly with the Redux

files, that is, Actions or Selectors.
For each API, a hook is generated with the following structure:

GET APIs:

const { data, isFetching, error, reFetchData, resetData } = useActi onName([parans], deps
= [
For DELETE, POST, PUT APlIs:

const { actionNane, data, isFetching, error } = useActionNane();

Hooks are also generated for custom store objects that are defined in the Store tab of the IBM® Social
Program Management Web Development Accelerator:

const { object, setCbject } = useSetCbject();

For more information about how to interact with the React Hooks, see the Sample Application Feature

at: /src/ features/ sanpl eApplication

Related information

The sampleApplication feature (on page 84)

Generating Universal Access Redux modules

In the IBM® Social Program Management Web Development Accelerator, you can create a module, select
and configure your REST APIs, and generate all of the code that is needed to handle the API requests and
manage your application state with Redux.

Check that the Social Program Management Web Development Accelerator environment variables are set
correctly, see React environment variable reference (on page 204).

1. In the root directory of the uni ver sal - access- st ar t er - app, run the command:

npm run wda

IBM Curam Social Program Management 7.0.11 | 5 - Developing with the Universal Access Responsive
Web Application | 100

The Social Program Management Web Development Accelerator opens locally at ht t p: / /
| ocal host : 3000/ .

2. On the home page, click View modules.

3. Click Add module or click an existing module to edit the module.

4. To add APIs, select the APIs tab and click Add API.

5. From the list of available APIs that is defined by the Swagger specification in the
WDA_SPM_SWAGGER environment variable, select the APIs that you need.
The APIs are added to the model metadata JSON file that is specified in the
WDA_MODULES_CONFIG environmental variable.

6. You can customize the default Action functions, Selectors, and Reducers for an API by changing
their names, or by specifying whether the API response is stored in Redux.

a. By default, function names are defined by a convention based on the API URI and verb. Click
a function name to rename the function.

b. By default, each REST API response is cached in the Redux store. If you don't want to store
the API response, clear the Store the API response in Redux? check box. The corresponding
functions are removed from the model.

The APlIs are defined in the model.

7. To create a custom store object to cache JavaScript objects, select the Store tab, click Add Store,
enter a name for the store object, and click Confirm.

8. You can preview the code to be generated from the modules metadata by selecting the Code
Preview tab.

9. You can generate the code as follows:
a. From the Modules page, click Generate

b. By using npm run the command:

npm run wda- gener at e

The code is also generated each time that the project is installed or built by running npm run

start Or npm run buil d.
The modules and the generated code are written directly to the directory that is defined in the

VDA MODULES_QUTPUT environment variable.

Error handling with a React higher-order component (HOC)

You can use the wi t hEr r or Boundar y function as a higher-order component (HOC) to handle API errors
on features. You can then focus on implementing components and delegate the error handling to the

IBM Curam Social Program Management 7.0.11 | 5 - Developing with the Universal Access Responsive
Web Application | 101

function. Additionally, this approach reduces the amount of code that is needed to implement the

component and its tests.

The wi t hEr r or Boundar y function is provided in the @ pni cor e- ui package and provides the following

functions:

* Retrieves the list of all errors from the Redux Store by calling the
ReduxUti | s. gener at ed obal Error Sel ect or selector, or you can provide a single selector that is
generated by the Social Program Management Web Development Accelerator.

- For any errors that are stored on the Redux store, the wi t hEr r or Boundar y function throws a
JavaScript exception that is caught by the nearest Err or Boundary.

» Wraps a component in an Err or Boundaryy.

« Clears the errors from the Redux Store when the component is unmounted.

Table 2. The wi t hErr or Boundary parameters

Manda- .
Parameter Details
tory
wrapped- Yes The component or container to wrap.
Component
errorSelector | No The selector to get the errors. If you don't provide an error selector, ReduxUt i | -
s. gener at ed obal Err or Sel ect or is used.
resetError- No The action to reset the errors.
Action
Examples

Exporting a component with the wi t hEr r or Boundar y function.
Default values

inport withErrorBoundary from' @pnicore-ui';

cl ass Cont ai ner extends Conponent {

IBM Curam Social Program Management 7.0.11 | 5 - Developing with the Universal Access Responsive
Web Application | 102

export default withErrorBoundary(Container)

DE
With parameters

inport withErrorBoundary from' @pnicore-ui';

inport { Sanpl eModul eSel ectors, Sanpl eModul eActions} from'../../nodul es/generated' ;

cl ass Contai ner extends Conponent {

export default withErrorBoundary(Container, Sanpl eModul eSel ect ors. f et chCust omAPI Error ,
Sanpl eMbdul eAct i ons. r eset Fet chCust omAPI Er r or)

DE

This example handles errors that are related only to the specified API error selector, rather

than listening for errors in the data store.

Connectivity handling

By default, a connectivity handler prevents data loss in IEG forms and provides offline detection for the
rest of the application. You see a warning message when you are disconnected, giving you a chance to
check your internet connectivity. You see a success message when you recover connectivity. You can
choose to prevent data loss in pages outside IEG forms by implementing the connectivity handler for

other pages in the application.

If internet connectivity is lost or the service becomes unavailable when you are in the application, a

warning message is displayed.

You' re di sconnected. Check your internet connection or wait while we try to reconnect

By default, connectivity is tested by pinging the server but you can customize this behavior with a custom

function. For example, to change the server URL or to ping a static file.

While connectivity is not strictly required for every page in the application, the connectivity polling ping is
used to detect if users are online. You can enable or disable connectivity handling for all pages, but not for
specific pages. The ping continues after session expiry. If the server can respond with an error then there
is still connectivity. If there is no response from the server, then the application is set offline.

IBM Curam Social Program Management 7.0.11 | 5 - Developing with the Universal Access Responsive
Web Application | 103

Preventing data loss in IEG

To prevent you from losing information that you enter in IEG forms, you are now prevented from leaving
IEG pages with unsubmitted changes when you are disconnected. An error message is displayed and you
remain on the page where you entered the information. You must check your internet and get online or
wait for the service to become available before you can continue. If internet connectivity or the service

remains unavailable, the error message persists.

You're still disconnected. Check your internet connection or try again |later

When you recover connectivity or the service becomes available, a success message is displayed and you

cansaveyourchange&

You are now connect ed.

Implementing a connectivity handler

You can implement loss-of-connectivity handling to improve the resilience of the application. Users
are notified when they lose or recover internet connectivity or access to the service. In addition, you
can prevent user actions when they are offline to avoid errors or data loss. By default, user actions are

prevented in IEG forms to prevent information loss if users go offline when in IEG forms.
The implementation consists of two components.
The Connect i vi t yHandl er component
Use the Connect i vi t yHandl er React component in packages/ cor e-ui / src/
Connecti vi ty/ Connecti vit yHandl er to detect offline and online events and to notify

the user. The Connecti vi t yHandl er component wraps the application with the logic to call

the appropriate messages.

The Connecti vi t yHandl er component provides the following functions:

- Registers browser offline and online events and runs the corresponding callback
functions. Internet connectivity is checked by making a periodic request to the server,

by default every 5 seconds.

o If the server request fails, it triggers the offline event callback. A dismissable

warning message is displayed:

You are offline, check your internet connection and try again

IBM Curam Social Program Management 7.0.11 | 5 - Developing with the Universal Access Responsive
Web Application | 104

o After connection is lost, a successful server request triggers the online event
callback. A dismissable success message that expires after 7 seconds is

displayed:

You are back online.

» Reads the prevent Acti onOnGr f 1 i ne Redux global state variable that is managed by the
Connecti vi t y Redux module. When this state is t rue and a user tries to interact with a

page when they are offline, an error message is displayed:

You are still offline, check your internet connection and try again.

The Connecti vi ty Redux module

Use the connect i vity Redux module in packages/ cor e/ src/ nodul es/ Connectivity
to manage the connectivity global state of the application, and to provide an option to

prevent unwanted actions.

The connecti vi ty module has two selectors and two actions:

- The set Onl i ne action sets the connectivity state of the application. Set to t r ue for
online and f al se for offline.

* The get Onl i ne selector returns the connectivity state of the application.

» The set Prevent Acti onOnCk f | i ne action sets the prevent action state of the
application. Set t r ue to prevent user actions while offline and f al se to allow user
actions.

* The get Prevent Acti onOnCX f | i ne selector returns the prevent action state of the

application.

1. Wrap your application in the Connecti vi t yHandl er component.
Place theconnect i vi t yHandl er component between the Error Boundary and ssoveri fi er

components in the application tree as follows:

<Reduxl| ni t >
<Intllnit>
<Rout er basenane={process. env. PUBLI C_URL} >
<Scrol | ToTop>
<Er r or Boundary
f oot er={<ApplicationFooter />}

header ={ <Appl i cat i onHeader Conponent hasErr or BeenCaught />}

IBM Curam Social Program Management 7.0.11 | 5 - Developing with the Universal Access Responsive
Web Application | 105

i sHeader Boundary

<Connect i vi t yHandl er >
<SSOveri fier
pl acehol der ={
<Appl i cat i onHeader Conponent
i SALi nkedUser={() => fal se}
i sAppeal sEnabl ed={f al se}
i sEnpty

/>

>
{/* Rest of the application tree */}
</ SSOveri fier>
</ Connecti vi t yHandl er >
</ Err or Boundar y>
</ Scrol | ToTop>

</ Rout er >
</Intllnit>

</ Redux! ni t>

The application now notifies users of online and offline events.
2. Optional: Configure connectivity polling, which pings the server at intervals to check connectivity.
You can change the ping behavior and the interval for connectivity polling.

a. You can create a custom function to override the default polling behavior. For example, to
ping a static file, to use a different URL, or even to generate a URL for every instance that
includes a timestamp. To implement this, import the r egi st er Connect i vi t yPol | i ngFunct i on

function in your App. j s file, which receives your custom function as a parameter.

inport { registerConnectivityPollingFunction } from' @pnl core-ui’;

Refer to the following three examples for how to use this function:
= Example 1: Use the same application server but ping a different URL

inport { registerConnectivityPollingFunction } from' @pnl core-ui';

inport { RESTService } from' @pnicore';

IBM Curam Social Program Management 7.0.11 | 5 - Developing with the Universal Access Responsive
Web Application | 106

const custonPol | i ngFunction = pingCal | back => {
const url = "“${process. env. REACT_APP_REST_URL}/v1/ ua/ <NEW APl _ROUTE>";
RESTSer vi ce. get (url, pingCall back);

b

regi st er Connecti vi tyPol | i ngFuncti on(custonPol | i ngFuncti on)

In the URL constant, replace <New API _RoUTE> with the new route. The polling function
is called with the pi ngcal I back function, which is responsible for notifying users
about online or offline events and must be used in this function as part of the

RESTSer vi ce function parameters.

Make the REST request by using the RESTSer vi ce. get (url, pi ngCal | back) function.
This function receives the new URL and the pi ngcal | back for online or offline

notifications as parameters.
= Example 2: Use a static file such as the fav icon

inport { registerConnectivityPollingFunction } from' @pnlcore-ui';

inport { RESTService } from' @pnicore';

const custonPol | i ngFunction = pingCal | back => {
const url = ${wi ndow. | ocation.origin}/fav.ico?_="${new Date().getTime()}";
RESTSer vi ce. get Wt hout Credenti al s(url, pingCall back);

h

regi st er Connecti vi tyPol | i ngFuncti on(custonPol | i ngFuncti on)

Set the URL constant with the corresponding URL origin to access the public folder

resources where f av. i co is typically located.

You don't need to pass the application credentials for this request so you can use
RESTSer vi ce. get Wt hout Cr edent i al s(url, pingCal | back). This function receives the
generated URL and the pi ngcal | back for online or offline notifications as parameters.

= Example 3: Use a different server

inport { registerConnectivityPollingFunction } from' @pn core-ui';

inport { RESTService } from' @pnicore';

const custonPol | i ngFunction = pingCal | back => {

const url = “${new server_origin}/${api _route}";

IBM Curam Social Program Management 7.0.11 | 5 - Developing with the Universal Access Responsive
Web Application | 107

RESTSer vi ce. get Wt hout Credenti al s(url, pingCall back);
IE

regi st er Connecti vi tyPol | i ngFuncti on(custonPol | i ngFuncti on)

In the URL constant, replace <NEw APl _ROUTE> with the new route. The polling function
is called with the pi ngcal | back function, which is responsible for notifying users
about online or offline events and must be used in this function as part of the

RESTSer vi ce function parameters.

On your server, you must address any CORS issues and include a status parameter in
the API response, for example st at us: 200. The pi ngcal | back function reads this value
and sets the application to offline mode only when the value doesn't exist.

b. By default, the syst em confi guration APl is pinged at a sensible interval of 5 seconds. If
your testing indicates that an interval of 5 seconds is not suitable for your application, you
can change the interval by setting the REACT_APP_CONNECTIVITY_INTERVAL environment

variable, for example:

REACT_APP_CONNECTI VI TY_I NTERVAL=7000

For more information about environment variables, see React environment variable

reference (on page 204).

3. Optional: You can prevent user actions when they are offline with the connecti vi t y Redux module.
You can display a danger message to tell users that they are offline and that they need to check
their internet connection.

a. Use the get Onl i ne selector to read the connectivity global state of the application.
b. Use the set Prevent Acti onOnOf f 1 i ne action to notify Connecti vi t yHandl er to display the

prevent action message.

For example:

prevent O fline = cal |l back => {
const { isOnline, preventActionOnOfline } = this.props;

return isOnline === false ? preventActi onOnOfline() : call back;

The example function uses { connect } from'react-redux’.lts implementation helps you
to inject the selectors and actions from the connectivity global state of the application as
props. i sonl i ne is the value that is returned by get Onl i ne, and prevent Acti onOnCf f I i ne() calls

get Prevent Acti onOnOf fl i ne(true).

IBM Curam Social Program Management 7.0.11 | 5 - Developing with the Universal Access Responsive
Web Application | 108

The prevent &f f I i ne function receives the function to run or prevent when online or offline as a

callback.

The online status is received from props and the prevent Acti onOnf f I i ne function displays the

message.

Whenisonline is f al se, call the function to display the message, otherwise call the callback

function.

Developing with routes

Routes define the valid endpoints for navigation in your application. Your application consists of a
network of routes that can be traversed by your users to access the application's pages.

IBM® Curam Universal Access uses the react-router and react-router-dom packages to manage
navigation. React Router defines and works with routes. For more information, see the React Router
documentation at https://reacttraining.com/react-router/web/guides/philosophy.

The Routes component

The module for Universal Access exports the Routes component, which exposes the routes defined by
the module. The defined routes are the suite of pages that are prebuilt and available for reuse in Universal

Access.

Routes component

You can import and reuse the Routes component in your application. The code example shows how
import and reuse the Routes component in a sample application.

inport React from'react';

inport { injectlintl, intlShape } from'react-intl";

inport { BrowserRouter } from'react-router-doni;

inport ' @pm web- desi gn-syst e j s/ govhhs-desi gn-systemcore.nn';

inport { Routes } from' @pniuniversal -access';

const App = (props) => {
return (
{/** You nust define your routes controller (Hash vs Browser) */}
<Br owser Rout er >
<di v cl assName="app" >

<di v cl assNane="ny- header - navi gati on">

https://reacttraining.com/react-router/web/guides/philosophy

IBM Curam Social Program Management 7.0.11 | 5 - Developing with the Universal Access Responsive
Web Application | 109

Home | Faq
</ di v>
<Routes />
</ di v>

</ Browser Rout er >

App. propTypes = {

intl: intlShape.isRequired,

}i
export default injectlntl (App);

Adding routes

You can add a route by including a new route anywhere inside your Router component.

The following code example adds a route to MyNewPageConponent into the router component:

inport { BrowserRouter, Route } from'react-router-domn;

<Br owser Rout er >
<di v cl assNane="app" >
<di v cl assNanme="ny- header - navi gati on">
Hone | New Page</ a>
</ div>
<UARout es />
<Rout e pat h="/ny- new page" conponent ={ M/NewPageConponent} />
</ di v>

</ Browser Rout er >

Replacing routes

You can replace existing paths from the Universal Access module’s Routes component with your preferred

component.

Wrap your routes in a <Switch> component

You can replace existing paths from the Routes component with your preferred component. To achieve
this, you must first wrap your routes in a <Switch> component from react-router. This action ensures that

IBM Curam Social Program Management 7.0.11 | 5 - Developing with the Universal Access Responsive
Web Application | 110

the first match of the requested path that is found in your application is used to resolve the path. For more

information on Switch, see https://reacttraining.com/react-router/web/guides/philosophy.

Add a route with the same path

When you have wrapped in Switch, you add a route with the same path as the page you are overriding.

Note:

This route must come before the <Routes/> component to ensure it is matched first.

The following code example shows a replacement route to MyHomePageComponent enclosed in a
<Switch>:

inport { BrowserRouter, Route, Switch } from'react-router-don;

<Br owser Rout er >
<di v cl assName="app" >

<di v cl assName="ny- header - navi gati on">

</ di v>
<Swi t ch>
<Rout e pat h="/" conponent ={ MyHonePageConponent} />
<Routes />
<Rout e pat h="/ny- new page" conponent ={ M/NewPageConponent} />
</ Swi t ch>
</ di v>

</ Browser Rout er >

Redirecting routes

You can redirect existing paths by using the r eact - r out er Redi r ect component.

Redirecting a route

The following code example imports the Redi rect component and redirects the path ' / bri ng- me- hone' to
E.

inport { BrowserRouter, Route, Switch, Redirect } from'react-router-don;

<Br owser Rout er >

<di v cl assName="app" >

https://reacttraining.com/react-router/web/guides/philosophy

IBM Curam Social Program Management 7.0.11 | 5 - Developing with the Universal Access Responsive
Web Application | 111

<di v cl assNanme="ny- header - navi gati on">
Hone | New Page</ a>
</ div>
<Swi t ch>
<Rout e pat h="/" conponent ={ MyHonePageConponent} />
<Redi rect fron¥"/bring-me-home" to="/" />
<Routes />
<Rout e pat h="/ny- new page" conponent ={ M/NewPageConponent} />
</ Swi t ch>
</ di v>

</ Browser Rout er >

Removing routes

You can remove unwanted routes from IBM® Curam Universal Access.

You might want to reuse some but not all of the Universal Access <Routes/>. For those routes that you
want to remove instead of replacing, use the react-router <Redirect> component to send users to a ‘404’
style page, or some other valid end point.

You must declare the redirect before the <Routes/> component. You must also wrap the redirect in a
<Switch> component. The following code example removes the route to "FAQ" by redirecting to a 404
page:
<Br owser Rout er >
<di v cl assName="app" >
<di v cl assName="ny- header - navi gati on">
Hone | FAQ</ a>
</ di v>
<Swi t ch>
<Redi rect path="/faq" to="/404page" />
<Routes />
</ Swi t ch>
</ di v>

</ Browser Rout er >

Advanced routing

IBM® Curam Universal Access is now code-split based on routes.

IBM Curam Social Program Management 7.0.11 | 5 - Developing with the Universal Access Responsive
Web Application | 112

Code splitting

Code-split based on routes is achieved using react-loadable and the @ pni uni ver sal - access- ui
package that is in the default LoadingPage component. For more information, see https://create-react-
app.dev/docs/code-splitting and https://github.com/jamiebuilds/react-loadable. The following example

shows how to achieve the same split with the routes that you added:

inport { Loadi ngPage } from ‘ @pnl uni versal -access-ui’;

const MyNewPageConponent = Loadabl e({
loader: () => inport(/* webpackChunkNanme: “M/NewPageConponent” */ '../features/ M/NewPageConponent’),
| oadi ng: Loadi ngPage,

)

<Rout e
conponent ={ MyNewPageConponent }
exact
pat h="/ ny- new- page’

/>

Titled routes

Accessibility rules require that a web page should have a descriptive title. You can implement a
descriptive title using the TitledRoute component of the @spm/universal-access-ui package. To localize
the title, TitledRoute exposes a title prop that accepts a react-intl message () and can be used with or

without code-split routes as shown in the following example:

inport { TitledRoute } from‘ @pni uni versal -access-ui’;

inport { defineMessages } from'react-intl';

const titles = defineMessages({
nyNewPage: {
id: "app.titles.nmyNewPage’',

def aul t Message: ‘M New Page’,

<Titl edRoute

conponent ={ MyNewPageConponent }

https://create-react-app.dev/docs/code-splitting
https://create-react-app.dev/docs/code-splitting
https://github.com/jamiebuilds/react-loadable

IBM Curam Social Program Management 7.0.11 | 5 - Developing with the Universal Access Responsive
Web Application | 113

exact
pat h='/ ny- new- page’
title={titles.nyNewPage}

/>

Authenticated routes

You can protect parts of the application in two ways:

1. On access, handle authentication failures to a REST API and redirect to a login page.

2. Block access to specific routes to avoid any cost in running the REST API.

The following example shows how to block access to specific routes. The @spm/universal-access-ui
package provides an AuthenticatedRoute component that accepts an authUserTypes array prop of the
allowed user types to access this route. AuthenticatedRoute also wraps TitledRoute and therefore offers a
title prop. The following is an example of using AuthenticatedRoute:

inport { AuthenticatedRoute } from‘ @pn universal -access-ui’;
inport { Authentication } from' @pnl universal-access';

inport { defineMessages } from'react-intl';

const titles = defineMessages({
nyNewPage: {
id: '"app.titles.myNewPage’,

def aul t Message: ‘M New Page’,

<Aut hent i cat edRout e
aut hUser Types={ [Aut hent i cat i on. USER_TYPES. STANDARD, Aut henti cati on. USER TYPES. LI NKED] }
conponent ={ MyNewPageConponent }
exact
pat h='/ ny- new page’
title={titles.nyNewPage}

/>

The example blocks access to the /my-new-page routes for all users who are not of type STANDARD or
LINKED, these users are redirected to the /login route.

IBM Curam Social Program Management 7.0.11 | 5 - Developing with the Universal Access Responsive
Web Application | 114

Connecting to Universal Access REST APls

You must connect your web application to IBM Curam Social Program Management Universal Access
REST APIs. You can use the RESTSer vi ce utility, and the mock server API service or Social Program
Management APIs to help you to develop and test your REST API connections.

For information about securing your Universal Access REST APlIs, see Securing access to Universal
Access REST APIs (on page 221).

Configuring the Universal Access API end point

Use the REACT_APP_REST_URL environment variable in the . env or. env. devel opnent file to nominate

the host for the Social Program Management APIs.

For example, in a development environment where the Universal Access Responsive Web Application is
running on Node.js on a developer's local machine, and Social Program Management is running on port
9080 in Eclipse/Tomcat on the local machine, add the following to the . env. devel opnent file in the React

application.

REACT_APP_REST_URL=ht t p: / /| ocal host : 9080/ Rest

And in a "deployed environment’, such as IBM® HTTP Server hosting the Universal Access Responsive
Web Application and IBM® WebSphere® Application Server hosting the Social Program Management
application on port 9044 with hostname ci ti zenport al . nyor g. com add the following:

REACT_APP_REST_URL=https://citizenportal .nyorg.com 9044/ Rest

For more information about environment variables, see React environment variable reference (on page
204).

The mock server API service

The mock server is a mock API service that is provided to aid rapid development. The mock server serves
APIs that simulate calling real web APls. When you are developing your application, the mock server
provides a lightweight environment against which the React components can be tested communicating
with the services that provide their data.

Configuring the mock server

Configure the mock server location through the following properties in the . env. devel opnent file. You

can change these values to suit your needs.

IBM Curam Social Program Management 7.0.11 | 5 - Developing with the Universal Access Responsive
Web Application | 115

* REACT_APP_REST _URL=http://I| ocal host: 3080
+ MOCK_SERVER_PORT=3080

Running the mock server

Run the mock server by using the following command from the root directory of your project:

npmrun start: nock-server

However, when you are developing locally, you can use the following command that starts both the mock

server and the client:

npmrun start
See the package. j son file in your project for the full list of commands.

Adding mock APIs

The universal-access project includes a number of mock APIs that simulate calling the SPM Universal
Access APIls. These mock APIs support running some basic scenarios in development mode for the

existing set of features.

As you develop your application, you typically create new APIs that you also want to mock. When the
mock server starts, it looks to import the / nock/ api s/ nockapi s file relative to the folder the command
was started from. In this file, the mock-server expects to find three objects, GET, POST, and DELETE, that it
can query to serve API requests for those HTTP methods.

The format of the mock definition is a relative URL that is assigned a JavaScript object. For example, the
following code assigns the object user to the URL/ user, and the object paynent s. j son, which is read

from afile, to the / paynent s URL.

const user = {
‘firstname': 'Janes',
‘surnanme': 'Smith',

‘gender': 'male',

IBM Curam Social Program Management 7.0.11 | 5 - Developing with the Universal Access Responsive
Web Application | 116

const nmockAPI sGET = {

/1 ADD YOUR GET MOCKS HERE

/] Exanpl e of providing nock data in response to an APl request in
/1 the format uri:nockobject

‘/user': user,

"/ paynments': readFile('./paynments/paynments.json)

If you use mocking extensively, it is better to use separate files and folders to structure your mocks.

Using universal-access mock APIs

The nockapi s. | s file is preconfigured to import and use mock APIs defined and exported by the
universal-access package. This allows your project to reuse and extend the set of universal-access mock
APls.

const nockAPls = require(' @pni universal -access-nocks');

Il Extract the existing universal access GET, POST and DELETE nocks for merging.
const UAMbckAPI sCGET = npckAPI s. GET;
const UAMockAPI sPOST = nockAPI s. POST;

const UAMbckAP| sDELETE = nockAPI s. DELETE;

I/ create custom nocks

/1 Merge UA nocks with custom nocks
const GET = Object.assign({}, UAMbckAPI sGET, npckAPI sCET);
const POST = Object.assign({}, UAMockAPI sPOST, npckAPI sPCST);

const DELETE = Obj ect.assign({}, UAMbckAPI sDELETE, npbckAPI sDELETE);

nodul e. exports = { GET, POST, DELETE };

IBM Curam Social Program Management 7.0.11 | 5 - Developing with the Universal Access Responsive
Web Application | 117

Where the same URL is used by a custom mock that was previously assigned to a universal-access

package mock, the custom mock replaces the universal access version.

The RESTService utility

The @pni cor e package provides the RESTSer vi ce utility, which you can use to connect your application
to a REST API. The ResTser vi ce utility provides important functions for securing and connecting to IBM
Cudram Social Program Management REST APIs, such as CSRF protection and SSO support. You can fetch
resources with alternatives such as Fetch API, SuperAgent, or Axis, but you must consider implementing
functionality that is handled by the RESTSer vi ce utility, like CSRF protection and SSO support.

The RESTSer vi ce utility supports the GET, POST, and DELETE HTTP methods through the following
JavaScript methods:

* RESTServi ce. get (url, callback, parans)
* RESTServi ce. post (url, data, call back)

* RESTServi ce. del (url, call back)

See the full RESTSer vi ce class documentation in the doc folder in the @ pni cor e package.

The ResTSer vi ce utility hides details of calls, such as passing credentials, language, and errors. The
callback that is passed to the GET, POST, or DELETE methods is started after the API calls return. API

calls are asynchronous, so write your code to expect and handle a delay in receiving a response.

The ResTSer vi ce utility provides functions during communications for authentication, handling responses,
and user language.

Authentication

Authentication of the user is handled transparently by the RESTSer vi ce utility. After a user is authenticated,
the REST APIs automatically send the needed 'credentials’, that is, the authentication cookies, with each
request. For information about how authentication is handled for REST, see Cuiram REST API security.

If a user's session is invalidated before a new request is made to a REST API, then the '401 unauthorized'
response is returned by the server. The RESTSer vi ce utility relays the response to the callback function
passed by the caller.

Handling responses

The RESTSer vi ce utility formats the response from the server to ensure that callbacks receive the

response in a consistent manner.

https://www.ibm.com/docs/en/spm/7.0.11?topic=api-cram-rest-security

IBM Curam Social Program Management 7.0.11 | 5 - Developing with the Universal Access Responsive
Web Application | 118

Each GET, POST, and DELETE method accepts a callback function from the caller. When called by the
RESTSer vi ce utility, the callback function receives a Boolean value that indicates the success or failure of
the API call and the response. The callback function can then deal with the result. For example, a failure
can be used to trigger your code to throw an error with the response data that can be used to trigger an
error boundary. For more information about the callback function parameters, see the APl documentation

for the RESTSer vi ce utility.

User Language

The 'Accept-Language' HTTP header is automatically set by the RESTSer vi ce utility based on the user's
selected language, which the user can select with the language picker in the application. This approach
lets the server respond in the correct locale where locale sensitive information is being handled on the

server.

The locale that is passed in the header is set in the transaction that is initiated by that REST request, and

is used for the duration of that transaction. For more on transactions, see Transaction control.

Cross-Site Request Forgery (CSRF)

The RESTSer vi ce utility manages REST APl CSRF protection for Universal Access that includes:

» Managing conditions on when to fetch a CSRF token.

« Pausing requests to fetch the CSRF token from the SPM server when needed.
« Storing the CSRF token in the application.

» Appending the CSRF token to the HTTP request header when appropriate.

Handling timeouts

The RESTSer vi ce utility can manage unresponsive calls to the server. You can set environment variables in

the . env files to set thresholds for timeouts.

* REACT_APP_RESPONSE_TI MEQUT=10 Wait 10 seconds for the server to start sending.

» REACT_APP_RESPONSE_DEADLI NE=60 but allow 1 minute for the file to finish loading.

Simulating slow responses

During development, it is important to test that your application continues to operate in an acceptable
way even when network responses are slow. You can simulate a slow network connection by setting a

property in the . env. devel opnent file in the root of your project.

../ServerDeveloper/c_SERDEV_Transaction1TransactionControl1.html

IBM Curam Social Program Management 7.0.11 | 5 - Developing with the Universal Access Responsive
Web Application | 119

For example, set REACT_APP_DELAY_REST_API =2 to delay the response from all GET requests for 2 seconds.

The value can be set to any positive integer to adjust the delay.

Related reference
React environment variable reference (on page 204)
Related information

Universal Access authentication (on page 222)

Adding metadata to file uploads

You can add metadata to files that you upload with the Document Service APIs by using the x- | BM cur am
Fi | e- Met aDat a attribute. That metadata can then be used, for example, as search criteria in a content
management system.

When a user wants to upload a file by using the Document Service API, a request is made to the following
API endpoint:

POST /v1l/dbs/files

The body of the request is the file that you want to upload in bi nary format. The Cont ent - Type of the

request is set to appl i cati on/ oct et - stream

/1 file data JSON obj ect
const fileData = {
caseRef erence,
| ogged! nUser Nane,
| ogged! nUser | d,
rel at edPersonl d,
rel at edPer sonNane,
filename,
classification,
dat eOf Upl oad: new Date(),
}
/Il Stringify the file data
const netadata = JSON.stringify(fileData);
/'l Set headers
const headers = {

' X-1BM Curam Fi | e- Met aData' : encodeURI Conponent (net adat a) ,

IBM Curam Social Program Management 7.0.11 | 5 - Developing with the Universal Access Responsive
Web Application | 120

To add metadata that relates to the file being uploaded, the X- | BM Cur am Fi | e- Met aDat a header is set to a
URI encoded JSON string. The URI encoded JSON string is decoded on the server so it is expected to be

URI encoded before sending the request.

/] PCST request
RESTSer vi ce. post (
‘/vl/ dbs/files',
/! File being uploaded
dat a,
(success, body, header) => {
cal | back(success, body, header);
h
/1 Set request body fornat
‘application/octet-strean,
nul |,
/'l Headers including netadata string

header s

The header s are then included in the POST request to / vi/ dbs/ fi | es. These headers are not parsed or used
in the default PosT /v1/ dbs/fil es APl endpoint.

For more information, see encodeURIComponent().

Universal Access REST API reference

The following IBM Curam Social Program Management REST APlIs are relevant to the key business

functions of IBM Universal Access Responsive Web Application.

For the full list of supported Social Program Management APIs, see the Swagger specification, which is
available from a running Social Program Management instance at ht t p: / / <host nane>: <port >/
Rest/ api/definitions/vl.

Appeals

POST /v1/ual appeal s_form

Starts a new |IEG execution for an appeal.

POST /v1/ual appeal s_fornfexit

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/encodeURIComponent

IBM Curam Social Program Management 7.0.11 | 5 - Developing with the Universal Access Responsive

Web Application | 121

Exits the Appeals IEG Form.

GET /v1/ ual appeal s

Returns the list of appeals for the logged in user.

GET /v1/ ual appeal s/ {onl i ne_appeal _request_i d}/ att achnent
Returns the attachment document for an appeal request.
Applications

CET /ual/online_categories

Returns a list of Online Categories. Each category includes details of the applications that a user can
apply for.

CET /ual/ submi tted_applications
Returns a list of applications that were previously submitted by the logged in user.

POST /ual/ subnitted_applications/{application_id}/application_prograns/{application_program.id}/withdrawal _request

Creates a withdrawal request for the specified program in a submitted application. The application can
be withdrawn only if it has a status of pending, and if there is not already a pending withdrawal request
for this application. For each program associated with the submitted application, a separate withdrawal
request must be created. Either awi t hdr awal Reason orr easonText value must be supplied, but
not both. See/ wi t hdr awal request reasons for the list of possible withdrawal reasons that were
configured for the associated application type.

GET /

ua/ submi tted_applications/{application_id}/application_prograns/{application_program.id}/w thdrawal _request_reasons
Returns a list of possible withdrawal reasons that a user can choose when they withdraw an application.
CET /ual application_types
Returns details of the application type definition of the specified draft or submitted intake application.
GET /ual application_types/{application_type_id}

Returns details of the specified application type.

IBM Curam Social Program Management 7.0.11 | 5 - Developing with the Universal Access Responsive
Web Application | 122

GET /ual appl i cati on_subm ssi on_nessage

Returns details of an application submission message.

GET /ual application_confirnmati on_nessage

Returns details of an application confirmation message. The details are configurable by an administrator,
by updating the details for the associated application type definition.

GET /ual/draft_applications

Returns a list of draft applications that are currently in-progress for the logged in user.

GET /ual/ submi tted_applications/{application_id}/attachnment

Returns the attachment for the specified submitted application.

GET /ual/formdetails/{application_form.id}

Gets details of a form instance.

POST /ua/ application_form

Starts a new intake application form for the logged in user. Under the hood, a new datastore is created
to store the data provided in the application form, for later use for when the user is ready to submit their

intake application.

DELETE /ua/ application_form {application_form.id}

Cancels the specified intake application form without saving the details, which means the application
form cannot be retrieved or resumed at a later stage.

POST / ua/ submi ssion_form

Starts a submission form for the logged in user, which is used in association with the specified intake

application form.

GET /ual/ submi ssi on_form {subm ssi on_form.i d}

Gets details of a submission form instance.

GET /ual/ submni ssi on_f or m { subm ssi on_form i d}/ page_details

IBM Curam Social Program Management 7.0.11 | 5 - Developing with the Universal Access Responsive
Web Application | 123

Returns details of questions for a single page of the specified form. If the page query parameter value

is next, or is empty, then questions are returned for the next unanswered page, or for the first page if no
answers were yet submitted. If the page query parameter value is previ ous, questions are returned for the
page before the last answered page. In this way, you can navigate through the pages of a form. However,

you cannot jump directly to a specific page.

POST /ual/ applications

Creates an intake application based on the data that was previously supplied in the specified intake

application and submission forms.
Document service
POST /v1/dbs/files

Uploads a file and returns the URL for the file.

This APl is disabled by default for security purposes, so you must ensure that you have implemented the
appropriate file security and validations for document uploads and enabled the API before you can upload

files to your system for verification, see .Securing and enabling the Files API

GET /v1/dbs/files/{file_id}

Retrieves a specified file.

DELETE /v1/dbs/files/{fileld}

Deletes a specified file. The DELETE method is not currently used by the Universal Access Responsive
Web Application.

Life events

CET /uallife_event_categories

Gets the list of life event categories and the life event contexts (of type Ci t i zen/ Onl i ne) that are

contained inside those categories, and the life event contexts that are not associated with any category.

PCST /ual/life_events_form

Get the f or m d giventhel i f eEvent sCont ext | d.

GET /uallife_events_form {form d}

https://www.ibm.com/support/knowledgecenter/SS8S5A_7.0.11//com.ibm.curam.content.doc/MSDK/msdk_securing_file_api.html

IBM Curam Social Program Management 7.0.11 | 5 - Developing with the Universal Access Responsive
Web Application | 124

Gets the Life Event Context record based on the IEG form.

POST /ual/life_events_fornfexit

Submits the Life Event IEG form.

CET /uallife_events_history

Get the life event history.

GET /uallife_event_renote_systens/{fornl d}

Gets the list of Remote Systems that are associated with the Life Event Context of the specified Life Event

Form.
POST /uallife_event_renote_systens/{form d}
Sends the Life Event data to the selected Remote Systems.
Messages
GET / ual/ nessages
Returns a list of system messages and account messages that are applicable for the logged-in user.
Notices

POST /v1/ual/ communi cat i ons/{conmuni cation_i d}/ mar k_send_by_post

Mark a communication to be sent by mail. An attribute on the return of the API indicates whether a send

by mail request exists for the communication.

GET /v1/ ual comruni cati ons/

Returns the list of communications for the logged in user.

GET /v1/ ual/ comuni cat i ons/ { communi cat i on_i d}

Returns a communication.

GET /v1/ua/ communi cati ons/{comuni cation_i d}/attachments/{attachnent_i d}

Returns the communication attachment details.

IBM Curam Social Program Management 7.0.11 | 5 - Developing with the Universal Access Responsive
Web Application | 125

Organization

GET /ual organi sation

Returns the details of the organization.

CET /uall ocal _offices
Returns a list of local offices. The list can be filtered either by county or by ZIP/postal code.
Payments

CET /ual paynents

Returns a list of payments for the logged in user. The returned list is ordered by payment date, with the
most recent payment listed first. The list can be filtered to return a single payment by supplying both
query parameters of paynent _i d and i sPaynent ByExt er nal Party.

CET /ual paynment _nmessages
Returns details of the user's next payment.
/ ual paynment s/ { paynment _i d}

Returns payment-specific details by payment ID. For an external payment identification, append the suffix
\“E\" to payment_id.

/ ual paynments_summari es

Returns a list of payment summaries for the logged-in user.

/ ual next _paynment s_sunmari es

Returns a list of next payment summaries for the logged-in user. Includes an adjustment indicator to
highlight where payments differ from the previous payment.

/ ual paynment s/ si mul at e_paynent s

Generates the projected next payments based on current circumstances. Use this API to get detailed
information about next payments. You must supply a list of benefit IDs for simulation to be performed for
each benefit. Payment simulation is an expensive instruction, so use this API judiciously.

IBM Curam Social Program Management 7.0.11 | 5 - Developing with the Universal Access Responsive
Web Application | 126

System

GET /ual system configurations

Returns a list of system properties. The list can be filtered to return a single system property by supplying
the property ID.

GET /ual app_i mage_r esour ce

Returns the requested image resource.
CET /ualicons/{icon_id}

Returns the requested icon.

User

GET /v1/ual user

Returns information that is related to the current user, such as user permissions.

CET /ual/profile
Returns details of the logged in user.
GET /ual profile_inmage/{i mage_i d}

Returns the requested profile photo. This photo must belong to the logged in user. See / profi | e for
retrieving the details for the value to use for {i mage i d}.

POST / ual/ user _account

Creates a user account.

POST /ual/ emai | _password_r eset

Sends a reset password email to the email address registered for the user.

POST /ual secret _question_password_reset

Resets the user's password, with the new password specified. The user's secret question and answer

must be valid, in order for the password to be successfully reset.

POST / ual/ password_r eset

IBM Curam Social Program Management 7.0.11 | 5 - Developing with the Universal Access Responsive
Web Application | 127

Resets the user's password, with the new password specified. The specified existing password must be

valid, in order for the password to be successfully reset.

POST /ual/ gener at ed_user _accounts

Generates a temporary user account to be used to log in to thSocial Program Management system

under the hood, when the citizen user has not logged in or created their own user account. This account
temporarily stores the details of the citizen user, for example any intake applications or benefits they start,
and transfers these details to a permanent user account if the user signs up or logs in with their own

account at a later stage.

PCST /ual appl i cati on_f or m owner shi p

Changes the ownership of the specified intake application form to the currently logged in user. This action
can be completed only if the previous owner of the intake application form is a system-generated user, it

is not permissible to use this APl to change the ownership from one citizen account user to another.

GET /ual user_account _| ogin
Retrieve the users last successful login date time.

GET /ual case_contacts
Returns a list of contact information for the caseworkers that are related to the logged in user's cases.
Screening

CGET /ual screening_form

List all screening forms for the current user.

POST /ual/ screeni ng_form

Starts a new |IEG execution based on the Screening Type.

GET /ual screeni ng_fornf {formn d}

Gets the Screening Type and Program selection for a specified Screening Form.

POST /ual/ screening_forn {form d}

Updates the Program selection for specified Screening Form.

IBM Curam Social Program Management 7.0.11 | 5 - Developing with the Universal Access Responsive
Web Application | 128

DELETE / ua/ screeni ng_f ornf {fornl d}

Delete a screening form.

POST /ual/filter_screening_form

Starts a new Filter Screening IEG execution based on the Screening Type.

POST /ual/ screening_fornlexit

Exits the Screening IEG Form.

GET /ual/screening_form {fornd}/results
Get the Screening Results.
Verifications

POST /v1l/ual/verifications/link_file

Links an existing file on the system to a specified verification. A link record is created to link the file and

the verification.

GET /v1/ualverifications

Returns details for all verifications for a specified person or case.

Universal Access passes in the Concer nRol el D for the primary participant, which returns verifications for

all case participants on all active cases where the person is the primary participant.

GET /v1/ualverifications/{verificationld}

Returns details for a specified verification.

DELETE /v1/ual/verifications/{verificationld}/file_links/{link_id}

Removes a link between a file and a verification without deleting the file. The link record is deleted. You
can delete the file by using the document service DELETE /v1/dbs/files/{fileld}
API.

Developing toast notifications

A toast as a computing term refers to a graphical control element that communicates certain events
to the user without forcing them to react to the notification immediately. In the Universal Access

IBM Curam Social Program Management 7.0.11 | 5 - Developing with the Universal Access Responsive
Web Application | 129

Responsive Web Application, we use the design system Al ert component as a base to represent our toast
notifications and allow capability to display these notifications independent of the main display content in

any function within the application.

The <Toaster> component

The exposed <Toast er > component is used in App. j s and is responsible for rendering toast notifications
retrieved directly from the Redux store. These notifications are displayed independent of page content.
This means that a deeply nested function can be used to display a notification without regard to the

current component render and/or functionality that is used to navigate to different pages.

The <Toast er > component handles the retrieving of toast slice within the store, and in passing

functionality to remove toast notifications after they are dismissed.

The <Toast> component

The exposed <Toast > is the preferred component to display toast notifications. It accepts properties as
defined by the web design system Alert component, without requiring the need to specify the component

as an Al ert and the banner, center, and t oast properties. It also requires a t ext property to be defined.

The Toaster module

Any component that intends to display a toast notification within it's processing must use the Toast er
module action fi | | Toast er function. This can be either passed to the component as a property, or
connected to the Redux store and defining the action as a property. For more information, see Universal

Access Redux modules (on page 92).

An example of a page that implements the Toast er module action fi || Toast er and a service unavailable

toast notification is shown.

inport React from'react';
inport { connect } from'react-redux';
inport { ToasterActions } from' @pnl universal -access';

inport { Toast } from' @pm universal -access-ui';

/**
* Updates the Toast slice of Redux store
* @aram {*} dispatch the dispatch function

*/

IBM Curam Social Program Management 7.0.11 | 5 - Developing with the Universal Access Responsive
Web Application | 130

export function mapDi spatchToProps(di spatch) {
return {
fill Toaster: data => {
Toast er Actions. fill Toaster(di spatch, data);

b

cl ass MyConponent extends React.Conponent {

doSonet hi ng({ success }) {

if (success) {

}
el se {
this.props.fill Toaster(
<Toast
di sm ssabl e={f al se}
expi reAfter={5}
text="This service is currently unavail abl e"

type="danger"

export default connect(
nul I,
mapDi spat chToPr ops

) (MyCorponent) ;

IBM Curam Social Program Management 7.0.11 | 5 - Developing with the Universal Access Responsive
Web Application | 131

Localization

You can add languages to the application, and apply regional settings for calendar and date formats, and

for currencies.

Related information

Developing for Regional Support

Configuring languages in the application

You can add languages to the application or change the default language. You must create a sr c/
config/intl.config.jsfilletobereadbythesrc/intl/Intllnit.js component, whichhandles
storage of the configuration and creates thereact-intl Intl Provider.

Review thesrc/ config/intl.config.js.sanple. nd file, which contains theintl.config.js object
schema and an example src/ config/intl.config.]js file.

Translated messages for the default supported languages are provided in the following locations:

« For uni versal - access- ui components, in the uni versal - access- ui - | ocal es package at/
node_nodul es/ @pn uni ver sal - access- ui -1l ocal es.

¢ For the core-ui components, in the cor e- ui - I ocal es package at/ node_nodul es/ @pni cor e-
ui -1 ocal es.

» Fortheintel li gent - evi dence- gat heri ng components, in the i ntel | i gent - evi dence- gat her i ng-

| ocal es package at/ node_nodul es/ @pniintel | igent-evi dence-gat hering-1ocal es.

Createasrc/config/intl.config.]js filewith reference to the following example from the sr c/
config/intl.config.js.sanple.nd file.

export default {
defaul tLocale: 'en',
| ocal es: [
{
locale: "en',
di spl ayNane: ' English',

| ocal eData: require('react-intl/|ocal e-data/en')

| ocale: 'de',
di spl ayNane: ' German',

| ocal eData: require('react-intl/|ocal e-data/de'),

https://www.ibm.com/support/knowledgecenter/SS8S5A_7.0.11/com.ibm.curam.content.doc/Regionalization/ctr_CuramRegionalizationGuide.html

IBM Curam Social Program Management 7.0.11 | 5 - Developing with the Universal Access Responsive
Web Application | 132

nmessages: {
...require(' @pnl core-ui-local es/data/ nessages_de'),
...require(' @pnintelligent-evidence-gathering-|ocal es/data/ nessages_de'),

...require(' @pnluniversal -access-ui -1 ocal es/ dat a/ nessages_de')

locale: "ar',
di spl ayNane: ' Arabic',
direction: 'rtl",
| ocal eData: require('react-intl/l|ocale-data/ar'),
messages: {

...require(' @pnl core-ui-local es/dat a/ nessages_ar'),

...require(' @pnintelligent-evidence-gathering-|ocal es/data/ nessages_ar'),

...require(' @pn universal -access-ui -1 ocal es/ dat a/ mnessages_ar"')

locale: "ht',
di spl ayNane: ' Haitian',
I *
Custom | ocal e data
Were the local e you need to support is not found in the react-intl |ocale data you can create your own |ocal e
data to handle this.
Sinply create an object with the locale property. You nust include at a m ni mumthe plural Rul eFuncti on.
See https://github.com yahoo/react-intl/issues/1050
*/
| ocal ebData: {
| ocale: 'ht',
pl ural Rul eFunction(argl, arg2) {

return argl & arg2 === 1 ? 'one ‘ot her';

h

nessages: require('../local e/ messages_ht")

IBM Curam Social Program Management 7.0.11 | 5 - Developing with the Universal Access Responsive
Web Application | 133

Translating your application

Use react-intl and babel-plugin-react-intl to extract text from your application. You can then translate the

text into another language and include that translation in the application.

Extracting translatable content

You can follow the same method that IBM® uses during development to extract the translatable content

from your application.

react-intl (https://github.com/formatjs/babel-plugin-react-intl) and babel - pl ugi n-react -i nt1 (https://
github.com/yahoo/babel-plugin-react-intl) are used to globalize the application during development.

o ™
Note:
react -int| provides React components and an API to format dates, numbers, and strings,
including pluralization and handling translations. babel - pl ugi n-react -i nt| extracts string

messages from React components that use react-int! .

1. Use thereact-int| defineMessages API to define the default message string entry within the
application.

2. Add babel - pl ugi n-react -i nt| and its dependencies babel -cli and babel - preset - r eact - app to the
application’s devDependenci es.

3. Add a. babel r c file in the root of your project. Use . babel r ¢ to configure the settings for the

babel - pl ugi n-react-intl as shown in the following example . babel r c file:

"presets": ["react-app"],
"plugins": [
[
“react-intl", {

"messagesDir": "transl ati ons/ nessages"”,

}

4. Add the following line to your package. j son "scripts":

https://github.com/formatjs/babel-plugin-react-intl
https://github.com/yahoo/babel-plugin-react-intl
https://github.com/yahoo/babel-plugin-react-intl

IBM Curam Social Program Management 7.0.11 | 5 - Developing with the Universal Access Responsive
Web Application | 134

“extract Transl ati ons”: "NODE_ENV=production babel ./src >/dev/null"

Windows

“extract Transl ations": "set NODE_ENV=producti on&&babel ./src > NUL"

5. Run the following extraction command to extract all translations to the t r ansl at i ons/

nessages directory, as specified in the . babel r ¢ configuration:

npm run extract Transl ati ons

Including translated content in your application

IBM® Curam Universal Access exposes asrc/intl/Intllnit component. This component reads the
configuration provided in the custom src/ confi g/intl . confi g.js to seed your application with messages

for all the languages that you want your application to support.

1. Ensure that translations are returned for use in your product in the format of a single JSON file per
locale. The JSON file must be in the format that is expected by react -i nt1, whichis {[id: string]:

string}, as shown in the following example:

“label 1": “Transl ated text1“,

“label 2": "Transl ated text2",

Where i d is the ID that is used in your def i neMessages entry and subsequent extracted message ID.

o ™
Note:
The id in this file format {[i d: string]: string} must match the ID that you define in your
code as in the def i neMessages structure. For more information, see https://formatjs.io/

docs/react-intl/api/#formatmessag.
N J

This file and its location in the application forms the entry to the messages value with the

intl.config.]js foryour configured locale, for example:

https://formatjs.io/docs/react-intl/api/#formatmessag
https://formatjs.io/docs/react-intl/api/#formatmessag

IBM Curam Social Program Management 7.0.11 | 5 - Developing with the Universal Access Responsive
Web Application | 135

local e: "de",

di spl ayNane: " German",

| ocal eData: require(“react-intl/|ocal e-data/de"),
messages: require("../local e/ nessages_de")

b

2. react-intl also requires that its own locale configuration (localeData) is provided to support some

of its internal functions. For more information, see https://formatjs.io/docs/react-intl.

When you have configured it correctly with the src/ confi g/intl.config.j s file the
Appl i cati onFoot er language selection drop-down should expose your new locale selection, it should also

load and apply the configured translation messages to the application.

o ™
Note:
If your application does not find messages for the currently selected language at run time, r eact -
i nt| defaults to the text of the def aul t Message entry that was used when the message was
defined in the source code.

Translating the multilingual messages for when JavaScript is disabled

The translation process is different for the multilingual messages that are displayed when JavaScript is
disabled in the browser. Because JavaScript is not available, the messages are implemented in the static
i ndex. ht mi file. You must customize this file to include translated messages for each of your supported
languages.

1. Open the uni ver sal - access- sanpl e- app/ publ i ¢/ i ndex. ht ni file and review the message and the
provided languages.

2. Update the message if required and translate the message into all of your supported languages.

3. Edit the uni versal - access- sanpl e- app/ publ i ¢/ i ndex. ht mi file, and follow the provided format to
add messages.

<noscri pt>
<di v | ang="en">
<hl>
<svg" focusabl e="fal se" aria-hidden="true"><use
xlink:href="../../dist/icons/icon-sprite-sheet.svg# nfo-16"></use></svg>
JavaScript is switched off in your browser</hl>

<p>To use this service, you nmust enable JavaScript in your browser setting and try again.

https://formatjs.io/docs/react-intl

IBM Curam Social Program Management 7.0.11 | 5 - Developing with the Universal Access Responsive
Web Application | 136

For instructions to enable JavaScript, check your browser support website.</p>
</ di v>

</ noscri pt>

Screen readers that switch language profiles use the | ang attribute to provide the correct accent
and pronunciation. Most language tags consist of a two- or three-letter language subtab, often
followed by a two-letter or three-digit region subtag. For information about choosing a language
tag, see: Choosing a Language Tag.

4. To change the style of the messages, update the noscri pt . css file that is referenced in the header.
For more information about styling the application, see Customizing the color scheme or

typography (on page 740).

Regional settings

The universal-access module and its components respect the regional settings that are defined in IBM
Curam Social Program Management to ensure your application is synchronized with the Social Program

Management instance on which it depends.

Regional settings for currencies, and for calendar and date formats in the user interface, are defined in

Social Program Management. For more information, see Developing for Regional Support.

Related information
Developing for Regional Support

Customizing the application

As a developer, use these simple scenarios to learn how customize the IBM Universal Access Responsive

Web Application.

The first scenario shows how to change default text on the My Details page. Each subsequent scenario

adds to the previous one to build out new content in your application.

Note:

Follow the scenarios in sequence. If you start in the middle of the scenario list, you might have to

go back through previous scenarios.

https://www.w3.org/International/questions/qa-choosing-language-tags
https://www.ibm.com/support/knowledgecenter/SS8S5A_7.0.11/com.ibm.curam.content.doc/Regionalization/ctr_CuramRegionalizationGuide.html

IBM Curam Social Program Management 7.0.11 | 5 - Developing with the Universal Access Responsive
Web Application | 137

Changing text in the application

You can change the default text, images, colors, or typography in the application. In this scenario, an
English language message is changed. Text is changed by providing custom text that overrides the

default text for any language.

You can find text in the application components and in IEG forms.

« Text in IEG scripts. For more information, see Changing Static Text.
« Text in IEG configuration settings. For more information, see Using configuration properties to

customize IEG pages.

Message or text strings in the application use the react -i nt I package, which supports globalization of
React applications. react -i nt1 allows the messages to be extracted and translated to other supported

languages, it can also add placeholders for data.

To change the existing text of any of the languages that are provided by IBM®, you must provide a custom

version of the message that is mapped to the same nessage i d.

1. To change an English language message, find the ID of the message you want to replace. In your
project, goto/ node_nodul es/ @pm uni ver sal -access-ui /| ocal e.

a. The | ocal e folder contains message files for each supported locale. For your chosen
language, search the appropriate nessage_xx. j son for the text string that you
want to replace. For example, to change the English text Apply for a benefit, search
nessages_en. j son for that string as shown in the following example. If there is more
than one instance of the string, you must find the correct message ID for the text you want
to change. The simplest way to find the correct instance is to try replacing each ID one by
one, reloading the page each time to see whether the new string is displayed.

" System Messages_Al ert _Description": "System nessages al ert description”,

" Paynment s_NoPaynent Messages"”: "No paynent nessages",

" Paynment s_Appl yFor ABenefitLink": "Apply for a benefit",

../WorkingWithIntelligentEvidenceGathering/c_WORKIEG_Administration5ChangingStaticText1.html
../AuthoringScriptsUsingIEG/c_AUTHIEG_Configuration9UsingConfigurationPropertiesToCusto1.html
../AuthoringScriptsUsingIEG/c_AUTHIEG_Configuration9UsingConfigurationPropertiesToCusto1.html

IBM Curam Social Program Management 7.0.11 | 5 - Developing with the Universal Access Responsive
Web Application | 138

" TODO_NoTODOVessages": "No to-dos",

" TODO_Casewor ker Message": "Your caseworkers can create to-dos for you.",

"Meet i ngs_NoMessages": “No neetings",

b. For the Apply for a benefit string, use the associated ID " Paynent s_Appl yFor ABenef i t Li nk" t0

override the message in your custom nessages_en. j son.

2. Create a custom message file by creating a nessages_en. j son fileinthe src/ | ocal e folder.
Custom messages are injected into the application at application start. For more information, see
Localization (on page 137). By default, the starter application provides a locale folder from where
custom messages files are automatically loaded. You can add your custom file to this folder: sr ¢/
| ocal e.

3. To replace the message, create a new i d: message mapping in your custom message file by using
the same ID value as shown in the following example.

" Payment s_Appl yFor ABenefitLink": "Click here to apply for a benefit",

4. Update the src/config/intl.config.js file inthe English locale to point to the custom messages
file.

1L

locale: "en',
di spl ayNane: ' English',
| ocal eData: require('react-intl/|ocal e-data/en'),

nmessages: require('../local e/ nessages_en'),

Related information
Localization (on page 1317)

IBM Curam Social Program Management 7.0.11 | 5 - Developing with the Universal Access Responsive
Web Application | 139

Customizing images, fonts, and files

As the Universal Access Responsive Web Application is based on cr eat e-r eact - app, you can follow one of
their standard approaches for adding images, fonts, fonts and files, depending on whether you are adding

images for IEG scripts.
For the application in general, you can co-locate the image or file with the component that requires the
resource, then import this resource within the component as follows:

inport React from'react';

inport image from'./inmage.png';

const Conponent = () => {

return <inmg src={logo} alt="Logo" />;

export default Conponent;
For more information, see Adding Images, Fonts, and Files in the creat e- r eact - app documentation.

Adding images for IEG scripts

Some IEG <Text > elements support rich text content that might include HTML tags. If you need to add
an image as part of the text, the URL of the image must target to a resource in the publ i ¢ folder of the

application, for example:

- Create ani ng folder in the public directory of your application. The relative path should look like
this uni ver sal - access- sanpl e- app/ publ i ¢/ i ng.

- Store the image in the i ng folder, for example uni ver sal - access- sanpl e- app/ publ i ¢/ i ng/ i mage. png.

- Define an IEG text element in the script, for example <di spl ay-t ext i d="Di spl ayText. | mage"/ >.

« Define the content of the property as an HTML image tag in the property file :

Di spl ayText . | mage=<i ng src="ing/i mage. png “/>

Where the sr ¢ path points to the folder created on the publ i ¢ folder.

Images added in this way are not sized to device screen sizes, therefore take a mobile-first approach

when adding images to IEG Scripts.

For more information about adding resources to the publ i ¢ folder, see Using the Public Folder in the

cr eat e- r eact - app documentation.

https://facebook.github.io/create-react-app/docs/adding-images-fonts-and-files
https://facebook.github.io/create-react-app/docs/using-the-public-folder

IBM Curam Social Program Management 7.0.11 | 5 - Developing with the Universal Access Responsive
Web Application | 140

Customizing the color scheme or typography

You can customize the color scheme to display different colors and typography by using Sass. Do not

modify CSS files directly. You can use CSS in the Sass files if you prefer to use CSS.

o ™
Note:
The styling process is different for the multilingual messages that are displayed when JavaScript
is disabled in the browser. Because JavaScript is not available, the messages are implemented
in the static i ndex. ht m file. To change the style of those messages, update the noscri pt . css file
that is referenced in the header. See Translating the multilingual messages for when JavaScript is

disabled (on page 135).
& J

Sass

The design system uses the Sass CSS preprocessor. You can use Sass to declare variables in CSS.
You can define variables for colors, spacing, and typography in a single place and then reuse the
variables throughout the design system stylesheets. To see the variables that are defined, view

the node_nodul es/ @ovhhs/ govhhs- desi gn- syst em cor e/ src/ styl esheets/ core/

_vari abl es. scss file in your application. The Sass files are compiled into CSS at build time and your

application uses the compiled CSS.

The file structure of the starter pack

The starter pack is configured to use Sass. The relevant files are in a css and sass folders under the src

folder in the file structure.

l_ src

| L css

| | L styles.css

| L sass

| | L— custonvari abl es. scss

| | L styl es.scss

The css folder contains the styles that your application uses.

https://sass-lang.com/

IBM Curam Social Program Management 7.0.11 | 5 - Developing with the Universal Access Responsive
Web Application | 141

(L N
Note:
The contents of the css folder are generated at build time. Don't directly edit any files inside the
css folder. For more information, you can view the build-css script in the project’s package. j son

file.
- J

You must edit the Sass files to make changes. If you don’t want to use Sass features or if you don’t have
previous experience of Saas, you can still write regular CSS into these files. By default, the sass folder

contains two files:

» styl es. scss. Use this file to import the design system stylesheets and all other styles that the
app might use.
e custom vari abl es. scss. Customize the file by overriding the design system variables values

with your intended values.

Other than changing the design system variables, do not add styling. However, if you do need to add extra
styling, create a file in the sass folder. For example, ny- cust om st yl es. scss. Then, import the new file in
styl es. scss. The order of the style import matters, import the new file after the design system styles in

the following order:

@nport 'customvariables';
@nport ' @ovhhs/ govhhs-desi gn-system core/ src/styl esheets/govhhs-wds';
@nport ' @pmintelligent-evidence-gathering/sass/styles';

@nport "ny-customstyl es.scss";

Changing the color palette

When you select a color scheme for your site, ensure that color contrast is satisfactory. For users with low
vision, low-contrast text is difficult or impossible to read. For more information about color contrast, see
the Text elements must have sufficient color contrast against the background. The color-related variables
are in the color section of the design system'’s variables file, that is, node_nodul es/ @ovhhs/ govhhs-

desi gn-system cre/ src/styl esheets/core/ _vari abl es. scss.

/1 node_nodul es/ @ovhhs/ govhhs- wds- desi gn- syst em cor e/ src/ core/ _vari abl es. scss

Il & Col or

I e R LT T

$col or-pri mary: color (' blue', 50) !default;

$col or - pri mary- dar ker : col or - shade($col or-primary, 10) !default;

$col or- pri mary-dar kest : col or - shade($col or-primary, 20) !default;

https://dequeuniversity.com/rules/axe/2.2/color-contrast

IBM Curam Social Program Management 7.0.11 | 5 - Developing with the Universal Access Responsive
Web Application | 142

$col or-prinmary-1ight: col or-tint($color-prinmary, 10) !default;

$col or-primary-1ightest: col or-tint($color-prinary, 50) !default;

The - dar ker, the darkest, the I i ght, and the | i ght est variants are derived from the base col or- pri mary.
To obtain the derived color values, use the Sass i ght en and dar ken utilities. Alternatively, use hardcoded
values. To customize, override the values for the variables.

Example
This example shows how to update both the color scheme the typography of the application.

The primary, secondary, and link colors are updated with the following color scheme:

* #051380 as the primary color, that is, used on page headers, primary buttons, and hover states.
- #37056b as the application's secondary color, that is, used for avatar backgrounds.
« #2b4380 for the link colors, #0535d2 for the link hover color, and #7834bc for visited links.

The following typography changes are made:

- 20px font size with a 33px line height for the body text with a 400 font weight
- 16px font size with a 26px line height for small text with a 400 font weight

1. To start the application, enter the following command from your application. The application is

accessible on your local host.

npm start

2. Edit the sass/ cust om vari abl es. scss.

3. Add the intended value to the primary color:

$col or-prinmary: #051380;

4. Define the —dar ker, the - dar kest, the I i ght, and the I i ght est variants by using the I'i ght en or the

dar ken utilities.

$col or - pri mary-darker: darken($col or-primry, 10%;
$col or- pri mary-darkest: darken($col or-prinary, 20%;
$col or-prinary-light: l|ighten($color-primry, 10%;

$col or-primary-lightest: |ighten($color-primary, 50% ;

5. Define the secondary colors.

IBM Curam Social Program Management 7.0.11 | 5 - Developing with the Universal Access Responsive
Web Application | 143

$col or - secondary: #37056b;

$col or - secondar y-dar k: darken($col or-secondary, 10%;
$col or - secondar y- dar kest: darken($col or-secondary, 20% ;
$col or-secondary-1ight: |ighten($color-secondary, 10%;

$col or-secondary-|ightest: |ighten($col or-secondary, 50% ;

6. Save the file. The app is reloaded in the browser so you can see your changes.
7. To define the link colors, use the proceeding col or-1i nk, the col or-1i nk- hover, and the col or -

vi si t ed variables.

$col or-1ink: #2b4380;
$col or-1i nk- hover: #0535d2;

$col or-visited: #7834bc;

8. To change the typography, override the body-font and smal | - f ont variables.

/1 Body font

$body-font: (
‘font-size': 20px,
‘line-height': 33px,

‘font-weight': 400

/1 Smal | Font

$smal | -font: (
‘font-size': 16px,
‘line-height': 26px,

‘font-weight': 400

9. Save the file to see your changes.

The final cust om vari abl es. scss file for the example is shown.

$i con- path: "~@ovhhs/ govhhs- desi gn- syst em core/ di st/icons";

$i mage- pat h: "~@ovhhs/ govhhs- desi gn-system core/ dist/ing";

. success-icon-col or {

fill: #3dc06e !inportant;

IBM Curam Social Program Management 7.0.11 | 5 - Developing with the Universal Access Responsive
Web Application | 144

/1 Primary col or

$col or-primary: #051380;

$col or - pri mary-darker: darken($col or-primry, 10%;
$col or - pri mary-darkest: darken($col or-prinary, 20%;
$col or-prinary-light: |ighten($color-primry, 10%;

$col or-primary-1ightest: |ighten($color-primry, 50% ;

/|l Secondary col or

$col or - secondary: #37056b;

$col or - secondary- dark: darken($col or-secondary, 10% ;
$col or - secondary- dar kest : dar ken($col or-secondary, 20% ;
$col or-secondary-|ight: |ighten($col or-secondary, 10%;

$col or-secondary-1ightest: |ighten($col or-secondary, 50%;

/1l Link colors
$col or-1ink: #2b4380;
$col or- | i nk- hover: #0535d2;

$col or-vi sited: #7834bc;

/1 Body font

$body-font: (
‘font-size': 20px,
‘line-height': 33px,

‘font-weight': 400

/1 Smal | Font

$smal | -font: (
‘font-size': 16px,
‘line-height': 26px,

‘font-weight': 400

Adding content to the application

Build on the text change scenario from Changing application text to add a route. You also add content that
is displayed when the route is loaded.

IBM Curam Social Program Management 7.0.11 | 5 - Developing with the Universal Access Responsive
Web Application | 145

If you are not familiar with React and React Router, you must take a basic course in building a web

application with React and React Router.

The term "feature" refers to the content that is displayed when a route is loaded, this content is what
citizens see on the user interface. A feature is an abstraction that includes all the content that comes
together to create the user experience. A feature can be a collection of JavaScript™ files, JSON files, and
APIs that work together to generate the user experience. The term "feature" can be referred to as a page,

view, or component in other application environments.

This scenario adds a feature that presents a logged-in person's details in the main content area when a
/ per son URL is loaded. This scenario is built on in later scenarios by calling APIs, by using client-side

stores, error handling, or globalization.

When you extend the IBM® Curam Universal Access reference application, you might want to introduce

new content that is displayed when citizens click a link.

1. Create the content for the feature, take the following steps:
a. Create a folder called f eat ur es under the / sr c folder in your project

b. Create a per son subfolder and create Per sonConponent . | s in the folder.

src/ f eat ur es/ Per son/ Per sonConponent. j s

c. Add some HTML to display when the component is loaded. The following example displays

some data that is returned by an API:

inport React from'react';

const Person = () => { return (
<di v>
<hl>Janes Smith</hl>
<h2>CGender: Mal e</ h2>
<h2>Born: April 1st 1996</h2>
</ di v>
)

export default Person;

2. Add a route to link to your feature, take the following steps:

IBM Curam Social Program Management 7.0.11 | 5 - Developing with the Universal Access Responsive
Web Application | 146

a. Declare an associated URI for each feature in the application. The URI allows React to

present the feature when the URI is requested in the browser. This technique is standard
' React Routing' for displaying features. For more information about routes, see Developing
with routes (on page 708). Add a simple component that displays when the route is
loaded:

i. Openrout es. | s in your project.

ii. Import a Per son component from the folder f eat ur es/ per son.

iii. Adda"/ per son" route that loads the per son component as shown in the following

example:

inport React from'react';
inport { Route, Switch } from'react-router-doni;
inport { Routes as UARoutes } from ' @pnl universal -access-ui';

inport Person from'./features/PersonConponent"’

export default (
<Swi t ch>
<Rout e pat h="/person" conponent ={Person} />
<UARout es />

</ Swi t ch>

3. Load the new feature by using the route, take the following steps:

a. Run your application, enter the following command:

npmrun start

b. Start a browser and enter the full URL for the feature, for example: http://localhost:8888/

person

When the application loads, the person details are displayed in the main content area.

Related information

Developing with routes (on page 7108)

http://localhost:8888/#/person
http://localhost:8888/#/person

IBM Curam Social Program Management 7.0.11 | 5 - Developing with the Universal Access Responsive
Web Application | 147

Styling content with the Social Program Management Design System

Build on the route and person content scenario that you added in Adding content to the application by

styling the content of a person's details.

The IBM Social Program Management Design System is a design framework that helps you to build a
cohesive and consistent application. By selecting components from a design catalog and applying design

principles, design and development is faster and user experience is improved.

The full catalog of Social Program Management Design System components, including descriptions of
when and where to use them, is documented in the govhhs-design-system-react package. You can access
these packages through i ndex. ht nl filein/ node_nodul es/ @ovhhs/ govhhs-desi gn- syst em
react/ docs. This scenario uses a number of Social Program Management Design System components

to improve the person feature.

1. Import contents from the Social Program Management Design System. Enter the following
command to import the Avatar and MediaObject components from the package @ovhhs/

govhhs-desi gn-systemreact:

inport {Avatar, MediaObject} from' @ovhhs/ govhhs-design-systemreact"’

2. Update Per sonConponent . j s to use the Grid, Column, Card, MediaObject, Avatar, and List
components to display the person's details. You can also include an address in a separate card.

Use the following code to replace the previous Per sonConponent . j s:

inport React from'react';
inport {Gid, Columm, Card, CardBody, CardHeader, List, Listltem Avatar, MediaCbject } from

' @ovhhs/ govhhs- desi gn- syst em react '

const avat ar Medi aJanes = <Avatar initial s="JS" size="nediunt tooltip="profile photo" />;
const Person = () =>{
return (
<Gid className="wds- u- p-- nedi uni'>
<Col umm wi dt h="1/2">
<Car d>
<Medi aObj ect nedi a={avat ar Medi aJanes} title="Janes Smth">
<Li st>
<Li stltenmrCGender: Male</Listltenm>
<ListltenmrBorn: April 1st 1996</Listltenm>

</ List>

IBM Curam Social Program Management 7.0.11 | 5 - Developing with the Universal Access Responsive
Web Application | 148

</ Medi aObj ect >
</ Car d>
</ Col um>
<Col utm wi dt h="1/2">
<Card title="Address">
<Car dHeader title="Address"/>
<Car dBody>
<Li st>
<Listltenmr1074, Park Terrace</Listlten>
<ListltenpFairfield</Listltenm
<Li stltenrM dway</Listltenr
<ListltenmpUt ah 12345</Listlten>
</ Li st>
</ Car dBody>
</ Car d>
</ Col um>
</ Gid>
)}

export default Person;

3. Save Per sonConponent . | s.

When you reload the application, you see the updated application style.

Changing the application header or footer
Build on the styling scenario from Using the Social Program Management Design System to style content
by adding a link to the application header or footer.

For more information about the application header and footer, see Developing with headers and footers.

To customize the header, you must create your own custom version. To keep this scenario brief, work on
the header only and copy the existing header from uni ver sal - access- ui . Make some small changes to the
header to show how it can be customized. Alternatively, completely replace the header or footer with your

own version.

Change the application header to include a new link that to take you to the My Details page.

IBM Curam Social Program Management 7.0.11 | 5 - Developing with the Universal Access Responsive
Web Application | 149

1. Copy the Universal Access header by copying the node_nodul es/ @pni uni ver sal - access-
ui / src/ features/ Applicati onHeader foldertosrc/features.

2. Fix any broken imports. Take the following steps:
a. Use ESLint or a similar linting tool to find any errors where imports are not found.

Note:

If you do not use a linting tool, you get build errors.

b. Errors are generated because the uni ver sal - access- ui uses relative paths when it imports
dependencies from its own project. For imports that are within the uni ver sal - access-
ui module, but outside the f eat ur es/ Appl i cat i onHeader folder, you must change
the imports to reference the official exported version of those dependencies from the

uni ver sal - access- ui node module.

c. For each import that is not resolved, find the equivalent export in the uni ver sal - access- ui
package. Inspect node nodul es/ @pni uni ver sal -access-ui/src/index.jsto
find the list of exported artifacts and their exported names.

The pat hs module is referenced in the Appl i cat i onHeader by using the default import from a
relative path as shown in the following example: i mport PATHS from'../../router/Paths’
Amend module as shown in the following example: i nport { Paths } from' universal -

access-ui'

d. Repeat this procedure for all the files in the Appl i cat i onHeader folder, some of
the imports of ' Pat hs' , and for some other references such as ' Error Boundary' and

" AppSpi nner ' .
3. Replace the existing header with your custom version, take the following steps:

a. Opensrc/ App.js fil e andremove the imported Appl i cati onHeader from uni ver sal -

access- ui .

b. Import your cloned version from . / f eat ur es/ Appl i cat i onHeader as shown in the
following example:

import Applicati onHeader from'./features/ApplicationHeader';

Import Appl i cati onHeader as a default import, without curly brackets, rather than a named

import. Alternatively, you can add a named export to your Appl i cat i onHeader feature.

4. Update the header feature to include a tab that loads the / per son page take the following steps:

IBM Curam Social Program Management 7.0.11 | 5 - Developing with the Universal Access Responsive
Web Application | 150

a.Openconstants.jsinsrc/features/Applicati onHeader/ conmponents.

const ant s. j s defines an object that represents a navigation item for the header.

b. Add and entry for the new page My Details as shown in the following example:

/**
* Application navigation header tabs.
&

const NAVI GATI ON_HEADER TABS = {

PROFI LE: { NAME: 'PROFILE, ID: 'navigation-profile' },
CHANGE_PASSWORD: { NAME: ' CHANGE_PASSWORD , | D: ' navigation-change-password' 1},

MYDETAILS: { NAME: ' MYDETAILS', ID: 'ny-details' },

c. Open Appl i cat i onHeader Logi c. j s. Appl i cati onHeader Logi c.] s. contains the
logic that tracks which tabs are selected so they can be highlighted as active.

d. Update the i sTabAct i veFor Ur | Pat hnane function to include the new My Details page in the
Your Account section. For brevity, the value is hardcoded in the following example. However,

you can replicate the pattern that is used by the uni ver sal - access code to add it to Pat hs.

const isTabActiveForUrl Pat hname = (url Pat hname, navi gati onTabNane) => {

switch (navigationTabNanme) {

case FI ND_HELP. NAVE:

return (
ur | Pat hname === Pat hs. HOME | |
url Pat hnane === Pat hs. APPLY | |
ur | Pat hname === Pat hs. BENEFI T_SELECTI ON | |
ur | Pat hname === Pat hs. APPLI CATI ON_OVERVI EW

DE
case YOUR_ACCOUNT. NAME:

return (

IBM Curam Social Program Management 7.0.11 | 5 - Developing with the Universal Access Responsive
Web Application | 151

ur| Pat hnane === Pat hs. ACCOUNT | |

ur | Pat hname === Pat hs. BENEFI TS | |

ur | Pat hname === Pat hs. PAYMENTS. ROOT | |
ur| Pat hnane === Pat hs. PAYMENTS. DETAI LS | |
ur | Pat hname === '/ person'

Open Appl i cat i onHeader Conponent . j s, which renders the header, and find the

Pri mar yNavi gat i on component.

e. Add a tab called 'My Details' with a link to the person feature inside
Appl i cati onHeader Conponent . j s. For brevity, the example is hardcoded values, but

you can replace these values with variables. If you want, you can also globalize the tab.

<Pri maryNavi gat i on>

<Tabs>

<Tab
i d={ NAVI GATI ON_HEADER_ TABS. YOUR_BENEFI TS. | D}
href ={ HASH_SYMBOL + LOCATI ONS. BENEFI TS}
| abel ={f or mat Message(transl ati ons. header Your Benefi t sLabel)}
/>
<Tab
i d="person_t ab"
href ="/ person"
| abel ="My Detail s"
/>

</ Tabs>

</ Pri maryNavi gati on>

IBM Curam Social Program Management 7.0.11 | 5 - Developing with the Universal Access Responsive
Web Application | 152

5. Save your file and restart the application.
6. You can modify the application footer in the same way by replacing the uni ver sal - access- ui

version in sr c/ App. j s with your own custom version.

Go to the home page. A new tab that is called My Details is in the primary navigation area. When you
select My Details, the person feature is loaded in the main content area.

Related reference

Customizing headers and footers (on page 152)

Customizing headers and footers

IBM® Curam Universal Access contains a predefined header and footer. You can customize your
application headers and footers by replacing the sample components with your own custom versions.

Headers and footers

The header and footer contain content such as links, Log in, and Sign up buttons, and menus for logged-in

users.

The App. j s file in the universal-access-sample-app module, reuses the sample ApplicationHeader and
ApplicationFooter components that are provided by the universal-access module by placing them above

and below the main content of the application:

App.js

<Br owser Rout er >
<Scrol | ToTop>
<di v cl assNane="app" >
<a cl assNanme="wds- c- ski pnav" href="nai n-content">
{f or mat Message(transl ati ons. appSki pLi nk) }

</ a>

<Rout e pat h="/" conponent ={ Appl i cati onHeader} />
<mai n i d="nmai n-content” cl assNane="mai n-content">
<Cont ent >{r out es} </ Cont ent >

</ mai n>

IBM Curam Social Program Management 7.0.11 | 5 - Developing with the Universal Access Responsive
Web Application | 153

<Appl i cati onFooter />
</ di v>
</ Scrol | ToTop>

</ Browser Rout er >

Header

Typically, an application header has two views. One view has items relevant to users who are not logged
in or signed up, for example a Sign Up button. The second view shows items that are relevant to users
who are signed up and logged in, for example an Update your profile button.

To facilitate the separate views, use a react-router-dom Route component. The App. j s sample
demonstrates wrapping the ApplicationHeader component in a Route component and passing Route
information to the ApplicationHeader. This allows the ApplicationHeader to query the Route properties and
decide what to display based on the current location in the application. For example, you might want to
show a different view for the login page route (‘my-app-domain/login’) from the application home page

route (‘my-app-domain/’).

The following code sample shows how the ApplicationHeader queries its location property to find out
what page the application is displaying. The sample code then uses this information to decide what to
show in the header.

get isOnLogi nPage() {

return this.props.location.pathnane === '/l ogin'

render () {
return (
<Header
title={this.pageTitle}
type="scrol | abl e"
| ogo={<i ng src={l ogo}
al t ="agency"
id={this.props.|oggedl nUser} />}>
<Pri maryNavi gati on type="scrol |l abl e">
<TabLi st scrollabl e>
<Tab

id="tab1"

IBM Curam Social Program Management 7.0.11 | 5 - Developing with the Universal Access Responsive
Web Application | 154

href="/"
t ext ={
this.props.intl.formtMessage(translations. header HoneLabel)}/ >
<Tab
id="tab2"
href ="/ ny-applications"
text={this.props.intl.fornmatMssage(
transl ati ons. header Benefi tsLabel)}/ >
</ TabLi st >
</ Pri maryNavi gati on>

<SecondaryNavi gation type="Scrol | abl e"/>

{/* Show signed out nenu */}

{!'this.isOnLogi nPage &&
this.props.|oggedl nUser === null &&
I'this.isUserProfil eLoaded &&

t hi s. si gnl nMenu}

{/* Show signed in nenu */}
{this.props.|oggedl nUser &&
this.isUserProfil eLoaded &&
this.profil eMenu}
</ Secondar yNavi gat i on>

</ Header >

Login and sign up in the header

If you are building your own customer header, you must identify which page you are currently displaying
the Header on, you must also differentiate between logged in and logged out users. Whether a user is
logged in or out can be determined by using the authentication API provided by the universal-access
module. The Authentication API provides functions to allow you to log in and out of the application,
and also allows you to query if a user is logged in and who that user is. For more information, see the

Authentication APl documentation.

IBM Curam Social Program Management 7.0.11 | 5 - Developing with the Universal Access Responsive
Web Application | 155

The following code sample shows how the ApplicationHeader uses the Authentication API. In this
function, a check is made to see whether a user is logged in before it loads that user's profile. The user's
profile is needed to display the user's full name in the header.

fetchProfile() {
if (Authentication.isLoggedl n() & !this.isUserProfileLoaded) {

this.props.|loadProfile();

Footer

You can add a footer to the bottom of the application page in the same way as you add the header to the
top of the page. The universal-access module provides a sample application footer that is used in the
universal-access-sample-app, see the App. j s sample. The sample footer is static and does not change
based on the location or the authentication state, however the footer can be made dynamic by following
the example from the header.

Creating an IBM Curam Social Program Management REST API

Build on the scenario from Changing the application header or footer, use a REST API to get data to your
application.

The most common way to get data to your application is to use a REST API to receive the requested data
as a JSON string that your application then parses and renders. IBM Curam Social Program Management
provides development tools and the runtime infrastructure that you can use to build and deploy a REST
API with your IBM Curam Social Program Management server. The REST API can be called by using
standard HTTP verbs such as GET, POST, and DELETE. The REST API returns data as a JSON string in the
response body. For more information, see Developing Ciram REST APls.

Related information
Developing Ciram REST APIs

Connecting to REST APIs from the application

Build on the IBM Cdram Social Program Management REST API that you created in the scenario Creating
an IBM Cdram Social Program Management REST API by calling it from your application.

../MSDK/msdk_ctr_get_started.html
https://www.ibm.com/support/knowledgecenter/SS8S5A_7.0.11/com.ibm.curam.content.doc/MSDK/msdk_ctr_get_started.html

IBM Curam Social Program Management 7.0.11 | 5 - Developing with the Universal Access Responsive
Web Application | 156

Features in your application rely on passing data to and from the IBM Cdram Social Program Management
server or another service. The reference application already consumes a number of Universal Access

APIs to support business features.

This scenario updates the person feature to read the data from an API instead of just displaying

hardcoded values. The scenario shows you how to create and use the following items:

« Use the RESTService utility to helps you call APlIs.

« Use the mock server to show you how to create a mock API so you can quickly develop your
feature without spending time building and deploying the real API that it eventually uses.

- Connect your application to a Social Program Management development environment that hosts

the APIs by using Tomcat to enable real integration testing in the development environment.

1. Create a mock API by completing the following steps:

a. In your project, open / nock/ api s/ nockAPI s. | s.
The mock server consumes nDckAPI s. | s, it contains the mappings from APIs to the mock
data. The mock server uses this information to provide the correct data when an API call is
made in development mode. nockAPI s. | s also contains an import from the uni versal -
access-ui package and assignments for GET, POST, and DELETE APls as shown in the

following example:

const nockAPls = require(' @pni universal -access-nocks');

Il Extract the existing universal access GET, POST and DELETE nocks for nerging.
const UAMbckAPI sGET = nockAPI s. GET;
const UAMbckAPI sPOST = npckAPI s. POST;

const UAMockAPI sDELETE = nockAPI s. DELETE;

Use these APIs to test the Universal Access application. For more information, see The

mock server API service (on page 114).

b. To add more mock data, add your mocks to the placeholders provided. This scenario adds
the person data for a person Janes snit h that is returned when the ' / per son' pathiis
loaded.

c. Add an object in nrock API s. | s to represent James Smith. For simplicity, do not normalize
the dates, or use code tables, later scenarios show you how to globalize and handle code

tables.

IBM Curam Social Program Management 7.0.11 | 5 - Developing with the Universal Access Responsive
Web Application | 157

const user = {

firstnane: 'Janes',

surname: ‘Smith',

dob: 'April 1st 1996',

gender: 'nale',

address: {
addr1:' 1074, Park Terrace',
addr2:' Fairfield',
addr 3: ' M dway' ,

addr4:' Utah 12345',

d. Include a value for the URI ' / user' in the nockAPI sGET object to return the mock object as

shown in the following example:

const nmDCkAPI sGET = {

‘/user': user,

The new ' /user’ mock APl is merged with the mocks from uni ver sal - access-ui and is
deployed by the mock server on port 3080.

e. Test that the new API is working, start the application by using npm start.

f. Using the browser, load the / per son URL: http://localhost:3080/person. If successful, the
browser displays the response.

2. Use the RESTService utility from the core package to make an Ajax call to the API.

You can use many agents to make Ajax calls. The RESTService utility uses Superagent. The
RESTService utility handles the following functions:
 Authentication credentials are automatically handled for each call, and users are redirect to
log in when appropriate.
> The user's locale is passed to ensure that the response is in the correct locale.
- Timeouts are managed with environment variables in the . env file.
o Errors are captured and thrown in a standard fashion so that the error handling

infrastructure is invoked.

http://localhost:3080/person

IBM Curam Social Program Management 7.0.11 | 5 - Developing with the Universal Access Responsive
Web Application | 158

For more information about the RESTService utility, see The RESTService utility (on page 117).
3. Open Per sonConponent . j s file. Make the following changes, checking that your application still
displays the page after each step:

a. To enable lifecycle methods that are required to manage the API calls, convert the old

stateless component to a stateful React . Conponent class:

A d statel ess Person conponent

const Person = () => {
return (

<JSX code here>

Updat ed stateful Person conponent

cl ass Person extends Conponent {
render () {
return (

<JSX code here>

b. Create local state to hold the API data.

The local state stores the values returned by the API that drive the render function.
Whenever the state is updated, the component re-renders to reflect the state change. For
this scenario, hardcode the values for the state in your class constructor so that something
is displayed on the page. To differentiate between this temporary default data and the

API data, change the fi rst Name to ' Roger ' . Later, when you introduce the API, the data

for' Janes' is returned from the API and not the default state as shown in the following

example:

constructor(props) {
super (props);
this.state= {

user : {

IBM Curam Social Program Management 7.0.11 | 5 - Developing with the Universal Access Responsive
Web Application | 159

firstNanme: ' Roger',

surname: ' Smith',

dob: " April 1st 1996',

gender: 'Male',

address: {
addr 1: ' 1074, Park Terrace',
addr2:' Fairfield',
addr 3: ' M dway' ,

addr4:' Utah 12345',

c. Convert all hardcoded references to use the values from the state.

Now that you have a state object, replace all hardcoded values with references to the
state. Replace each hardcoded piece of data with a state reference {thi s. state. user. X}.
Examples are as follows:

cl ass Person extends Conponent {
render () {

return (

<Car d>
<Medi abj ect nedi a={avatarMedia} title={this.state.user.firstNane}>
<Li st>
<Li stltenrGender: {this.state.user.gender}</Listlten>
<Listltenr{this.state.user.gender}</Listlten>
</ Li st>

</ Medi aObj ect >

IBM Curam Social Program Management 7.0.11 | 5 - Developing with the Universal Access Responsive
Web Application | 160

d. Import the RESTSer vi ce utility.

To call an API, you must invoke one of the methods of the RESTService utility. First you must
import it from the core package:i nport { RESTService } from' @pm core'

e. Create a conponent Di dvbunt method to invoke the API call.

When your component is mounted by React, the conponent bi dvount function is invoked. In
component Di dvbunt the API call can be made to populate the component state. Update your
constructor to set the user values to blank when initializing, this setting ensure that your
data is being loaded from the API. Then, add the following code to your Person component.
The root location of the APl is taken from the values set in your . env. devel opnent file
when in development mode. In production mode, it is taken from the . env file.

The . env. devel opnent file specifies the mock server URL as REACT_APP_REST_URL,
which has the value http://localhost:3080/ where the mock server is deployed. You can use
this environment variable to prepend the / user API.

The RESTService APl accepts a URL and a callback function as parameters. In the following
code, the callback function is passed as an anonymous function in the second parameter.

The 'success' is checked, before the state is updated with the response.

o ™
Note:
Error scenarios are not handled in this code. The Handling failures in the
application (on page 163) scenario contains details about failure responses, 'Error

Boundaries', and failure handling.
- J

conponent Di dvount () {

const url = ${process. env. REACT_APP_REST_URL}/v1/ user;

const user = RESTService.get(url, (success, response) => {

if (success) {

this.setState((user: response));

http://localhost:3080/

IBM Curam Social Program Management 7.0.11 | 5 - Developing with the Universal Access Responsive
Web Application | 161

Start your application, log in and select the My Details tab. The tab loads using data that is pulled from
the /user API.

The REACT_APP_REST_URL environment variable that is defined in the . env and . env. devel opnent files
determines where the APl is served. In development mode, the API calls the mock server. In production
mode, the API calls the SPM server that hosts the application REST APIs. You can seamlessly switch
between development and production, assuming the contract remains the same between your mock and
real APIs. That is, that the JSON structure matches in both.

Related reference

Handling failures in the application (on page 163)

Testing REST API connections with Tomcat

Build on the scenario in Calling an API from the application. Do your integration testing with the real IBM
Curam Social Program Management APIs instead of the mock APIs in your Universal Access client.

You must be familiar with the IBM Cdram Social Program Management development environment, the

development of REST APIs, and the IBM® Curam Universal Access development environment.

This scenario uses IP address 192.1.1.1 to represent the development computer for the IBM Curam Social
Program Management server, and 192.9.9.9 for the computer that hosts the Universal Access client.
However, you can use the same computer with the same IP address. Replace this address with the IP

address of your development computer.

The mock server is hosted on the same domain as the application during development http://localhost.
However, when your APIs are served from a different domain, you might encounter Cross Origin Resource
Sharing (CORS) issues. You can use Tomcat to configure your Universal Access client and IBM® Curam
Universal Access server to allow Cross Origin requests. To overcome the CORS issues, the REST toolkit
uses a filter that provides the required HTTP headers to allow browsers to accept responses from a
different domain. In this scenario, the domain is where the REST application is deployed.

http://localhost

IBM Curam Social Program Management 7.0.11 | 5 - Developing with the Universal Access Responsive
Web Application | 162

1. Configure the IBM Curam Social Program Management server, take the following steps:

a. In your development environment, add the following properties to Boot st rap. properti es
and set the host nane/ i paddr ess of the computer where the Universal Access client is to be
deployed:

=curamrest.refererDomains = 192.9.9.9

=curamrest.all owedOigins = 192.9.9.9

Note:

If you develop the server and client on the same computer, you can use "I ocal host ".

The property curam rest . al | onedri gi ns is the ori gi n value in the CORS headers.
Both properties can have comma-delimited domain names, for example,
curamrest.allowedOrigins = 192.9.9.9, 192.9.9.8, nymachi ne. nycor p. comto allow
multiple domains to access the IBM Curam Social Program Management application.

b. Set the caTALI NA_HOVE environment variable to the location of your Tomcat installation.
For example, on Windows™ set the following variable: ‘ set CATALI NA_HOMVE=C: \ DevEnv

\7.0.1\tontat’

c. Build IBM Curam Social Program Management by using the appbuild server, database, client,
and other components.

d. Run an extra target appbuild rest to create the REST project in your EJBServer\ bui | d
\ Rest Proj ect \ devApp directory.

e. Copy Rest . xmi into your Tomcat conf /| ocal host folder. For more information about
building Cdram APIs, see Developing Curam REST APIs.

f. Start the server, RMILoginClient, and Tomcat in the normal way for IBM Cdram Social
Program Management.

The REST client starts automatically. When the client is running, the APIs are accessible in
the / Rest base path, for example: htt p: //192. 1. 1. 1: 9080/ Rest / <nyapi >.

2. Configure the Universal Access client by completing the following steps:

IBM Curam Social Program Management 7.0.11 | 5 - Developing with the Universal Access Responsive
Web Application | 163

a. Modify the following environment variable in the . env. devel opnent file in the root of
the application to point to the REST URL on Ecl i pse/ Tontat as shown in the following

example:

REACT_APP_REST_URL=http://192. 1. 1. 1: 9080/ Rest

(Note:)

If you develop the server and client on the same computer, you can use "I ocal host ".

If you want to connect to an application on WebSphere® Application Server, you
must change "htt p" to "htt ps" and update to the correct port. 9044 is the default
port.

- J

b. Build the application, enter the following command: npm run build.

c. Start the application, enter the following command: npm run start.

Your Universal Access client application now communicates with the REST API that is deployed on

Eclipse with Tomcat.

Note:

Run the application in debug mode so it stops at breakpoints in the application code.

Related information
Developing Curam REST APIs

Handling failures in the application
Handle any failures that you find when you did integration testing in the Developing with IBM Curam Social

Program Management APIs by using Tomcat scenario.

Before you begin

You should build fault-tolerant web applications because, for example, web services such as a REST API
are never fully reliable. When handling the expected response, the application must also allow for failures,
such as network outages, timed out responses, internal server errors, or software bugs.

https://www.ibm.com/support/knowledgecenter/SS8S5A_7.0.11/com.ibm.curam.content.doc/MSDK/msdk_ctr_get_started.html

IBM Curam Social Program Management 7.0.11 | 5 - Developing with the Universal Access Responsive
Web Application | 164

Universal Access ErrorBoundary component

According to React, "Error boundaries are React components that catch JavaScript™ errors anywhere in
their child component tree, log those errors, and display a fallback Ul instead of the component tree that

crashed."

An error boundary component is a React component that implements the conponent Di dcat ch lifecycle
method. For more information about error boundaries, see https://reactjs.org/

The @pm core-ui package exports a reusable Err or Boundary component. The default behavior of the

component is to handle error scenarios by replacing the failing component with a generic message.

o ™
Note:
Authentication errors have a specific handler in the Err or Boundary component. If the error object
that is received by the conponent bi dcat ch method contains a status attribute with a value of
'401' (Unauthorized error), then the client forces a log-out in the client application. Citizens are
automatically redirected to the Log in page, so they can revalidate and return to the page they
were previously on. This situation typically happens if the session times out or is invalidated on
the server. The source code for the Er r or Boundary component is available in the @pnt cor e- ui

package.
- _/

This scenario shows API error handling in the My Details page where the API call fails. This scenario also

shows how to use the Error Boundary component to provide a better user experience when failures occur.

Error boundaries in the Universal Access application

The Universal Access starter pack contains the following two error boundaries:

- The first wraps the entire application to capture errors that might occur when loading the header or
footer.
 The second wraps the main content to capture errors that are raised from components that are

loaded in the main content section.

The error boundaries are shown in the following example:
Iii
* App conponent entry point.
*/
const App = () => (

<Br owser Rout er >

https://reactjs.org/

IBM Curam Social Program Management 7.0.11 | 5 - Developing with the Universal Access Responsive
Web Application | 165

<Scrol | ToTop>
<Er r or Boundary
f oot er={<ApplicationFooter />}
header ={ <Appl i cat i onHeader Conponent hasErr or BeenCaught />}
i sHeader Boundary
>
<Appl i cati onHeader />
<Er r or Boundar y>
<Mai n pushFoot er cl assNanme="wds- u- bg- - page">
{rout es}
</ Mai n>
</ Err or Boundar y>
<Appl i cati onFooter />
</ Err or Boundar y>
</ Scrol | ToTop>
</ Browser Rout er >

DE

The error boundary on the main section allows the application context to be retained. That is, the header
and footer continue to be displayed when the error is raised from the main section. This continuity

provides a better user experience.
You can replace these error boundaries with your own error boundaries.

Faking an API error

This API failure scenario uses a 404 response as the error, you trigger this failure by temporarily changing
the API call to a non-existent API.

Take the following steps:

1. Open src/ nodul es/ gener at ed/ Sanpl eMbdul e/ utils.js.

2. Update the fet chonl i necat egori esuti | function to call a non-existent API vi/ ua/

onl i ne_cat egori es1 as shown in the following example:

const fetchOnlineCategoriesWil = callback => {
ReduxUti | s. get Model Dat aFr onRest API (

cal | back,

IBM Curam Social Program Management 7.0.11 | 5 - Developing with the Universal Access Responsive
Web Application | 166

“vl/ual/online_categoriesl’,

nodel s. UAOnl i neCat egor yLi st

3. Save your code and wait for the application to reload.

The sanpl eAppl i cat i onConmponent component cannot call the APl and an error page is displayed.

Catching an API failure

Using the Faking an APl error failure scenario, you can modify the code to cater for this failure. The API
call is asynchronous, and the callback runs outside the context of the Component tree. This execution
mode means that the error that is thrown in the call-back function is not caught by the conponent bi dcat ch
method of the Err or Boundar y. Therefore, instead of exposing the component with the wi t hEr r or Boundary
HOC, which throws an error, you can update the state of the component. You can then retrieve the error
state from the WDA hook and handle it as you need. The failure branch sets the error value that is
returned by the API call as shown in the following example.

export const Sanpl eApplicati onConponent = props => {
const { data, isFetching, error } = Sanpl eMddul eHooks. useFet chOnl i neCat egori es();

consol e.l og(" state -> ${error}’);
if (isFetching) {
return <AppSpi nner />;

}
if (error) {

throw new Error (' An error occurred when calling APl ');

export default withRouter(Sanpl eApplicati onConponent);

The render method should print the following error in the console:

state -> Error: cannot GET http://|ocal host: 3080/ v1/ual/online_categoriesl (404)

IBM Curam Social Program Management 7.0.11 | 5 - Developing with the Universal Access Responsive
Web Application | 167

Throwing an error

Now that you have control of the failure, throw an error with an appropriate value for the Er r or Boundary
component to catch. You can place the throw in the render function, which executes when the state
updates.

The error object that you throw can be anything that you choose so that the error is useful to the citizen.
In this instance, you can throw the string object that is returned by the response because it describes the

issue.

Implementing a loading mask

Building on the previous scenarios, use a loading mask to indicate that the application is working on
rendering a page.

Response times vary for REST APIs over a network. In a many cases, the time it takes to receive the
response is longer than the time it takes for React to render for the first time. This delay leads to a poor
user experience when the page draws the components, but the data is missing.

To avoid poor user experience, use a loading mask to tell users that the application is working on

rendering their page.

This scenario uses the AppSpi nner component from the uni versal - access-ui package to include a loading

mask for the My Details page to demonstrate how your components can handle slow response times.

API response delay

During development, you must often replicate real world response times for APIs. You can configure
the Rest Ser vi ce to set a delay by using the env. devel opnent file in your environment. By default this
value is set to 2 seconds. Note this delay in the application when you are in development mode, where
you see spinners while components wait for the data to be returned from the mock server by way of the

Rest Servi ce module. You can increase or decrease this value to meet your application's needs.

The AppSpi nner component

The uni versal - access-ui package includes the AppSpi nner component, which you can reuse in your
project. The AppSpi nner component wraps the Spi nner component from the govhhs- desi gn- syst em
react package and includes a label for accessibility purposes. You can also create your own loading
mask in the same manner. You can view the source code for AppSpi nner in the uni ver sal - access- ui

package.

IBM Curam Social Program Management 7.0.11 | 5 - Developing with the Universal Access Responsive
Web Application | 168

1. Waiting for the API.
The Appspi nner is displayed while the application waits for the API to respond, so you need a
mechanism to notify you when the data is, and is not loaded. Use the state to indicate when data is
loaded and when it is not. Take the following steps:

a. Open the Per sonConponent . j s file.

b. In the constructor, add an attribute called | oadi ng to the state, with a value of true.

constructor(props) {
super (props);
this.state = {
user: {
firstName: "",
surname: ""
dob: ""
gender: ""
address: {
addr1: "",
addr2: "",
addr3: ""

addr4: "

h

| oadi ng: true,

2. Display the loading mask.

Now you have a value that indicates whether the data is loading, take the following steps to display
the loading mask based on the value:

a. Import the AppSpinner loading mask from uni ver sal - access- ui :

inport {AppSpinner} from' @pm universal -access-ui';

b. In the render function, add a check that renders the AppSpinner if the loading value is true:

IBM Curam Social Program Management 7.0.11 | 5 - Developing with the Universal Access Responsive
Web Application | 169

render () {
if (this.state. !l oading){
return <AppSpi nner/>
}
return (
<Gid className="wds- u- p-- nedi uni'>

<Col utm wi dt h="1/2">

When you save and reload the application, you see the spinner in the main section area.
However, the spinner continues to display after the data is returned.

3. Remove the loading mask.

When the data is returned from the API, remove the mask by updating the state to indicate that
loading is finished. Take the following steps:

a. In the conponent Di dvount function, update the state to set the loading value to false when a

successful response is returned as shown in the following example:

conponent Di dMount () {
const url = ${process. env. REACT_APP_REST_URL}/v1/ user1;
RESTSer vi ce. get (url, (success, response) => {
this.setState({loading: false})
if (success) {
this.setState({user: response});
} else {

this.setState({api Call Failed: response})

IBM Curam Social Program Management 7.0.11 | 5 - Developing with the Universal Access Responsive
Web Application | 170

b. Save and reload the application. Now, when the API response is received, the loading mask
is removed and the user's data is displayed.

Reusing existing features

The reference application that is available when you install IBM® Curam Universal Access satisfies a
number of general business scenarios such as creating an account, logging in, and applying for benefits.
The scenarios are provided both as working software and as examples of how to construct the product.
You can clone and modify existing features in the application.

The uni ver sal - access- ui package is structured by feature. Typically, each feature is mapped to
a single route. For example, when the / pr of i | e route is loaded, the Profile feature is displayed. The
feature folder is a collection of files that work together to present that feature. An example from the
Profile feature is shown.

/ uni ver sal - access- ui

--Isrc

----/Feature

------ /Profile

........ / conponent s

---------- / Cont act | nf or mat i onConponent . j s
---------- / Per sonal | nf or mat i onConponent . j s
---------- / ProfileConponent.js

---------- / Profil eConponent Messages. j s
-------- /index.js

-------- /ProfileContainer.js

IBM Curam Social Program Management 7.0.11 | 5 - Developing with the Universal Access Responsive

Web Application | 171

The feature uses a commonly used pattern to move the data retrieval and management into a container

component, and the rendering logic into stateless presentation components. This pattern is widely

documented and used extensively when you work with React and Redux. The pattern is not covered in

detail here, but you can see how features are structured.

You can copy the entire code base for a feature into your custom project and replace the route that served

that feature with your version. You can then modify the code base to create your own custom feature.

o ™
Note:
After you reuse a feature, you now have full ownership of the custom feature. On upgrade of the
uni ver sal - access- ui package, you do not receive any changes to the product version of the
feature and must manually apply any updates that you need.
- J
o ™
Note:
Most features in the uni ver sal - access- ui package depend on the modules in the
uni ver sal - access package for their data. On upgrade, you must validate that your feature
was not affected by any changes to modules that the feature depends on. See Universal Access
Redux modules (on page 92).
- J

. Find the feature that you want to replace in the uni ver sal - access- ui package.

a. Inspect the URL end point that you want to change and note the path.
For example, the path to the f ags feature is / nyapp/ f ags so the pathis f ags.

b. Open the / node_nodul es/ @pni uni ver sal - access-ui / src/ router/ Pat h. j s file.
Search for the path string literal, in this case ' /fags' is assigned to the Pat hs. FAGs variable.

const Paths = {

HOME: '/,

FAQS: '/fags',

SI GNUP: ' /signup',

b

export default Paths;

IBM Curam Social Program Management 7.0.11 | 5 - Developing with the Universal Access Responsive
Web Application | 172

c. Openthe/ node_nodul es/ @pnl uni ver sal -access-ui/src/router/Routes.js
file. Search for Pat hs. FAGS to find the route that the variable is being used in. Use the
component value of the route to find the associated feature.

For example, the FAQroute component is imported from* . ./ feat ures/ FAQ .

inport FAQ from'../features/FAQ ;

export default () => (

<Swi t ch>

<Rout e conponent ={ FAQ} exact pat h={ PATHS. FAQS} />

</ Swi t ch>

2. Copy the entire feature folder into your custom application.
For example, copy the / node_nodul es/ @pnf uni ver sal -access-ui / src/features/ FAQ
directory to <nyapp>/ src/ f eat ur es/ FAQ.

3. Replace the route with your custom version.
a. In your project, open the src/ rout es. j s file.

b. Add a route at any point before the uaRout es entry to ensure that your path supersedes the

same path in UARout es.

inport React from'react';
inport { Switch, Route } from'react-router-doni;
inport { Routes as UARoutes } from' @pnl universal -access-ui';

inport FAQ from'./features/FAQ ;

export default (
<Swi t ch>
<Rout e conponent ={ FAQ} exact path='/faqgs' />
<UARout es />

</ Swi t ch>

IBM Curam Social Program Management 7.0.11 | 5 - Developing with the Universal Access Responsive
Web Application | 173

4. You can now verify whether your custom version of the feature is being used. Make an obvious
change to the feature and reload the application to see whether the change is picked up and
displayed.

5. Change the code to customize the feature.

Implementing page view analytics

You can implement page view analytics in your application to collect citizen page views for analysis.
Using the included page view JavaScript functions, you can start tracking page views by implementing a
callback to send tracking data to a library of your choice for analysis. In this example, the data is sent to

the Google global site tag (gtag.js) JavaScript tagging framework.

The regi st er PageVi ewCal | back and pageVi ew functions are available for you to implement tracking in your

custom application.
regi st er PageVi ewCal | back
This function takes a callback, which you must define, as an argument. You must call the
regi st er PageVi ewCal | back function before the application is rendered.
pageVi ew

This function calls the registered page view callback where present. If the page view

callback is not registered, it is not called.

For IEG pages, pageVi ew passes an object with the following properties as a parameter to the

callback:

* pageType ('IEG')
* pagel D (the current IEG page ID)
* scri pt1 D (the IEG script ID)

For non-IEG pages, pageVi ew passes an object with the following properties as a parameter
to the callback:

stitle
* | ocation

* path

To track page views, you must initialize the tracking library, register the callback, and implement the

callback to send tracking data to a library for analysis.

IBM Curam Social Program Management 7.0.11 | 5 - Developing with the Universal Access Responsive
Web Application | 174

When you define your own custom routes, you must use the Ti t | edRout e component so that the pages
can be tracked. If the route corresponds to an IEG script, you must set the i si EG property for the
Ti t| edRout e cOmponent.

1. Thei ndex. ht nl file is a good place to initialize the library. Insert this snippet, which is as
provided by Google except for the tracking call.

<l-- Gobal site tag (gtag.js) - Coogle Analytics -->
<script async src="https://wwmv. googl et agmanager. coni gt ag/ j s?i d=UA- TRACKI NG D' ></ scri pt >
<script>

wi ndow. dat aLayer = wi ndow. dataLayer || [];

function gtag(){dataLayer. push(argunents);}

gtag('js', new Date());

</ script>

2. Also inthe i ndex. ht m file, you must update the Content Security Policy to allow the Google
script to run:

<meta http-equi v="Content-Security-Policy" content="script-src 'self' 'unsafe-eval' ®'unsafe-inline'

https://ww. googl et agmanager . com htt p: // ww. googl e-anal yti cs.com " />

3. Implement the callback function.

The callback handles both IEG and non-IEG pages based on the pageType prop.

export default function custontal | back(props) {
const gtagProps = {};
if (props.pageType && props. pageType === '|EG) {
/'l | EG pages
gt agProps. page_title = “${props.scriptlD} ${props.pagel D} ;
gt agPr ops. page_path = "/ appl y/ ${props. pagel D} " ;
} else {
/1 Non-1|EG pages
gtagProps. page_title = props.title;
gt agPr ops. page_| ocation = props.|ocation;
gt agPr ops. page_path = props. pat h;
}

wi ndow. gt ag(' config', 'UA-TRACKING D', gtagProps);

4. Ini ndex. | s, register the callback before the application renders.

IBM Curam Social Program Management 7.0.11 | 5 - Developing with the Universal Access Responsive
Web Application | 175

regi st er PageVi ewCal | back(cust ontCal | back) ;

React DOM r ender (<App />, docunent. get El enentByld('root'));

5. For your own custom routes, you must use the Ti t | edRout e component so that the pages can
be tracked. If the route corresponds to an IEG script, you must set the i s1 EG property for the
Ti t1 edRout e component. For more information, see Advanced routing (on page 1117).

Implementing a test environment

Use thet est - f r anewor k package to set up your IBM Universal Access Responsive Web Application
test environment for testing with Test Cafe, Jest, and Enzyme. Then, use this guidance and the provided
helper files to write end-to-end tests, unit tests, or snapshot tests for your project. You can configure the
default test environment to suit your project requirements as needed.

End-to-end test environment

The test - f ranewor k package contains reusable files to help you set up a test environment with TestCafe,
and to help you to develop end-to-end test scripts.

End-to-end test helper files

The end-to-end test helper files in t est - f r anewor k are designed to operate best within a page object

framework structure for your end-to-end automation suite.

Browser.js

The Br owser . j s module simulates interactions a user can have with their browser during an automated

test, such as:

« Retrieving the current URL for the current page displayed in the remote browser.
« Clicking the browsers back button to navigate to the previous page.
« Clicking the browsers forward button to advance to the next page.

Page.js

The Page. | s module simulates common interactions that a user can have with a web page in an
application. A large variety of prebuilt methods are provided in this file, which help you to execute many

user interactions, such as:

« Clearing text and typing new text into an input field.
« Clicking an element.
« Clicking an element only if it is displayed.

IBM Curam Social Program Management 7.0.11 | 5 - Developing with the Universal Access Responsive
Web Application | 176

« Retrieving the value of an input field.

« Retrieving the text content of an element.

- Waiting for an element to be displayed.

« Plus many more as described in the JS documentation for this package.

In addition, the Page module contains two methods to help you with developing and debugging your end-
to-end test scripts:

 The wai t method pauses a test for a specified time (in milliseconds).

« The debug method physically stops the currently executing test script. You can then interact with
the page that is displayed in the remote browser in its current state. You can resume the test script
again at any time.

PageObject.js

The Pageoj ect . j s file acts as a base class from which you can build your own custom page objects
for use with end-to-end tests for any application. This class provides a lot of built-in functionality to help
you with your page object development tasks. For more information, see the JS documentation for this
package and the Pagej ect class documentation.

Verify.js

The Veri fy. s module provides a number of assertion methods for verifying the results from your

automated test scripts. This module allows you to execute verifications such as:

- Verifying whether an element is displayed in the Ul.
- Verifying whether two values are equal (or not).
- Verifying whether a specified value is true or false.

End-to-end test initial setup and configuration

Create your directory structure and i ndex. j s file.

Project directory structure

Using the suggested directory structure for your end-to-end test framework helps you to get the best
out of the t est - f ranewor k package during test development. It also helps you to keep things clean and

maintainable as your test framework scales in size.

| tests

IBM Curam Social Program Management 7.0.11 | 5 - Developing with the Universal Access Responsive
Web Application | 177

| I_e2e

| | L config

| | L data

| | L page-obj ects

| | L scripts

 The confi g directory contains a single i ndex. j s file that serves as the configuration file for all of the
modules and page objects that are going to be used by your test scripts.

- The dat a directory contains any additional data that is used by the test scripts such as user data or
routes data for your application.

* The page- obj ect s directory is where you build the page objects that are required to test each
individual page of your application.

» The scri pt s directory is where you place the test scripts to be ran by test caf e.

Initial confi g directory setup

The first step in building your end to end framework is to create an i ndex. j s file in the confi g directory as
shown:

l_ tests

| I_e2e
| | L config

| | | L_ index.js

This file is where you are import all of the modules from the t est - f ramewor k package that you want to
reuse in your test scripts. You also configure and export your page objects from this configuration file.
This approach improves your framework’s long-term maintainability as everything that is used by your test
scripts is located in and exported from this single file. If something does change, the configuration file is
all that needs to be updated and your scripts automatically inherit all of the changes without the need to
refactor them.

Import the t est - f ramewor k helper files and export them for use in your test scripts. Initially your i ndex. j s
file contains the following code:

inport { Browser, Page, Verify } from @pnitest-franmework';

export { Browser, Page, Verify };

IBM Curam Social Program Management 7.0.11 | 5 - Developing with the Universal Access Responsive
Web Application | 178

If you set up your test directory structure as suggested, then importing each of these modules into your

test scripts follows this pattern:

inport { Browser, Page, Verify } from../config";

Page object development and best practices

The page object model design pattern for building Ul automation frameworks is our recommended
practice. A page object is an object-oriented class that is built to represent the individual pages in the
application under test. These representations offer an interface from which your test scripts can interact
with any Ul element that is associated with that page similarly to how a user would interact with them.

For example, the page object for the Logi nPage in your application might include a I ogi n() method where
you specify the user name and password credentials as parameters. This method then provides the
automated steps that are required for logging a user in to your application. This page object can then be
reused by any test script that requires a logged in user, with each test suite calling that | ogi n() method

without needing to copy and paste the individual steps each time.

The benefits to the page object model extend far beyond simply reducing code duplication. Further

benefits include:

« The API of your chosen automation framework is completely abstracted away from your test
scripts. This makes tests easier to read, write and review.

- Element selectors are isolated in the page object that requires them.

- Since you are referencing page objects in your test scripts, the scenarios executed by the scripts
document themselves as you write them. Managers and new team members alike will find these
test scripts much clearer and easier to understand. For example: it is much easier to read and
instantly know the meaning of I ogi nPage. got o() ; followed by | ogi nPage. I ogi n(); as opposed to
trying to make sense of a group of API calls.

- Suppose that an update completely changes the behavior for something that previously exists in
one of your page objects. You need to update only the affected individual page object function to
work with the new behavior and all of your test scripts automatically inherit the changes. You won't

need to go back and change anything in any of your scripts.

Best practices

Best practices for the development of page objects in your automation framework.

Use CSS selectors to locate your Ul elements

IBM Curam Social Program Management 7.0.11 | 5 - Developing with the Universal Access Responsive
Web Application | 179

Use CSS selectors when trying to locate your Ul elements. While you can use XPaths for this
purpose, CSS selectors are the highly recommended practice due to their sheer simplicity,
not to mention the overall speed and performance advantages they have over their XPath
equivalents. To get the best out of CSS selectors, assign some attribute to your Ul elements
to make them unique from all other elements. For example, set the i d, nane, or perhaps a
custom dat a- t est i d attribute with some unique identifier for that element.

Keep assertions out of page objects

One of the golden rules for building end-to-end test scripts is that you should aim to include
just one main assertion or set of assertions per test script. It is therefore equally important
that you do not place assertions in any of the functions provided by your page objects. It can
be very tempting to add assertions to a page object function because it always provides an
assertion for you every time that method is invoked.

For example, suppose that a message is briefly displayed to the user to confirm that they
have successfully logged in. You also have a scenario to automate that verifies that this
message is displayed after a user has logged in. You might add the assertions for this as
the final steps of the 1 ogi n() method in your Logi nPage page object so that this verification
is always made every time any page object invokes that I ogi n() function.

While it can look like a good idea to do this and also promotes the idea that you are getting
something of a free verification for your login behavior in all of your other scripts, this is not
a recommended practice because:

- First, you are losing a lot of clarity in your test scripts by adding verifications to your
page object functions. Seeing | ogi nPage. | ogi n() in your script does not clearly imply
that this method also includes a verification therefore the intention of the test script
will also be unclear as a result.

 Adding assertions to page objects adds too much ambiguity to your test suites. Your
scripts will automatically inherit multiple assertions, any of which can fail, which may
result in the conclusion of your scripts never being reached and their intended main
verification(s) never taking place. Going back to our | ogi n() example, suppose a bug
is introduced whereby the login message is not displayed to the user after successful
login. Now all of your test scripts which invoke that | ogi n() method will fail since you
added the verifications to confirm the presence of the message even though only one
test in your entire suite should realistically be verifying this.

- Developers that may have to debug a failing test will be forced to dig deep into your
page object framework in order to find what verifications have actually taken place

IBM Curam Social Program Management 7.0.11 | 5 - Developing with the Universal Access Responsive
Web Application | 180

during the test execution. This will be even more complex a task if you are importing
and reusing page objects that have been developed in a separate framework.

- Verifications aren't as free as you might think. In fact, they can be very expensive
for time. Having multiple verifications taking place throughout your page object

functions can slow your test script execution times down by a significant amount.

The pageObject class

The Pagehj ect . j s file in the t est - f ramewor k package provides an interface from which you can easily
create page objects for use in your end-to-end framework. When you create page objects, you can use
Pagebj ect construct or parameters to automatically generate methods that are commonly used by page
objects during automation.

Import this class into your page object file directly and extend from it to inherit all of its behavior, for
example:

inport { PageCbject } from @pnitest-franework';

export default class M/Pagebj ect extends PageObject {

/A

You can use the Pagehj ect class to set a URL for the web page that is represented by your page object.
It also has a number of parameters to automatically generate methods that are commonly used by page
objects during automation. Alternatively, you can call the super method in the const ruct or to extend from

this class without setting any of the parameters.

The PageObject constructor parameters

The Pagevj ect class provides a number of const ruct or parameters that you can use to build your page
objects. The sample code shows how to invoke the Pagebj ect construct or and lists all of the parameters
that are accepted:

export default class MyPageQbj ect extends PageCbject {
/* Invokes the PageObject constructor - the following is the conplete |ist of paraneters supported in their correct
order */
constructor() {
super (
url,
clickList,

clicklfDisplayedLi st

IBM Curam Social Program Management 7.0.11 | 5 - Developing with the Universal Access Responsive
Web Application | 181

cl ear AndTypeText Li st ,
typeText Li st,

sel ect Li st

get Val ueli st,

get | sSel ect edLi st,

get Dr opdownSel ecti onLi st ,
get Text Cont ent Li st

get | sReadOnl yLi st

@param {JSON} clickList parameter

The cli ckLi st parameter specifies a list of CSS selectors in JSON, all of which correspond to elements in
the Ul to be clicked during your test execution. For example, these two CSS selectors correspond to two
different buttons in your Ul:

const submitButton ="input[id="submt"]";

const exitButton ='button[id="exit"]";

Instead of declaring them as the individual variables as shown, declare them as the cl i ckLi st parameter

as follows:

const clickList= {
exitButton: 'button[id="exit"]",

submitButton: 'input[id="submt"]"'

export default class M/Pagebj ect extends PageObject {
/* For this exanple we are only setting the URL and clickList paraneters - all other paraneters are |eft undefined */
constructor() {

super (' http://ww.ibmcom, clickList);

By specifying your Ul elements that are to be clicked in this way, you now have access to cl i ck methods
for each of the selectors in the cl i ckLi st after you create an instance of your page object. These cli ck
methods are automatically generated when your page object is created. So for the previous example,

IBM Curam Social Program Management 7.0.11 | 5 - Developing with the Universal Access Responsive
Web Application | 182

the following code sample demonstrates exactly what methods become available when you create an

instance of the MyPagebj ect class:

/* First create an instance of your page object */

const nyPageObj ect = newWPageQbj ect ();

/* After creating the page object instance, you will have access to both of these click nethods */
awai t nmyPageObj ect. cl i ckExitButton();

awai t nmyPageObj ect. cl i ckSubni t Button();

The cl i ck method name is derived from the word cl i ck followed by the title of the key that you assigned
to your selector. Therefore, if you declared a nycust onsel ect or key in the JSON that provided to the

clickLi st parameter, the cli ck method for that selector is cl i ckM/Cust onsel ect or () .

Note:

As all of these method names are derived from keys, be careful with your spelling. Any spelling

mistakes in keys are reproduced in the subsequent cl i ck method name.

@param {JSON} clicklfDisplayedList parameter

Specifying CSS selectors in the cl i ckl f Di spl ayedLi st parameter automatically generates a method for

each selector when the page object instance is created.

Each of the generated methods attempts to click the Ul element corresponding to your specified selector
only if that selector is displayed in the Ul. If the Ul element is not displayed, the method exits cleanly and

allows your test script to continue running.

The naming convention for this method follows the format cl i ck_XXx_I f Di spl ayed where _xxx_ is the title

that you assigned to each of your keys.

The methods that are generated in this instance are as follows:

const clicklfDisplayedList= {
exitButton: 'button[id="exit"]",

submitButton: 'input[id="submt"]"*

cl ass MyPage(hj ect extends PageCbj ect {
/* For this exanple we are only setting the URL and clicklfDi splayedLi st paraneters - all other paraneters are |eft

undef i ned */

IBM Curam Social Program Management 7.0.11 | 5 - Developing with the Universal Access Responsive
Web Application | 183

constructor() {

super (*http://ww.ibmconm, undefined, clicklfDisplayed);

/* Now create an instance of your page object */

const nyPageObj ect = newWPageQbj ect ();

/* After creating the page object instance, you will have access to both of these clicklfD splayed nethods */
awai t myPageObj ect. cli ckExitButtonl fDi splayed();

awai t myPageObj ect. cli ckSubmi t Buttonl f Di spl ayed();

@param {JSON} clearAndTypeTextList parameter and @param {JSON} typeTextList
parameter

Both of these parameters automatically generate t ype methods. However, the functionality of the
methods that are generated for each of the element selectors that are specified in either list is slightly
different:

- If you add selectors to the cl ear AndTypeText Li st parameter, then the methods clear all previous
text that was entered into the corresponding Ul element before you type new text into that element.
« Any selectors added to the t ypeText Li st parameter generate methods that type text into the Ul

element. No previous text is cleared, so the text is appended to the existing text.

While the functionality varies depending on which list that you add your selectors to, the actual method
names that are generated follow the very same naming convention. In both cases the method name
follows the format t ype_xxx, where _xxx is the title that you assigned to each of your keys. This t ype_xxx
method also accepts a stri ng parameter where you can specify the exact text that you want to type into
that element.

The methods that are generated in this instance are as follows:

const cl ear AndTypeText Li st = {
firstName: '"input[id="first_name"]',
| ast Nane: 'input[id="Iast_nane"]"
h
const typeTextList = {
addressLinel: 'input[id="address_line_1"]",

addressLi ne2: 'input[id="address_line_2"]"

IBM Curam Social Program Management 7.0.11 | 5 - Developing with the Universal Access Responsive
Web Application | 184

cl ass MyPageOhj ect extends PageCbject {
/* For this exanple we are only setting the URL and both type text paraneters - all other paraneters are |eft
undefined */
constructor() {
super (
"http://ww. i bm coni,
undef i ned,
undef i ned,
cl ear AndTypeText Li st

typeText Li st

/* Now create an instance of your page object */

const nyPageObj ect = newWPageCbj ect ();

/* After creating the page object instance, you will have access to all of these type nethods */
awai t myPageObj ect . typeFi rst Name(' M chael ') ;

awai t myPageObj ect . typelLast Name(' Myers');

awai t myPageObj ect . t ypeAddr essLi nel(' Haddonfield');

awai t nmyPageObj ect.t ypeAddressLine2('Illinois');

@param {JSON} selectList parameter

You can use the sel ect Li st parameter to specify a list of element selectors that correspond to <sel ect >
elements in your Ul. Any element selector that specified in this parameter has a method automatically
generated for it when the page object instance is created. The naming convention for the generated
methods follows the format sel ect _xxx, where _xxx is the title that you assigned to each of your keys.
This sel ect _xxx method also accepts a st ri ng parameter where you can specify the exact option that is

to be chosen from the list of options in that <sel ect > element.

The following example shows the methods that are generated for element selectors that are specified in

the sel ect Li st parameter:

const sel ectList={

conpany: ‘select[id="conmpany"]",

IBM Curam Social Program Management 7.0.11 | 5 - Developing with the Universal Access Responsive
Web Application | 185

county: 'select[id="county"]"'

cl ass MyPageOhj ect extends PageCbject {
/* For this exanple we are only setting the URL and the sel ectList paraneter - all other paraneters are |left

undefined */

constructor() {
super (

"http://ww. i bm coni,

undef i ned,

undefi ned,

undef i ned,

undef i ned,

sel ect Li st

/* Now create an instance of your page object */

const nyPageObj ect = newWPageQbj ect ();

/* After creating the page object instance, you will have access to these sel ect nethods */
awai t myPageObj ect . sel ect Conpany(' | BM);

awai t myPageObj ect. sel ect County(' Dublin');

@param {JSON} getValueList parameter

For verification purposes in your test scripts, you can retrieve the text value of an <i nput > field by adding

element selectors to the get val ueLi st parameter.

The naming convention for the methods follows the format get _XxxX_val ue, where _xxx_ is the title that
you assigned to each of your keys. When you invoke this method in your test script, it retrieves the current
st ri ng value of the <i nput > element corresponding to the CSS selector you specified.

The following example shows how you might combine a t ype_xxx method action with a get _XxX_val ue

method action to enter text into an <i nput > field and then retrieve its value again:

const cl ear AndTypeText Li st = {

firstName: '"input[id="first_name"]',

IBM Curam Social Program Management 7.0.11 | 5 - Developing with the Universal Access Responsive
Web Application | 186

| ast Nane: 'input[id="Iast_nane"]"
IE
/* We can re-use both of the existing selectors for the purpose of this list - there's no need to declare themagain */
const get Val uelLi st= {

firstNanme: clear AndTypeText Li st.firstNang,

| ast Nane: cl ear AndTypeText Li st . | ast Narme

cl ass MyPageOhj ect extends PageCbject {
/* For this exanple we are only setting the URL, the clearAndTypeTextLi st paraneter and the getVal ueList paraneter -
al | other paraneters are |eft undefined */
constructor() {
super (
“http://ww. i bm coni,
undef i ned,
undef i ned,
cl ear AndTypeText Li st
undef i ned,
undef i ned,

get Val uelLi st

/* Now create an instance of your page object */

const nyPageObj ect = newMWyPageQbj ect ();

/* After creating the page object instance, you will have access to all of these nethods */
awai t myPageObj ect. typeFi rst Nane(' Jack');

awai t nmyPageQObj ect. typelLast Name(' Bauer');

const firstNane = await myPageObj ect. get Fi r st NaneVal ue();

const | ast Nanme = awai t myPageObj ect . get Last NaneVal ue() ;

@param {JSON} getisSelectedList parameter

During test execution, you can verify whether a specific checkbox or set of checkboxes were selected or
cleared with the get I sSel ect edLi st parameter. The naming convention for the generated methods follows

the format i s_xxx_sel ect ed, where _xxx_ is the title that you assigned to each of your keys. When you

IBM Curam Social Program Management 7.0.11 | 5 - Developing with the Universal Access Responsive
Web Application | 187

invoke this method in your test script, it returns a Boolean t rue or f al se value that depends on whether

the checkbox element corresponding to the CSS selector that you specified is checked or not.

The following example shows how you might combine a cl i ck_xxx method action with an
i s_XXX_Sel ect ed method action to select a checkbox and then determine whether it was checked:

const clickList= {
agreeTer nsAndCondi ti ons: 'input[type="checkbox"][id="ternms_and_conditions"]"
%
/* We can re-use this existing selector for the purpose of this list - there's no need to declare it again */
const isSel ectedList= {

agreeTer nAndCondi tions: clickLi st.agreeTer nsAndCondi ti ons

cl ass MyPageOhj ect extends PageCbject {
/* For this exanple we are only setting the URL, the clickList paraneter and the isSel ectedLi st paranmeter - all other
paranmeters are |eft undefined */
constructor() {
super (

"http://ww. i bm coni,

clickList,

undef i ned,

cl ear AndTypeText Li st

undefi ned,

undef i ned,

undef i ned,

i sSel ect edLi st

/* Now create an instance of your page object */

const nyPageObj ect = newWPageQbj ect ();

/* The first check for whether the checkbox is selected or not will return false */

l et isChecked = awaitmyPageQObj ect. i sAgreeTer nsAndCondi ti onsSel ect ed();

/* Now lets click on the checkbox and re-run our previous nethod - this time it will return true */

IBM Curam Social Program Management 7.0.11 | 5 - Developing with the Universal Access Responsive
Web Application | 188

awai t nmyPageObj ect . cl i ckAgr eeTer msAndCondi ti ons();

i sChecked = await nyPageQbj ect . i sAgreeTer msAndCondi ti onsSel ected();

@param {JSON} getDropdownSelectionList parameter

You can retrieve the selected option from a <sel ect > element during test execution by adding selectors
to the get Dr opdownSel ect i onLi st parameter. For example, if your test script already has a value for a
<sel ect > element in your Ul and you want to verify whether the value is correct and retained after some
other actions are executed.

The naming convention for the generated methods follows the format get _XxX_Sel ect i on, where _Xxx_
is the title that you assigned to each of your keys. When you invoke this method in your test script, it
retrieves the st ri ng value of the currently selected option in the <sel ect > element corresponding to the
CSS selector you specified.

The following example shows how you might combine a sel ect _xxx method action with an
get _XxX_Sel ect i on method action to select an option in a <sel ect > element and then retrieve the currently

selected option from that <sel ect > element again:

const sel ectList={
conpany: 'select[id="conmpany"]",
county: 'select[id="county"]"'
}i
/* W can re-use these existing selectors for the purpose of this list - there's no need to declare themagain */
const get DropdownSel ecti onLi st= {
conpany: sel ectList.conpany,
county: selectList.county

I

cl ass MyPageObj ect extends PageObj ect {
/* For this exanple we are only setting the URL, the sel ectList paranmeter and the get DropdownSel ecti onLi st paraneter
- all other paraneters are |eft undefined */
constructor() {
super (
“http://ww.ibmcon,
undef i ned,
undef i ned,
undef i ned,

undef i ned,

IBM Curam Social Program Management 7.0.11 | 5 - Developing with the Universal Access Responsive
Web Application | 189

sel ect Li st
undef i ned,
undef i ned,

get Dr opdownSel ecti onLi st

/* Now create an instance of your page object */

const nyPageCbj ect = newWPageCbj ect ();

/* After creating the page object instance, you will have access to these all of these nethods */
awai t myPageObj ect . sel ect Conpany(' | BM);

awai t nmyPageObj ect . sel ect County(' Dublin');

const conpanySel ection = awai t nyPageQbj ect . get ConpanySel ecti on();

const countySel ection = awai t myPageCbj ect . get Count ySel ection();

@param {JSON} getTextContentList parameter

You can use the get Text Cont ent Li st parameter to specify a list of selectors from which you want to
retrieve text content.

The naming convention for the generated methods follows the format get _XxX_Text Cont ent where _Xxx_
is the title that you assigned to each of your keys. When you invoke this method in your test script, it
retrieves the stri ng value of the text content for the Ul element corresponding to the CSS selector that
you specified.

The following example shows the methods that are generated for element selectors that are specified in

the get Text Cont ent Li st parameter:

const get Text Cont entLi st= {

title: 'hl[id="nai n_headi ng"]"

cl ass MyPage(hj ect extends PageCbj ect {

/* For this exanple we are only setting the URL and the get Text ContentList parameter - all other paraneters are |eft
undef i ned */

constructor() {

super (

IBM Curam Social Program Management 7.0.11 | 5 - Developing with the Universal Access Responsive
Web Application | 190

"http://ww. i bm coni,
undef i ned,
undef i ned,
undef i ned,
undefi ned,
undef i ned,
undef i ned,
undef i ned,
undef i ned,

get Text Cont ent Li st

/* Now create an instance of your page object */

const nyPageObj ect = newWPageCbj ect ();

/* After creating the page object instance, you will have access to these nethods */

const titleText = await nyPageObject.getTitl eText Content();

@param {JSON} getisReadOnlyList parameter

During test execution, you can verify whether a specific input field or set of input elements are marked as
read only with the get I sReadOnl yLi st parameter.

The naming convention for the generated methods follows the format i s_xxx_Readonl y, where _xxx_ is the
title that you assigned to each of your keys. When you invoke this method in your test script, it returns a
Boolean true or f al se value that depends on whether the input element corresponding to the CSS selector
you specified is a read-only input field or not.

The following example shows the methods that are generated for the element selectors that are specified

in the get I sReadOnl yLi st parameter:

const getlsReadOnlyList = {

firstName: input[id="first-nanme"]

cl ass MyPageOhj ect extends PageCbj ect {

IBM Curam Social Program Management 7.0.11 | 5 - Developing with the Universal Access Responsive
Web Application | 191

/* For this exanple we are only setting the URL and the getlsReadOnl yLi st paranmeter - all other paraneters are |eft
undefined */
constructor() {
super (
“http://ww.ibmcon,
undef i ned,
undef i ned,
undef i ned,
undef i ned,
undef i ned,
undefi ned,
undef i ned,
undef i ned,
undef i ned,

get | sReadOnl yLi st

/* Now create an instance of your page object */

const nmyPageObj ect = new MyPageQbj ect();

/* After creating the page object instance, you will have access to these methods */

const isReadOnly = await nyPageCbj ect.isFirst NaneReadOnly();

Adding custom behavior to your page objects

You can add custom behavior to your page objects. For example, a specific click action, or a specific
series of instructions to run for an automated task in your end-to-end test scripts.

As a further example, a web page might render some dynamic content and you need to wait for a specific

element to be visible in the Ul before you continue.

The t est - framewor k package provides a Pagebj ect class from which you can take advantage of the
automatically generated methods that are provided. You can add your own custom behavior to your page

objects too.

IBM Curam Social Program Management 7.0.11 | 5 - Developing with the Universal Access Responsive
Web Application | 192
Sample page object with custom behavior

In this example, you add a simple wai t For PageLoad() method to your page object. It is assumed that your
application is rendering some dynamic content, such as a timeline, and that a see Mor e button is rendered

at the foot of the dynamic content.

inport { Page, PageQbject } from @pnitest-framework';
consturl ="http://ww.ibmcomn ;

/* Now | ets define sone other selectors that we are going to use to define our custom behavi our

*/ const seeMor eBut t on="1i nput [type="button"][i d="see_nore"]";

export def aul t cl assMyPagebj ect ext endsPagebj ect

-~

constructor() {

/* For this exanple we will only define the URL - we don't need to define the other lists */super(url);

/* Now | ets add our custom behaviour to our page object */asyncwaitForPageLoad() {

awai t Page. wai t For El enent ToBeDi spl ayed(seeMor eButt on);

/* Now create an instance of your page object */constnyPageCbject=newMyPageCbject();

/* Lets navigate to the URL defined in our page object and then wait for the page to | oad */awaitnmyPageObj ect.goto();

awai t myPageObj ect . wai t For PageLoad() ;

Building, exporting and configuring your page objects

Build, export, and configure your page objects so you can import and use them in your end-to-end test

scripts.

Building your page objects

It is best to build each of your page objects by extending from the Pagevj ect class in the t est - f r amewor k
package. Then, save each of your page object files in the page- obj ect s folder in your test framework
directory structure. The naming convention for page objects is to use the title of the application web page

that the page object represents, for example HonePage. j s Or Logi nPage. j s.

IBM Curam Social Program Management 7.0.11 | 5 - Developing with the Universal Access Responsive
Web Application | 193

| tests

| L e2e
| | L page-obj ects
| | | L HonePage. j s

| | | L— Logi nPage. js

Exporting your page objects from page- obj ect s/i ndex. j s

After you create your page objects, you must export them from the page- obj ect s directory to import them
into your test scripts. Create an i ndex. j s file in the page- obj ect s folder to enable all of your page object
files to be exported from this single location. As you scale your page object framework, you can have

many page objects to export from this folder.

— tests

| L e2e

| | L page-obj ects

| | | L HonePage. j s
| | | L Logi nPage. s

| | | L index.js

With the i ndex. j s file in place, export your page objects by using this file as shown in the example:

export { defaultasHonePage } froni./HonePage';

export { defaul tasLogi nPage } from ./Logi nPage';

Configuring your page objects

You can now import page objects into your project's confi g/ i ndex. j s file for reuse with your end-to-end

test scripts. Before you continue, ensure that your test directory structure looks like this structure:

|— tests

| L e2e

| | L config

| | | L index.js

| | L page-obj ects

| | | L HonePage.js
| | | L Logi nPage. | s

| | | L index.js

IBM Curam Social Program Management 7.0.11 | 5 - Developing with the Universal Access Responsive
Web Application | 194

The following sample code shows your confi g/ i ndex. j s file after you add your page object configuration
to the file. In the sample code, you are importing each of your custom page objects from your page-

obj ect s folder, instantiating each page object and then exporting each instantiated page object from the
file:

inport { Browser, Page, Verify } from @pnitest-franmework';
inport {
HomePage,
Logi nPage// ... also inport any other page objects that you require ...

} froni../page-objects';

/* Instantiate all of the page objects to be used during the e2e tests */const homePage=newHonePage() ;

const | ogi nPage=newLogi nPage() ;

/Il ... also instantiate any other page objects that you inported ...export {
Browser,
Page,
Verify,
honePage,
| ogi nPage// ... export all other instantiated page objects ...

With your page objects configured, you can now easily import and use your page objects in your end-to-
end test scripts.

Writing end-to-end scripts

Now that your page objects are developed and your end-to-end framework is configured to use the test -
framewor k package, you are ready to start writing test scripts that bring everything together. The code
samples are developed with t est caf e as the leading framework.

The sample code assumes that your framework directory structure is as shown.

|— tests

| L e2e

| | L config

| | | L index.js

| | L_ page-obj ects

| | | L HonePage.js

| | | L_ Logi nPage.js

IBM Curam Social Program Management 7.0.11 | 5 - Developing with the Universal Access Responsive
Web Application | 195

| | | L index.js
| | L_ scripts

| | | L_ *.e2e.test.js

Scenario 1: Logging in redirects the user to the home page

You can write a test script for the following sample scenario based on the provided directory structure:

1. Open the application and go to the log-in page.
2. Enter the credentials of a valid user into the username and password fields and click Log in.

3. After you log in, verify that you were redirected to the user's account page.

Now to look at a test script for this scenario that incorporates your page objects and is driven by t est caf e.

Comments with each line of code further describe exactly what's happening at each step.

/* Firstly inport all relevant page objects and test helper files by inporting themfromthe config/index.js file */

inport { Browser, honePage, |oginPage, Verify } from'../config";
fixture('Login e2e').page(loginPage.getUrl()); // Set the initial page to be opened as the |ogin page

test('Verify that the user is redirected to the hone page on successful login', async () => {
/* Log in as a valid user by re-using the page objects |ogin nethod */

awai t | ogi nPage. | ogi n();

/'l Re-use the Browser test helper file to get the current URL fromthe renote browser */

const currentU |l = await Browser.getCurrentUrl ();

/Il Finally verify that the current URL in the renpte browser matches the expected URL for the hone page
/1 1t should be noted that every page object has a “getUrl ()" nethod which allows you to easily retrieve the expected
URL for the page it represents
/Il Also note that this test is re-using the Verify test helper file to do its verifications
awai t Verify.equal (
currentUrl,
honmePage. get Url (),

"User was not redirected to the hone page after successfully |ogging in'

IBM Curam Social Program Management 7.0.11 | 5 - Developing with the Universal Access Responsive
Web Application | 196

Save this test into your scri pt s directory as Logi nPage. e2e. t est . j s. Ensure that you save all other test

scripts for your end-to-end framework in this directory.

Running end-to-end tests

It is straightforward to run your tests with t est caf e by using a single npmscript and a number of custom-

set options.

For example, this npmscript runs the specified test scripts by using t est caf e. The tests run in Google
Chrome with headless mode enabled and in incognito mode:

"testcafe": "testcafe \"chrone: headl ess -incognito\" tests/e2e/scripts/*.e2e.test.js",

To add this script to your project, copy and paste the npmscript into the package. j son file of the project
that contains your end-to-end test framework. From the root of the project, run the script from the
command line as follows:

npmrun testcafe
You can watch your test suites run in headless mode from your command line.
You can disable headless mode by removing the : headl ess section of the script:

"testcafe": "testcafe \"chrome -incognito\" tests/e2e/scripts/*.e2e.test.js",

Now, when you run your test suites, you can see a physical remote browser open on the desktop of your
local computer and you can watch the test execution as it happens.

For more information about the full list of supported browsers and all of the command line switches
available for running scripts, see the TestCafe documentation.

Jest and Enzyme test environment

The test - f ramewor k package contains reusable files to help you set up a test environment with Jest and
Enzyme, and to help you to develop unit and snapshot test scripts.

Unit and snapshot test initial setup and configuration

Use the provided files to easily configure a default Jest and Enzyme test environment that you can use to
start writing your unit and snapshot tests.

https://devexpress.github.io/testcafe/documentation/using-testcafe/command-line-interface.html#browser-list

IBM Curam Social Program Management 7.0.11 | 5 - Developing with the Universal Access Responsive
Web Application | 197

Project directory structure

By default, the Jest files expect a certain folder structure for your unit and snapshot test framework.
Create the following folder structure in your environment.

| tests

| L config

| | L setup-tests.js

| | L— snapshot.config.js
| | L test-mapper.js

| | L unit.config.js

| L— snapshots

| | L_ *.snap.test.js

| L unit

| | L— *.unit.test.js

Configuring the set up-tests. | s file

Add the following code to the set up-t est s. | s file to configure Jest to work with enzyme- adapt er -
react - 16 and to configure the snapshot serializer for use with the snapshot tests:

inport Enzynme from'enzyne';
inport { createSerializer } from'enzynme-to-json';

inport Adapter from'enzyne-adapter-react-16';

Enzyne. configure({ adapter: newAdapter() });

/* Setup snapshot serializer */

expect . addSnapshot Seri al i zer (createSeri al i zer ({ noKey:true, node:'deep' }));
Mocking the Redux store

Some Jest tests mount components that access a Redux store by using the get State
method. You can configure a mock store with the relevant Redux methods by adding this
code totheset up-tests. | s file.

gl obal . mockStore = {
getState: jest.fn(),

di spatch: jest.fn(),

IBM Curam Social Program Management 7.0.11 | 5 - Developing with the Universal Access Responsive
Web Application | 198

subscribe: jest.fn()

You can then call the mock store from any component in a Jest test script with the following

code:

const nmyConponent = | ntl EnzynmeTest Hel per. nount Wt hlntl Wt hStore(
<MyConponent />,
gl obal . nockSt ore

DE
Mocking the Redux store with custom mock state

Some unit tests might need access to a mock Redux store with a specific mock state and

with custom data.

« Add the mock state to the set up-t est s. j s file as follows:

const nockState = {

/1 Add all of your nock data keys and val ues here

b

- Set the mock get st at e function to return the mock state when it is called during unit

tests:

gl obal . nockStore = {

getState: jest.fn(() => nockState)

Configuring the t est - mapper . j s file

Jest cannot process data from CSS or image files and throws an error to the console if these files are
referenced by any React component. Jest is designed to test the behavior of the component code and

distances itself from any styling or images that are applied to that component.

To cleanly bypass any of these imports, add the following code to the t est - mapper . j s file.
modul e. exports= {};

Configuring the uni t. config.js and snap. confi g. s files

These files are designed to configure the unit tests and snapshot tests for a project. You can use the
default Jest configuration by adding the following content to both files:

IBM Curam Social Program Management 7.0.11 | 5 - Developing with the Universal Access Responsive
Web Application | 199

I/ unit.config.js

const { getUnitTestConfig } = require(' @pmtest-franework');

nodul e. exports = get Unit Test Config();

/1 snapshot.config.js

const { getSnapshot TestConfig } = require(' @pnmtest-framework');

nodul e. exports = get Snapshot Test Confi g();
Setting custom j est configurations
You can customize the default Jest configuration.

For example, you can set more project-specific folders to be ignored by the Jest coverage

collection statistics as follows:

const { getUnitTestConfig } = require(' @pmtest-franework');

const unitTestConfig = getUnitTestConfig();
uni t Test Confi g. cover agePat hl gnor ePat t er ns. push(' <root Di r>/ path/to/ ny/fol derl');

uni t Test Confi g. cover agePat hl gnor ePat t er ns. push(' <root Di r>/ pat h/t o/ ny/fol der2');

nodul e. exports = unit Test Confi g;

Unit and snapshot test helper files

The test - framewor k provides the I nt| EnzyneTest Hel per. j s and Test Ui | s. j s helper files to help you to

write unit and snapshot tests.

I ntl EnzynmeTest Hel per.j s

React components that use the react -i nt | module need access to the i ntI context, which is not available
when you mount single components with Enzyme. You can use the I nt | EnzyneTest Hel per. j s class to

wrap a valid English-locale i nt| context around a component under test.

TestUils.js

The Test Ui ls. s class is a utility class for testing React components with Redux modules.

To use the helper files in your Jest tests

Import any of the Jest helper files directly from the t est - f ramewor k package as follows:

IBM Curam Social Program Management 7.0.11 | 5 - Developing with the Universal Access Responsive
Web Application | 200

inport { IntlEnzyneTestHel per, TestUWils } from' @pnitest-franework';

You can then call any of the class functions from your Jest test scripts as shown in the following

examples:

describe(' Test suite', () => {
it('verifies something', () => {
...
const wrapper = |IntlEnzymeTest Hel per. nount Wthlntl (

<MyConponent Under Test />

it('verifies sonething else', () =>{
const nockData = {
/1 nock JSON data
h
const nmockU il Function = TestUtils. mockActionsCal | backFxn([true, nockData]);
[

})i

Guidelines for writing unit test scripts

The following guidance might be useful when you write Jest tests for both unit and snapshot testing.

To unit test or to snapshot test?

The first question that you must answer is whether to write a unit test or snapshot test.
Unit tests

Unit tests act as documentation for the project code or React component that you are
testing. They include individual verifications for every piece of behavior in the code. Anyone
must be able to read the verifications in the unit test suite and fully understand which
behavior is being triggered and under which circumstances. Unit tests must be clear and
concise and are a perfect indicator of code coverage within the overall project. These tests
are the primary form of testing for the project code so you must write unit tests for all code

in the project.

Snapshot tests

IBM Curam Social Program Management 7.0.11 | 5 - Developing with the Universal Access Responsive
Web Application | 201

Snapshot tests can verify only that the DOM output for a React component in the provided
state is correct. Don't use snapshot tests to test React component functionality, but

use them as a complement to your unit tests to verify that the DOM output for a React
component is correct. After unit tests verify the code behavior, snapshot tests can verify that
everything is correct from an HTML markup perspective when the component is output to
the DOM.

Snapshot test verifications are far too vague to offer any form of clear documentation for a
component that is being tested. Because of the vague nature of their verifications, snapshot
tests are also a poor indicator of code coverage so don't use them to collect code coverage
statistics. It is much more beneficial for the project to collect code coverage statistics solely

for behavioral based verifications, such as unit tests.

Collecting code coverage statistics for snapshot tests can provide a number of false
positives. Code coverage might increase due to the presence of snapshot tests. However,
the functionality of the code is not tested and verified as correct. You might read a high
code coverage percentage in the coverage report and incorrectly assume that all of the

component behavior is tested.

It can be beneficial to write both unit test and snapshot test suites for a project. However, unit tests
must always be your priority given that they directly test the functionality of all of the code. A project can

manage without snapshot tests. However, it can never survive without a thorough suite of unit tests.

Decide what must be tested

For each a new function or React component, you must decide what to test. Read through the code for the
function or component and highlight the key behaviors and when they occur.

Create the unit test suite to test all of the identified functionality. After all of the behaviors are captured
and tested in the unit test suite, then you can write snapshot tests to capture the DOM output for any new

React components.

Your goal is to test all of the available functionality and cover 100% of the code. If there is code that is
unreachable for any reason, then that code must be highlighted by the unit tests and refactored.

Ensure that all tests can be ran independently

All tests must be able to run independently of one another. A test that depends on the completion of
another test is difficult to maintain and can be a direct cause of many avoidable consistency and reliability
problems with your test suites.

IBM Curam Social Program Management 7.0.11 | 5 - Developing with the Universal Access Responsive
Web Application | 202

- If the first test fails, the dependency can trigger a false negative by causing a dependent test to fail.

Jest tests run concurrently by default so avoid creating tests that depend on each other.

- If a test is finishing work that started in another test, the dependency can significantly reduce the

clarity of what each test is doing.

- If a test fails, the dependency significantly hinders debugging. You need to be able to isolate failing
tests so you can rerun the failing test only. Test preconditions must be automatically included
when you run the failed test independently on your local computer. If a failing test depends on
another test, you must find and run the other test before you can run the failing test. If several tests

are chained in a sequence, you must find and run all preceding tests.

If you need reusable piece of test code for use in multiple test scripts, put the code inside one of the Jest

test hooks, such as bef oreAl |, bef oreEach, after Al |, Or af t er Each.

Use clear test descriptions

Each unit test in a project verifies some behavior of the code. Therefore, the description of the unit test

must clearly indicate exactly what is being tested and under what circumstances.

There are essentially two ways to declare a unit test description:

* You can use a behavior-driven development (BDD) style description. For example:

it('given MyConponent, when the submit button is clicked, then the dialog is rendered , () => {
...

1)

* You can use a plain English sentence beginning with verifies that... to state exactly what is
being verified. For example:

it('verifies that the dialog is rendered when the subnmit button is clicked , () => {
...

})i

Minimize the number of assertions for each test

Ideally each test script has one main assertion or expect statement that verifies the behavior that is being
tested. It can be tempting to place multiple expect statements into a single test script, but avoid this
practice. If any of the preceding expect statements in the script fail, then none of the subsequent expect

statements will run.

IBM Curam Social Program Management 7.0.11 | 5 - Developing with the Universal Access Responsive
Web Application | 203

If multiple expect statements are required, you can create a test suite that triggers the behavior to be
tested in a bef oreAl | or bef or eEach test hook. You can then write multiple test scripts that capture and

verify each expected behavior individually. For example:

descri be(' MyConponent ondick() nethod behaviour', () => {
| et nmyConponent;

let ondick;

beforeAl I (() => {
ondick = jest.fn();
nmyConponent =nount (<MyConponent ond i ck={onCick} />);
/* dick the submit button to fire the ondick behaviour */
nmyConponent . find(' button'). prop('ondick')();

)

it('verifies that the wds-u-hidden class of the dialog has been renoved , () => {

expect (myConponent . fi nd(' Di al og'). hasd ass(' wds-u-hi dden')).toBeFal sy();

b

it('verifies that the onCick functionality was invoked , () => {
expect (ond i ck. nock. cal | s) .t oHaveLengt h(1);
1)
b

Running Jest and Enzyme tests

If you are using the default Jest configuration, you can run the Jest and Enzyme tests by adding scripts to

the package. j son file.

Add the following scripts to the package. j son file.

"test-snapshots": "jest --config ./tests/config/snapshot.config.js",
"test-snapshots-update”: “npmrun test-snapshots -- -u",
“test-unit": "jest --config ./tests/config/unit.config.js",

“"test-unit-coverage": "npmrun test-unit -- --collectCoverage",

IBM Curam Social Program Management 7.0.11 | 5 - Developing with the Universal Access Responsive
Web Application | 204

React environment variable reference

A full list of Universal Access React environment variables categorized by function. You can set
environmental variables in . env files in the root directory of your application. If you omit environment

variables, either they are not set or the default values apply.

The starter pack provides the . env and the . env. devel opnent files to get you started. For more
information about using . env filesinr eact - scri pt s, see Adding Development Environment Variables

In .env in the Create React App documentation.

« REST API (on page 204)

« User session (on page 206)

« Security (on page 207)

« Locale (on page 207)

- Unauthorized redirect (on page 207)

- Feature toggles (on page 208)

« Connectivity handler (on page 209)

« User account status polling (on page 209)

« Application-specific verification polling (on page 210)
« Document uploads (on page 2171)

« Social Program Management Web Development Accelerator (on page 212)
« Application authentication (on page 212)

« Simple authentication for development (on page 213)
« Single sign-on (SSO) authentication (on page 214)

« Intelligent Evidence Gathering (IEG) (on page 215)

REST API
REACT_APP_REST_URL

Specifies the path to REST services. You must set this variable as it is needed by the
Authentication service. When you specify a path, it can be a URL to a server, or a relative
path in the local deployment server if you are using a proxy. For the Universal Access
application, itis ht t p{s}:// <Ser ver Host Name>: <Por t >/ Rest . For example:

REACT_APP_REST_URL=ht t ps: // 192. 0. 2. 4: 9044/ Rest

Where <Ser ver Host Name> and <pPor t > are the hostname and port number of the server where
the REST services are deployed.

https://facebook.github.io/create-react-app/docs/adding-custom-environment-variables#adding-development-environment-variables-in-env

IBM Curam Social Program Management 7.0.11 | 5 - Developing with the Universal Access Responsive
Web Application | 205

This variable is also used by the default Redux modules and modules that are generated by
IBM® Social Program Management Web Development Accelerator to call REST APIs. For
example:

Rest Ser vi ce. get (${ REACT_APP_REST_URL}/ v1/ users)

For development with the mock server, you can use local host without / Rest . For example:

REACT_APP_REST_URL=htt p://| ocal host: 3080

For more information, see The mock server API service (on page 114).
MOCK_SERVER_PORT
Specifies the port to serve mock APIs. For example:

MOCK_SERVER PORT=3080

For more information, see The mock server API service (on page 114).
REACT_APP_RESPONSE_TIMEOUT

Specifies the maximum time in seconds to wait for the first byte to arrive from the server,
by default 10, but does not limit how long the entire download can take. Set the response
timeout to be a few seconds longer than the actual time it takes the server to respond. The
lengthened response allows for time to make DNS lookups, TCP/IP, and TLS connections.
For example:

REACT_APP_RESPONSE_TI MEQUT=10

For more information, see The RESTService utility (on page 117).
REACT_APP_RESPONSE_DEADLINE

Specifies the maximum time in seconds for the entire request, including

all redirects, to complete. If the response is not fully downloaded within

REACT_APP_RESPONSE_DEADLINE, the request is canceled. The default value is 60. For
example:

REACT_APP_RESPONSE_DEADL | NE=60

For more information, see The RESTService utility (on page 177).

REACT_APP_DELAY_REST_API

IBM Curam Social Program Management 7.0.11 | 5 - Developing with the Universal Access Responsive
Web Application | 206

(Development only) Specifies a time in seconds to simulate a delay in the response from the

API. For example:

REACT_APP_DELAY_REST_API =2

The value can be set to any positive integer to adjust the delay. For more information, see
The RESTService utility (on page 117).

User session

REACT_APP_LOGOUT_END_POINT
Specifies the logout endpoint for the application. By default, /1 ogout .

The strategy for user session logout changed to align with using the SPM REST
infrastructure APls. Now when logging out, the /1 ogout endpoint is called instead of the old

| ogout . j sp endpoint.
REACT_APP_LOGOUT_END_PO NT=/ | ogout
If your version of SPM does not support the new /1 ogout endpoint, you must set the old

| ogout . j sp endpoint. The /1 ogout endpoint is supported in 7.0.10.0 iFix 4 and 7.0.11.0 iFix 1
or later.

REACT_APP_LOGOUT_END_PO NT=I ogout . j sp

REACT_APP_SESSION_INACTIVITY_TIMEOUT

Specifies the time in seconds before a user session expires. The value must match the
session timeout that is configured on the server, by default, 30 minutes, or 1800 seconds.

REACT_APP_SESSI ON_| NACTI VI TY_TI MEQUT=1800

For more information, see Configuring user session timeout (on page 287).

REACT_APP_SESSION_PING_INTERVAL

Specifies the time in seconds between each time that the user’s current session is checked
for security purposes to see whether they are actively using the application or not. By

default, the value is 60. For example:

REACT_APP_SESS| ON_PI NG_| NTERVAL=60

REACT_APP_SESSION_TIMEOUT_REDIRECT_URL

IBM Curam Social Program Management 7.0.11 | 5 - Developing with the Universal Access Responsive
Web Application | 207

Specifies the URL that the application redirects to when a user session times out. By default,

/1 ogi n. For example:

REACT_APP_SESSI ON_TI MEOUT_REDI RECT_URL=/ | ogi n

Security

You can specify Cross-Site Request Forgery (CSRF) protection settings and the logout endpoint for
your application. For more information, see Enabling Cross-Site Request Forgery (CSRF) protection for

Universal Access (on page 221).
REACT_APP_REQUIRE_CSRF_TOKEN

Specifies whether a CSRF token is needed before the application can make API requests. If
enabled, and if no CSRF token is stored, the application attempts to get a CSRF token before
making a request. It takes a Boolean value, and defaults to false if not present. For example,
to enable CSRF protection:

REACT_APP_REQUI RE_CSRF_TOKEN=t r ue

REACT_APP_CSRF_ALLOWLIST

Specifies a comma-separated list of URL suffixes to allow, typically where enabling CSRF
protection might cause an infinite loop. The default value is empty. For example:

REACT_APP_CSRF_ALLOW.I ST=/| ogon. j sp, /| ogout . j sp,/j _security_check

Locale
REACT_APP_INTL_LOCALE

Specifies a locale to set the correct regional format for dates and numbers in the
application. The value must align with the cur am envi ronnent . def aul t . | ocal e value

that is set in your regional settings on the server, see The Application.prx file.

The format of the locale is xx- XX, for example. en-US, rather than en_US, which is the
format on the server. For example, to set the US locale:

REACT_APP_| NTL_LOCALE=en- US

Unauthorized redirect

REACT_APP_UNAUTHORIZED_REDIRECT_URL

../Regionalization/c_REG_Settings1Applicationprx1.html

IBM Curam Social Program Management 7.0.11 | 5 - Developing with the Universal Access Responsive
Web Application | 208

Specifies the URL that the application redirects to when an unauthorized redirect occurs. By

default, /1 ogi n.

REACT_APP_UNAUTHOR! ZED_REDI RECT_URL=/ | ogi n

Feature toggles

You can enable the display of specific features in the application.
REACT_APP_FEATURE_LIFE_EVENTS_ENABLED
Specifies whether to display the Life Events feature in the application with a Boolean value.
It is enabled by default. For example, to enable Life Events:

REACT_APP_FEATURE_LI FE_EVENTS_ENABLED=t r ue

For more information, see Enabling and disabling life events (on page 295).
REACT_APP_FEATURE_APPEALS_ENABLED

Specifies whether to display the Appeals feature in the application with a Boolean value. It is
disabled by default. For example:

REACT_APP_FEATURE_APPEALS ENABLED=f al se

For more information, see Enabling and disabling appeals (on page 356).
REACT_APP_FEATURE_VERIFICATIONS_ENABLED

Specifies whether to display the Citizen Verifications feature in the application with a

Boolean value. It is disabled by default. For example, to enable Citizen Verifications:

REACT_APP_FEATURE_VERI FI CATI ONS_ENABLED=t r ue

For more information, see Enabling or disabling verifications (on page 325).
REACT_APP_FEATURE_PAYMENT_DETAILS_ENABLED
Specifies whether to display additional payment information in the application with a

Boolean value. It is disabled by default. For example, to enable the enhanced display of
benefit and payment information:

REACT_APP_FEATURE_PAYMENT DETAI LS_ENABLED=t r ue

For more information, see #unique_165 (on page).

REACT_APP_CITIZEN_DASHBOARD_PAYMENT_COUNT_MAX

unique_165
unique_165
unique_165

IBM Curam Social Program Management 7.0.11 | 5 - Developing with the Universal Access Responsive
Web Application | 209

Specifies the maximum number of payments for the expected payments list and previous
payments list on the dashboard, by default 3. This setting applies only when the enhanced
display of benefit and payment information is enabled.

REACT_APP_CI TI ZEN_DASHBOARD_PAYNMENT_COUNT_NMAX=3
Connectivity handler
REACT_APP_CONNECTIVITY_INTERVAL

Specifies the interval in milliseconds between polling calls to check internet connectivity. By

default, the syst em confi guration APl is pinged every 5 seconds.

REACT_APP_CONNECTI VI TY_I NTERVAL=5000

REACT_APP_CONNECTIVITY_POLLING_ENABLED

(Development only) Specifies whether to poll to check internet connectivity. For
development purposes, you can disable polling by setting the value to f al se.

REACT_APP_CONNECTI VI TY_PCOLLI NG_ENABLED=t r ue

You can customizing connectivity handling, for more information, see Implementing a connectivity

handler (on page 703).

User account status polling

To check whether a user has a standard or linked account when they submit an application, you can
poll the user's account type to check for updates to their account status. This feature can be useful
when an application is set up to automatically create linked accounts, such as in test or demonstration

environments.

REACT_APP_USER_ACCOUNT_POLLING
For example:

REACT_APP_USER _ACCOUNT_POLLI NG={“api ": “/v1/ua/user_account |ogin”, “tineout”: “0", “interval”: “1000"}
Where:

e api

Specifies a URL to call to check the user account type. By default, / vi/ ua/

user _account _| ogi n.

* timeout

IBM Curam Social Program Management 7.0.11 | 5 - Developing with the Universal Access Responsive
Web Application | 210

Specifies the timeout in milliseconds for the user account type polling to stop.

By default, the timeout is set to 0, which disables user account type polling. Five
seconds is a sensible period to allow for asynchronous processing to finish while not
polling indefinitely.

*interval

Specifies the interval in milliseconds between polling calls to check the user account
type. By default, 1 second.

Application-specific verification polling

When a citizen submits an application, there is a delay while verifications are generated for that
application. You can enable verification polling to handle this delay, allowing the page to wait and present
the verifications when they become available. You can set the polling on (default) or off, and adjust the
interval and duration. You can also specify the URL to query to check for the application verifications. For
more information about verification settings, see Customizing verifications (on page 325).

REACT_APP_VERIFICATION_POLLING
For example:

REACT_APP_VERI FI CATI ON_POLLI NG={"api ": "/v1/ual/subnmitted_applications", "timeout": "10000", "interval":

"1000"}
Where:

* api

Specifies a URL to call to check the submitted applications for verifications. By

default, / v1/ ua/ subni tt ed_appl i cati ons.
*timeout

Specifies the timeout in milliseconds for the polling calls to stop. By default, 10
second.

*interval

Specifies the interval in milliseconds between polling calls. By default, 1 second.

REACT_APP_VERIFICATION_URL

IBM Curam Social Program Management 7.0.11 | 5 - Developing with the Universal Access Responsive
Web Application | 211

Specifies the URL to query to check for the application verifications. For example:

REACT_APP_VERI FI CATI ON_URL=<REACT_APP_REST_URL>/ v1/ ua/ verifi cati ons

Document uploads

You can specify the allowed file formats and maximum size for the documents that users can upload.
REACT_APP_DOC_UPLOAD_FILE_FORMATS
Specifies the file name extension, including the dot separator, of the allowed file types for
document uploads in a comma-separated list. By default, if you do not set this environment

variable, the allowed file types are JPG, JPEG, PNG, TIFF, and PDF. To change the default file

types, set this environment variable. For example:

REACT_APP_DOC_UPLOAD_FI LE_FORVATS=". png, . j pg, . pdf "

If you specify an invalid file extension string, all file types are denied.
For more information, see Customizing file formats and size limits for file uploads (on page
327).

REACT_APP_DOC_UPLOAD_SIZE_LIMIT
Specifies the maximum size limit for uploaded documents. By default, the maximum file
size is 5 MB. To change the default file size, set this environment variable. For example:

REACT_APP_DOC_UPLOAD S| ZE LI M T=6

For more information, see Customizing file formats and size limits for file uploads (on page
327).

REACT_APP_DOC_UPLOAD_LEAD_DAYS
Specifies a lead time in days to subtract from due dates to give caseworkers time to

process applications before the actual due dates. This earlier date is then displayed to

citizens in the application.

The default value of REACT_APP_DOC_UPLOAD_LEAD DAYS is 0 days. The value that you set is
converted to its absolute value and subtracted from the verification due date. For example,
-1 and 1 have the same effect.

For example:

REACT_APP_DOC_UPLOAD_LEAD DAYS=- 7

IBM Curam Social Program Management 7.0.11 | 5 - Developing with the Universal Access Responsive
Web Application | 212

For more information, see Customizing a file upload lead time for verifications (on page
327).

Social Program Management Web Development Accelerator

For more information, see Generating Universal Access Redux modules (on page 99).
WDA_MODULES_OUTPUT
(Development only) Specifies the directory to place module files generated by the IBM®

Social Program Management Web Development Accelerator, by default sr ¢/ nodul es/

gener at ed. For example:

WDA_MODULES_QUTPUT=sr ¢/ nodul es/ gener at ed
WDA_MODULES_CONFIG

(Development only) Specifies a JSON file in which to save the module configuration that you
define, by default modul es_confi g. j son. This file contains the metadata that is used to

generate the code. For example:

WDA_MODULES_CONFI G=sr ¢/ nodul es/ nodul es_confi g.j son

It is recommended that you add only this file to source control.

WDA_SPM_SWAGGER

(Development only) Specifies the location of a copy of the IBM Curam Social Program
Management Swagger specification that defines which REST APIs are available to the Social
Program Management Web Development Accelerator. For example:

WDA_SPM SWAGGER=spm swagger . j son

You can copy this file from a running IBM Curam Social Program Management instance at
http://hostnane: port/ Rest/api/definitions/vl.

Application authentication

The default implementation for authentication is a Java™ Authentication and Authorization Service
(JAAS) authentication method. If the JAAS authentication method does not suit, you can change

to another authentication method, such as Single sign-on (SSO). Ensure that you set any related
environmental variables where needed. For more information, see Universal Access authentication (on
page 222).

The following authentication methods are provided:

IBM Curam Social Program Management 7.0.11 | 5 - Developing with the Universal Access Responsive
Web Application | 213

REACT_APP_AUTH_METHOD

* JAASAut henti cati on

(Default) No further environmental variables needed.

* DevAut henti cati on

(Development only) Specifies simple authentication during development that
bypasses proper authentication (JAAS or SSO) and accepts the username dev
without any password. The login process can run and allows access to the 'user
account' password protected pages. If you specify simple authentication, you
can set the optional user type environmental variable in Simple authentication for

development (on page 213).

* SSOSPAut hent i cati on Or SSO DPAut henti cati on
Specifies service-provider (SP)-initiated or identity provider (IdP)-initiated SAML 2.0
web SSO. If you set SSO authentication, you must set the related SSO environmental
variables in Single sign-on (SSO) authentication (on page 274).
For example:

REACT_APP_AUTH_METHOD=SSO DPAut hent i cati on

Simple authentication for development

(Development only) If you are using simple authentication for development, you can set the following
environmental variable. For more information, see Customizing the authentication method (on page
225).

REACT_APP_SIMPLE_AUTH_USER_TYPE

(Development only) Specifies a user type during development so you can test functionality

for those users.

» PUBLIC, a public citizen account user.

« GENERATED, an anonymous generated account user.
« STANDARD, a standard registered account user.

« LINKED, a linked account user.

« null, no user type.

For more information about user types, see User account types (on page 234).

IBM Curam Social Program Management 7.0.11 | 5 - Developing with the Universal Access Responsive
Web Application | 214

For example, to test the application for a linked user:

REACT_APP_S| MPLE_AUTH_USER_TYPE=LI| NKED

Single sign-on (SS0) authentication

If you use SSO authentication, you must set the following environmental variables. For more information,
see Customizing the authentication method (on page 225) and Configuring the Universal Access

Responsive Web Application for SSO.

« The <1 dP_URL> consists of three parts: the HTTPS protocol, the IdP hostname or IP address, and
the listener port number. For example, https://192. 168. 0. 1: 12443.
* The <ACS_URL> consists of three parts: the HTTPS protocol, the Assertion Consumer Service (ACS)

hostname or IP address, and the listener port number. For example, htt ps: //192. 168. 0. 2: 443.

REACT_APP_SAMLSSO_ENABLED

Specifies whether SSO authentication is used in the application. By default, the IdP-initiated
flow of the SAML SSO browser profile is used. A Boolean value is accepted. For example, to
handle the SAML SSO browser profile in the application:

REACT_APP_SAM.SSO_ENABLED=t r ue

REACT_APP_SAMLSSO_SP_MODE

(SP-initiated flow only) Specifies whether to use the SP-initiated flow of the SAML SSO
Browser profile. By default, the default IdP-initiated flow of the SAML SSO Browser profile
and this setting overrides it. A Boolean value is accepted. For example:

REACT_APP_SAM.SSO_SP_MODE=t r ue
REACT_APP_SAMLSSO_USERLOGIN_URL

Specifies the IdP login page URL, that is, the URL where the application sends the user login
credentials. For example:

REACT_APP_SAM.SSO_USERLOG N_URL=<I dP_URL>/ pknsl ogi n. f orm
REACT_APP_SAMLSSO_SP_ACS_URL

Specifies the ACS application server URL, that is, the service provider URL where the
application sends the SAML response. For example:

REACT_APP_SAM.SSO _SP_ACS_URL=<ACS_URL>/ sani sps/ acs

REACT_APP_SAMLSSO_USERLOGOUT_URL

../CitizenEngagement/t_CECONFIG_ssoprops.html
../CitizenEngagement/t_CECONFIG_ssoprops.html

IBM Curam Social Program Management 7.0.11 | 5 - Developing with the Universal Access Responsive
Web Application | 215

Specifies the IdP logout page URL, that is, the URL where the application sends the user
logout request. For example:

REACT_APP_SAM.SSO_USERLOGOUT_URL=<I dP_URL>/ pks| ogout

REACT_APP_SAMLSSO_IDP_LOGININITIAL_URL

(IdP-initiated flow only) Specifies the initial URL to which the application sends the initial
login request to the identity provider. Refer to the identity provider documentation for the
correct URL and values. For example:

REACT_APP_SAM_.SSO | DP_LOG NI NI TI AL_URL=<I dP_URL>/ i sanf sps/ sam 20i dp/ sam 20/ | ogi ni ni ti al ?Request Bi ndi ng=

HTTPPost &Par t ner | d=<ACS_URL>/ sanl sps/ acs&\anel dFor nat =Enmi |

REACT_APP_SAMLSSO_IDP_SSOLOGIN_URL

(SP-initiated flow only) Specifies the identity provider URL where the application sends the
SAML request. Refer to the identity provider documentation for the URL. For example

REACT_APP_SAM.SSO | DP_SSOLOG N_URL=<I dP_URL>/ i sant sps/ sani 20i dp/ sam 20/ | ogi n

Intelligent Evidence Gathering (IEG)

For more information, see IEG in the Universal Access Responsive Web Application.

REACT_APP_DISPLAY_REQUIRED_LABEL

Specifies whether to indicate the required form fields or the optional form fields. As most
questions in a typical form are required, indicating the optional questions rather than the
required questions typically results in a less cluttered form. By default, optional fields are
highlighted in IEG forms. For example, to display labels for required fields only:

REACT_APP_DI SPLAY_REQUI RED_LABEL=t r ue

REACT_APP_DATE_FORMAT

Specifies the date format for form fields, by default, MM/DD/YYYY. The valid values are dd-
mm-yyyy and mm-dd-yyyy. If you omit the environment variable or set an invalid value, the
default date format is used. For example, to change the date format to DD/MM/YYYY:

REACT_APP_DATE_FORMAT=dd- mm yyyy

Note:

Specific globalization considerations apply to the date format when it is used

in hint text and messages. Ensure that you have the same date format in the

../CitizenEngagement/t_CECUST_config_ieg.html

IBM Curam Social Program Management 7.0.11 | 5 - Developing with the Universal Access Responsive
Web Application | 216

,', REACT_APP_DATE_FORMAT environment variable, and in theDat eAdapt er _Dat eFor mat and

Errors_dat e messages intheintelligent-evidence-gat hering-1ocal es package.

REACT_APP_PHONE_MASK_FORMAT

Specifies a phone number mask for a form field in a question. The value must be in ISO
3166-1 alpha-2 code format, for example, us | cA | & | DE. Inyour IEG script, you must
add the wds-j s-i nput - mask- phone class name to the question.

REACT_APP_PHONE_MASK_FORMAT=US

Where country is the locale that you want to use.
REACT_APP_PHONE_MASK_DELIMITER

Specifies a custom delimiter for phone numbers. For example, to convert 1 636 5600 5600
to 1-636-5600-5600:

REACT_APP_PHONE_MASK_DELI M TER=-

REACT_APP_PHONE_MASK_LEFT_ADDON

Specifies a fixed country code for phone number fields. For example, to convert
1-636-5600-5600 to +1-636-5600-5600:

REACT_APP_PHONE_MASK_LEFT_ADDON=+
L =REACT_APP_CURRENCY_MASK_LEFT_ADDON

Specifies a currency symbol to display before the amount. If you omit this value, US dollars

are displayed by default. For example, to specify Euro:

REACT_APP_CURRENCY_MASK_LEFT ADDON=$
L&REACT_APP_CURRENCY_MASK_RIGHT_ADDON

Specifies a currency symbol to display after the amount. If both left and right values are set,
left takes precedence. For example, to specify Euro for Luxemburg:

REACT_APP_CURRENCY_MASK_RI GHT_ADDON=€

Chapter 6. Security for the Universal Access
Responsive Web Application

IBM® Curam Universal Access gives citizens access to their most sensitive personal data over the
internet. Security must be a primary concern in the development of citizen account customizations. All
projects that are built on the Universal Access Responsive Web Application must focus on delivering

security from beginning to end.

It is recommended that all projects take at least the following steps to ensure the security of the project

delivery:

« Ensure that the project team are familiar with the principles of secure application development, and
common vulnerabilities such as the OWASP Top Ten.

« Develop and apply a threat model.

» Employ security experts to test everything from requirements to the finished deployment.

- Plan for how the application is used in public spaces like libraries and kiosks.

Customers must contact IBM® support to discuss any unusual customization that might have specific

security issues.

Build secure web apps with the Social Program Management
Design System

When you develop with the IBM Social Program Management Design System and npm, you must consider
your security attack plane, and take the appropriate steps to prevent or reduce the threat to your runtime
application from malicious actors. npm is an impressive resource of open source software, but you must

understand the threats that exist with this software stack and act responsibly to mitigate risk.

IBM® Curam Universal Access goes through rigorous security threat monitoring during development and
before release. However, after the software is released there is an ongoing threat to your business:

« From your customization of the software.

« From new vulnerabilities that are discovered after release.

npm, which is the backbone of the Social Program Management Design System software development
lifecycle strategy, promotes the reuse of third-party packages. Each of your packages uses other
packages, which in turn use other packages, and so on. This generates a large tree of dependencies on
software packages, many of which you might have little or no knowledge of. It is important to understand

the NPM threat vectors and take the appropriate steps.

https://owasp.org/www-project-top-ten/

IBM Cdram Social Program Management 7.0.11 | 6 - Security for the Universal Access Responsive Web
Application | 218

Protect yourself during development
You can use a number of strategies to reduce the possibility that you might release vulnerable software.

Review Dependencies

If you introduce new third-party dependencies in your custom code, try to choose packages
that are established, well-maintained, and used widely. This strategy increases the chances

that vulnerabilities are discovered quickly and resolved immediately by the package owners.

Audit Packages

Monitor the results of the npm audit command that is run after each installation. To reduce
possible vulnerabilities, fix issues in your direct dependencies as they arise to ensure that

your development environment is using the latest versions of packages in your dependency
tree. While not all packages that are used during development get deployed in production, it

is still good practice to minimize warnings as much as possible.

Lint in development

Use linting tools in your development environment to highlight security issues in your
custom code and resolve or mitigate any reported issues before your release the code. For
more information about configuring linting, see Enforce good code style with ESLint and

EditorConfig (on page 79).

Lint in the continuous integration pipeline
Introduce linting to your integration pipeline to ensure that failures for security rules block
the integration of new code.

Review code
Include security as a critical aspect of a code review, and educate your developers on how to
spot scenarios where security is a concern, and how to identify coding errors.

Consider your authentication strategy
The reference application provides basic sign-up and log-in pages to demonstrate how the
IBM Universal Access Responsive Web Application can be integrated with a IBM Cdram

Social Program Management deployment. These features are provided as references, but
are not intended to be directly deployed into production.

You must consider your authentication strategy and ensure it meets your organization's
requirements. For example, you might need to integrate with an Identity Provider in your

authentication flow, or use a captcha for your sign-up or log-in pages.

IBM Cudram Social Program Management 7.0.11 | 6 - Security for the Universal Access Responsive Web
Application | 219

Secure your REST APIs

Ensure that you secure your REST APIs before deployment, see Securing access to Universal
Access REST APIs (on page 221).

Protect your production environment

You must understand how your production code is created, and use npm audit to identify security issues.

How is your deployed code created?

npm i nst al

When you run npmi nstal | for your development environment, it typically installs packages
that:

« Are used at run time and need to be included in the build for deployment.
« Are only required for development purposes or to create the deployment.

By convention, runtime or development-only packages are separated by the dependenci es
and devDependenci es lists in the package. j son file. However, you can have the packages in
either list or mixed any way that you want. After an installation runs successfully you have
all the code that is required to go to the next stage, which is to build your deployment and
run your app. Adding packages to the devDependenci es list does not ensure that they are not
in your deployed code.

npmrun build

When you run npm run bui | d, the dependenci es list in the package. j son file is ignored as
it is only relevant to the development environment. Instead, the sr c/ i ndex. | s file that
represents the root of the App is used to initiate a process of including only the files that
are required to create a working deployment. It is possible that code from packages that
are listed in your devbependenci es ends up in your deployment bundle, if code from those

packages is called from code in your runtime application.

Use npm audit to identify security issues

When you run npm audi t, all packages that are listed in package- | ock. j son are analyzed for
vulnerabilities. The audit is not sophisticated enough to know what is part of the deployment. That is,
the contents of the build folder, and the packages from which they were included. For this reason, an
npm audi t is an indicative security check that helps to identify potential vulnerabilities with the packages
that you are using. However, it is not an accurate picture of how vulnerable your running application is

because:

IBM Cdram Social Program Management 7.0.11 | 6 - Security for the Universal Access Responsive Web
Application | 220

- Code from packages with known vulnerabilities might not be included in your deployed code. Either
because it is only used for development, or because the bundling algorithm calculates that the
code is not required and doesn't add it to the deployment bundle.

- Vulnerabilities might not be discovered yet. So the code that you successfully audited yesterday
might not pass an audit check today. No code did not change, but a new vulnerability was
discovered and reported to NPM https://www.npmjs.com/advisories.

Therefore, npm audi t is a good smoke test for vulnerabilities, but needs further analysis before action is
taken.

When to run npm audit?

npm audit runs on each installation. In a development environment, it is obvious to the team when

vulnerabilities arise as each time a developer installs the app, they are notified of vulnerabilities.

For a deployed environment, you can run npm audi t daily against your deployed code to highlight any new
vulnerabilities that were discovered since you deployed your application. You might be tempted to run it
against your development codebase, but this code is not the same as your deployed code. The packages
that are in a deployment might have been removed from your development repository since you last

deployed and therefore not show up in an audit on your development codebase.

To monitor the code that is running in your deployed environment, you must run npm audi t against the
packages that were used to build that deployment. You need the package. j son and package- | ock. j son
from the codebase from which the deployment was built. You can create a simple automated job to run
npm audi t against a folder that contains these files and to report any failures. For example, you can run

npm audit -audit-level=high from a folder that contains these files:

/ my-current-depl oynent - packages
+ package. j son

+ package- | ock. j son

Consider penetration testing

Penetration testing is an activity that is carried out on running software to find security holes. Penetration
testing can be done with automated tools, such as IBM Security AppScan. To add a further strength test
to your development process, you can hire third-party services that specialize in the penetration testing
of apps, which includes both automated and manual testing. Typically, penetration testing is carried out
periodically to provide an external health check on your applications security.

https://www.npmjs.com/advisories

IBM Cudram Social Program Management 7.0.11 | 6 - Security for the Universal Access Responsive Web
Application | 221

How to address security vulnerabilities

If you find that you are using a vulnerable package, you must analyze the threat to decide how to mitigate
the risk.

Sometimes, an npm audi t scan might report packages that are used in development but are not in your
deployed application bundle and therefore not in your runtime application. The urgency of fixing issues

with these packages is reduced.

For vulnerabilities that you discover through npm audi t that are High or Critical, you must address them
as soon as possible. For most, the fix is already available or to be provided within hours or days of
registration of the vulnerability. You must redeploy your production code from a repository that was
updated to the patched version of the vulnerable package. Typically, npm audi t advises you what you need

to do.

In some cases, the fix might require upgrading a package to a major version, which requires a manual
upgrade as it might be a breaking change for your code. Where the package was included through your
own custom code, you can do this upgrade yourself. In other cases, the fix is outside your control. For
example, where the vulnerable package is a dependency of a package that you depend on, you need the
owner of that package to fix their code. If IBM owns the package, you can open a support case for the

issue.

For more information about how deal with security audits, see this npm article.

Securing access to Universal Access REST APIs

You must ensure that you secure access to REST APIs that are used by Universal Access.

If you are enabling verifications, you must ensure that you have implemented the appropriate file security
and validations for document uploads, and enabled the Files APl so you can upload files to IBM Ciram

Social Program Management, see Securing and enabling the Files API.

IBM Cudram Social Program Management delivers many REST APIs that are not all used by client
applications like IBM® Curam Universal Access. Ensure that you remove Security IDentifiers (SIDs) from
the database for any unused REST API functions to greater secure what is available to be accessed by

users, see User account authorization roles and groups (on page 235).

https://docs.npmjs.com/auditing-package-dependencies-for-security-vulnerabilities#update-dependent-packages-if-a-fix-exists
https://www.ibm.com/support/knowledgecenter/SS8S5A_7.0.11//com.ibm.curam.content.doc/MSDK/msdk_securing_file_api.html

IBM Cdram Social Program Management 7.0.11 | 6 - Security for the Universal Access Responsive Web
Application | 222

Enabling Cross-Site Request Forgery (CSRF) protection for Universal
Access

You can enable token-based Cross-Site Request Forgery (CSRF) protection in Universal Access to secure
the IBM Curam Social Program Management REST APIs from CSRF attacks.

For more information about CSRF protection in Social Program Management, see Cross-Site Request
Forgery (CSRF) Protection.

For more information about how the REST APIs integrate token-based CSRF protection, see Integrating

token-based Cross-Site Request Forgery (CSRF) protection.

1. Enable CSRF protection on the SPM server, see Enabling token-based Cross-Site Request Forgery
(CSRF) protection.

2. Ensure that any subdomains are included in the curam rest . ref er er Domai ns SPM system property.

3. Set the Universal Access security environment variables for CSRF in Universal Access application.
See React environment variable reference (on page 204).

4. Ensure that any images in the application that are stored in SPM and requested from the SPM
server use the ual mage component from the core-ui package. The ual mage component is a wrapper
for the | mmge component that adds the CSRF token to image requests from the SPM server.

o ™
Note:

If you are upgrading, you must ensure that you replace the | rage component with the

UAI mge component for all images that are stored in SPM. Otherwise, images that are

stored in SPM cannot be retrieved and displayed.
N J

Universal Access authentication

The uni ver sal - access package exports the Aut henti cat i on module, which can be used to log in and out of
the application and to inspect the details of the current user. The login service is passed a username and
password, and optionally a cal | back function that is called when the authentication request is completed.

Authentication services

The Authentication API supports the following modes:

« JAAS Authentication (Default)
« Simple Authentication (Development mode)
- Single Sign-on (SSO) Authentication

« Custom authentication

../MSDK/msdk_c_CSRF.html
../MSDK/msdk_c_CSRF.html
../MSDK/msdk_c_CSRF_integrate.html
../MSDK/msdk_c_CSRF_integrate.html
../MSDK/msdk_c_CSRF_configure.html
../MSDK/msdk_c_CSRF_configure.html

IBM Cudram Social Program Management 7.0.11 | 6 - Security for the Universal Access Responsive Web
Application | 223

JAAS authentication
By default, the login process uses the standard JAAS login module.

The JAAS login module is exposed through the Social Program Management Universal Access API at
the/j _security_check end point, and authenticates the user against the SPM database of users. For
more information about JAAS login in SPM, see Authentication Architecture.

Simple authentication (Development Mode)

During development, you can use a simple authentication that does not require an SPM server. This
simple authentication bypasses proper authentication (JAAS or SSO) and instead accepts the username
dev without any password. The login process runs and allows access to the 'user account' password
protected pages.

This simple authentication is sufficient to do most client development work and avoids the need to
configure your client application to communicate with an SPM server.

SSO authentication

The application supports single sign-on (SS0), which is a typical use case for many enterprises that serve
multiple applications with a single username and password for their clients.

For more information about configuring your application to use SSO, see Configuring SAML SSO on

WebSphere Application Server.

Automatically logging in to your SSO

The default ssoveri fi er component wraps the whole application and checks for SSO
status when the application is loaded for the first time. The ssoveri fi er component
verifies whether the user is already logged in with SSO and can be logged directly into the
application. If the user is not yet authenticated, then they must authenticate as a public
citizen so that they can access the system configuration.

The ssoveri fi er does the entire precheck within the component, by making all the required
calls to determine with the IdP whether the current user is authenticated. ssoveri fi er is
helped to make these calls by using functions exposed by sscaut hentii cat i on.

If you need custom verification, you must create your own verifier component to replace the
current ssoveri fi er component. Then, add your custom verifier component to the call stack
in your entry JavaScript file, for example App. j s.

../Security/c_SECHAND_Authentication1AuthenticationArchitecture1.html
https://www.ibm.com/support/knowledgecenter/en/SS8S5A_7.0.11/com.ibm.curam.content.doc/CitizenEngagement/t_CECONFIG_sso_ua.html
https://www.ibm.com/support/knowledgecenter/en/SS8S5A_7.0.11/com.ibm.curam.content.doc/CitizenEngagement/t_CECONFIG_sso_ua.html

IBM Cdram Social Program Management 7.0.11 | 6 - Security for the Universal Access Responsive Web
Application | 224
Custom authentication

You can implement your own custom authentication to suit your specific environment.

User account types

The Universal Access client supports three different user account types, Public, Generated, and Citizen.
For more on user accounts and security, see User account types (on page 234). If you want to
customize the log in and sign up process that is provided with the Universal Access starter pack, the
Aut hent i cati on module provides log-in functions to support each of these three user account types.

Aut henti cation. | ogi nAsPublicCitizen
Aut henti cati on. | ogi nW t hGener at edUser

Aut henti cati on. | ogin

Tracking the logged in user

The Universal Access Responsive Web Application uses 'session storage' in the browser to store some
basic details of the currently logged-in user after they are authenticated with the server. This session
storage is typically used to inform the client application what views to present. For example, if no user is

logged in, then the login and sign-up page buttons are displayed on the home page.

The Aut hent i cat i on module provides functions that query the current logged-in user and their account
details, according to the session storage in the browser.

Aut hent i cati on. get LoggedI| nUser

Aut hent i cati on. get User Account

Logged in on the client or the server

Citizens can seem to be logged in on the client when they are not logged in on the server. This situation
does not compromise the security of the application. The SPM server APIs use session tokens that are
stored in cookies to determine whether the current user is authenticated. The cookies are transmitted

with each API call, and only a valid token results in a successful response.

For example, if a user's session times out on the server, the next API request to the server results in a
401 unauthorized response, even if the user seems to be logged in to the client application. This behavior

IBM Cudram Social Program Management 7.0.11 | 6 - Security for the Universal Access Responsive Web
Application | 225

ensures that no matter what the client application says about the currently logged-in user, the server

responds only to valid session tokens.

For more information, see Configuring user session timeout (on page 287).

Related information
The RESTService utility (on page 117)

Customizing the authentication method

The default implementation for authentication is a Java™ Authentication and Authorization Service
(JAAS) authentication method. If the JAAS authentication method does not suit, you can change to one of

the other provided authentication methods, or implement your own custom authentication method.

The following authentication methods are available in the application. For more information, see Universal
Access authentication (on page 222). To use any of the provided authentication methods, set the
REACT_APP_AUTH_METHOD environmental variable in the appropriate . env file to one of the following

options and set any related environmental variables. For example:

REACT_APP_AUTH_METHOD=SSOl DPAut hent i cat i on
* JAASAut hent i cati on

(Default for production environments. That is, npm start with . env. devel opnent .)

No further environmental variables needed.

* DevAut henti cati on
(Default for development environments.)

Set the Simple authentication for development (on page 213) environmental variables.

* SSOSPAuUt hent i cati on

Service-provider (SP)-initiated SAML 2.0 web SSO.

* SSA DPAut henti cati on

Identity provider (IdP)-initiated SAML 2.0 web SSO.

If you set SSO authentication, you must set the Single sign-on (SSO) authentication (on page 274)
environmental variables.

IBM Cdram Social Program Management 7.0.11 | 6 - Security for the Universal Access Responsive Web
Application | 226

For more information about environmental variables, see the React environment variable reference (on

page 204).

If you want to use custom authentication, you must create a custom authentication method and register

the new authentication method as follows:

1. Create a custom authentication method, which consists of a normal class file that contains two

static methods as follows:
°static login = input => {}

Where i nput is an object that contains one or more of these authentication properties:

user nane, passwor d, cal | back, ssoPr eCheck, ssoLogi n.
Implement the logic to authenticate the user in this method.
ostatic logout = (callback, reportLogoutError) => {}
Where:
= cal | back is a function that is called when logout completes.
= report Logout Error can be used to define whether a message is shown.

Implement the logic to log out the user in this method.
2. Register your new authentication method in an entry point file such as App. j s by using the
Aut hent i cati onRegi st ry component as shown in the following example:
a. Import the Aut hent i cat i onRegi st ry component and the authentication class:

inport { AuthenticationRegistry } from' @pnicore';

i nport CustomAut hentication from ' <path_to_custom method>' ;

b. Use authenti cati onRegi stry. regi st er Aut hent i cati onType tO register the functions from the

authentication class:

Aut hent i cati onRegi stry. regi sterAut henti cati onType(Cust omAut henti cati on);

Authenticating with external security systems

By default, IBM® Cudram Universal Access uses its own authentication system that is backed up by a

database of registered users. However, Universal Access can also be configured to authenticate with

external security systems.

IBM Cudram Social Program Management 7.0.11 | 6 - Security for the Universal Access Responsive Web
Application | 227

Configuring SAML SSO for Universal Access

You can configure SAML Single Sign-On (SSO) for Universal Access. For more information, see
Configuring SAML SSO on WebSphere Application Server.

Identity Only authentication

You can deploy Universal Access in Identity Only mode for registered users so that creating accounts
occurs externally and user accounts are authenticated externally. For more information, see Identity-only

authentication.

Integrating with IdPs for multifactor authentication

To integrate multifactor authentication into your application, use single sign-on through SAML with an
identity provider (IdP) that supports multifactor authentication.

In the associated single sign-on flow, the entire authentication process, including the login screen, is
delegated to the IdP. You can customize the application to support the flow.

For more information, see the example in the Github open source repository.

External security authentication example for Universal Access

You can ensure that citizens can be authenticated for any of your services by using a single set of
credentials. This approach provides the benefits of a streamlined authorization process for both
governments and citizens. The example outlines the implementation of a set of customization
requirements for a team that is deploying Universal Access.

Any analysis of requirements for external security integration must consider the following questions:

« Does your deployment support anonymous screening, anonymous intake, or both?
« Is account management supported in IBM® Curam Universal Access or in the external security
system?

« Is single sign-on (SSO) needed?

Example customization requirements

The external security authentication example describes the configuration and development tasks to
implement the following set of customization requirements, and refers to these requirements where
appropriate.

../CitizenEngagement/t_CECONFIG_sso_ua.html
https://www.ibm.com/docs/en/spm/7.0.11?topic=overview-verification-process-authentication
https://www.ibm.com/docs/en/spm/7.0.11?topic=overview-verification-process-authentication
https://github.com/Merative/spm-citizen-engagement/tree/main/custom-sso-mfa

IBM Cdram Social Program Management 7.0.11 | 6 - Security for the Universal Access Responsive Web
Application | 228

1. Users can access Universal Access and do anonymous screening or intake.

2. Users who want to access their saved screening or intake information must first create an account
on a system called Central I D.

3. Users who log in to Universal Access can use their CentrallD username and password to
authenticate.

4. Users do all of their account management with an external system called Central ID. For example,
resetting a password, creating a new account, or changing account details.

5. CentrallD stores all user records in a secure LDAP server.

6. Because all account management is now done in CentrallD, the account creation screens and
password reset screens are to be removed from Universal Access.

7. Users can log in as soon as they register with CentrallD, and experience no delay while an ID

propagates to Universal Access.

Configuring an alternative login ID

By default, you cannot change user names after they are created. However, you can configure an

alternative login ID that can be updated.

For information about configuring alternative login IDs, see Alternate login IDs. If you configure an
alternative login ID for a user name that is case-sensitive, then the alternative login ID is also case-

sensitive.
Related information

Alternate Login IDs

Deploying in identity-only mode for registered users

You must configure the application server to use LDAP for authentication if a userisin1dentity-only
mode. Also, configure the necessary properties to deploy in identity-only mode for registered users.

Configuring the application server to use LDAP for authentication in | denti t y-Onl y mode

If a userisinidentity-only mode, it is necessary to match the login IDs that are stored in LDAP with the

login IDs that are stored in the Ext endedUser s nf o table.

For information about how to configure your application server to use LDAP for authentication, see the
relevant application server documentation.

Configuring properties to deploy in identity-only mode for registered users

Add the following properties to the AppSer ver . properti es file:

https://www.ibm.com/support/knowledgecenter/SS8S5A_7.0.11/com.ibm.curam.content.doc/Security/c_SECHAND_Authentication1AlternateLoginIDs.html

IBM Cudram Social Program Management 7.0.11 | 6 - Security for the Universal Access Responsive Web
Application | 229

curam security.check.identity.only=true
curam security.user.registry.di sabl ed. t ypes=EXT_AUTO, EXT_GEN
curam ci ti zenwor kspace. enabl e. usertypes. for.tenporary. users=true

publ i c. user.type=EXT_AUTO

To reconfigure the application server, run the following command:

appbui | d configure

The curam security. check.identity.only property ensures that application security is set to
work in Identity Only mode. For more information about Identity Only authentication mode, see either
Deployment Guide for WebSphere® or Deployment Guide for WLS. In Identity Only mode, authentication
uses only the internal user table to check for the existence of the user. The validation of the password
is left to a subsequent module, either a JAAS module (Oracle® WebLogic) or the User Registry (IBM®
WebSphere®).

Take the example of a user, "johnsmith", who has been registered with the CentrallD LDAP server. For
John Smith to be able to use Universal Access, there must also be a "johnsmith" entry in the ExternalUser
table. When John Smith logs in, his authentication request is passed to the Ciram JAAS Login Module.
The Ciram JAAS Login Module checks that the user j ohnsni t h exists in the Ciram ExternalUser table but
does not check the password. The authentication then proceeds to the User Registry (WebSphere®) or
LDAP JAAS Module (WebLogic) where the user name and password are checked against the contents

of the CentrallD LDAP server. For the authentication to work correctly, it is necessary to configure the
application server with the connection details for the secure LDAP server.

The Identity Only configuration allows the application to defer to an external security system such as an
LDAP-based directory service for the authentication of user credentials. However, when an anonymous
user accesses the organization Home page for the first time, the user is automatically logged in as a

publ i cci ti zen user. Subsequently, if the user chooses to screen themselves or to perform an intake,
Universal Access creates a new "generated"” anonymous user. Each generated user is unique, which
ensures that the data that belongs to that user is kept confidential. Public citizen users and generated
users are not inserted into the LDAP directory, so they cannot be authenticated by using the Identity Only
mechanism. The following line ensures that users with the user type EXT_AUTO (public citizen users) and
EXT_GEN (generated users) are authenticated against the External User table:

curam security. user.registry. di sabl ed. types=EXT_AUTO, EXT_GEN

After the previous configuration has been applied to the server and the server has been started, perform
the following configuration steps:

IBM Cdram Social Program Management 7.0.11 | 6 - Security for the Universal Access Responsive Web
Application | 230

N O g b 0N =

. Log in as sysadmin.

. Select Application Data > Property Administration.

. Select category Citizen Account - Configuration.

. Set the property curam.citizenaccount.public.included.user to EXT_AUTO.

. Set the property curam.citizenaccount.anonymous.included.user to EXT_GEN.

. Set the property curam.citizenworkspace.enable.usertypes.for.temporary.users to TRUE.

. Publish the property changes.

You need another configuration entry so that Universal Access operates correctly with respect to

authentication as shown in the following steps:

8. Select Select Application Data > Property Administration.

9. Select category Infrastructure — Security parameters.

10.

11.
12.

Set curam.custom.externalaccess.implementation to
curam.citizenworkspace.security.impl.CitizenWorkspacePublicAccessSecurity.
Publish the property changes.

Log out and restart the server.

Disabling the Create Account screens

Configure the necessary properties to disable the screens for creating an account that Universal Access

provides by default. Requirement 4 in the example requirements indicates that all account management

functions are handled by the external system, CentrallD, including the creation of a new account and

performing a password reset.

Configure Universal Access to disable the screens that are related to account management:

1.
2.
3.
4.
5.

Log in as sysadmin.

Select Application Data > Property Administration.

Select Category Citizen Portal - Configuration.

Set the property curam.citizenworkspace.enable.account.creation to NO.
Publish the property changes.

The previous steps remove references to Account Creation pages from Universal Access. The Login

screen still contains a link to a page for changing passwords. In this example, the implementation team

can use the following steps to retain the link but change it to open a new browser window on the CentrallD

password reset page:

1.
2.

Log in as sysadmin.
Select Application Data > Property Administration.

IBM Cudram Social Program Management 7.0.11 | 6 - Security for the Universal Access Responsive Web
Application | 231

3. Select Category Citizen Portal - Configuration.

4. Set the property curam.citizenworkspace.forgot.password.url to , for example http://
www.centralid.gov/resetpassword

5. Publish the property changes.

To completely remove the reset password link, use the following steps:

1. Log in as sysadmin.

2. Select Application Data > Property Administration.

3. Select Category Citizen Portal - Configuration.

4. Set the property curam.citizenworkspace.display.forgot.password.link to NO.
5. Publish the property changes.

Redirecting users to register with an external system

Replace the message that is displayed in the log in page so that non-registered users are directed to the
CentrallD page for registration.

Universal Access invites users to log in with a log in message. You can replace the message so that the
log in page displays a message that is similar to the following example:

"<p>If you are registered with Central ID enter your user name
and password to log in. To register, go to
 The Central | D

regi stration page. </ a></ p>"

The properties for controlling the login page message are in the <CURAM DI R>/ EJBSer ver /
conponent s/ Dat a_Manager/ I niti al _Dat a/ bl ob/ prop/ Logon. properti es file.

Enabling users to log on immediately after registration with CentrallD

Users should be able to log in as soon as they have registered with CentrallD. Some configuration is
required to prevent a delay in the propagation of a user's ID to other systems.

To function correctly, each user must have an entry in the ExternalUser table. The customer could build a
batch process to import users from the LDAP directory into the ExternalUser table. However, requirement
7 in the example requirements would not be satisfied, which states that users must be able to register
with CentrallD, and then immediately use Universal Access. Another option would be to build a web
service or similar mechanism that would be launched when a new user registers with CentrallD. The
implementation of the web service would create the appropriate entry in the ExternalUser table.

IBM Cdram Social Program Management 7.0.11 | 6 - Security for the Universal Access Responsive Web
Application | 232

A simpler option is to override the default log-in behavior to create new accounts as

needed, after the completion of checks to ensure that the relevant entry exists in the LDAP

server. You can override the default log-in behavior in Universal Access by extending the

curamciti zenwor kspace. security. i mpl . Aut henti cat eWt hPasswor dSt r at egy class and overriding the
aut hent i cat e() method. The following code outlines how to use the Aut hent i cat eW t hPasswor dSt r at egy
and other security APIs to meet the previous requirements:

public class CustonBecurityStrategy extends AuthenticateWthPasswordStrategy {
@ nj ect

private G tizenWrkspaceAccount Manager cwAccount Manager ;

@verride
public String authenticate(final String usernang,
final String password)
throws AppException, |nformational Exception {
final String retval = null;
if (usernane. equal s(PUBLI C_CI TI ZEN)) {
return super.aut henticate(usernane, password);
}
/'l Authenticate generated accounts as nor nal
if (cwAccount Manager.i sGener at edAccount (usernane)) {
return super.aut henticate(usernane, password);
}
/1 Check that the user exists in LDAP
/Il This prevents hackers from registering many bogus
I/ accounts that exist in Curambut not in LDAP
if (!isUserlnLDAP(usernane)) {
return SECURI TYSTATUS. BADUSER;
}
/1 1f there's no account for this user
if (!cwAccount Manager. hasAccount (usernane)) {
creat eUser Account (user nane) ;
}
return SECURI TYSTATUS. LOG N;
}
private void createUserAccount (final String usernane)

throws AppException, |nformational Exception {

IBM Cudram Social Program Management 7.0.11 | 6 - Security for the Universal Access Responsive Web
Application | 233

final CreateAccountDetails newAcctDetails;

cwAccount Manager . cr eat eSt andar dAccount (newAcct Det ai | s) ;

This code checks to see whether the user is logging in is a public citizen user or a generated account.

In both cases, authentication logic is delegated to the default Aut hent i cat ew t hPasswor dst r at egy API. In
the case of a registered user, the Strategy checks the LDAP directory to ensure that the user exists in the
LDAP directory. If the user exists in the LDAP directory and does not exist yet in Universal Access, then

a new user account is created. Note, the custom code does not need to authenticate the user against
LDAP since the authentication is handled by the User Registry in WebSphere® or the LDAP JAAS Module
in WebSphere®. It is important to note that the password parameter of the aut henti cat e() method is

passed in clear text.

To install the cust onBecuri t ySt rat egy class, it must be bound in place of the Default Security Strategy
class. Use a Guice Module to bind the implementation:

public class Custonmvbdul e extends Abstract Modul e {
@verride
protected void configure() {
bi nder (). bi nd(SecurityStrategy.class).to(

Cust onBecuri tyStrategy. cl ass);

You must configure the CustomModule at startup by adding a DMX file to the custom component as
shown in the following example:

<CURAM DI R>/ EJBSer ver/ cust onmf dat a/i ni ti al / MODULECLASSNANME. dnx

<?xm version="1.0" encodi ng="UTF-8"?>
<t abl e name=" MODULECLASSNAVME" >
<col utm nane="nodul eCl assNane" type="text" />
<r ow>
<attribute name="nodul eCl assNanme">
<val ue>gov. nmyor g. Cust onvbdul e</ val ue>

</attribute>

IBM Cdram Social Program Management 7.0.11 | 6 - Security for the Universal Access Responsive Web
Application | 234

</row>

</tabl e>

User account types

IBM® Curam Universal Access has different account types to support both anonymous and registered

citizens. As citizens use Universal Access, their account type can change.

IBM® Curam Universal Access has the following user types:

Public citizen account

When citizens view the organization Home page, they are automatically logged in under the publiccitizen
account. This account has access only to the home page and the pages that allow citizens to enter or

reset passwords.

Anonymous account

When the user clicks a link to start screening or applying for benefits, they are logged out as publiccitizen
and logged back as an anonymous account with a random username. A principle of Universal Access is
that users cannot access the data of other users. If all intakes and screenings used the same publiccitizen

user account, a citizen might see data that was entered by another citizen.

Registered accounts

Registered accounts are standard accounts that are created by citizens. Citizens can create accounts
when they first use the application, or during processes like applying for benefits. These accounts are
different from anonymous accounts in that they allow citizens to continue previously saved applications,
restart applications that were previously unfinished, and review or withdraw previously submitted

applications.

Linked accounts

Linked accounts are accounts that are linked to a Concern Role ID for a Person entity. Organizations must
implement their own linking functions. Universal Access APIs that allow a username to be linked to a

Concern Role ID are available to support linking.

Citizens with linked accounts have access to detailed information about their benefits and cases by using
their citizen account. Citizens with a linked account can submit life events such as getting married or

losing their job. They also have access to information about benefit payments. Because of the sensitivity

IBM Cudram Social Program Management 7.0.11 | 6 - Security for the Universal Access Responsive Web
Application | 235

of this information, customers must ensure that they have a robust process for creating linked user

accounts.

The following scenarios are examples. The actual processes for linking are unique to each organization.

- A citizen creates a user account in Universal Access and submits an intake application:

o An organization can implement an online mechanism to link a registered account. Citizens
can be asked in the online application if they want to upgrade their account for access to
more services. If they consent, their registered account is automatically linked.

o Citizens are contacted by their caseworker who asks them if they want access to more
services. The citizen agrees and presents themselves at their local office with personal
identification, such as a passport. The caseworker can then link the registered account that
they used to submit their intake application.

« A citizen requests a citizen account and is asked to present themselves at their local Social
Welfare office with personal identification, such as drivers license. After they verify the citizen’s

identity, the caseworker uses custom functions to enter details for the new linked account.

In none of these scenarios does a caseworker have access to a citizen's password. The linking process
can automatically upgrade their account, or can trigger a batch job that sends the password by letter to

the citizen's home address.

User account authorization roles and groups

User account types are assigned different authorization roles, which limit the methods that can be
called. Do not grant extra permissions to authorization roles, except for Linked Accounts, which use the
LINKEDCITIZENROLE. If you add custom methods to the citizen account, extra permissions are required.

For more information about adding custom methods to the citizen account, see Customizing the citizen

account (on page 357).

If you use only a subset of IBM® Curam Universal Access functions, remove permission to call any
unused methods from the database. For example, if the citizen account is not used, remove the unneeded
LINKEDCITIZENROLE and other related authorization artifacts. Projects that don't use the citizen account
must also consider the deployment implications.

Proper use of authorization roles and groups ensures that no user can access functions for which they
have no permission. However, it does not prevent users from using these functions to access data that
belongs to other users, which is done with Data-based Security. Universal Access provides a Data-based
Security framework for all customizations to use.

IBM Cdram Social Program Management 7.0.11 | 6 - Security for the Universal Access Responsive Web
Application | 236

Configure authorization roles only for functions that are being used. IBM Curam Social Program
Management delivers many REST APIs that are not all used by client applications like IBM® Cdram
Universal Access. It is important to remove Security IDentifiers (SIDs) from the database for any unused
REST API functions to greater secure what is available to be accessed by users.

Related information

Customizing the citizen account (on page 357)

Authorization for the citizen account

Permission to call the server facade methods that serve data to citizen account pages is managed by
the standard Social Program Management authorization model. In addition to the standard authorization
checks, each facade method that is called by a citizen account page must complete some security
checks to ensure the user who is associated with the transaction (the currently logged in user) has

permission to access the data they are requesting.

Ensure that the currently logged-in user is the correct type

The currently logged in user must be an external user with an appl i cat i onCode of c TwsAPP, and have an

account of type Li nked.

The curam ci ti zenaccount . security.inpl. G tizenAccount Security APl offers a
per f or mDef aul t Securi t yChecks method that ensures that the user is the correct type. The method checks

the user type and, if it is not acceptable, writes a message to the logs and fails the transaction.

Note:
You must call this APl in the first line of every custom facade method before any processing or
further validation takes place:

public GitizenPaynent!nstDetailsList |istGtizenPaynents()

throws AppException, |nformational Exception {

I/ performsecurity checks

citizenAccount Security. perfornDefaul t SecurityChecks();

/'l validate any page paraneters (none in this case)

/1 invoke business |ogic

IBM Cudram Social Program Management 7.0.11 | 6 - Security for the Universal Access Responsive Web
Application | 237

return citizenPaynents. |istPaynments();

Ensure that the logged-in user has permission to access the requested records

Ensure that the currently logged in user has permission to access the specific records that they are
reading. For instance, validate any page parameters that are passed in to ensure that the records

requested are related to the currently logged in user in some way.

A malicious user who is logged in to a valid linked account might send requests to the system to request
other users' data. To prevent this intrusion, all page parameters must be validated to ensure that they are
somehow traceable back to the currently logged in user. How this conclusion is determined is different for

each type of record.

For example, a Payment can be traced back to the Participant by way of the Case on which it was
entered.

The curam citi zenaccount . security.inmpl. G tizenAccount Security application programming interface
(API) offers methods to complete these checks for the types of records that are served to citizens by the
initially configured pages. For specific information, review the Javadoc™ of this API. For custom pages
that serve different types of data, extra checks must be implemented to validate the page parameters.

This process needs to be added to a custom security APl and called by the facade methods in question.
The methods must check whether the record requested can be traced back to the currently logged in user.
If not, the method must log the username, method name, and other data. If these conditions are not met,
the transaction needs to be failed immediately (as opposed to adding the issue to the validation helper

and allowing the transaction to proceed):

if (paynentlnstrunent.get ConcernRol e().getlD()
1= citizenWrkspaceAccount Manager

. get Loggedl nUser ConcernRol el D() . get I D()) {

[*%
* the paynent instrunent passed in is not related
* to the logged in user log the user nanme of the
* current user, the nethod invoked and any other
* pertinent data

*/

/!l throw a generic nessage

IBM Cdram Social Program Management 7.0.11 | 6 - Security for the Universal Access Responsive Web
Application | 238

t hr ow PUBLI CUSERSECURI TYExcept i onCr eat or

. ERR_CI TI ZEN_WORKSPACE_UNAUTHORI SED_METHOD_| NVOKATI ON() ;

While as much information as possible regarding the infraction needs to be logged, it is important

to ensure that you do not display information that might be useful to malicious users. A generic

exception must be thrown that does not contain any information that relates to what went wrong. The
curam ci ti zenaccount . security.inmpl. G tizenAccount Security APl displays a generic message that states

You are not privileged to access this page.

Customizing account creation and management

You can customize account creation and management.

Account management configurations

Use the following configuration properties to define the behavior of password validations for citizen
accounts. For the Universal Access Responsive Web Application, you must implement these validations in
the application before you enable them.

Table 3. Account configurations

Property Description
curam ci ti zenwor kspace. user nane. min. | engt h Minimum number of characters in the username.
curam ci ti zenwor kspace. user nane. nax. | ength Maximum number of characters in the username.
curam ci ti zenwor kspace. password. mi n. | engt h Minimum number of characters in the password.
curam ci ti zenwor kspace. passwor d. nex. | engt h Maximum number of characters in the password.
curam ci tizenwor kspace. passwor d. m n. speci al . char s | Minimum number of special characters and/or numbers in the pass-
word.

To update these properties, log in as a System Administrator (sysadmin), select Application Data >

Property Administration, and search for the property.

Account management events

Events are raised at key points during account processing. You can use these events to add custom

validations to the account management process.

For more information about adding custom validations to the account management process, see Curam
Server Developer.

IBM Cudram Social Program Management 7.0.11 | 6 - Security for the Universal Access Responsive Web
Application | 239

The table shows the events in the
curamciti zenwor kspace. security.inpl.C tizenWrkspaceAccount Event s class. For

more information about the events, see the related Javadoc™ information in the WorkspaceServices

component.

Table 4. Account events

Event Interface Description

CitizenWrkspaceCreat eAccount Event s | Events raised around account creation.

CitizenWr kspacePasswor dChangedEvent | Event raised when a user is changing their password.

CitizenWrkspaceAccount Associ ati ons | Events raised when a user is linked or unlinked from an associated Person Participant.

Related information

Curam Server Developer

CitizenWorkspaceAccountManager API
Use the curam ci ti zenwor kspace. security. i npl.GitizenWr kspaceAccount Manager API to create and link

citizen accounts. You can use the API to build custom functionality to support caseworkers who want to

create and link accounts on behalf of citizens.

The API offers the following methods:

« Creating standard accounts.
* Creating linked accounts.
» Removing links between participants and accounts.

« Retrieving account information.

For more information, see the API Javadoc™.

Data caching

Minimize the risk of citizens accessing each others' data from browser and server data caches. Cached
data can be accessed when citizens use the browser back button or browser history to retrieve data
entered by other users, or when PDF files are cached locally on the computer that was used to make the

application.

https://www.ibm.com/support/knowledgecenter/SS8S5A_7.0.11/com.ibm.curam.content.doc/ServerDeveloper/ctr_CuramServerDeveloperGuide.html

IBM Cdram Social Program Management 7.0.11 | 6 - Security for the Universal Access Responsive Web
Application | 240

Server caching

HTTP servers like Apache can set cache-control response headers to not store a cache. Use this

approach to prevent access to data using the browser back button or history.

Browser caching

Browsers can be configured not to cache content. If citizens can access the web portal in a "kiosk", then

the browser should be configured never to cache content.

Advise citizens to clear their cache and close all browser windows they have used when they are finished
using the web portal. Also tell citizens to remove PDF documents that they download from the browser's

temporary internet files.

Chapter 7. Configuring the Universal Access
Responsive Web Application
System administrators can use the following configuration options to configure and maintain Universal

Access with the Universal Access Responsive Web Application features such as screening, applications,

updates with life events, appeals, and verifications.

Related information

IEG in the Universal Access Responsive Web Application

Configuring the browser

Users are notified when cookies or JavaScript™ are disabled in their browser. To use the application,
they must enable both cookies and JavaScript™ in their browser by configuring the appropriate browser

preferences.

Cookies and JavaScript

The following information messages are displayed if cookies or JavaScript™ are disabled:

Cookies are disabled in your browser

To use this service, you must enable cookies in your browser settings and try again. For
instructions to enable cookies, check your browser support website.

JavaScript™ is disabled in your browser
To use this service, you must enable cookies in your browser settings and try again. For

instructions to enable JavaScript™, check your browser support website.

Because JavaScript™ is not available, the JavaScript™ messages are implemented in a static file, instead
of the standard message implementation. Updating the text or styling of these messages is different than

the standard process.

« For more information about translating these messages, see Translating the multilingual

messages for when JavaScript is disabled (on page 135).

« For more information about styling these messages, see Customizing the color scheme or

typography (on page 140).

../CitizenEngagement/t_CECUST_config_ieg.html

IBM Curam Social Program Management 7.0.11 | 7 - Configuring the Universal Access Responsive Web
Application | 242

Configuring service areas

You can define a service area by configuring the counties or ZIP codes that are associated with the

service area.

Configuring service areas

You define service areas in the Service Areas section of the administration application. You must specify
a name for a service area. You can associate counties and ZIP codes of the areas that are covered with
the service area. Service areas can be associated with a local office, which identifies where citizens

can apply in person for a program or where they can send an application. For more information about
associating service areas with local offices, see Defining local offices for a program (on page 251).

Enabling citizens to search for a local office

A search page allows citizens to search for a local office. Citizens can either search by county or by ZIP
code. The curam.citizenworkspace.page.location.search.type system property determines how the

search works.

- If you set the property to Zip, citizens can search for a local office using a ZIP code.
« If you set the property to County, citizens can select from a list of counties to get a list of local
offices.

Configuring PDFs

PDF format is supported for three use cases in the IBM Universal Access Responsive Web Application.
Citizens can download PDF application forms for offline applications, a PDF summary of information that
a citizen enters is automatically generated when citizens submit an application, and a PDF can be created
to capture an appeal request.

PDF forms for offline applications

Citizens can download PDF application forms to view or apply offline. You can configure a PDF application
form to be available from specific program applications. You can also configure application forms to

be available from the screening results page when citizens are found to be eligible for a program. To
configure a PDF application form, you must:

IBM Curam Social Program Management 7.0.11 | 7 - Configuring the Universal Access Responsive Web
Application | 243

- Define a PDF application form, see Defining PDF forms (on page 244).

- To specify a PDF application form for program application, see Specifying a PDF application form
for program applications (on page 244).

« To specify a PDF application form to be available for programs from screening results, see
Specifying a PDF application form for screening results (on page 244).

PDF summary

By default, a generic PDF summary is generated for all IBM Ciram Social Program Management intake
applications. Citizens can download the PDF to see a summary of the information that they entered
in their application. The PDF summary is generated from a generic XSL template by using the Social

Program Management XML infrastructure.

Customizing the generic XSL template for the PDF summary

If needed, you can customize the XSL template for the PDF summary. For more information about
customizing the generic PDF summary form, see Customizing the generic PDF summary form for

processed applications (on page 2917).

Configuring a PDF application form template for the PDF summary

You can configure a PDF application form to be used as a template for the summary PDF form instead
of the generic XSL template. The application form is populated with information that is entered by

the citizen. That is, the citizen's information is copied from the data store to the PDF application form
according to the data mapping. To configure the PDF application form as a template, you must:

« Define a PDF application form, see Defining PDF forms (on page 244).

« Specify a PDF application form for an application, see Specifying a PDF application form for
program applications (on page 244).

« Define PDF summary mappings for a program, Defining PDF summary mappings for a program (on
page 244).

PDF forms for appeal requests

Typically, the details that citizens provide in an appeal request are added to a PDF, both the citizen and
the caseworker receive a copy. For more information about configuring a PDF for appeal requests, see

Configuring appeal requests (on page 282).

Related information
Defining local offices for a program (on page 257)

IBM Curam Social Program Management 7.0.11 | 7 - Configuring the Universal Access Responsive Web
Application | 244

Defining PDF forms

You can define PDF application forms that you can then associate with applications or programs.
Define a PDF form by selecting Administration Workspace > Shortcuts > Universal Access > PDF Forms.

You must specify a name and language for each PDF form. You can also add a version of the form for

each language that is configured in your application.

You can associate a local office with a PDF form, which enables administrators to define the local office
and associated service areas where citizens can send their completed application.

Specifying a PDF application form for program applications
You can specify a PDF application form that citizens can download to view or apply for a program offline.

You must define PDF application forms before you can associate them with a program application, see
Defining PDF forms (on page 244).

Specify a PDF form for an online application by selecting the PDF form from the list at Administration
Workspace > Shortcuts > Universal Access > Applications > Online Application > Edit > PDF Application

Form

Citizens can then see a Download application link for the application, see Start an application (on page
23).

Specifying a PDF application form for screening results

You can configure PDF application forms to be available for citizens to download from their screening
results to view or apply offline. They can post it to the agency or bring it to a local office.

You must define PDF forms before you can associate them with a program, see Defining PDF forms (on
page 244).

When PDF Application Form is specified for a program, a Download application link is displayed for
eligible programs on the Here's what you might get page when citizens complete a screening, see The

Here's what you might get screening results page (on page 20).

Defining PDF summary mappings for a program

Information that citizens enter during all online intake applications is mapped to a PDF summary form
that citizens can print. By default, this PDF summary is based on an XSL template, but you can configure a
PDF application form to be used as a template for the PDF summary instead.

IBM Curam Social Program Management 7.0.11 | 7 - Configuring the Universal Access Responsive Web
Application | 245

To generate the PDF summary based on the PDF application form, you must configure a mapping
configuration of type PDF Form Creation for that program. The data is mapped to the application form
that is specified for the online application that the program is associated with.

If a PDF mapping configuration is not associated with a program, the default generic XSL template is

used.

Complete the following steps as an administrator:

1. Select Administration Workspace > Shortcuts > Universal Access > Programs.

2. Select a program then select Mappings > New Mapping.

3. Add the configuration XML and a mapping configuration of type PDF Form Creation.

4. Define a PDF form, see Defining PDF forms (on page 244).

5. Specify a PDF form for an online application, see Specifying a PDF application form for program
applications (on page 244).

Configuring programs

You can configure different types of programs, with settings for display and system processing
information, local offices, mappings to PDFs, and evidence types. You can associate programs with
screenings and benefit applications.

Conﬂguring a program

You can configure program details and associated display and system processing information on the New

Program page in the administration application.

Defining a name and reference

The name that you define is displayed in the administration application.

Define a name and reference when creating a new program. The name that is defined is displayed both to

the citizen and in the internal application. The reference is used to reference the program in code.

Defining an intake processing system

Define an intake processing system for each program.

Two options are available:

« Cdram
- Select from the list of preconfigured remote systems.

IBM Curam Social Program Management 7.0.11 | 7 - Configuring the Universal Access Responsive Web
Application | 246

If intake is managed by IBM Cdram Social Program Management, select Caram. If intake is
managed by an external system, the program application is sent to the remote system by using the

ProcessAppl i cat i onSer vi ce web service, select a remote system.

If Cdram is specified as the intake system, an application case type must be selected. An application

case of the specified type is created in response to a submission of an application for the program.

An indicator is provided which dictates whether a Reopen action is enabled on the programs list on an
application case for denied and withdrawn programs of a particular type. A workflow can be specified that
is initiated when the program is reopened. For more information on configuring application cases, see

Curam Intake overview.

When an application case type is selected, the program can be added manually to that type of application
case by a worker in the internal application as part of intake processing. A configuration setting specifies
whether the program is a coverage type. Coverage types are automatically evaluated by program

group rules in the context of healthcare reform applications, such as insurance affordability. Coverage
types cannot be applied for directly by a citizen or manually added to an application case by a worker
and authorized. If the program is a coverage type, select Yes. The program is filtered out of the list

of programs available to be added to online and internal applications in administration and the list of
programs available to be manually added to an application case by a worker. If the program is not a
coverage type, select No. The program will be available to be manually added to online and internal
applications in administration and to an application case by a worker.

A remote system must be configured in the administration application before it can be selected as the
case processing system. For more information about remote systems, see Configuring Remote Systems.

Related information

Curam Intake overview

Defining case processing details

Define a case processing system for each program.

Two options are available:

» Ciram

- Select from remote systems.

If the program eligibility is determined and managed by using a Cliram-based system, select Caram. If

eligibility is determined and managed by an external system, select a remote system.

https://www.ibm.com/support/knowledgecenter/SS8S5A_7.0.11/com.ibm.curam.content.doc/Intake/ctr_IntakeBusinessGuide.html

IBM Curam Social Program Management 7.0.11 | 7 - Configuring the Universal Access Responsive Web
Application | 247

If you select Cdram as the case processing system, more options are available to allow you to configure
program level authorization. Program level authorization means that if an application case contains
multiple programs, each program can be authorized individually, and a separate case is used to manage

the citizens on an ongoing basis.

Defining the integrated case strategy

Define the integrated case strategy so that the system can identify whether a new or existing integrated

case is used when program authorization is successful.

The integrated case strategy identifies whether a new or existing integrated case is used when program
authorization is successful. The integrated case hosts any product deliveries created as a result of

the authorization. If a new integrated case is created, all of the application case clients are added as
case participants to the integrated case. If an existing integrated case is used, any additional clients on
the application case are added as case participants to the integrated case. Any evidence captured on
the application case that is also required on the integrated case is copied to the integrated case upon

successful authorization. The configuration options for the integrated case strategy are as follows:

New

A new integrated case of the specified type is always created when authorization of the

program is successful.
Existing (Exact Client Match)

If an integrated case of the specified type exists with the same citizens as those cases
present on the application case, the existing case is used automatically. If multiple
integrated cases that meet these criteria exist, the caseworker is presented with a list of the
cases and must select one to proceed with the authorization. If no existing cases match the

criteria, a new integrated case is created.
Existing (Exact Client Match) or New

If one or more integrated cases of the specified type exist with the same citizens as those
cases present on the application case, the caseworker is presented with the option to
select an existing case to use as the ongoing case, or to create a new integrated case. If no

existing cases match the criteria, a new integrated case is created.
Existing (Any Client Match) or New

If one or more integrated cases of the specified type exist, where any of the clients of the
application case are case participants, the caseworker is presented with the option to select
one of the existing cases to use as the ongoing case, or to create a new integrated case. If

no existing cases match the criteria, a new integrated case is created.

IBM Curam Social Program Management 7.0.11 | 7 - Configuring the Universal Access Responsive Web
Application | 248

Specifying the Integrated Case Type

The administrator must specify the type of integrated case to be created or used upon
successful program authorization as defined by the Integrated Case strategy listed.

Specifying a client selection strategy
Specify a client selection strategy to define how clients are added from the application case to the

product delivery.

The client selection strategy defines how clients are added from the application case to the product
delivery created as a result of authorization of a program. If a product delivery type is specified, a client

selection strategy must be selected. The configuration options are as follows:
All Clients

All of the application clients are added to the product delivery case. The application case
primary client is set as the product delivery primary client. All other clients are added to the

product delivery as members of the case members group.
Rules

A rule set determines the clients to be added to the product delivery if a product delivery is

configured. At least one client must be determined by the rules for authorization to proceed.
User Selection

The user selects the clients who are added to the product delivery. The caseworker must
select both the primary client and any other clients to be added to the case member group

on the product delivery.
Specifying a Client Selection Ruleset

A Client Selection Ruleset must be selected when the Client Selection Strategy is Rules.

Specifying a product delivery type
Specify a product delivery type.
The Product Delivery Type drop-down specifies the product delivery that is used to make a payment to

citizens in respect of a program. Product Delivery Type displays all active products configured on the

system.

IBM Curam Social Program Management 7.0.11 | 7 - Configuring the Universal Access Responsive Web
Application | 249

Note:
This field applies to both program and application authorization processing. That is, program and
application authorization can result in the creation of the product delivery type that is specified.

Submitting a product delivery automatically

The Submit Product Delivery indicator specifies if the product delivery created as a result of program
authorization should be submitted automatically for approval. If selected, the product delivery created as
a result of authorization of this program is submitted automatically to a supervisor for approval.

Note:

This field applies to both program and application authorization processing. That is, program and

application authorization can result in the automatic submission of a product delivery.

Configuring timers

Agencies can impose time limits within which an application for a program must be processed. You can
configure application timers for each of these programs.

For example, an agency might want to specify that food assistance applications are authorized within 30
business days of the date of application.

The following configuration options are available, including the duration of the timer, whether the timer is
based on business or calendar days, a warning period, and timer extension and approval.

Duration

The length of the timer in days. This value, along with the fields Start Date and Use Business
Days (and the configured business hours for the organization) calculate the expiry date for
the timer. This value is used as a number of business days if Use Business Days is set. If
Use Business Days is not set, this value is used as calendar days.

Start Date

Specifies whether the timer starts on the application date or the program addition date. The
options available are Application Date and Program Addition Date.

IBM Curam Social Program Management 7.0.11 | 7 - Configuring the Universal Access Responsive Web
Application | 250

(L ™
Note:
In most cases, these dates are the same. That is, the programs are added at the
same time as the application is made. However, when a program is added later to

the application, after initial submission, the dates differ.
N J

Warning Days

Specifies a number of warning days to warn citizens that the timer deadline is approaching.
If configured, the Warning Reached workflow is enabled when the warning date is reached

and the timer is still running (for example, the program is not completed).
End Date Extension Allowed

Specifies whether citizens can extend the timer by a number of days.
Extension Approval Required

Specifies whether a timer extension requires approval from a supervisor. If approval is
required, the supervisor either approves or rejects the extension. After the extension is
approved, or if approval is not required, the timer expiry date is updated to reflect the

extension.
Use Business Days

Specifies if the timer should not decrement on non-working days. If this indicator is set, the
system uses the Working Pattern Hours for the organization to determine the non-working
days when it is calculating the expiry date for the timer.

Resume Timer
Specifies whether the program timer must be resumed when the program is reopened.
Resume From

If a timer is resumed, the Resume From field specifies the dates from which a program
can be resumed. The values include the date that the program was completed, denied, or
withdrawn, and the date that the program was reopened.

Timer Start
Specifies a workflow that is started when the timer starts.
Warning Reached
Specifies a workflow that is started when the warning period is reached.

Deadline Not Achieved

IBM Curam Social Program Management 7.0.11 | 7 - Configuring the Universal Access Responsive Web
Application | 251

Specifies a workflow that is enacted if the timer deadline is not achieved; that is, the

program is not being withdrawn, denied, or approved by the timer expiry date.

Configuring multiple applications
Configure multiple applications so that citizens can apply for a program while they have a previous

application pending.

The Multiple Applications indicator dictates if citizens can apply for a program while they have a
previous application pending. If set to true, citizens can have multiple pending applications for the given
program. That is, citizens can submit an application for this program while they already have a pending
application in the system. If it is set to false, this program is not offered if logged in citizens have pending
applications for this program.

This configuration is not applicable to Health Care Reform Applications.

Defining a URL

If a URL is defined, a More Info link is displayed with the program name so that citizens can find out more
information about the selected program.

Defining description and summary information
When a program is displayed on the Select Programs page, a description can be displayed which gives a

description of the program. The Online Program Description field defines this description.

A description summary of the program can also be defined using the Online Program Summary field. The
field is a high-level description of the program displayed on the Here's what you might get page that is
displayed when citizens complete a screening.

Defining local office application details

Citizens can apply for programs at a local office. If this is the case, the Citizen Can Apply At Local Office
indicator indicates that local office information is displayed for a program.

Additional information can also be defined, for example, citizens might need to bring proof of identity
if they want to apply at the local office. An administrator can define this information in the Local Office
Application Information field.

Defining local offices for a program

Citizens might be able to apply for a program in person at a local office. You can configure local offices
where an application for a program can be sent.

IBM Curam Social Program Management 7.0.11 | 7 - Configuring the Universal Access Responsive Web
Application | 252

Associating a local office with a program allows an administrator to define the local offices and their
associated service areas where a particular program can be applied for in person. This information is
displayed on the Here's what you might get page that is displayed to citizens when they complete a
screening.

A local office must be first be defined in the LocalOffice code table in system administration. Service

areas must be defined before they can be associated with a local office.

Defining program evidence types

You can configure selected evidence types to allow the expedited authorization of programs before other

programs in a multi-program application. You can then associate these evidence types with a program.

Evidence types can support applications for multiple programs. You might need a program to be
authorized more quickly than other programs for which a citizen applied. You can specify that the
evidence that is needed for a specific program to be authorized only is used and copied to the ongoing
cases. Benefits for the authorized program can be delivered to citizens, while the caseworker continues to
gather the evidence that is needed for the other programs.

Configuring screenings

Define the different types of screenings that citizens can complete to identify programs that they might be
eligible to receive.

For each screening, you can configure the available programs and eligibility requirements. You can then
configure the script, rules, and data schema to collect and process citizen information, and define what
information is displayed to citizens.

Once defined, citizens can self screen to identify programs that they may be eligible to receive. There are

four main aspects to configuring a screening:

« Configuring the information about a screening to be displayed to citizens.

- Configuring the script, rules and schema used to collect and process the information specified by
citizens to identify their eligibility.

« Configuring the programs for which citizens can screen themselves for eligibility.

- Configuring additional screening system properties.

Related information
Screen (on page 15)

Customizing screenings (on page 284)

IBM Curam Social Program Management 7.0.11 | 7 - Configuring the Universal Access Responsive Web
Application | 253

Configuring a new screening

Screenings are configured on the New Screening page.
The screening configurations are as follows.

Defining a name

You must define a name must be defined when creating a screening. The name defined is the name of the
screening displayed to citizens in the IBM® Curam Universal Access portal.

Defining program selection

The Program Selection indicator defines whether citizens can select specific programs that they want to
screen for, or whether they are brought directly into a screening script. If citizens are brought to a script,
they are screened for all programs associated with the screening.

Defining a More Info URL

If a More Info URL is defined, a More Info link is displayed.

Allowing re-screening

The Allow Rescreening indicator defines whether citizens can re-screen when they have completed a

screening.

Defining an icon for a screening

If you want an icon displayed with a screening, select an icon from the Icon selection box.

(4 N
Note:
Alternatively, you could modify the i ng src attribute of the icon directly on the screening HTML

page, for example

- J

Configuring eligibility and screening details

Configure details for eligibility screening or filtered screening

Two types of screening are supported - filtered screening and eligibility screening. Eligibility screening
collects answers to a set of questions, stores this information and processes it to identify eligibility.

IBM Curam Social Program Management 7.0.11 | 7 - Configuring the Universal Access Responsive Web
Application | 254

Filtered screening reduces the number of programs that a citizen might screen for by asking a short set of

questions and using the answers to filter out the programs that they would not be eligible for.
Configuring eligibility screening details

Specify an IEG script for the screening to collect the answers to a set of questions. You must also specify
a data store schema to store the data entered in the script. On saving the screening, the system creates
an empty template for both the script and schema based on the Question Script and schema that you
specified. You can update these templates from the Screening tab by selecting hyperlinks provided on
the page. Clicking the Question Script link starts the IEG editor that allows you to edit the question script.
Click the schema link to start the Datastore Editor, you can then edit the schema.

You must specify a CER rule set to process the data in the data store and to produce an eligibility result.
When specified on creation of the screening, the system creates an empty rules template. You can then
update the ruleset from the Screenings tab by selecting the hyperlink provided on the page. Clicking
the link starts the CER Editor, which allows you to edit the ruleset. For more information about writing
screening rule sets, see Writing Rule Sets For Screening (on page 257)

Configuring filtered screening details

Specify filtered screening details for a screening so that filtered screening is available before citizens
perform eligibility screening. As with eligibility screening, you must define a Filter Script (IEG) and
associated data store schema to collect and store the answers to questions. You must also specify a
Filter Rules (CER rule set) to process the data and produce a filtered screening result. When specified on
the New Online Screening page, the system automatically creates an empty template for the scripts and
ruleset that can be subsequently updated by selecting the associated hyperlinks on the Screening page.

Reusing rule sets across screenings

Use the system property curam.citizenworkspace.screening.ruleset.reuse.enabled to specify:

» Whether CER rule sets can be reused across different screenings.
» Whether the same rule set can be used for eligibility and filtered screening.

If curam.citizenworkspace.screening.ruleset.reuse.enabled is enabled, you cannot reuse rule sets, if it is
disabled you can reuse rule sets. You cannot use the ScreeningRulesLinkDAO.readActiveByRuleSet method
when curam.citizenworkspace.screening.ruleset.reuse.enabled property is enabled.

Configuring screening display information

You can configure the screening information display fields for each screening.

IBM Curam Social Program Management 7.0.11 | 7 - Configuring the Universal Access Responsive Web
Application | 255
Summary information

Define a high-level description of the screening.

Here's what you might get text

Define the text to be displayed on the Here's what you might get page, which is displayed to show citizens
the results of a completed screening.

Description

Define a description of the screening to be displayed.

How to apply text

Allows an administrator to define the text displayed on the Here's what you might get page.

Defining programs for a screening

You must associate programs with a screening so that citizens can screen for those programs.

You can associate any program that is described in Configuring Programs with a screening. When
associating programs with a screening, you can assign an order that sets the display order of the selected

program relative to other programs associated with the screening.

Related information
Configuring programs (on page 245)

The screening auto-save property

Use the screening curam.citizenworkspace.auto.save.screening property to set whether screenings are
automatically saved for authenticated citizens.

By default, curam.citizenworkspace.auto.save.screening is set to true. All screenings, irrespective of type,
are automatically saved for authenticated citizens. Each screening is automatically saved when citizens
click Next to progress through an IEG script. If curam.citizenworkspace.auto.save.screening is set to
false, screenings are not automatically saved.

Configuring rescreening
Configure whether citizens can change and resubmit their screenings.

In the administration application, you can configure whether to allow citizens to change and re-submit
their screening. If so, citizens can rescreen from the Check what you might get page or from the Here's

IBM Curam Social Program Management 7.0.11 | 7 - Configuring the Universal Access Responsive Web
Application | 256

what you might get page. If not, citizens who want to rescreen must delete their screenings and start

again.

1. Log in to IBM Curam Social Program Management as an administrator.
2. Select Administration Workspace > Shortcuts.

3. Select Universal Access > Screenings.

4. Select the screening that you want to change.

5. Select ... > Edit.

6. Select the Allow Rescreening checkbox to enable rescreening and click Save.

Prepopulating the screening script

When citizens screen from a citizen account, you can prepopulate information that is already known
about the citizen who is screening.

You must configure prepopulation for screening. For more information, see how this configuration is done
for life events, Pre-populating a life event (on page 300) and Driving updates from life events (on page
307).

Use the system property curam.citizenaccount.prepopulate.screening to set whether the IEG script is
prepopulated. The default value of this property is true, which means that the script is prepopulated with
information that is already known about the citizen.

Related information

Authenticated screening (on page 17)

Resetting data captured from a previous screening

Determine whether starting an intake application resets data captured by a previously completed
screening.

Determines whether starting an intake application resets datastore data captured by a previously
completed screening

Use the system property curam.citizenworkspace.intake.resets.screening.results to determine whether
starting an intake application resets datastore data that was captured by a previously completed

screening.

Setting curam.citizenworkspace.intake.resets.screening.results to true means that starting an intake
application resets datastore data captured by a previously completed screening.

IBM Curam Social Program Management 7.0.11 | 7 - Configuring the Universal Access Responsive Web
Application | 257

Setting curam.citizenworkspace.intake.resets.screening.results to false means that starting an intake

application does not reset datastore data captured by a previously completed screening.

Writing Rule Sets For Screening

Develop screening rule sets.

Addin a data store schema

Create a new data store schema for use with screening and intake intelligent evidence gathering (IEG)
scripts. However, some constraints exist on the format of these schemas. In some cases, requirements
dictate that citizens can screen for a program and then follow that screening by applying for benefits.

In many cases, applications are processed by IBM Cudram Social Program Management and are mapped
to Curam cases and evidence by using the Ciram Data Mapping Engine (CDME). In these circumstances,
use Ci ti zenPort al . xsd as a basis for the schema for screening. This process is used because the
same data store schema also needs to be used for intake. In particular, the CDME features do not work
correctly if a schema is used that removes or changes the data type of any of the attributes or entities in

theCiti zenPort al . xsd schema.

All schema that follows the pattern of the Ci t i zenPor t al . xsd schema are safe for later releases.
This assurance means that upgrades do not add any new mandatory attributes or entities. Upgrades do
not change any existing attributes or entities that currently are required to support existing Ciram data

mapping engine functions.

The screening rules interface

All screening rule sets must use the screening rules interface so that they can be executed within IBM®
Curam Universal Access.

The ruleset interface is detailed in the following XML example:

<?xm version="1.0" encodi ng="UTF- 8" ?>

<Rul eSet xm ns: xsi ="http://ww.w3. org/ 2001/ XM_Schena- i nst ance"
xsi : noNanespaceSchemalLocati on="ht t p: / / www. cur ansof t war e. com
Cr eol eRul esSchena. xsd"

nanme="Scr eeni ngl nt er f aceRul eSet " >

<l-- This class nust be extended by all rule sets invoked by

the Citizen Portal screening results processing. -->

IBM Curam Social Program Management 7.0.11 | 7 - Configuring the Universal Access Responsive Web

Application | 258
<Cl ass nane="Abstract Screeni ngResul t" abstract="true">

<lInitialization>

<Attribute name="cal cul ati onDat e" >
<type>
<j avacl ass nanme="curamutil.type. Date"/>
</type>
</Attribute>

</Initialization>

<I-- The prograns supported by this Screening Rul eset.
<Attribute name="prograns">
<type>
<j avacl ass name="List">
<rul ecl ass nanme="Abstract Prograni/ >
</j avacl ass>

</type>

<deri vation>

<!-- Subcl asses of Abstract Screeni ngResult nust override

this attribute to create a |list of the Prograns
supported by the rule set. -->
<abstract/>
</ derivation>

</Attribute>

</ d ass>

<l-- This class nust be extended by all progranms supported

inthe rule set. -->

<Cl ass nane="Abstract Progrant abstract="true">

<l-- l|dentifies the programas configured in the Ctizen

Portal admi nistration application. -->
<Attri bute name="progranTypeReference">
<type>

<j avacl ass name="String"/>

IBM Curam Social Program Management 7.0.11 | 7 - Configuring the Universal Access Responsive Web
Application | 259

</type>

<derivation>
<abstract/>

</ derivation>

</ Attri bute>

<I-- Wether the claimant is eligible for this program -->
<Attribute name="eligi bl e">
<type>
<j avacl ass nane="Bool ean"/ >
</type>
<derivation>
<abstract/>
</ derivation>

</ Attribute>

<!-- The |l ocalizable explanation as to why the claimant is
or is not eligible for this program My contain HTM
formatting/ hyperlinks/etc. -->
<Attri bute name="expl anati on">
<type>
<j avacl ass nanme="curam creol e. val ue. Message"/ >
</type>
<derivation>
<abstract/>
</ derivation>
</ Attribute>

</ d ass>

</ Rul eSet >

Screening rule sets must include a class that extends the AbstractScreeningResult rule class outlined .

Using the AbstractScreeningResult rule class guarantees that the required attributes are available when
the rules are executed.

IBM Curam Social Program Management 7.0.11 | 7 - Configuring the Universal Access Responsive Web
Application | 260

Configuring applications

Use IBM Curam Social Program Management administration and system administration applications to
define the applications that are available for citizens. For each application, you can configure the available
programs and an application script and data schema. You must also configure the remaining applications

details, such as application withdrawal reasons.

Related information

Apply (on page 22)
Customizing applications (on page 285)

Configuring applications in the administration application

Use the IBM Curam Social Program Management administration application to configure an online
application.

1. Log in to Social Program Management as an administrator.

2. Select Administration Workspace > Shortcuts > Universal Access > Applications.

3. Click New. The New Online Application page opens.

4. Enter the required information. For more information, see Configuring application information and
display information, Configuring scripts, and Defining a PDF form.

Configuring application information and display information

Configure the following information on the New Online Application page.

Name
The name of the application that is displayed in the online portal.
Program selection

Indicates whether citizens can select specific programs to apply for or whether they are
brought directly into an application script. That is, citizens can apply for all programs

associated with the application.
More Info URL

If a URL is defined, a More Info link is displayed with the application name so that citizens

can find out more information about the selected application.
Client registration

Determines whether citizens are registered as prospect persons or persons.

IBM Curam Social Program Management 7.0.11 | 7 - Configuring the Universal Access Responsive Web
Application | 261

To determine whether to register citizens as prospect persons or persons, the system

checks the client registration configuration in the following two scenarios:

- If Person Search and Match is configured, and no match can be found for the citizen.
- If Person Search and Match is not configured, that is, citizens on an application are

always registered without the system automatically searching and matching them.

If Client Registration is not set, the system checks the system property
curam.intake.registerAsProspect to identify whether citizens are registered as a prospect
person or a person.

Submit on Completion Only
Determines whether citizens can submit the application to the agency before completing the
intake script.

Defining an icon for an application

If you want an icon displayed with an application, select an icon from the Icon selection box.

(g M
Note:
Alternatively, you could modify the i ng src attribute of the icon directly on the
application HTML page, for example

<ing src="canera.gif" alt="Canera">

- J

Summary

A high-level description of the application.
Description

An overview description of the application.
Submission Confirmation Page Details

A more detailed description of the application. Use the Title and Text fields to define a title
and text to be displayed on the Submission Confirmation page.

Configuring scripts

Configure an IEG application script to collect the answers to the application questions and configure a
submission script for an application so that citizens can submit applications.

Application scripts

IBM Curam Social Program Management 7.0.11 | 7 - Configuring the Universal Access Responsive Web
Application | 262

Specify a script name in the Question Script field. Specify a data store schema in the
Schema field to store the data entered in the script. On saving the application, an empty
template for both the script and schema is created by the system based on the question
script and schema specified. You can update these templates from the Application tab by
selecting the hyperlinks provided on the page. Click the Question Script link to start the IEG
editor so you can edit the question script. Click the Schema link to start the Datastore Editor

and edit the schema.
Submission scripts

Configure an IEG submission script in the Submission Script. The script defines additional
information that does not form part of the application script to be captured, for example, a

TANF typically requires information regarding the citizen's ability to attend an interview.

On saving the application, an empty template for the submission script is created by the
system based on the Submission Script that you specify. You can update this from the
Application tab by selecting the hyperlink on the page. Clicking the link starts the IEG editor

that you use to edit the question script.

Configuring application properties
Use the system administration application to configure IBM Curam Social Program Management

application properties for online applications.

You can configure the following properties for your organization.

- Mandate citizen authentication before they can apply.

If you set the curam.citizenworkspace.authenticated.intake property to YES, citizens must
create an account or log in before they start an application. Citizens are brought to the following
components:

> The Apply for benefits page.

> The login page when citizens select Apply.

If set to NO, citizens go directly to the application selection page.

- Set optional authenticated application.
If you set the curam.citizenworkspace.intake.allow.login property, citizens can choose to log in
before they submit an application. If not, citizens go directly to the application submission script.

- Display a confirmation page to citizens when they quit the application.

IBM Curam Social Program Management 7.0.11 | 7 - Configuring the Universal Access Responsive Web
Application | 263

If you set the curam.citizenworkspace.display.confirm.quit.intake property to YES, a confirmation
page is displayed when citizens quit during the application process. If set to NO, a confirmation

page is not displayed.

Use this property only when the curam.citizenworkspace.intake.allow.login property is set to NO.

- Allow citizens to start an application from the organization Home page.

If you set the curam.citizenworkspace.intake.enabled property to YES, the Apply For Benefits link

is displayed on the organization Home page. If set to NO, the link is not displayed.

* Preepopulate scripts with known information about authenticated citizens. You must configure
prepopulation for intake. For more information, see how this configuration is done for life events,
Pre-populating a life event (on page 300) and Driving updates from life events (on page 307).

If you set the curam.citizenaccount.prepopulate.intake property property to TRUE, the application
is prepopulated with information that is already known about authenticated citizens. By default,
this property is set to true so scripts are prepopulated. If not, the script is not prepopulated.

« Automatically save applications in the citizen account.

If you set the Aut o- save i nt ake property to true, applications are automatically saved in the citizen
account. Each application is auto-saved when citizens click Next as they progress through the
IEG script. By default, this property is set to true. If set to false, applications are not automatically

saved.

1. Log in to Social Program Management as a system administrator.

2. Select System Configurations > Shortcuts > Application Data.

3. Enter the name of the application property that you want to configure in the Name field and select
Search.

4. Select ... > Edit Value.

5. Change the property setting, for example change YES to NO and Save your changes.

Configuring other application settings

You can associate programs with an application, define mappings for an application, and configure

withdrawal reasons.
Associating programs with applications

Programs can be associated with an application. You can set the display order of the
selected program relative to other programs that are associated with the application. For
more information, see Configuring programs (on page 245).

IBM Curam Social Program Management 7.0.11 | 7 - Configuring the Universal Access Responsive Web
Application | 264

Defining evidence mappings for an application

Applications can be processed by IBM Curam Social Program Management or a remote

system.

If the application is processed by IBM Curam Social Program Management, the entered
information is mapped to the evidence tables that are associated with the application case
that is defined for the programs that are associated with the application. The mappings

are configured for an application by creating a mapping with the Data Mapping Editor. A
mapping configuration must be specified in order for the appropriate evidence entities to be

created and populated in response to an online application submission.

For more information about the Data Mapping Editor, see Configuring with the Data Mapping
Editor.

Configuring withdrawal reasons

Citizens can withdraw the application for all or any one of the programs for which they

applied.

When they withdraw an application, citizens must specify a withdrawal reason. You can
define withdrawal reasons for an application in the Intake Application section of the
administration application. Before you associate a withdrawal reason with an application,
you must define withdrawal reasons in the WithdrawalRequestReason code table. For more

information, see Intake Application.

Related information

Configuring programs (on page 245)
Intake Application

Configuring with the Data Mapping Editor

Configuring online categories

Online categories group different types of applications or screenings together to make it easier for
citizens to find the ones that they need. You must define online categories for screenings and applications
to be displayed. After you define online categories, you must associate each screening and application to

a category.

Defining online categories

When defining an online category a name and URL must be defined. If a URL is defined a More Info link is

displayed with the name of the online category allowing citizens to find out more information about the

https://www.ibm.com/support/knowledgecenter/SS8S5A_7.0.11/com.ibm.curam.content.doc/TransportManager/c_CTM_BusinessObjectsIntakeApplication.html
https://www.ibm.com/support/knowledgecenter/SS8S5A_7.0.11/com.ibm.curam.content.doc/DataMappingEditor/ctr_DataMappingEditorGuide.html

IBM Curam Social Program Management 7.0.11 | 7 - Configuring the Universal Access Responsive Web
Application | 265

selected category. An order can be assigned to a category which dictates the display order of the selected

category relative to other categories.

Associating screenings and applications

Applications and screenings must be associated with an online category so they can be displayed in the
application. When associating a screening with an online category, an order can be applied which dictates
the display order of the screening relative to other screenings within the same category. When associating
an application with an online category an order can be applied which dictates the display order of the
application relative to other applications within the same category.

Configuring life events

For each life event, you must define how information is collected, stored, and displayed. You can configure
life event information categories, mappings to dynamic evidence, and information sharing with internal

and external sources.

Life events are displayed in the citizen account to allow citizens to submit information to the agency.

Life events can also provide citizens with useful information and resources. Life events can be made
available in other channels. For example, they can be submitted online by an agency worker in the internal
application. Configuration settings allow different information to be displayed depending on where the
life event is initiated from. For example, the Having a Baby life event question script that is displayed to
citizens can be different from the Having a Baby life event question script that is displayed to an agency

worker.

Related information
Update (on page 44)

Customizing life events (on page 295)

Configuring a life event

You can configure a life event in the administration application on the New Life Event page.

Defining a name

Specify a name that uniquely identifies the life event. This name is only displayed in the administration
application. You must specify a schema if the life event enables citizens to submit information to the
agency. The schema defines where the information submitted by a citizen or user in the life event script
is stored. For more information about defining data store schemas, see Working With Intelligent Evidence

Gathering.

IBM Curam Social Program Management 7.0.11 | 7 - Configuring the Universal Access Responsive Web
Application | 266
Defining a channel type

The channel type defines the channel in which a life event is used, for example, 'Online' or 'Internal'.

Defining a display name

The display name represents the name of the life event that appears citizens or agency workers. For
example, a change of job life event might be displayed as Lost My Job to citizens but Client Loses Job to

caseworkers.

Displaying question and answer scripts

Question script is the name of the life event script. Answer script gathers answers to life event questions.

Defining a schema

The name of the data store schema used by the life event script to capture data. Select a schema from
the Schema menu.

Defining the display ruleset

Define the ruleset that determines which recommendations are displayed to citizens when a life event is
submitted.

Enabling citizen consent

For certain life events, a citizen's consent might be needed before information is sent to a remote system
or agency. The Citizen Consent Enabled selection box allows an administrator to specify whether a
citizen's consent is needed. This provision means that citizens can select the agencies that they would

like to send their life event information to.

If this indicator is specified, a list of remote systems is displayed on completion of the life event script.
If this indicator is not specified, the citizen is not presented with the list. If only one remote system is
associated with the life event, the Citizen Consent If One Choice Only field is provided to determine
whether the citizen is presented with the remote systems list. The citizen must specify their consent to
send information to this remote system by selecting it on completion of the question script.

Defining the channel

The channel that this life event applies to, either online or internal.

IBM Curam Social Program Management 7.0.11 | 7 - Configuring the Universal Access Responsive Web
Application | 267
Defining a display description

A description of the life event. This description is displayed on the cards on the citizen's profile page. Rich

text is supported.

Defining additional information

Additional information related to the life event can be specified. For example, you can display links to
useful websites or information that the agency deems relevant to a particular life event.

Defining the submission text

Configure the text to be displayed to a citizen after they submit a life event. If a rule set was defined, the

following default text is displayed:

Your information has been submitted. Based on the information you have given us, we have identified

services and programs that may be of use to you. View your results.

Defining an icon

You cannot define an icon when first configuring a life event. Instead, you must save the life event and

then take the following steps:

1. Select the ellipsis ... icon for the new life event and then select New Image.
2. Select Browse, and select an image file from your local drive.

Note:

Only . png or. gi f images are supported. Image files must not be animated.

3. Specify an image name and alt text and select Save.

Related information
Working with Intelligent Evidence Gathering

Mapping life event information to evidence entities

Information that is gathered in the life event script is stored in the data store schema that is defined for

the life event.

To pass information gathered in the life event script into IBM Curam Social Program Management, it must

be mapped to dynamic evidence entities. Dynamic evidence entities must first be defined in the Rules

../WorkingWithIntelligentEvidenceGathering/ctr_WorkingWithCuramIntelligentEvidenceGathering.html

IBM Curam Social Program Management 7.0.11 | 7 - Configuring the Universal Access Responsive Web
Application | 268

and Evidence section of the administration application. When defined, you must specify these entities as
Social Record Evidence Types in the administration application. An indicator is also provided to set if a
particular evidence type is visible to citizens. When the social record evidence entities are defined, use
the Data Mapping Editor to map the data from the data store to the appropriate evidence entities. You can
access the Data Mapping Editor from the Mappings tab on the life event.

When citizens submit a life event, the information that is gathered is mapped to evidence entities that are
associated with a new case type called a social record case. The evidence broker can then be used to
pass the information from this case to the appropriate ongoing cases.

For more information about data mapping, see the Configuring with the data mapping editor related link.
For more information about sharing evidence, see the Sharing evidence with the evidence broker related
link.

Related information
Configuring with the Data Mapping Editor

Sharing evidence with the evidence broker

Defining a question script, answer script, and schema

You must define an IEG script for the life event if the life event allows citizens or users to submit

information to the agency.

The IEG script that you define collects the answers to a set of questions related to the life event. Specify
a script name in the Question Script field. You must also specify a schema if the life event allows citizens
or users to submit information to the agency. The schema defines where the information submitted in
the life event script is stored. Specify a schema in the Schema field. You must specify an answer script
to allow citizens to review the answers they have provided to the questions during submission of the life
event. Specify an answer script in the Answer Script field.

When you save the life event, empty template scripts and a schema are created by the system based on
the Question Script, Answer Script and Schema specified. You can then update these from the Life Event
tab by selecting the hyperlinks provided on the page. Clicking on the Question Script and Answer Script
links launch the IEG Editor. Clicking on the Schema link starts the Datastore Editor. Existing schema,
question scripts and answer scripts can be used by selecting them on the Edit Life Event page.

https://www.ibm.com/support/knowledgecenter/SS8S5A_7.0.11/com.ibm.curam.content.doc/DataMappingEditor/ctr_DataMappingEditorGuide.html
https://www.ibm.com/support/knowledgecenter/SS8S5A_7.0.11/com.ibm.curam.content.doc/AdvancedEvidenceSharing/c_AES_intro.html

IBM Curam Social Program Management 7.0.11 | 7 - Configuring the Universal Access Responsive Web
Application | 269

-~

-

. I
Note:
If a life event has been configured to send information to remote systems, set the Finish Page
field in the script properties (accessed by selecting Edit > Configure Script Properties in the IEG
Editor) to cw/ Di spl ayRenot eSyst ens. j spx.
J

For more information on defining IEG scripts and schema, see Working with Intelligent Evidence Gathering.

Related information
Working with Intelligent Evidence Gathering

Categorizing life events

Life event administration allows you to categorize or group together similar life events, for example,

changing jobs, changing address and changing income life events could be categorized within an

employment category.

Categorizing life events makes it easier for citizens or users to find the life event they need. You define

categories in life event administration and then associate them with a life event. When defining a

category, you must specify a name and description . Life events can then be associated with that

category.

Defining Remote Systems

Life event information can be submitted to remote or external systems. You must associate a remote

system with a life event so that life event information can be sent to that system.

The remote system must have the Life Event Service web service associated with it. This is used to

transmit life event information to the remote system. Remote Systems can be configured in the Remote

Systems section of the administration application.

Configuring the citizen account

Although customization is required to modify some citizen account information, you can configure

information on the citizen account and the Contact Information tab.

Messages can originate as a result of transactions in IBM Curam Social Program Management or

a remote system. Most of the configuration options apply to all messages but there are a some

configuration options that do not apply to messages originating from a remote system.

../WorkingWithIntelligentEvidenceGathering/ctr_WorkingWithCuramIntelligentEvidenceGathering.html

IBM Curam Social Program Management 7.0.11 | 7 - Configuring the Universal Access Responsive Web
Application | 270

Related information

Track (on page 35)

Configuring messages

The Messages pane on the organization Home page displays messages to logged-in citizens. For
example, a message that informs citizens when their next benefit payment is due or the amount of the

last payment. You can configure a number of items in the Messages plane.

Messages can be displayed which relate to meetings, activities, and application acknowledgments.
Messages can be displayed as a result of transactions in IBM Curam Social Program Management or they

can originate from remote systems through a web service.

Account messages

Adding an account message or changing a dynamic element of an account message requires
customization. You can update the text in the default account messages by using a set of properties for

each type of message.

The following properties are available:

* O ti zenMessageMyPaynent s - messages about payments.

* G ti zenMessageAppl i cat i onAcknowl edgenent - messages about application acknowledgments.
» Citi zenMessageVeri fi cati onMessages - messages about verification messages.

* G ti zenMessageMeet i ngMessages - messages about meetings.

» G tizenMessagesReferral . properti es - messages about referrals.

» G tizenMessagesSer vi ceDel i very - messages about service deliveries.

* Onl i neAppeal Request Message - messages about appeal requests.

The properties are in the Application Resources section of the administration application. To update the
message, each file needs to be downloaded, updated, and uploaded again. The icons that are displayed in
the citizen account for each type of message can be configured in the Account Messages section of the

administration application.

Adding a message that originates from a remote system requires that a code table entry is added to
the Parti ci pant MessageType code table and an associated entry in the Account Messages listing in the
administration application. Messages can then be sent by the Ext ernal G ti zenMessagews web service.

Creating appeal request acknowledgment or appeal rejection messages

Create messages to acknowledge an appeal request or to reject an appeal request.

IBM Curam Social Program Management 7.0.11 | 7 - Configuring the Universal Access Responsive Web
Application | 271

Table 5. Appeal request acknowledgment

Mes-
sage Description
Area

Title | Appeal Request Acknowledgment

Mes- | W have received your [Appeal Request - hyperlink to the appeal request on the My Ap-
sage |peals page] and it is currently under review. W will contact you shortly to confirm

t he next steps.

Ef- Current Date.
fec-
tive

Date

Dura- | This value is defined in the Num Days. To. Expi ry=7 property in the onl i neAppeal Request Message
tion |properties file and used in the implementation to set the attribute expiry date time. The default
valueis 7.

Notes | None.

Table 6. Appeal rejection

Mes-

sage Description
Area

Title | Appeal Request Disallowed

Mes- (W have reviewed your appeal request and determined it to be an invalid appeal. W

sage (will send you witten notice of this, including further details.

Effec- | Current Date.
tive
Date

Dura- | This value is defined in the Num Days. To. Expi ry=7 property in the onl i neAppeal Request Message
tion |properties file and used in the implementation to set the attribute expiry date time. The default
valueis 7.

Notes | None.

IBM Curam Social Program Management 7.0.11 | 7 - Configuring the Universal Access Responsive Web
Application | 272

Creating application acknowledgments

Create messages to acknowledge an application.

Table 7. Application acknowledgment

Mes-
sage Description
Area

Title <lcon> TANF Application Acknowledgment

Mes- We have received your TANF Application form The status of this application is pend-

sage ing. W will contact you when the application has been processed.

Effec- |Current® date
tive
Date

Dura- | An administrator can use a configuration setting to define the number of days (from the effec-

tion tive date) that the message is displayed.

Notes |None.

Creating meeting messages

Create messages for a meeting invitation, a meeting cancellation, and a meeting update. An administrator
can use a configuration setting to set the number of days (from the effective date) that the meeting

messages are displayed.

Table 8. Meeting invite

Message Area Description

Title <lcon> Meeting Invitation - Meeting with Case Worker

Message 1 (Not |You are invited to attend a meeting from 9. 00AM until 5.00PM on 12/ 04/ 2010
an all day meet- |in Meeting Room 1, Block C. Please contact Joe Bl oggs at 014567832 or

ing and the meet- |j oe@emAgency. comif you need nore information or cannot attend.

ing start and end
date are on the

same day)

IBM Curam Social Program Management 7.0.11 | 7 - Configuring the Universal Access Responsive Web

Application | 273

Table 8. Meeting invite (continued)

Message Area

Description

Message 2 (All
day meeting for
one day only)

You are invited to attend an all day neeting on 12/04/2010 in Meeti ng Room
1, Block C. Please contact Joe Bloggs at 014567832 or joe@emAgency.comif

you need nore information or cannot attend.

Message 3 (All
day meeting for
multiple days)

You are invited to attend an all day neeting each day from 12/04/2010 un-

til 15/04/2010 in Meeting Room 1, Block C Please contact Joe Bl oggs at
014567832 or joe@emAgency.comif you need nore infornation or cannot at-

t end.

Message 4 (Non-
all day meeting
for multiple days)

You are invited to attend a nmeeting from 9. 00AM until 5. 00PM from

12/ 04/ 2010 to the 13/04/2010 in Meeting Room 1, Block C. Please contact Joe
Bl oggs at 014567832 or joe@emAgency.comif you need nore information or

cannot attend.

Notes

When the case worker is setting up a neeting, the location is an option-

al field. Therefore, if a neeting location is not specified, the preceding

messages are displayed without a location. Also, the nmeeting organizer's

contact details are optional. Therefore, if no contact details are found,

the preceding nessage is displayed wi thout the organizer's contact details.

Table 9. Meeting cancellation

Message Area

Description

Title

<lcon> Cancellation - Meeting with Case Worker

day)

Message 1 (Not an all day
meeting and the meeting start
and end date are on the same

The meeting that you were scheduled to attend from 2. 00PM unti |
6.00 PMon 12/04/2010 is cancel ed. Pl ease contact Joe Bl oggs at

014567832 or joe@enmAgency.comif you need nore infornation.

for one day only)

Message 2 (All day meeting

The all day neeting that you were scheduled to attend on

12/ 04/ 2010 is cancel ed. Pl ease contact Joe Bl oggs at 014567832

or joe@emAgency.comif you need nore information.

for multiple days)

Message 3 (All day meeting

The all day nmeeting that you were scheduled to attend from

12/ 04/2010 until 15/04/2010 is cancel ed. Pl ease contact Joe
Bl oggs at 014567832 or joe@emAgency.comif you need nore in-

formation.

IBM Curam Social Program Management 7.0.11 | 7 - Configuring the Universal Access Responsive Web

Application | 274

Table 9. Meeting cancellation (continued)

Message Area

Description

Effective Date

Current Date.

Notes

The meeting organizer's contact details link opens a page that shows

the organizer's contact details.

Table 10. Meeting update

Message Area

Description

Title

<lcon> Cancellation - Meeting with Case Worker

Message 1 (Date
and Time change
of a non-all-day
meeting)

The neeting that you were scheduled to attend from 2. 00PM until 6.00 PM on

12/ 04/ 2010 is rescheduled to 3.00PM until 7.00 PMon 13/04/2010 in Meet-
ing Room 1, Block C. Please contact Joe Bl oggs at 014567832 or joe@enmA-

gency.comif you need nore information or cannot attend.

Message 2 (Loca-
tion change of a

non-all-day meet-
ing)

The location of the neeting you are scheduled to attend from 2. O00PM unti

6.00 PM on 12/04/2010 is changed. This neeting is now schedul ed for Meet

ing Room1, Block D. Please contact Joe Bl oggs at 014567832 or joe@emA-

gency.comif you need nore information or cannot attend.

Message 3 (Date,
time, and location
change of non-all-
day meeting)

The neeting that you were scheduled to attend from 2. 00PM until 6.00 PM

on 12/04/2010 is rescheduled to 3.00PM until 7.00 PMon 13/04/2010. It

is reschedul ed for Meeting Room 2, Block C. Please contact Joe Bl oggs at

014567832 or joe@enmAgency.comif you need nore information or cannot at

t end.

Message 4 (Date
change of all day
meetings for mul-
tiple days)

The all day neeting that you are scheduled to attend from 12/04/2010 un-

til 15/04/2010 is reschedul ed. This neeting will now take place from

13/ 04/ 2010 until 16/04/2010. Pl ease contact Joe Bl oggs at 014567832 or

j oe@emAgency. comif you need nore information or cannot attend.

Message 5 (Loca-
tion change for all
day meeting for
multiple days)

The location of the all day neeting you are scheduled to attend from

12/ 04/ 2010 until 15/04/2010 is changed. This neeting is reschedul ed
for Meeting Room 1, Block D. Please contact Joe Bloggs at 014567832 or

j oe@emAgency. comif you need nore information or cannot attend.

Message 6 (Date
and location

change for all-day

The all day neeting that you are scheduled to attend from 12/04/2010 un-

til 15/04/2010 is reschedul ed. This neeting will now take place from

13/ 04/ 2010 until 16/04/2010 in Meeting Room 1, Block D. Please contact Joe

IBM Curam Social Program Management 7.0.11 | 7 - Configuring the Universal Access Responsive Web

Application | 275

Table 10. Meeting update (continued)

Message Area

Description

meeting for multi-

ple days)

Bl oggs at 014567832 or joe@emAgency.comif you need nore information or

cannot attend.

Message 7 (Date
change for an all-
day meeting)

The all day neeting that you are scheduled to attend on 12/04/2010 is

reschedul ed. This neeting will now take place on 13/04/2010. Pl ease con-
tact Joe Bloggs at 014567832 or joe@emAgency.comif you need nore infor-

mati on or cannot attend.

Message 8 (Loca-
tion change for an

all-day meeting)

The location of the all day neeting you are scheduled to attend on
12/ 04/ 2010 is changed. This neeting is reschedul ed for Meeting Room 1,
Bl ock D. Please contact Joe Bl oggs at 014567832 or joe@emnmAgency.comif

you need nore informati on or cannot attend.

Message 9 (Date
and location
change for an all-
day meeting)

The all day neeting that you are scheduled to attend on 12/04/2010 is

reschedul ed. This neeting is reschedul ed for 13/04/2010 in Meeting Room
1, Block D. Please contact Joe Bl oggs at 014567832 or joe@enmAgency.comiif

you need nore information or cannot attend.

Message 10
(Date and time
change of a non-
all-day meeting
for multiple days)

The neeting that you are scheduled to attend from 2. 00PM until 6.00 PM on

12/ 04/2010 until 15/04/2010 is rescheduled. This neeting is reschedul ed

for 2.00PMuntil 6.00 PMon 13/04/2010 until 16/04/2010. Pl ease contact

Joe Bl oggs at 014567832 or joe@emAgency.comif you need nmore information

or cannot attend.

Message 11 (Lo-
cation change

of a non-all-day
meeting for multi-

ple days)

The |l ocation of the neeting you are scheduled to attend from 2. 00PM un-

til 6.00 PMon 12/04/2010 until 15/04/2010 is changed. This neeting is

reschedul ed for Meeting Room 1, Block D. Please contact Joe Bl oggs at
014567832 or joe@emAgency.comif you need nore information or cannot at-

t end.

Message 12
(Date, time, and,
location change
of non-all-day

The neeting that you are scheduled to attend from 2. 00PM until 6.00 PM on

12/ 04/2010 until 15/04/2010 is rescheduled. This neeting is reschedul ed

for 2.00PMuntil 6.00 PMon 13/04/2010 until 16/04/2010 in Meeting Room

1, Block D. Please contact Joe Bl oggs at 014567832 or joe@enmAgency.comif

meeting for multi- | you need nore information or cannot attend.
ple days)
Notes When the case worker is setting up a meeting, the location is an optional field.

Therefore, if a meeting location is not specified, the preceding messages are dis-

IBM Curam Social Program Management 7.0.11 | 7 - Configuring the Universal Access Responsive Web
Application | 276

Table 10. Meeting update (continued)

Message Area

Description

played without a location. Also, the meeting organizer's contact details are optional.
Therefore, if no contact details are found, the preceding message is displayed with-
out the organizer's contact details.

Creating payment messages

Create messages for an issued payment, a canceled payment, a due payment, a stopped payment, an

unsuspended payment, an issued overpayment, and an issued underpayment. An administrator can use a

configuration setting to set the number of days (from the effective date) that the payment messages are

displayed.

Table 11. Payment issued

Mes- L.
Description
sage Area
Title <lcon> Latest Payment
Message 1 | Your |atest payment of $22.00 was due on 22/07/2009. Click here to view the pay-
ment details. Your next paynent is due on 29/07/2009. Cick My Paynments to view
your paynent history.
Message 2 | Your | atest payment of $22.00 was due on 22/07/2009. Cick here to view the pay-
(Payment ment details. This payment was originally canceled on 23/07/2009. Cick here to
previously |view details of the cancel ed paynent. Your next payment is due on 29/07/2009.
canceled) |[Cick My Payments to view your payment history.
Effective | Current Date.
Date
Notes A payment can be issued, then canceled, and then reissued. The here hyper link opens a

page that shows payment details. The My Payments link opens the My Payments page in
the Citizen Account.

Note:

If no more payments are due, the Your next payment is due on 29/07/2009 part

of the messages is not displayed.

IBM Curam Social Program Management 7.0.11 | 7 - Configuring the Universal Access Responsive Web

Application | 277

Table 12. Payment canceled

Mes-

sage Description

Area

Title |<lcon>Payment Canceled

Mes- | Your paynent of $22.00, due on 22/07/2009, has been canceled. dick here to viewthe

sage |details. dick Contact Infornation to contact your caseworker if you need nore infor-
mation. Your next payment is due on 29/07/2009. Cick My Paynments to view your pay-
ment history.

Ef- Current Date.

fec-

tive

Date

Notes | If no more payments are due, the Your next payment is due on 29/07/2009 part of the mes-

sage is not displayed. The Contact Information link opens the Contact Information tab in the citi-
zen account. The My Payments link opens the My Payments page in the Citizen Account.

Table 13. Payment due

Message Area Description

Title

<lcon> Next Payment Due

Message Your next Cash Assistance paynment is due on 29/07/2011.

Effective Date | Current Date.

Notes

This message is appropriate when it is the first payment that a citizen re-

ceives.

Table 14. Case suspended

sage

Mes-
sage Description
Area
Title <lcon> Payments Stopped
Mes- Your Cash Assi stance paynments have been stopped from 29/07/2009. dick Contact In-

formati on to contact your caseworker if you need nore information.

IBM Curam Social Program Management 7.0.11 | 7 - Configuring the Universal Access Responsive Web
Application | 278

Table 14. Case suspended (continued)

Mes-
sage
Area

Description

Effec- | Current Date.

tive
Date

Notes | The Contact Information link opens the Contact Information tab in the Citizen Account.

Table 15. Case unsuspended

Message L
Description
Area
Title <lcon> Payments Unsuspended
Message |Your Cash Assistance payment suspension has been lifted from 29/07/2009. Your
next payment is due on 31/07/2009.
Effective | Current Date.
Date
Notes None.

System messages

For example, an agency might want to provide information and helpline numbers to citizens who are

affected by a natural disaster. You can configure system messages in the administration application on

the New System Message page.

Use the Title and Message fields to define the title of the message and the message body that is

displayed in the citizen application.

Use the Effective Date and Time to define an effective date for the message, such as when the message

is displayed in the citizen account. Use the Expiry Date and Time field to define an expiry date for the

message, for example, when to remove the message from the Citizen Account.

The message is saved with a status of In-Edit. Before the message is displayed in the Citizen Account, it

must be published.

IBM Curam Social Program Management 7.0.11 | 7 - Configuring the Universal Access Responsive Web
Application | 279

Configuring message duration

System properties set the length of time a type of message is displayed in the citizen account. For
example, a payment message can be configured to be displayed for 10 days. These configuration
options apply only to messages that originate as a result of transactions on IBM Curam Social Program

Management.

The following system properties are provided:

* curam ci ti zenaccount . paynent . nessage. expi ry. days - sets the number of days from the effective
date that a payment message is displayed in the citizen account. A payment message is displayed
for this duration unless another payment message is created which replaces it. The default value is
10.

* curam ci ti zenaccount . i nt ake. appl i cati on. acknow edgenent . nessage. expi ry. days - sets the
number of days from the effective date that an application acknowledgment message is displayed
in the citizen account. An acknowledgment message is displayed for this duration unless another
acknowledgment message is created which replaces it. The default value is 10.

e curam ci ti zenaccount . meet i ng. nessage. ef f ect i ve. days -sets the number of days from the effective
date that a meeting message is displayed. A meeting message is displayed for this duration unless
another meeting message is created which replaces it. The default value is 10.

Switching off messages

An agency might not want to display messages in the Citizen Account. To cater for this choice, the
system property curam ci ti zenaccount . gener at e. nessages enables an agency to switch all messages on
or off. The default value is t r ue, which means that messages are generated and displayed in the Citizen

Account.

Configuring last logged in information

The text displayed in the welcome message and last logged on information can be updated using
the properties that are stored inthe Ci t i zenAccount Hone properties file stored in the Application

Resource section of the Administration Application.

The following properties are provided:

« citizenaccount.welcome.caption - updates the welcome message.
- citizenaccount.lastloggedon.caption - updates the last logged on message.
- citizenaccount.lastloggedon.date.time.text - updates the date and time message.

IBM Curam Social Program Management 7.0.11 | 7 - Configuring the Universal Access Responsive Web
Application | 280

Configuring contact information

Configure contact information for citizens and caseworkers.

Contact information displayed in the citizen account displays contact details (phone numbers, addresses
and email addresses) stored for the logged in citizen and also caseworker contact details (business

phone number, mobile phone number, pager, fax and email) of the case owners of cases associated with

the logged in citizen in IBM Curam Social Program Management and on remote systems.

Citizen contact information

The following system property is provided that sets whether contact information is displayed to a citizen.
curam ci ti zenaccount. contactinformati on. show. client.details

If the property is set to t r ue, citizens' address, phone number, and email address are
displayed. If this property is set to f al se, contact information is not displayed. The default

value for this property is true.

Caseworker

The following system properties are provided to set whether agency worker contact information is
displayed to a citizen, and if displayed, additional system properties are provided to dictate the type of

contact information displayed:
curam.citizenaccount.contactinformation.show.caseworker.details

Sets whether worker contact details are displayed in the citizen account. If this property
is set to true, worker contact details of cases associated with the logged in citizen are
displayed. If this property is set to false, worker contact information is not displayed. The

default value for this property is true.
curam.citizenaccount.contactinformation.show.businessphone

Sets whether the worker's business phone number is displayed. The default value of this

property is true.
curam.citizenaccount.contactinformation.show.mobilephone

Sets whether the worker's mobile number is displayed. The default value of this property is

true.
curam.citizenaccount.contactinformation.show.emailaddress

Sets whether the worker's email address is displayed. The default value of this property is

true.

curam.citizenaccount.contactinformation.show.faxnumber

IBM Curam Social Program Management 7.0.11 | 7 - Configuring the Universal Access Responsive Web
Application | 281

Sets whether the worker's fax number is displayed. The default value of this property is true.
curam.citizenaccount.contactinformation.show.pagernumber

Sets whether the worker's pager is displayed. The default value of this property is true.
curam.citizenaccount.contactinformation.show.casemember.cases

Sets whether the worker's contact information is displayed for cases where the citizen is a
case member. If this property is set to true, cases where the citizen is a case member are
displayed. If this property is set to false, then only cases where the citizen is the primary
client are displayed. Note: this property only applies to cases originating from IBM Cdram
Social Program Management. The types of product deliveries and integrated cases to

be displayed can be configured in the Product section of the Administration Application.
For more information on administering this see the Curam Integrated Case Management
Configuration Guide.

Configuring user session timeout
Configure the user session timeout modal in the System Administration application and the Universal

Access Responsive Web Application so that citizens know when their session is about to expire.

If a user session is inactive for a while, citizens can continue their current session by clicking Stay logged
in so that they don't lose information that they entered on the current page. Citizens can also continue the
current session by navigating away from the Stay logged in button.

If citizens do not continue their session, they are logged out automatically after a configurable period of

time to secure their personal information.

Use the following properties to configure the session timeout:
curam.environment.enable.timeout.warning.modal

You can enable or disable the session timeout feature. For more information, see

Customizing the session timeout warning in Universal Access.
curam.environment.timeout.warning.modal.time

You can configure the maximum time that the Stay logged in dialog is displayed to citizens.

For more information, see Customizing the session timeout warning in Universal Access.
REACT_APP_SESSION_INACTIVITY_TIMEOUT
In the Universal Access Responsive Web Application, use the

REACT_APP_SESSION_INACTIVITY_TIMEOUT environment variable to configure the time in
seconds before a user session expires. You can set the environment variable in the . env or

IBM Curam Social Program Management 7.0.11 | 7 - Configuring the Universal Access Responsive Web
Application | 282

.env. devel opnent files in the root of your application. The value must match the session

timeout that is configured on the server, by default, 30 minutes or 1800 seconds.
Configuring the dialog box text

To configure the dialog box title, informational text, or button text for the Universal Access
Responsive Web Application, use the Sessi onTi neout Di al ogConponent Messages. | s
file that accompanies the source files. For more information, see Customizing the IBM®

Cudram Universal Access server.

Configuring the login page to notify citizens when their session times out

Use the sessionCountdownTimerEnd property on the router location state to update a
customized login page with a message to notify citizens when their session times out. For
more information about routing, see Developing with routes (on page 108).

An example of the sessionCountdownTimerEnd is shown:

if (location.state.sessi onCountdownTi mer End) {

<Alert .../>

This notification message is configured by default when a citizen's session times out.

Related information
Customizing the Universal Access Responsive Web Application (on page 284)
Developing with routes (on page 108)

Customizing the session timeout warning in Universal Access

Configuring appeal requests

Complete the following steps to enable a citizen to request an appeal from their citizen account.

1. Create a custom IEG script and data store schema to capture the appeal information.

2. Set the values of the curam ci ti zenwor kspace. appeal s. dat ast or e. schema and the
curam citi zenwor kspace. appeal s. dat ast ore. scri pt . i d properties to the values of the script and
data store schema that you created.

3. Create an XSL template to generate a PDF of the appeal information.

https://www.ibm.com/support/knowledgecenter/SS8S5A_7.0.11/com.ibm.curam.content.doc/WebClientReference/t_WEBCREF_sessiontimer_custsys_UA.html

IBM Curam Social Program Management 7.0.11 | 7 - Configuring the Universal Access Responsive Web
Application | 283

Related information
IEG in the Universal Access Responsive Web Application

Customizing appeals (on page 355)

Configuring communications on the Notices page

You can configure the maximum number of communications that are displayed on the Notices page. By
default, up to 20 communications are displayed.

Editthe curam ci ti zenaccount . max. conmuni cat i on system property and specify the maximum

number of communications to display.

You can further customize the underlying communications implementation if needed. For more

information, see Customizing the Notices page (on page 367).

Related information

The Notices page (on page 42)

../CitizenEngagement/t_CECUST_config_ieg.html

Chapter 8. Customizing the Universal Access
Responsive Web Application

Use this information to customize Universal Access for your organization.

Related information

IEG in the Universal Access Responsive Web Application

Customizing screenings

Use the supported classes and APIs to customize the events that are started for screenings and the

screening results page.

Related information

Configuring screenings (on page 252)

Track the volume, quality, and results of screenings
Use the curam.citizenworkspace.impl.CWScreeningEvents class to access the events that are started for

screening events.

You can use curam.citizenworkspace.impl.CWScreeningEvents to track the volume or results of screening
for reporting purposes. For more information, see to the APl Javadoc™ for CWScreeningEvents in
<CURAM DI R>/ EJBSer ver/ conponent s/ Ci ti zenWor kspace/ doc

Populating a custom screening results page
Use the performScreening that is contained in the curam.citizenworkspace.security.impl.UserSession API

to populate a custom Screening Results page.

The Screening Results page is displayed when an IEG screening script is run. The operation runs the
configured rule set for the selected screening type. The results of the screening, that is, the list of eligible

and undecided programs, are stored against the user's session.
The screeningResultsForDisplay return type of the operation allows access to three objects. These objects
contain the information that is required to populate either the default or custom Screening Results page:
ScreeningType
The screening type that the user selected.

List<Program>

../CitizenEngagement/t_CECUST_config_ieg.html

IBM Curam Social Program Management 7.0.11 | 8 - Customizing the Universal Access Responsive Web
Application | 285

A list of the programs that the user was screened for. The ScreeningResultsOrderingStrategy

sets the order of the programs listed.
Map<String, ProgramType>

A join.util. map that contains a mapping of strings to ProgramTypes where the string

contains the unique reference for that ProgramType.

The following is a sample usage:

User Sessi on user Sessi on = user Sessi onDAQO. get (sessionl D) ;
Scr eeni ngResul t sFor Di spl ay screeni ngResul t sFor Di splay =

user Sessi on. per f or nScr eeni ng() ;

The following is a sample interface definition:
/**
* Executes the Screening rule set associated with the current screening | EG
* script data. The return object, {@ink Screeni ngResul t sFor D spl ay},
* contains all of the information required to be displayed on the

* Screeni ng Results page.

* @eturn object containing the ordered screening results, the selected

* {@ink ScreeningType} and a map of {@ink Prograniype} records.

* @hrows | nformational Exception
& Generic exception signature.
* @hrows AppException
* Generic exception signature.
*/
Scr eeni ngResul t sFor Di spl ay perfornfcreening() throws |nformational Exception,

AppExcepti on;

For more information, see the API Javadoc for the
curam ci ti zenwor kspace. security.inpl. User Sessi onin <CURAM DI R>/ EJBSer ver/
conmponents/ Citi zenWr kspace/ doc.

Customizing applications

You can customize the application flow to link directly to an application script, or to provide separate
overview pages or submission confirmation pages for each application type. You can also use

IBM Curam Social Program Management 7.0.11 | 8 - Customizing the Universal Access Responsive Web
Application | 286

customization points, for example, customizing the generic PDF for processed applications, to customize

the application intake process when an intake application is submitted.

Related information
Configuring applications (on page 260)

Linking directly to an application

You can link directly to the overview page of an application from a custom URL. For example, you can
customize the application flow to skip the Apply For Benefits page and the Benefit Selection page if you

prefer.

You can do this by using the IDs from the INTAKEAPPLICATIONTYPE and PROGRAMTYPE database
tables.

Creating a direct link by using a custom URL

For example, you might want to create a URL, such as / f ood- st anps, that links directly to your food stamps

application.

1. Create a wrapper component to pass in the data about the application. For example, create a

FoodSt anpsConponent as shown.

const FoodStanmpsConmponent = () => (
<Appl i cati onOver vi enCont ai ner
i nt akeAppl i cati onTypel d=*91001"

program ds="1010, 1015”

<FoodSt anpsDescri pti onConponent />

</ Appl i cati onOver vi ewCont ai ner >

2. Add a new / f ood- st anps route that loads the FoodSt anpsConponent component.

Creating a direct link by using a generic URL

Rather than hardcoded values, you can pass in the data for an application by using a generic URL of the
form / appl i cati on-overvi ew : i nt akeAppl i cati onTypel d/ : progr am ds, where : i nt akeAppl i cati onTypel d iS
the intake application type ID and : progr am ds is a comma-separated list of program IDs. For example:

/ appl i cation-overvi ew 91001/ 1010, 1015

IBM Curam Social Program Management 7.0.11 | 8 - Customizing the Universal Access Responsive Web
Application | 287

Customizing application overview pages

You can create separate application overview pages for each application type so you can display specific

information about the type of benefit that a citizen is applying for.

These examples use the Appl i cati onOver vi enCont ai ner and the St art Appl i cati onBut t on components, and

demonstrate how to customize the page while using the existing application functionality.

Customizing an application overview page accessed by a custom URL

When you access an application by using a custom URL, such as / f ood- st anps, you can use a wrapper
component to pass in a child component, in which you can display information about a specific

application type.

For example, for a food stamps application, you can create a FoodSt anpsDescri pti onComponent component

as a child of your FoodsSt anpsConponent .

const FoodStanpsComponent = () => (
<Appl i cat i onOver vi enCont ai ner
i nt akeAppl i cati onTypel d=*91001"

program ds="2010, 2015”

<FoodSt anpsDescri pti onConponent />

</ Appl i cati onOver vi enCont ai ner >

Customizing an application overview page accessed by a generic URL

When accessing an application by using generic URLS, such as / appl i cati on- over vi ew 91001/ 1010, 1015,
complete the following steps to customize the overview page for an application.

1. Write a component that checks the IDs, for example, NewOver vi ewConponent .

const NewOver vi ewConponent = props => {
let child = null;
const id = props. match. parans. i nt akeAppl i cati onTypel d;
if (id ==="'91001") {
child = <FoodSt anpsDet ai | sConponent />;
} else if (id === "'50000") {
child = <Chil dwel f areDet ai | sConponent />;
} else {

/1l throw error

IBM Curam Social Program Management 7.0.11 | 8 - Customizing the Universal Access Responsive Web
Application | 288

}
return (
<Appl i cati onOver vi enCont ai ner
i nt akeAppl i cati onTypel d={ pr ops. mat ch. par ans. i nt akeAppl i cati onTypel d}

program ds={ pr ops. nat ch. par ans. progr anl ds}

{chi | d}

</ Appl i cati onOver vi enCont ai ner >

2. Overwrite the existing route. For example:

<Titl edRout e
conponent ={ NewOver vi ewConponent }
exact
pat h={ " ${ PATHS. APPLI CATI ON_OVERVI EW/ : i nt akeAppl i cati onTypel d/ : progranmi ds" }

title={applicationOvervi ewlransl ations. overviewTitl e}

Customizing the intake application workflow

Review a summary of the intake application workflow in a flowchart.

IBM Curam Social Program Management 7.0.11 | 8 - Customizing the Universal Access Responsive Web

Figure 5. Intake application workflow

Process Intake Application (Resilient)

Create Intake PDF

Any programs processed by legacy systems?

N

n

v
—}C InvokeLegacySystemProcessing

Any programs processed by
IBM Social Program Management?

)

Is intake resilient?
Ny

Functions identically to
the older non-resilient fiow.

h 4

CreateParficipantsAndCasesDeferAES

Mapping

(CreatoParticipants CasesAndMapEvidence)

A

PostMapping

Create intake PDF

©

Application | 289

EvidenceCorrections -

Createsflocates participants and cases. Failure at this point B
causes the process to go into the Process Instance Emor Queue
Evidence sharing will be deferred until a later point in the workflow
i.e. until after the mapping has been completed
Maps Evidence to the Case using the Ciram Data Mapping Engine (CDME)
The implementation of this will
- Change the state of the Application Case to ‘Awsiting Resolution’
- Re-assign ownership to a configurable worker
Evidence validation failed? ﬁ
Aworker resolves evidence validation
issues and them re-submits the application.
Does an evidence share set exist? Ij
Enact the evidence sharing workflow to complete the sharing
that was deferred eariier in the workflow.

Invokes the next stage of intake processing which is either performed
by a case worker or using a Straight Through Processing No fouch’ workflow.

This automatic activity creates a PDF document based on the content of the application.

For more information, see Customizing the generic PDF summary form for processed

applications (on page 291).

InvokeLegacySystemProcessing

This automatic activity sends applications to legacy systems by using web services. This

path is taken only if there are legacy systems that are associated with at least one of the

programs on the application.

CreateParticipantsAndCasesDeferAES

This automatic activity creates participants for the submitted application and then creates

one or more cases for the programs that are associated with the application. In most cases,

application cases are created.

IBM Curam Social Program Management 7.0.11 | 8 - Customizing the Universal Access Responsive Web
Application | 290

This path is taken only if the configuration property cur am i nt ake. use. resi | i ence
is set to t rue. For compatibility with previous versions, this property is f al se by default.
However, it is recommended that all production systems set this value to true. For more
information about the implications of setting this value to true, see Using events to extend

intake application processing (on page 293).

This activity also defers the evidence sharing that occurs when case members are added to
an application case to a later point in the workflow.

- ™
Note:
For customizations to this workflow or for custom intake
workflows, evidence sharing can be deferred by using the
curam aes. sl . observe. i mpl . AESShar eSet Pul | Manual Enact nent . process() API. For

more information, see the associated Javadoc.
. J

Mapping

This automatic activity uses the Ciram Data Mapping Engine (CDME) to map data collected
in the application script into Case Evidence. If a validation issue occurs with the mapped

evidence, this activity is automatically retried. During the retry, if there is a single Application
Case, the validations are disabled and a WDO flag | nt akeCaseDet ai | s. mappi ngval i di nd set to

fal se.
EvidenceCorrections

This manual task is called if the Mapping activity fails due to a validation error. That
is, the I nt akeCaseDet ai | s. mappi ngval i di nd set to f al se. The assignment of this task
is configurable. For more information, see Evidence Issues Ownership Strategy. The
caseworker or operator must resolve the evidence validation issues and resubmit the
application.

Subflow: Evidence Sharing Pull Workflow
If there is evidence to share, the evidence sharing pull workflow is enacted to trigger any
sharing activities that were deferred in cr eat ePar t i ci pant sAndCasesDef er AES.

If there is no evidence to share, the workflow bypasses this step.

PostMapping

This automatic activity starts the next stage of application processing by calling the

I nt akeAppl i cati on. | nt akeAppl i cati onEvent s. post MapDat aToCur anm() event.

../IntakeConfiguration/c_CINConfig_ApplicationCasesEvidenceIssuesOwnership.html

IBM Curam Social Program Management 7.0.11 | 8 - Customizing the Universal Access Responsive Web
Application | 291

CreateParticipantsCasesAndMapEvidence

This path is followed when the configuration property cur am i nt ake. use. resi | i ence
is set to false. This automatic activity behaves identically to the older non-resilient
workflow. It creates cases and participants and completes all evidence mapping in a single
transaction, which results in a less resilient process if a failure occurs.

Customers can customize the workflow compliantly as described in the Developing Compliantly
with Social Program Management and Curam Workflow Reference. Customers must not change the
enactment structs that are used by these workflows.

Related information
Customizing the generic PDF summary form for processed applications (on page 2917)
Using events to extend intake application processing (on page 293)

Evidence Issues Ownership Strategy

Customizing the generic PDF summary form for processed applications

By default, the PDF summary is automatically generated from an XSL template for all intake applications.

The PDFs are rendered by the XML server. For more information about XSL templates, see XSL

Templates.

Configuring the generic PDF summary template

Complete the following steps to change or update the generic PDF summary template for intake

applications. If needed you can upload your own custom template.
WEXSLTEMPLATEI NST0OO1. xsl

The/ EJBSer ver / conponent s/ Wr kspaceSer vi ces/ data/initial /bl ob/
WEXSLTEMPLATEI NSTOO1. xs| template is configured by default.

1. Log in as a system administrator, go to Communications > XSL Templates.
2. Search for the Intake Application template with the following details:

o Description: Intake Application

o Relates To: Intake Application

o Category: Intake Application

> Subcategory: Intake Application

o Template Type: Letter

- Template ID: Intake Application
3. Select the template and check it out.

../DevelopmentCompliancy/ctr_CuramDevelopmentCompliancyGuide.html
../DevelopmentCompliancy/ctr_CuramDevelopmentCompliancyGuide.html
../DevelopmentCompliancy/ctr_CuramDevelopmentCompliancyGuide.html
../WorkflowReference/ctr_CuramWorkflowReferenceGuide.html
https://www.ibm.com/support/knowledgecenter/SS8S5A_7.0.11/com.ibm.curam.content.doc/IntakeConfiguration/c_CINConfig_ApplicationCasesEvidenceIssuesOwnership.html
https://www.ibm.com/docs/en/spm/7.0.11?topic=introduction-xsl-templates
https://www.ibm.com/docs/en/spm/7.0.11?topic=introduction-xsl-templates

IBM Curam Social Program Management 7.0.11 | 8 - Customizing the Universal Access Responsive Web
Application | 292

The existing template version is saved in case you need it later.
4. Locate the template that you want to upload.
5. Click Check in template, and upload the new or updated template.

Customizing generic PDF summary forms based on the
WEXSLTEMPLATEI NSTOO1. xsl template

Complete the following step to customize a PDF summary form that is based on the default
WBXSLTEMPLATEI NSTOO01. xs| template. You can customize the XSL template to define the information

that you want to include in the generic PDF summary form.

The data passed to the XSL template reads from the data store. For more information, see XSL

TemplatesXSL Templates.

1. Instead of displaying the data store labels in the PDF, you can define a property file to specify
alternative names for entities and attributes and to hide entities and attributes that you do not want
to display in the PDF.

Define a property file with the naming convention <appl i cati on schenma nanme>PDFPr ops, and
edit the contents of the property file as follows:
Name an entity

<Entity Nanme=<Nane To Be Displayed in the PDF>, forexample,
Application=Intake Application

Hide an entity
<Entity Nane. hi dden=t r ue, for example, ScreeningType.hidden=true

Hide an attribute

<Entity Name. Attribute Nane. hi dden=t r ue, for example, Application.user

Name.hidden=true
Specify a label for an attribute

<Entity Nane.Attribute Nanme=PDF Label , for example, Submission.dig

FirstName=First Name

Upload the property file to Application Resources in the Intelligent Evidence
Gathering section of the administration application. For more information about
IEG, see https://www.ibm.com/support/knowledgecenter/SS8S5A_7.0.11/
com.ibm.curam.ieg.doc/WorkingWithintelligentEvidenceGathering/

ctr_WorkingWithCuramintelligentEvidenceGathering.html.

../Communications/c_COMM_TemplatesXSL.html
../Communications/c_COMM_TemplatesXSL.html
https://www.ibm.com/docs/en/spm/7.0.11?topic=introduction-xsl-templates
https://www.ibm.com/support/knowledgecenter/SS8S5A_7.0.11/com.ibm.curam.ieg.doc/WorkingWithIntelligentEvidenceGathering/ctr_WorkingWithCuramIntelligentEvidenceGathering.html
https://www.ibm.com/support/knowledgecenter/SS8S5A_7.0.11/com.ibm.curam.ieg.doc/WorkingWithIntelligentEvidenceGathering/ctr_WorkingWithCuramIntelligentEvidenceGathering.html
https://www.ibm.com/support/knowledgecenter/SS8S5A_7.0.11/com.ibm.curam.ieg.doc/WorkingWithIntelligentEvidenceGathering/ctr_WorkingWithCuramIntelligentEvidenceGathering.html

IBM Curam Social Program Management 7.0.11 | 8 - Customizing the Universal Access Responsive Web
Application | 293

2. To update the template, search for an XSL resource that is called | nt ake Appli cati on, which is

located at:

/ EJBSer ver/ conponent s/ Wr kspaceSer vi ces/ data/ i ni ti al / bl ob/ WBXSLTEMPLATEI NST0O1. xsl

Update the template as needed. This XSL uses XSL-FO 1.0 technology to generate the PDF. For
more information about XSL, see https://www.w3.org/TR/xsl11.

Using events to extend intake application processing

The interface I nt akeAppl i cati on. | nt akeAppl i cati onEvent s contains events that are invoked when citizens

submit an intake application for processing.

Use these events to change the way that intake applications are handled, for example supplement
or replace the standard CDME mapping or perform an action after an application has been sent
to a remote system using web services. For more information, see the APl Javadoc information
for I nt akeAppl i cati on. | nt akeAppl i cat i onEvent s in <CURAM DI R>/ EJBSer ver/ conponent s/

Wor kspaceSer vi ces/ doc.

The interface I nt akePr ogr amAppl i cat i on. | nt akePr ogr amAppl i cat i onEvent s contains events that are
invoked at key stages during the processing of an application for a particular program. For information,
see the API Javadoc information for I nt akePr ogr amAppl i cat i on. I nt akePr ogr amAppl i cat i onEvent s in
<CURAM DI R>/ EJBSer ver / conponent s/ Wr kspaceSer vi ces/ doc.

Customizing the concern role mapping process

The cur am wor kspaceser vi ces. appl i cati onprocessi ng. i npl package contains a

ConcernRoleMappingStrategy API that provides a customization point into the online application process.

Use the ConcernRoleMappingStrategy API to implement custom behavior following the creation of each
new concern role that is added to an application. For example, customers who have customized the
prospect person entity might want to store information on that entity that cannot be mapped using the
default CDME processing.

Enable the ConcernRoleMappingStrategy API
In the IBM Cdram Social Program Management system administration application, enable the

ConcernRoleMappingStrategy API by setting the Enable Custom Concern Role Mapping property to true.

1. Log in to the Social Program Management application as system administrator.
2. Click System Configurations > Application Data > Property Administration.

https://www.w3.org/TR/xsl11

IBM Curam Social Program Management 7.0.11 | 8 - Customizing the Universal Access Responsive Web
Application | 294

3. In the Application - Intake Settings category, search for the property
curam.intake.enableCustomConcernRoleMapping.

4. Edit the property to set its value to t r ue.

5. Save the property.

6. Select Publish.

Use the ConcernRoleMappingStrategy API

Use the enabled ConcernRoleMappingStrategy APl to implement a strategy for mapping information to a

custom concern role.

The cur am wor kspaceser vi ces. appl i cati onprocessi ng. i npl package contains the

ConcernRoleMappingStrategy API.

1. Provide an implementation of the customization point.
2. Bind your custom implementation by creating or extending your custom mapping module as

follows:

package com nyorg. cust om

cl ass MyMbdul e extends Abstract Modul e {

@verride

protected void configure() {

bi nd(Concer nRol eMappi ngSt r at egy. cl ass) . t o(

MyCust onConcer nRol eMappi ng. cl ass) ;

3. If you did not already add your MyModule class to the ModuleClassName table by using an
appropriate DMX file, add your MyModule class.

How to send applications to remote systems for processing

Use the Citizen Workspace to send applications to remote systems that use web services for processing.

An event Recei veAppl i cat i onEvent s. r ecei veAppl i cat i on is raised before the application is

sent to the remote system. The event can be used to edit the contents of the data store that

is used to gather application data before transmission. For more information, refer to the API
Javadoc for Recei veAppl i cati onEvent s, which is in <CURAM DI R>/ EJBSer ver / conponent s/

Wor kspaceSer vi ces/ doc.

IBM Curam Social Program Management 7.0.11 | 8 - Customizing the Universal Access Responsive Web
Application | 295

Customizing life events

A description of the high-level architecture of life events and how to perform the analysis and

development tasks in building a life event.

Many types of life events can be built by analysts, some require input from developers. This information
will help analysts to understand how to perform the analysis for a new life event and how to determine

whether input is needed from developers.

Related information
Configuring life events (on page 265)

Enabling and disabling life events

The life events feature is enabled by default. When it is enabled, the life event feature is available for
linked users only. You can use the REACT_APP_FEATURE_LIFE_LEVENTS_ENABLED environment variable

to enable or disable life events.

For more information about linked users, see User account types (on page 234).

The following life events functionality can be enabled or disabled:

« The View your account card on the Home page is updated to say See your next payment, tell us of
any changes in your circumstances, and more.

* Review your profile card on the Dashboard page.

« Tell us if any anything has changed pane on the Profile page.

» Live event-related URLs, for example /1 i f e- event s/ hi story.

1. Edit the . env file in the root of your application.
2. Set REACT_APP_FEATURE_LIFE_LEVENTS_ENABLED to t r ue or f al se. If you don't define the

environment variable, the life event feature defaults to enabled.

How to build a life event

To design a life event for IBM® Curam Universal Access, you must undertake an analysis.

You can build life events for caseworkers, or use the life event infrastructure to drive other processes like
certification, but that is outside the scope of this information. Java coding skills are not a prerequisite
for developing all life events. Depending on requirements, many and in some cases all of the artifacts
required can be developed by a Business Analyst. Business Analysts can use this information to

determine whether Java developers are needed to complete the implementation of a life event.

IBM Curam Social Program Management 7.0.11 | 8 - Customizing the Universal Access Responsive Web
Application | 296

Generally, there are two types of life events for citizens:

- Standard life events
* Round tripping life events

Standard life events allow citizens to enter new life event information and submit it to the agency. For
example, a citizen logs in and submits a "Having a Baby" life event, which is new information on the
system. If they submit incorrect information, such as the name of the obstetrician, they can start a new

life event, reenter the information, and submit.

Round-tripping life events are more complex. The distinction between round-tripping or standard life
events is whether the data that is pre-populated in the life event can be changed by the user. If a citizen
is expected to update pre-populated information in addition to adding new information, the life event is

considered a round-tripping life event. It's considerably harder to design scripts for this type of life event.

The primary artifacts that constitute a simple life event are:

« An IEG script and its associated data store schema
« An IEG script to review answers in a previously submitted life event (optional)
« A Curam Data Mapping Engine specification that describes how to map data from the IEG script

into evidence on the citizen's cases

All of these artifacts can be configured in the administrator application. For more information about

configuring Simple life events, see Configuring life events (on page 265).

Information that is entered is processed by the life events system as follows:

1. If the user is linked to the local IBM Curam Social Program Management case processing system,
then the life events system can update related evidence in their cases.
2. If the user is linked to remote systems, then the life events system can send updates to the remote

system by using web services.

If the life event is a round-tripping life event, or it is required to update the person's evidence in IBM Clram
Social Program Management, then some development work is needed. See the life events APIs needed
to meet these requirements or indeed to supplement the standard life event behavior with more custom

functionality.

Customizing advanced life events

To develop advanced life events, you must understand the difference between a simple life event and

advanced life event.

IBM Curam Social Program Management 7.0.11 | 8 - Customizing the Universal Access Responsive Web
Application | 297

When to use advanced life events

Advanced life events enable fully automated round-tripping of data. This means that evidence is read

into the datastore for an IEG script. It is then updated by the citizen. When the life event is submitted, the
original evidence that was read into the IEG script is updated. Advanced life events are only required when
this level of automated round tripping of data is required. Under all other circumstances Simple life events
are the recommended approach. Project Architects should consider carefully whether round tripping is
required or whether the data entered can be treated as new evidence to be integrated into the citizen's

cases.

Advanced life events cannot be configured through the administration user interface, they must be

created by developers.

How to build a life event

Analysis

The distinction between standard life events and round-tripping life events is whether citizens can change
the data that is prepopulated in the life event. If citizens can update prepopulated information, rather than
just adding new information, then use a round-tripping life event. It's more difficult to develop this type of
life event. The advanced life events subsystem is designed to cater for round-tripping life events.

The following information describes how to develop an advanced life event that supports round-tripping.

The following primary artifacts constitute an advanced life event:

- An IEG script and its associated data store schema.

+ An IEG script to review answers in a previously submitted life event (optional).

« A Recommendations Ruleset that produces the set of recommendations based on the information
that is entered in the IEG script (optional).

The life events system can take information that is entered by the user and update related evidence in any
cases they have.

The life events system can do one of the following processes:

1. If the user is linked to the local IBM Curam Social Program Management case processing system,
then the life events system can update related evidence in any of their cases.
2. If the user is linked to remote systems, then the life events system can send updates to related

remote systems through web services.

IBM Curam Social Program Management 7.0.11 | 8 - Customizing the Universal Access Responsive Web
Application | 298

You can configure the life events system to ask a citizen's permission before life event information is sent
to remote systems. A standard life event that just sends information to remote systems can be configured
through the administration application. For more information, see Defining Remote Systems.

If the life event is a round-tripping life event or is needed to update evidence in the local case processing
system, then some development work is needed to configure the life event. Round-tripping life events
must be pre-populated. Pre-population of life events is only supported for users that are linked to the
local IBM Curam Social Program Management case processing system by using a concern role. To read
information from cases and update those cases, the life events system relies on the Citizen Data Hub
subsystem. The following work is needed to configure the Citizen Data Hub.

The life event broker uses the Data Hub to get the data it needs to populate the life event, so you must
configure the Data Hub to extract this data. The life event broker also sends the updated data back
through the Data Hub. The Data Hub must be configured to tell it what to do with this updated data.

You can use some of these artifacts to configure the Citizen Data Hub for reading information:

« Transform - converts data from the Holding Case into data store XML.
« Filter Evidence Links - When you read Citizen Data, these links filter out only the evidence entities of
interest that are read from the Holding Case.

- View processors - Java™ classes for extracting non-evidence data into the data store XML.
You can use these artifacts, among others, to configure the Citizen Data Hub for updating information:

- Transforms - Convert a data store XML Difference Description back into Holding Case Evidence.

« Update processors - Do other update tasks or update non-evidence data that relates to citizens.

Considerations for life events analysis

The considerations that affect the complexity of developing a particular life event that must read from, or
write to, an evidence or participant-related data store in IBM Ciram Social Program Management. These

considerations inform any analysis of life events development and any resulting estimates.

1. Is the life event a standard life event or a round tripping life event
2. What information needs to be pre-populated into the IEG script?
3. What evidence data is read by the life event?

4. What evidence data is updated by the life event?

5. What non-evidence data is read/updated by the life event

6. How many programs or case types are affected by the life event

IBM Curam Social Program Management 7.0.11 | 8 - Customizing the Universal Access Responsive Web
Application | 299

7. If a life event shares to multiple cases, will those case types also share evidence with each other
using Evidence Broker?
8. Does a life event have associated recommendations? If so, do they relate to Community Services,

Government Programs or both?

Of these items that deal with Non-Evidence Entities presents the greatest challenge. Any life event that

updates non-evidence entities require developers with Java skills.

Building the components of a life event

How you build the component parts of a life event that uses the Citizen Data Hub. This information does

not require any knowledge of Java™.

Writing life event IEG Scripts

Writing a life event IEG script is similar to writing any other IEG script, but with some special
considerations. These considerations depend on whether the life event is a round-tripping life event or a
standard life event.

For a round-tripping life event, citizen data is read into the data store that is used by the IEG script. This
data can be modified by citizens as they progress from page to page in the life event script. For example,
a citizen can modify income data that is read into the life event script before submission. The life event
broker ensures that when the citizen changes the income data the changes are detected and propagated
correctly back to the income entity from which the data was read. The life event broker needs a way to
track data from its origin in the income entity, through the life event script, and back to the same income
entity. To facilitate this process, the IEG script designer needs to place a marker into the data store
schema.

The following code block is an example of the definition of an income data store:

1 <xsd: el ement nane="Inconme">
<xsd: conpl exType>
<xsd:attribute name="i nconeType" type="|NCOVE_TYPE"
defaul t=""/>

5 <xsd: attribute name="cgi ssl nconeType"

type="Cd SS_| NCOVE_TYPE"/ >

<xsd:attribute name="i nconeFrequency"
type="1 NCOVE_FREQUENCY" defaul t=""/>
<xsd:attribute name="i nconeAnount” type="1EG MONEY"
10 defaul t="0"/>

<xsd:attribute name="|ocal I D' type="1EG STRI NG'/>

IBM Curam Social Program Management 7.0.11 | 8 - Customizing the Universal Access Responsive Web
Application | 300

<xsd: conpl exType>

</ xsd: el ement >

The life event broker uses the I ocal | D attribute to track the unique identity of the entity from which the
income data was drawn. When this entity is changed and submitted, the life event broker can use the
value of | ocal I Dto locate the correct entity to update with the changes in the life event. Other special
markers exist that can be placed in the schema to aid with providing automatic updates to evidence

entities.

When you design a script for a round-tripping life event, you must account for the effects that pre-
population of data can have on the flow of the script. One example of this situation is conditional clusters.
Life event scripts need to avoid conditional clusters that are associated with pre-populated data. These
clusters are common in intake scripts but don't work well when the data store was pre-populated. For
example, for a life event that involves a job loss, a Boolean flag on the Per son entity, hasJob is used to
indicate that person has a job. The IEG script presents the user with a question: Does anyone in your
househol d have a j ob?. This question is used to drive the display of a conditional cluster that identifies
which household members who have jobs.

However, if the data in the data store is repopulated, it’s likely one or more Per son entities with hasJob
already be set to true. In the current implementation of IEG, it isn't possible to get the Does anyone in
your househol d have a job? control question to default to true even when hasJob is true for one or more
household members. For this reason, the rule needs to be to avoid control questions for conditional

clusters such as when the fields they control are pre-populated.

Pre-populating a life event

A description of the artifacts that you must develop to pre-populate a life event script:

How the Data Hub works for reading

You can use the Data Hub to collect data about Citizens from different locations and return the data as an
XML document in a datastore. You can use the Data Hub to hide the complexities of where data comes
from and how it is represented in its original locations. For example, to drive a "Lost my Job" life event,
you might need to gather information about a person's Income, Address, and Employment. These three
pieces of information might be represented differently on the underlying system, they might be on one or
more different systems. The caller doesn't need to know this detail. The Citizen Data Hub can get these
pieces of information in one single operation. Operations of this type are named uniquely, each is called

a "Data Hub Context". To animate the "Lost my Job" example, define a Data Hub Read Context called

"CitizenLostJob" that enables the collection of Income, Address and Employment information in a single

query.

IBM Curam Social Program Management 7.0.11 | 8 - Customizing the Universal Access Responsive Web
Application | 301

One of the sources that the Data Hub can draw on is Evidence on Cases. In particular, Evidence on the
Citizen's Holding Case. The Holding Case can use the Evidence Broker to gather data from many disparate
Integrated Cases or even from other systems through web services. The Holding Case is a little different
from other Cases. There is only one Holding Case per Citizen on a given IBM Curam Social Program
Management system. The Holding Case has an interface that allows all of the Evidence it contains to

be extracted in XML format. This XML format is optimized for the description of Evidence in particular.
Because it is optimized for the description of Evidence, it isn't necessarily in a format that is suitable for
insertion into a data store. Fortunately it is relatively easy to translate data in one XML format into another
format with XSLT. For more information about XSLT, see http://www.w3.org/TR/xslt.

Authoring Read Transforms

You can write XSLT Transforms for use in the Data Hub. To write Citizen Data Hub Transforms, you must
understand the structure of the Holding Evidence XML that is the source data and the Data Store schema
that is the target.

For example, a simple life event for Citizens who have bought a new car is associated with the Data Hub
Context "CitizenBoughtCar". Look at the following fragment of Holding Evidence XML that is used to
describe a Vehicle:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<client-data
xm ns="http://ww. curansof t war e. conf schemas/ Cl i ent Evi dence" >
<client locallD="101" isPrimaryParticipant="true">
<evi dence>
<entity |ocal | D="-416020015578349568" type="ET10081">
<attribute nanme="vehicl eMake">VMe</ attri but e>
<attribute name="versi onNo">2</attri bute>
<attribute nane="startDate">20110301</attri bute>
<attribute nanme="usageCode">VUl</attri bute>
<attribute name="anount Ored" >3, 200. 00</ attri bute>
<attribute name="nunber O Door s">0</attri bute>
<attribute nanme="evi dencel D'>
-5315936410157449216

</attribute>
<attribute nanme="nonthl yPaynment">0.00</attri bute>
<attribute name="vehicl eMbdel ">159</attri bute>
<attribute nanme="year">2008</attribute>

<attribute name="equityVal ue">0.00</attribute>

http://www.w3.org/TR/xslt

IBM Curam Social Program Management 7.0.11 | 8 - Customizing the Universal Access Responsive Web
Application | 302

<attribute name="endDate">10101</attri bute>
<attribute name="fair Market Val ue">17, 000. 00</ attri but e>
<attribute name="curankffectiveDate">20110301
</attribute>
</entity>
</ evi dence>
</client>

</client-data>

The cl i ent element represents data that belongs to the participant with concern role id 101. In Social
Program Management demo data this is James Smith. The client contains a single evidence entity of
type ET10081. In the Social Program Management Common Evidence layer, ET10081 is the Evidence
Type identifier for Vehicle Evidence. The | ocal | D attribute plus the evidence type uniquely identifies the
underlying evidence object for the Vehicle. This data must be mapped to data store XML so that it can be

used to populate an IEG Script. Consider how the previous data is represented in data store XML:

<?xm version="1.0" encodi ng="UTF-8"?>
<Appl i cation>
<Person | ocal | D="101" isPrimaryParticipant="true"
hasVehi cl e="true">
<Resour ce resour cePageCat egor y="RPC4001"
| ocal | D="-416020015578349568" vehi cl eMake="VM2"
ver si onNo="2" anount Oned="3, 200. 00" vehi cl eMddel =" 159"
year ="2008" fair Market Val ue="17, 000. 00"
cur ankf f ecti veDat e="20110301" >
<Descri ptor/>
</ Resour ce>
</ Per son>

</ Appl i cati on>

This XML data must conform to the schema that is used to build the IEG script. Notice that the data store
XML conforms to a schema that is a superset of the Ci t i zenPor t al . xsd schema. You can use the
CitizenPortal . xsd schema as a starting point for the schemas used in Customer life events and add
"marker" attributes that are needed for life events. These marker attributes include the use of | ocal | D.
Datastore schemata for entities can also include the following special markers that are specialized for
representing Evidence in the Holding Case:

- curamEffectiveDate - This maps to the effective date of a piece of Social Program Management
Evidence

IBM Curam Social Program Management 7.0.11 | 8 - Customizing the Universal Access Responsive Web
Application | 303

The following XSLT fragment shows how to transform Vehicle Holding Evidence into a corresponding
Data Store Entity:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<xsl :styl esheet xm ns:xsl="http://ww.w3. org/ 1999/ XSL/ Tr ansf or nt'
xm ns: x="http://wwv. curansof t war e. conf
schenas/ Di f f er enceConmand”
xm ns: fn="htt p://ww. w3. or g/ 2006/ xpat h- f uncti ons"
version="2.0">

<xsl :out put indent="yes"/>

<xsl:strip-space el ements="*"/>

<xsl : tenpl at e mat ch="updat e">
<xsl:for-each select="./diff[@ntityType="Application']">
<xsl : el ement nane="client-data">
<xsl : appl y-tenpl at es/ >
</ xsl : el enent >
</ xsl: for-each>

</ xsl : tenpl at e>

<xsl:tenplate match="diff[@ntityType=' Person']">
<xsl: el enent nane="client">
<xsl:attribute name="I|ocal | D'>
<xsl :val ue-of select="./@dentifier"/>
</xsl:attribute>
<xsl : el ement nane="evi dence">
<xsl : appl y-tenpl at es/ >
</ xsl : el enent >
</ xsl : el ement >

</ xsl: tenpl at e>

<xsl:tenplate match="diff[@ntityType=' Resource']">

<xsl:el enent nanme="entity">

<xsl:attribute name="type">ET10081</xsl| :attribute>
<xsl:attribute name="action">

<xsl :val ue-of select="./@liffType"/>

IBM Curam Social Program Management 7.0.11 | 8 - Customizing the Universal Access Responsive Web
Application | 304

</xsl:attribute>
<xsl:attribute name="|ocal | D'>
<xsl :val ue-of select="./@dentifier"/>
</xsl:attribute>
<xsl:for-each select="./attribute">
<xsl :copy-of select="."/>

</ xsl: for-each>

</ xsl : el enent >

</ xsl : tenpl at e>

<xsl:tenpl ate match="*">
<l-- do nothing -->
</ xsl: tenpl at e>

</ xsl : styl esheet >

Adding this transform to your life event can turn Vehicle Evidence recorded on any Integrated Case into
a Data Store format that can be displayed in an IEG script with all the information pre-populated from the
Evidence Record.

Defining Filters for Evidence

When the Holding Case is called to return an XML representation of its evidence, by default it returns all
evidence for the citizen concerned. This can be a very large query that returns more information than

is required. For each Data Hub Context, use a Filter Evidence Link to define, which Evidence Types you
need. Define a Filter Evidence Link by adding entries to a Filter Evidence Link dnx file. The following
example shows a Filter Evidence Link dnx file that defines the information that to be returned for the

"CitizenBoughtCar" life event:

<?xm version="1.0" encodi ng="UTF-8"?>
<t abl e nanme="F| LTEREVI DENCELI NK" >
<col utm nane="FI LTEREVLI NKI D" type="id" />
<col utmm nane="F|I LTERNAME" type="text" />
<col utm nane="EVI DENCETYPECODE" type="text" />
<r ow>
<attribute name="FI LTEREVLI NKI D" >

<val ue>175</ val ue>

IBM Curam Social Program Management 7.0.11 | 8 - Customizing the Universal Access Responsive Web
Application | 305

</attribute>
<attribute name="Fl LTERNAMVE" >
<val ue>Ci ti zenBought Car </ val ue>
</attribute>
<attribute nanme="EVI DENCETYPECODE" >
<val ue>ET10081</ val ue>
</attribute>
</ row>

</tabl e>

Using Pre-Packaged View Processors

You now know how Transforms can be used to turn Evidence data into Data store XML for use in a life
event Script. However, other important pieces of information are not represented as Evidence. In general,
you must develop custom Java code to populate any information that is not represented as evidence.
With Java, you can develop View Processors that can be used to extract non-evidence data and translate
this data into data store XML. By associating these View Processors with the right Data Hub Context,
they can add their information into the data store in addition to the data put there by the transforms. The
Life Events Broker ships with some pre-packaged View Processors that are capable of inserting certain

frequently used non-evidence Data.

» Household View Processor

» The Person Address View Processor

The Household View Processor finds all Persons that are related to the currently logged-in user
and pulls them into the data store with information on how they are related to the logged-in
Citizen. This information is based on the IBM® Curam Social Program Management Platform
Concer nRol eRel at i onshi p entity.

The Person Address View Processor populates the most important details of the logged-in Citizen, such
as name and Social Security Number. It also pulls in the Residential and Mailing addresses of the logged-
in Citizen. Both the Household View processor and the Person Address View Processor can be used
together in the same life event Context but the Person Address View Processor must be run after the
Household View Processor. The following example shows how to configure these two View Processors to
execute for the "CitizenBoughtCar" life event.

<?xm version="1.0" encodi ng="UTF- 8" ?>
<t abl e name="VI EWPROCESSCR" >

<col utm nanme="VI EWPROCESSORI D" type="id"/>

IBM Curam Social Program Management 7.0.11 | 8 - Customizing the Universal Access Responsive Web
Application | 306

<col utm name="LOG CALNAME" type="text" />
<col utm nanme="CONTEXT" type="text" />
<col utm nanme="VI EWPROCESSORFACTORY" type="text" />
<col utm nanme=" RECORDSTATUS" type="text"/>
<col utm nanme="VERS|I ONNO' type="nunber"/>
<r ow>
<attribute name="VI EWPROCESSORI D' >
<val ue>4</val ue>
</attribute>
<attribute name="LOG CALNAMVE" >
<val ue>Ci ti zenLost JobO</ val ue>
</attribute>
<attribute name="CONTEXT">
<val ue>Ci ti zenBought Car </ val ue>
</attribute>
<attribute name="VI EWPROCESSORFACTORY" >
<val ue>
curam citizen. dat ahub.internal.inpl.
+Househol dCust onVi ewPr ocessor Fact ory
</ val ue>
</attribute>
<attribute nanme="RECORDSTATUS">
<val ue>RST1</ val ue>
</attribute>
<attribute name="VERSI ONNO' >
<val ue>1</val ue>
</attribute>
</ row>
<r ow>
<attribute name="VlI EAWPROCESSORI D' >
<val ue>5</val ue>
</attribute>
<attribute name="LOG CALNAME" >
<val ue>Ci ti zenLost Job1</ val ue>
</attribute>
<attribute name=" CONTEXT">

<val ue>Ci ti zenBought Car </ val ue>

IBM Curam Social Program Management 7.0.11 | 8 - Customizing the Universal Access Responsive Web
Application | 307

</attribute>
<attribute name="VI EWPROCESSORFACTORY" >
<val ue>
curam ci tizen. datahub.internal.inpl.
+Cust onPer sonAddr essVi ewPr ocessor Fact ory
</ val ue>
</attribute>
<attribute nane="RECORDSTATUS">
<val ue>RST1</ val ue>
</attribute>
<attribute name="VERSI ONNO'>
<val ue>1</ val ue>
</attribute>
</ row>

</tabl e>

The CONTEXT field links the Vi ewPr ocessor to the "CitizenBoughtCar" life event Context. This ensures
that this Vi ewPr ocessor is called whenever the "CitizenBoughtCar" Data Hub Context is called. The use
of al ogi cal Nane uniquely distinguishes each View Processor. View Processors for a Data Hub Context
are executed in lexical order. A View Processor name with a | ogi cal Nane of "AAA" for the Data Hub
Context "CitizenBoughtCar" is executed before one with a | ogi cal Nane of "AAB".

Driving updates from life events

A description of the artifacts that you must develop to process data that is submitted from a life event

script.

How the Data Hub works for updating

The citizen Data Hub also has Data Hub contexts for updating. Life events typically use the same Data
Hub context name for the read and updates that are associated with the same life event. The example
Giti zenBought Car context describes a set of artifacts for prepopulating a G ti zenBought car life event
script and also a set of artifacts for handling updates to the Citizen's data when the Gi ti zenBought Car life

event script is complete.

An update operation for a Citizen Data Hub context can update multiple individual entities in a single

transaction. The following artifacts are provided to a Data Hub following a script submission:

IBM Curam Social Program Management 7.0.11 | 8 - Customizing the Universal Access Responsive Web
Application | 308

- A Data Store root entity, which is the root of the data store that was updated by the life events IEG
script.

- A Difference command, which is an entity that describes how this data store is different from the
one that was passed to the IEG script before it was started. In other words, it describes how the
user changed the data by running the life event script. These differences are broken down into

three basic types:

o Creations - The user creates a data store entity as a result of running the IEG script.
> Updates - The user updates an entity as a result of running the IEG script.
> Removals - The user removes an entity as a result of running the IEG script.

Creations and Updates are the most common. Allowing users to remove items in life events scripts
is generally considered bad practice. Standard life events tend to be characterized by a number
of Creations whereas Round Tripping life events tend to be a mixture of Creations and Updates.
The Difference Command is generated automatically by the life event broker after a life event is

submitted.

» A Data Hub Context Name.

To turn a Data Hub Update Operation into automatic updates to evidence entities on the Holding Case,
specify a Data Hub Update Transform. For requirements to update non-evidence entities, you must
develop an Update Processor. These Update Processors involve Java™ code development.

Writing transforms for updating

Update Transforms, like Read Transforms are specified by using a simple XSLT syntax. To write Update
Transforms, the author must understand both the input XML, and the output Evidence XML format.

The following examples are built around a Gi ti zenHavi ngABaby life event. This life event allows the user

to report that they are due to have a baby. They can enter a number of unborn children to indicate, for
example, that they are expecting twins. The user can also enter a due date and they can nominate a father
for the unborn child. The father can be an existing case participant or someone else entirely. In the latter
case, they must enter information like their name, address, or Social Security Number. This life event is
not a round-tripping life event, as it creates evidence rather than updates evidence. The input to an Update
Transform is an XML-based description of the Data Store Difference Command. An example difference

command XML for the Gi ti zenHavi ngABaby is shown:

<updat e>
<di ff diffType="NONE" entityType="Application">
<diff diffType="NONE" entityType="Person" identifier="102">

<di ff diffType="CREATE" entityType="Pregnancy">

IBM Curam Social Program Management 7.0.11 | 8 - Customizing the Universal Access Responsive Web
Application | 309

<attribute name="nunChildren">1</attribute>
<attribute name="dueDate">20110528</attri bute>
<attribute name="curanDat aSt or eUni quel D' >385</attri but e>
</diff>
</diff>
<di ff diffType="UPDATE" entityType="Person" identifier="101">
<attribute name="i sFat her ToUnbor nChi | d">true</attribute>
<attribute name="curanDat aSt or eUni quel D' >399</ attri but e>
</diff>
</diff>

</ updat e>

The difference command XML corresponds node-for-node with the data store XML. Each di f f node
describes how the corresponding data store entity was modified by running the IEG script. The

cur anDat aSt or eUni quel D attribute identifies the changed data store entity. The di f f Type attribute
identifies the nature of the change, for example CREATE, UPDATE, NONE, or REMOVE. Attributes that
changed or were added to each data store entity are listed. In the previous example, the user registered a
pregnancy for Linda Smith (concern role ID 102) with one unborn child, due on 28 May 2011. The father is
listed as being James Smith (concern role ID 101). For more information about the difference command
XML, see the schema in the Difference Command XML schema. You can use some other attributes and
elements when you update the XML, as shown:

<?xm version="1.0" encodi ng="UTF-8"?>
<client-data>
<client locallD="102">
<evi dence>
<entity type="ET10074" action="CREATE" |ocal | D="">
<attribute name="nuntChildren">1</attribute>
<attribute nanme="dueDate">20110528</attri bute>
<entity-data entity-data-type="role">
<attribute type="LG'/>
<attribute roleParticipantlD="102"/>
<attribute
entityRol el DFi el dNane="caseParti ci pant Rol el D"/ >
</entity-data>
<entity-data entity-data-type="role">
<attribute type="FAT"/>

<attribute roleParticipantlD="101"/>

IBM Curam Social Program Management 7.0.11 | 8 - Customizing the Universal Access Responsive Web
Application | 310

<attribute participant Type="RL7"/>
<attribute
entityRol el DFi el dNane="f ahCaseParti ci pant Rol el D"/ >
</entity-data>
<entity type="ET10125" acti on="CREATE">
<attribute name="comments"> Unborn child 1</attribute>
<entity-data entity-data-type="role">
<attribute type="UNB"/>
<attribute rol eParticipantlD="102"/>
<attribute
entityRol el DFi el dNane="caseParti ci pant Rol el D'/ >
</entity-data>
</entity>
</entity>
</ evi dence>
</client>

</client-data>

Note the use of the act i on attribute, which describes the action to be taken on the underlying evidence.

For example, to create the evidence or to update existing evidence.

The next section discusses the meaning of the <ent i t y- dat a> element. The following example shows
the XSLT used to transform the previous difference XML into the previous evidence XML:

<?xm version="1.0" encodi ng="UTF-8"?>
<l-- This script plucks out and copies all resource-related -->
<l-- entities fromoutput built by the XM.ApplicationBuil der -->
<xsl :styl esheet xm ns:xsl="http://ww.w3. org/ 1999/ XSL/ Tr ansf or nt'

xm ns: x="http://wwv. curansof t war e. conf

schenas/ Di f f er enceConmand”

xm ns: fn="http://ww. w3. or g/ 2006/ xpat h-f uncti ons"

versi on="2.0">

<xsl :out put indent="yes"/>

<xsl:strip-space el enents="*"/>

<xsl :tenpl ate mat ch="updat e">

<xsl:for-each select="./diff[@ntityType="Application']">
<xsl :el enent nane="client-data">
<xsl : appl y-t enpl at es/ >

</ xsl : el ement >

IBM Curam Social Program Management 7.0.11 | 8 - Customizing the Universal Access Responsive Web
Application | 311

</ xsl: for-each>
</ xsl : tenpl at e>
<xsl:tenplate match="diff[@ntityType=' Person']">
<xsl : el ement nanme="client">
<xsl:attribute name="I|ocal | D'>
<xsl :val ue-of select="./@dentifier"/>
</xsl:attribute>
<xsl : el ement nane="evi dence">
<xsl : appl y-tenpl at es/ >
</ xsl : el ement >
</ xsl : el enent >
</ xsl:tenpl at e>
<xsl:tenplate match="diff[@ntityType=' Pregnancy']">
<xsl:el enent name="entity">
<xsl:attribute name="type">ET10074</xsl :attribute>
<xsl:attribute name="action">
<xsl :val ue-of select="./@liffType"/>
</xsl:attribute>
<xsl:attribute name="|ocal | D'>
<xsl :val ue-of select="./@dentifier"/>
</xsl:attribute>
<xsl:for-each select="./attribute">
<xsl :copy-of select="."/>
</ xsl: for-each>
<xsl : el enent nanme="entity-data">
<xsl:attribute name="entity-data-type">
role
</xsl:attribute>
<xsl:el enent nane="attribute">
<xsl:attribute name="type">LG</xsl:attribute>
</ xsl : el ement >
<xsl : el ement nanme="attribute">
<xsl:attribute name="rol ePartici pant|D'>
<xsl :val ue-of select="../@dentifier"/>
</xsl:attribute>
</ xsl : el enent >

<xsl : el ement nanme="attribute">

IBM Curam Social Program Management 7.0.11 | 8 - Customizing the Universal Access Responsive Web
Application | 312

<xsl:attribute name="entityRol el DFi el dNane" >
casePartici pant Rol el D
</xsl:attribute>
</ xsl : el ement >
</ xsl : el enent >
<xsl :el enent nane="entity-data">
<xsl:attribute name="entity-data-type">
rol e
</xsl:attribute>
<xsl:el ement name="attribute">
<xsl:attribute name="type">FAT</xsl:attribute>
</ xsl : el enent >
<xsl:for-each sel ect=
.ol /diff[@ntityType='"Person']/attribute[
@ane="i sFat her ToUnbor nChi | d'
and ./text()="true']">
<!-- Copy the participant idif a famly -->
<!-- nmenber is the father -->
<xsl : el ement nanme="attribute">
<xsl:attribute name="rol ePartici pant|D'>
<xsl : val ue-of sel ect="
../ @dentifier"/>
</xsl:attribute>
</ xsl : el enent >
</ xsl: for-each>
<l-- Copy details of absent parent -->
<xsl:cal |l -tenpl ate nanme="absent Fat her"/>
<xsl:el ement name="attribute">
<xsl:attribute name="entityRol el DFi el dName" >
fahCaseParti ci pant Rol el D
</xsl:attribute>
</ xsl : el ement >
</ xsl : el ement >
<xsl : vari abl e nane="nunBabi es" >
<xsl :val ue-of select="attribute[
@ane=' nunthi | dren’

1/text()"/>

IBM Curam Social Program Management 7.0.11 | 8 - Customizing the Universal Access Responsive Web
Application | 313

</ xsl:variabl e>
<xsl :cal | -tenpl ate name="unbor nChi |l dren">
<xsl : wi t h- param nane="count" sel ect =" $nunBabi es"/ >
</ xsl:call-tenpl ate>
</ xsl : el enent >

</ xsl:tenpl at e>

<xsl :tenpl at e name="unbor nChi | dren">
<xsl : param nanme="count" sel ect="1"/>
<xsl:if test="$count > 0">
<xsl : el ement nanme="entity">
<xsl:attribute name="type">ET10125</xsl:attri bute>
<xsl:attribute name="action">
<xsl :val ue-of select="./@liffType"/>
</xsl:attribute>
<xsl:el ement name="attribute">
<xsl:attribute name="name">
conment s
</xsl:attribute>
Unborn child <xsl:val ue-of select="$count"/>
</ xsl : el ement >
<xsl :el enent nanme="entity-data">
<xsl:attribute name="entity-data-type">
role
</xsl:attribute>
<xsl : el ement nanme="attribute">
<xsl:attribute name="type">
UNB
</xsl:attribute>
</ xsl : el enent >
<xsl : el ement nanme="attribute">
<xsl:attribute name=
“rol eParticipant|D'>
<xsl : val ue-of sel ect="
../@dentifier"/>
</xsl:attribute>

</ xsl : el ement >

IBM Curam Social Program Management 7.0.11 | 8 - Customizing the Universal Access Responsive Web
Application | 314

<xsl : el ement nanme="attribute">
<xsl:attribute name=
“entityRol el DFi el dNane" >
casePartici pant Rol el D
</xsl:attribute>
</ xsl : el enent >
</ xsl : el ement >
</ xsl : el ement >
<xsl :cal | -tenpl ate name="unbor nChi |l dren">
<xsl : wi t h- param nane="count" sel ect ="$count - 1"/>
</ xsl:call-tenpl ate>
</xsl:if>

</ xsl : tenpl at e>

<xsl :tenpl at e name="absent Fat her ">
<xsl:el ement name="attribute">
<xsl:attribute name="partici pant Type">
<xsl:text>RL7</xsl| :text>
</xsl:attribute>

</ xsl : el ement >

<xsl:if test="attribute[@anme="fahFirstNane']">
<xsl:el enent nane="attri bute">
<xsl:attribute name="firstName">
<xsl :val ue-of select="attribute[
@ane="f ahFi r st Nang'
1/text()"/>
</xsl:attribute>
</ xsl : el enent >

</xsl:if>

<l-- etc. map other personal details such as -->

<l-- SSN, date of birth -->

<xsl:if test="diff[@ntityType='Residential Address']">
<xsl:if test="diff]

@ntityType="Residential Address']/attribute[

IBM Curam Social Program Management 7.0.11 | 8 - Customizing the Universal Access Responsive Web
Application | 315

@ranme="street1']">
<xsl : el ement nanme="attribute">
<xsl:attribute name="street1">
<xsl : val ue-of select=
"diff[
@ntityType="Residential Address']
lattribute[
@ranme="streetl']J/text()"/>
</xsl:attribute>
</ xsl : el ement >
</xsl:if>
<l-- etc. map other parts of residential address -->
</xsl:if>

</ xsl : tenpl at e>

<xsl:tenplate nmatch="*">
<!-- do nothing -->
</ xsl:tenpl at e>

</ xsl : styl esheet >

Writing transforms that create new case participants

Evidence Entities frequently refer to third parties. For example, Pregnancy evidence refers to the father
through a Case Participant Role. The associated father can be a Person or a Prospect Person. Other
evidence types, such as St udent, can refer to a School that is entered as a Representative Case

Participant Role.

The Evidence XML schema provides a generic element that is called <ent i t y- dat a>, which can be
used to provide special handling instructions to the Citizen Data Hub. The type of handling depends
onthe <entity-dat a-type> specified. IBM Curam Social Program Management provides a special
processor for the entity-data-type r ol e. This role entity data processor can be used to create new Case
Participant Roles or to reference existing Case Participant Roles for existing Case Participants. In the
Evidence XML output listed previously, the attribute that is denoted by t ype is used to denote the Case
Participant Role Type. For example, FAT for Father or UNB for Unborn Child. This value must be a code-
table value from the CaseParti ci pant Rol eType code table. Ther ol eParti ci pant | Ddenotes
the concer nRol el D of an existing participant on the system. If the r ol eParti ci pant | Dis supplied, the
system does not attempt to create a new Case Participant, but reuses a case participant with this ID. The
entityRol el DFi el dNane is the field name in the corresponding Evidence Entity. For example, for the

IBM Curam Social Program Management 7.0.11 | 8 - Customizing the Universal Access Responsive Web
Application | 316

Pregnancy evidence entity, it is f ahCaseParti ci pant Rol el D. Where a new participant needs to be

created, the following fields are supported by the Role Entity Data Processor.

* partici pant Type - A code table entry from the Concer nRol eType code table. For example, use
RL7 to create a new Prospect Person.

¢ firstName

*mddlelnitial

¢ | ast Nanme

* SSN

edateOBirth

¢ | ast Nane

¢ | ast Nane

estreetl

scity

e state

¢ zi pCode

Updating Non-Evidence entities

You can configure life events to automatically map updates through to Evidence Entities on multiple
integrated cases. Sometimes life events must update non-Evidence entities such as a Residential
Address, Employment, or other customer-specific non-evidence entities. Typically, these entities are
shared across multiple cases. It is also typical that these entities do not follow the same controlled Life

Cycle as evidence entities. Evidence has many advantages:

« It is temporal.

- It is case-specific, with sharing of updates between cases controlled through the Evidence Broker.

- Caseworkers can veto acceptance of updates that come from external sources like IBM® Curam
Universal Access.

- It has an in-edit and approval cycle.

- It has support for verifications.

Non-evidence entities have none of these advantages and safeguards. A decision to update non-evidence
entities based on life events must be made with due care, especially if the changes can be applied
simultaneously across multiple cases. You can update non-evidence entities but this approach always
involves custom code. These approaches must include safeguards to ensure that at least one agency

worker manually approves changes before they are applied to the system.

IBM Curam Social Program Management 7.0.11 | 8 - Customizing the Universal Access Responsive Web
Application | 317

Configuring the evidence broker for use with the holding case

The Holding Case is only a holding area for Evidence before it is sent somewhere else. Typically, after
data is updated on the Holding Case, the goal is to broker these updates to Integrated Cases so that

caseworkers can evaluate the changes and apply them to the relevant cases.

For example, after the data is accepted on Integrated Cases, a user can see the positive impact of
submitting a life event because the updated data has an impact on the user's benefits. The bridge
between the Holding Case and the Integrated Cases is crossed only if the appropriate Evidence Broker
configuration is defined. For more information about the Evidence Broker, see the Evidence Broker

Developers Guide.

Configuring sharing from the Holding Case

An evidence configuration for sharing of Pregnancy evidence from the Holding Case to an Integrated Case

is shown in the following example:

<?xm version="1.0" encodi ng="UTF-8"?>
<t abl e name="EVI DENCEBROKERCONFI G' >

<col utm nanme="EVI DENCEBROKERCONFI G D' type="id"/>
<col utm nanme="SOURCETYPE" type="text" />
<col utmm nanme="SOURCEI D" type="id" />
<col utmm nanme="TARGETTYPE" type="text" />
<col utmm nane="TARGETI D" type="id"/>
<col utmm nane="SOURCEEVI DENCETYPE" type="text"/>
<col utm nanme="TARGETEVI DENCETYPE" type="text"/>
<col utm nanme=" AUTOACCEPTI ND" type="bool "/ >
<col utm nanme="WEBSERVI CESI ND" type="bool "/>
<col utmm nane="SHAREDTYPE" type="text"/>
<col utm nanme=" RECORDSTATUS" type="text"/>
<col utmm nane="VERS|I ONNO' type="nunber"/>
<r ow>

<attribute name="EVI DENCEBROKERCONFI Gl D" >

<val ue>10003</ val ue>
</attribute>
<attribute name="SOURCETYPE">
<val ue>CT10301</ val ue>
</attribute>
<attribute name="SOURCEI D' >

<val ue>10330</ val ue>

IBM Curam Social Program Management 7.0.11 | 8 - Customizing the Universal Access Responsive Web
Application | 318

</attribute>

<attribute nanme="TARGETTYPE">
<val ue>CT5</ val ue>

</attribute>

<attribute name="TARCETI D'>
<val ue>4</ val ue>

</attribute>

<attribute name="SOURCEEVI DENCETYPE" >
<val ue>ET10000</ val ue>

</attribute>

<attribute name="TARGETEVI DENCETYPE" >
<val ue>ET10074</ val ue>

</attribute>

<attribute name=" AUTOACCEPTI ND" >
<val ue>0</ val ue>

</attribute>

<attribute name="WEBSERVI CESI ND"' >
<val ue>0</ val ue>

</attribute>

<attribute name="SHAREDTYPE">
<val ue>SET2002</ val ue>

</attribute>

<attribute name="RECORDSTATUS' >
<val ue>RST1</ val ue>

</attribute>

<attribute name="VERSI ONNO' >
<val ue>1</val ue>

</attribute>

</ row>

</t abl e>

When evidence is shared from the Holding Case to another Integrated Case, the source type needs to

be cr10301 and the source ID needs to be set to 10330. The source evidence type needs to be set to
ET10000, which is the code for all Evidence that is stored in Holding Cases. Evidence of this type is known
as Hol di ng Evi dence. The target evidence type in this case is ET10074. In Cdram Common Evidence,

this particular designation identifies Pregnancy Evidence. The evidence sharing type needs to be set to
SET2002, which is the code for Non-Identical Sharing.

IBM Curam Social Program Management 7.0.11 | 8 - Customizing the Universal Access Responsive Web
Application | 319

o ™
Note:
The AUTOACCEPTI ND is set to 0. Always set this value to 0 when it is shared from a Holding Case to
an Integrated Case. This setting means that a caseworker always sees any changes that come

from the citizen's Holding Case.
N /

If the caseworker agrees with the changes, the Incoming Evidence link of the Integrated Case Evidence

page can be used to synchronize the data from the Holding Case in the normal way.

To establish an Evidence Broker Configuration for a custom component, a DMX file must be created that
contains the configuration that follows the previous example, for example, “SERVER_DI R% conponent s
\ Custom data\initial\ EBROKER CONFI G dnk

In sharing Holding Evidence to a Standard Evidence Entity like a Pregnancy, the Evidence Broker copies
the Holding Evidence that contains the Pregnancy data into a new Pregnancy Evidence Record in the
target Integrated Case. Holding Evidence is not standard Evidence. Holding Evidence is stored in an XML
representation, so while the Holding Evidence is copied to the Target Evidence type, the Evidence Broker
converts the XML data into standard Evidence data. To assist with this conversion process, it is necessary

to supply metadata. See the following example of this metadata:

<?xm version="1.0" encodi ng="UTF-8"?>
<dat a- hub- confi g>
<evi dence-confi g package="curam hol di ngcase. evi dence" >
<entity name="Hol di ngEvi dence" ev-type-code="ET10000">
<attribute name="entityStruct">
curam ci ti zen. dat ahub. hol di ngcase. hol di ngevi dence. struct.
+Hol di ngEvi denceDt | s
</attribute>
</entity>
<entity name="Pregnancy" ev-type-code="ET10074">
<attribute name="entityStruct">
curam evi dence. entity.struct.PregnancyDtls
</attribute>
<rel ated-entity>
<case-partici pant-rol e>
<attribute name="|inkAttribute">
fahCaseParti ci pant Rol el D
</attribute>

</ case-partici pant-rol e>

IBM Curam Social Program Management 7.0.11 | 8 - Customizing the Universal Access Responsive Web
Application | 320

<case-participant-rol e>

<attribute name="|inkAttribute">
casePartici pant Rol el D

</attribute>

</ case-partici pant-rol e>

</rel ated-entity>
</entity>
</ evi dence-confi g>

</ dat a- hub- confi g>

The metadata describes each of the entities that can be copied to and from the Holding Case and an
Integrated Case. The metadata describes the dt | s structs that are used to build the target evidence. It
also describes which of the attributes in Case Evidence refer to case participant roles. This information
ensures that when the Holding Evidence is copied, it does not blindly copy case participant role identifiers
from Holding Evidence. Instead, it looks for the equivalent case participant role ID on the target case and,
if it does not exist, creates one.

This metadata is stored in an AppResour ce resource store key. The resource store key is identified by the
Environment Property cur am wor kspaceser vi ces. dat ahub. net adat a. The initially configured
value for this variable defaults to the value cur am wor kspaceser vi ces. dat ahub. net adat a. This
variable points to default Holding Evidence Data Hub metadata. You can use the following steps to
replace the default Holding Evidence Data Hub metadata with a custom version to support all Evidence
Types that need to be brokered from the Holding Case to all Integrated Cases:

« Copy the contents of “SERVER DI R% conponent s\ Wor kspaceSer vi ces\data\initi al
\ cl ob\ Dat aHubMet aDat a. xm to %SERVER_DI R% conponent s\ Customi data\initi al
\ cl ob\ Cust onDat aHubMet aDat a. xni

- Edit the contents of Cust onDat aHubMet aDat a. xnmi to describe all the Evidence Entities that
need to be updated by the Data Hub.

- Create a file “SERVER DI R% conponent s\ Cust omi dat a\i ni ti al \ APP_RESOURCES. dnx.
Add an entry to this file as shown:

<?xm version="1.0" encodi ng="UTF-8"?>

<t abl e nanme=" APPRESOURCE" >

<col utm nanme="resourcei d" type="id" />

<col utm nanme="|ocal el dentifier" type="text"/>
<col utmm nanme="nanme" type="text"/>

<col utm nane="cont ent Type" type="text"/>

<col utm nane="cont ent Di sposi tion" type="text"/>

IBM Curam Social Program Management 7.0.11 | 8 - Customizing the Universal Access Responsive Web
Application | 321

<col utm nanme="content" type="blob"/>
<col utm nanme="internal " type="bool "/>
<col umm nanme="|astWitten" type="ti mestanp"/>
<col utmm nane="ver si onNo" type="nunber"/>
<r ow>
<attribute name="resourcel D'>
<val ue>10700</ val ue>
</attribute>
<attribute nanme="|ocal el dentifier"> <val ue/ >
</attribute>
<attribute name="nane">
<val ue>cust om dat ahub. net adat a</ val ue>
</attribute>
<attribute nane="content Type">
<val ue>t ext/ pl ai n</ val ue>
</attribute>
<attribute nanme="content Di sposition"> <val ue>i nline</val ue>
</attribute> <
attribute nanme="content"> <val ue> ./Customi data/initial/clob/CustonDataHubMet aData. xm </val ue>
</attribute> <attribute name="internal "> <val ue>0</val ue> </attribute>
<attribute nanme="lastWitten"> <val ue>SYSTI ME</ val ue>
</attribute> <attribute name="versi onNo"> <val ue>1</val ue>
</attribute>
</ row>

</tabl e>

- Create or append to the file “SERVER DI R% conponent s\ Cust om properties
\ Envi ronment . xm adding an entry along the following lines:

<envi r onnent >
<type nane="dynam c_properties">
<section code="WSSVCS"

name="Wr kspace Services - Configuration">

<vari abl e name="curam wor kspaceser vi ces. dat ahub. net adat a"
val ue="cust om dat ahub. net adata" onlyi n="al | "
type="STRI NG'>
<coment >

Identifies an AppResource used to configure DataHub

net a- dat a.

IBM Curam Social Program Management 7.0.11 | 8 - Customizing the Universal Access Responsive Web
Application | 322

</ conment >
</vari abl e>
</ section>
</type>

</ envi ronnent >

Round-tripping and configuring sharing to the Holding Case

Analysts also might want to consider whether evidence needs to be transferred in the opposite direction.
That is, from the Integrated Cases to the Holding Case. When sharing is configured from the Integrated
Case to the Holding Case, changes made by the caseworker to selected evidence can be propagated
back to the Holding Case. This process is essential for life events that need to prepopulate data from
Evidence Entities in existing Integrated Cases. This example shows how to configure Pregnancy Evidence
for Sharing to the Holding Case.

<?xm version="1.0" encodi ng="UTF-8"?>
<t abl e nane=" EVI DENCEBROKERCONFI G' >

<col utm nanme="EVI DENCEBROKERCONFI Gl D" type="id"/>
<col utm name="SOURCETYPE" type="text" />
<col utm nanme="SOURCEI D" type="id" />
<col utmm nanme="TARGETTYPE" type="text" />
<col utmm nane="TARGETI D" type="id"/>
<col utm nane=" SOURCEEVI DENCETYPE" type="text"/>
<col utm nanme="TARGETEVI DENCETYPE" type="text"/>
<col utm name=" AUTOACCEPTI ND" type="bool "/ >
<col utm nanme="WEBSERVI CESI ND" type="bool "/ >
<col utmm nanme="SHAREDTYPE" type="text"/>
<col utm nane=" RECORDSTATUS" type="text"/>
<col utmm nane="VERS|I ONNO' type="nunber"/>
<r ow>

<attribute name="EVI DENCEBROKERCONFI Gl D" >

<val ue>2</ val ue>
</attribute>
<attribute name="SOURCETYPE">
<val ue>CT5</ val ue>
</attribute>
<attribute name="SOURCEI D' >

<val ue>4</val ue>

IBM Curam Social Program Management 7.0.11 | 8 - Customizing the Universal Access Responsive Web
Application | 323

</attribute>

<attribute name="TARGETTYPE">
<val ue>CT10301</ val ue>

</attribute>

<attribute name="TARCETI D'>
<val ue>10330</ val ue>

</attribute>

<attribute name="SOURCEEVI DENCETYPE" >
<val ue>ET10074</ val ue>

</attribute>

<attribute name="TARGETEVI DENCETYPE" >
<val ue>ET10000</ val ue>

</attribute>

<attribute name=" AUTOACCEPTI ND" >
<val ue>1</val ue>

</attribute>

<attribute name="WEBSERVI CESI ND"' >
<val ue>0</ val ue>

</attribute>

<attribute name="SHAREDTYPE">
<val ue>SET2002</ val ue>

</attribute>

<attribute name="RECORDSTATUS' >
<val ue>RST1</ val ue>

</attribute>

<attribute name="VERSI ONNO' >
<val ue>1</val ue>

</attribute>

</ row>

</t abl e>

(L N
Note:
Unlike Sharing from Holding Case to Integrated Case, the AUTOACCEPTI NDis set to 1. This
designation is because the target case is a Holding Case and Holding Cases are designed to
operate unattended. It is not expected that caseworkers need to review items that are being
shared onto the Holding Case as they come from an authoritative source, for instance, the

Integrated Case.

IBM Curam Social Program Management 7.0.11 | 8 - Customizing the Universal Access Responsive Web
Application | 324

Issues for consideration

With suitable configuration, you can share data from the Holding Case to multiple Integrated Cases. For
example, Integrated Cases A and B are configured to share information with a citizen's Holding Case. A
and B both separately recorded an Income Evidence record for the citizen. In the citizen's Holding Case,
this evidence record shows up as two separate Income Records. For cases A and B, the income records
are two separate records that hold a view of the citizen's income. However, to the citizen, this breakdown
might not make much sense. The citizen has only one Income and is using one portal to communicate
with the agency or agencies concerned. Why does the citizen see two records for the same Income? In
cases where there is sharing to multiple Integrated Cases from a single Holding Case, consider creating
another set of sharing relationships to be established from A to B and B to A. This issue requires proper

consideration early on in the project lifecycle.

Putting it all together

You saw how to create the parts of a life event, now join all these pieces together to make a complete life
event.

New life events can be configured in the administration application. You can create new life event
types and life event channels, add rich text descriptions, and associate life events with IEG scripts
and recommendation rule sets. When all of the needed entities are created, the data can be extracted
into a set of DMX files that can be used as a basis for ongoing development. Use the following set of

commands to extract the relevant DIVX files:

bui | d extractdata -Dtabl ename=Li f eEvent Type

buil d extractdata -Dtabl ename=Li f eEvent Cont ext

bui | d extractdata -Dtabl enane=Li f eEvent Cat egory

bui | d extractdata -Dtabl enane=Li f eEvent Cat egor yLi nk
bui | d extractdata -Dtabl ename=Local i zabl eText

bui | d extractdata -Dtabl ename=Text Transl ati on

The Local i zabl eText and Text Transl at i on tables contain all of the life event descriptions, but they also
contain text translations that don't relate to life events. Developers must audit these DVX files and remove
any entries that don't correspond to the relevant life event descriptions before they copy the D\VX files to
%SERVER DI R% conmponent s\ Customi data\initiall\.

Event APIs for life events

The life event broker is instrumented with guice events. Developers can write listeners that can be bound
to these events. The available events are:

IBM Curam Social Program Management 7.0.11 | 8 - Customizing the Universal Access Responsive Web
Application | 325

» PreCreateLi f eEvent -Invoked before launching a life event

- Post Creat eLi f eEvent - Invoked after the life event has been initialized. That is after the Data
Hub Transform and View Processors have been executed.

- PreSubmi t Li f eEvent -Invoked after the life event has been submitted but before the Update
Processors have been run.

« Post Submi t Li f eEvent - Invoked after the life event has been submitted.

Note that both the Pre and Post SubmitLifeEvent events are executed from within a Deferred Process
so the current user is expected to be SYSTEM Life events should never attempt to change the contents
of the life event. The code extract below shows how a Listener class, MyPr eCr eat eLi st ener can be

bound to one of these life events:

Mul t i bi nder <Li f eEvent Event s. PreCr eat eLi f eEvent >
preCreat eBi nder =
Mul ti bi nder. newSet Bi nder (bi nder (),

new Typeliteral <Li feEvent Events. PreCreat eLi feEvent>() { /**/

1)

pr eCr eat eBi nder . addBi ndi ng() . t o(M/Pr eCr eat eLi st ener. cl ass) ;

Customizing verifications

If your organization includes the online submission of documents in their business process, citizens
can upload and submit documents from the IBM Universal Access Responsive Web Application to prove
information that they provided in their benefit applications. You can customize a number of aspects of the

verifications functionality in the application.

Your organization can integrate a verifications system of your choice. If you use the IBM® Curam
Verification Engine application module, the verifications functionality is available in the Universal Access

Responsive Web Application after you set up your IBM Ciram Social Program Management verifications.

Related information
Verify (on page 31)

Verification Engine

Enabling or disabling verifications

The verifications feature is disabled by default. Set the REACT_APP_FEATURE_VERIFICATIONS_ENABLED

environment variable to enable or disable the Your documents page and options in your application. Set

https://www.ibm.com/support/knowledgecenter/SS8S5A_7.0.11/com.ibm.curam.nav.doc/common/t_ctr_verification.html

IBM Curam Social Program Management 7.0.11 | 8 - Customizing the Universal Access Responsive Web
Application | 326

the curam.rest.docservice.fileupload.enabled property to enable the files APl so you can upload files to

your system. Verifications are available only to linked users.
For more information about linked users, see User account types (on page 234).

The following verifications functions are enabled or disabled:

« The verifications-related URLs, the Your documents page at/ veri fi cati ons and the verification
details page at /verifications/details.

« The verification Alert on the Dashboard page.

- Verifications messages in the To-dos pane on the dashboard.

For more information about environment variables, see the React environment variable reference (on page
204).

1. Note:

Before you enable the files API, ensure that you implement the appropriate file security and

validations for document uploads.

Set the curam.rest.docservice.fileupload.enabled property to enable the files APl so you can
upload files to your system, see Securing and enabling the Files API.

2. Edit the . env file in the root of your application and set
REACT_APP_FEATURE_VERIFICATIONS_ENABLED to t r ue. If you don't define the environment

variable, the verifications feature defaults to disabled.

Enabling the submitted document review feature for citizen verifications

If you use the IBM® Curam Verification Engine application module and you want to enable caseworkers
to see submitted documents in IBM Cuaram Social Program Management, you must enable the submitted

document review feature for citizen verifications.

For more information about the submitted document review feature, see https://www.ibm.com/
support/knowledgecenter/en/SS8S5A_7.0.11/com.ibm.curam.content.doc/Verification/

c_VER_CaseworkersReviewing.html.

To enable caseworker to see the submitted documents, set the
curam.verification.submittedDocuments.display.enabled property to display documents that are

submitted to verify evidence with the associated verification.

https://www.ibm.com/support/knowledgecenter/SS8S5A_7.0.11//com.ibm.curam.content.doc/MSDK/msdk_securing_file_api.html
https://www.ibm.com/support/knowledgecenter/en/SS8S5A_7.0.11/com.ibm.curam.content.doc/Verification/c_VER_CaseworkersReviewing.html
https://www.ibm.com/support/knowledgecenter/en/SS8S5A_7.0.11/com.ibm.curam.content.doc/Verification/c_VER_CaseworkersReviewing.html
https://www.ibm.com/support/knowledgecenter/en/SS8S5A_7.0.11/com.ibm.curam.content.doc/Verification/c_VER_CaseworkersReviewing.html

IBM Curam Social Program Management 7.0.11 | 8 - Customizing the Universal Access Responsive Web
Application | 327

Customizing file formats and size limits for file uploads

You can specify which file formats to allow users to upload and a size limit for uploaded files by setting
environment variables. By default, the allowed file formats are JPG, JPEG, PNG, TIFF, and PDF and the file

size limit is 5 MB.

You must ensure that you have implemented the appropriate file security and validations for document

uploads and enabled the file upload API.

If you do not set the REACT _APP_DOC UPLOAD FI LE FORMATS environment variable, the default file
formats are allowed. If you specify an invalid file extension string, all file types are denied.

If you do not set the REACT_APP_DOC_UPLOAD_SI ZE_LI M T, the default value applies.

1. To change the allowed file formats for file uploads, set the
REACT _APP_DOC UPLOAD FI LE_FORNATS environment variable in your . env file. Specify the file
name extension, including the dot separator, for each allowed file type in a comma-separated list.
For example:

REACT_APP_DOC_UPLOAD_FI LE_FORMATS=". png, . j pg, . pdf "

2. To change the allowed file sizes for file uploads, set the REACT_APP_DOC_UPLOAD SI ZE LIM T
environment variable in your . env file. Enter the maximum size in megabytes (MB).
For example:

REACT_APP_DOC_UPLOAD_ S| ZE LI M T=6

Customizing a file upload lead time for verifications

If needed, your organization can configure a lead time to the due date so that document are submitted
earlier to give caseworkers enough time to verify the evidence. Use the REACT_APP_DOC_UPLOAD _LEAD_DAYS
environment variable to set how many days you want to subtract from the actual date. This earlier date is

then displayed to citizens in the application.

By default, the due date is the date when the information needs to be verified by the caseworker. The
default value of REACT_APP_DOC UPLOAD LEAD DAYS is 0 days. The value you set is converted to its absolute
value and subtracted from the verification due date. For example, -1 and 1 have the same affect.

To set a lead time, set the REACT_APP_DOC_UPLOAD_LEAD_DAYS environment variable in your . env file.

For example:

REACT_APP_DOC_UPLOAD_LEAD DAYS=- 7

IBM Curam Social Program Management 7.0.11 | 8 - Customizing the Universal Access Responsive Web
Application | 328

If the actual due date is 31 August, then 24 August is displayed in the application.

Customizing how verification information is presented

The information for the majority of verifications that are presented to the citizen is processed and
grouped by evidence records to present meaningful and consumable information in the Ul. However,
you might have a number of evidence types that contain disparate information that would be more
meaningfully displayed in separate verifications. You can customize how information from evidence

records is grouped and displayed in the application.

To understand how information is grouped by default, take an evidence record called Medical Expenses,
which is an instance of a Medical expenses evidence type. An evidence record can consist of one or
more verifiable data items. For example, the amount entered for a medical expense and it's frequency. If a

citizen had multiple expenses, it might look like this:

Medical Expense:

« For Diabetes

> Amount: $100

o Frequency: Weekly
« For Asthma

> Amount: §125

> Frequency: Monthly

To show related expenses that need documentation, verifiable data items are grouped into bigger
verifications. By default, information is grouped by the following five criteria in order of importance:

« Evidence type

« Evidence record
» Case

* Person

* Due date

Anything different in the list results in a separate verification.

The text that is displayed on the verification is taken from the evidence descriptor of the evidence record

for which the verification was raised, for example Paid $100 for Diabetes.

IBM Curam Social Program Management 7.0.11 | 8 - Customizing the Universal Access Responsive Web
Application | 329

Customizing verifiable data item grouping

You can customize how verifiable data items on an evidence record are grouped for display in
verifications. For example, to separate out disparate items that are on the same evidence record but that

are not suitable to show on the same verification.

To customize the grouping, you must override the method with your own custom implementation and

import your custom implementation. You can use the following example as a reference.

1. Create a custom module that implements your custom grouping.

For example:

src/features/ Verification/CustonVerificationsConfig.js

2. Create a conf i g function that adds a custom mapping verification.

inport { CustonVerificationsSelectors } from'@pniuniversal -access';
function config() {

// Custom function to group by evidence type and due date
const custonG oupFunction = verification => {

return “${verification.rel atedEvi dence. val ue}- ${dueDat e} ;

CustonVeri ficationsSel ectors. addCust onGr oupl d(cust onar oupFuncti on) ;

}

export default { config };

3. Update your App. j s file or equivalent as follows:

i nport CustonVerificationsConfig from'./features/Verification/CustonVerificationsConfig';

CustonVeri ficationsConfig.config();

Customizing verification names

You can customize the name of a verification if the name from the evidence type is not suitable.

1. Create a custom module that implements your custom naming.

For example:

src/features/ Verification/CustonVerificationsConfig.js

2. Create a confi g function that adds a custom mapping verification.

IBM Curam Social Program Management 7.0.11 | 8 - Customizing the Universal Access Responsive Web
Application | 330

inport { CustonVerificationsSelectors } from'@pniuniversal -access';
function config() {

/1 Custom function to change the description to "Health Custont
const customNaneCal | back = (group) => {
const { rel atedEvi denceType } = group;
/1 if the code of the name is "DET106" change the description to "Health expenses"
if (relatedEvidenceType && rel at edEvi denceType. val ue === ' DET106') {
// add description to "Health expenses"
const newRel at edEvi denceType = { ... rel atedEvi denceType, description: 'Health Custom };
// return a group with the nanme nodified
return { ...group, relatedEvi denceType: newRel at edEvi denceType };
}
return group;
}
CustonVeri ficationsSel ectors. addMapVeri ficati onG oup(groupByVerificationld);

}

export default { config };

3. Update your App. j s file or equivalent as follows:

i nport CustonVerificationsConfig from"'./features/Verification/CustonVerificationsConfig';

CustonVeri ficationsConfig.config();

Customizing caseworker tasks

When a citizen submits a document for a verification, a task is generated for the caseworker. Tasks are
displayed to the caseworker that is assigned to the citizen's case when they log in to the caseworker
application. System administrators can configure the system to display a task each time a citizen
provides all documents for an individual evidence record on a case, or to display the task only when a

citizen has provided all documents for every evidence record on a case.

By default, the task is displayed only when all documents are uploaded for all evidence records on the

case.

1. Log on to the IBM Curam Social Program Management application as a system administrator, and
click System Configurations.

2. In the Shortcuts pane, click Application Data > Property Administration.

3. Configure the curam.citizenworkspace.task.notifications.on.all.evidence.uploads property.

IBM Curam Social Program Management 7.0.11 | 8 - Customizing the Universal Access Responsive Web
Application | 331

Related information

Caseworker tasks (on page 34)

Customizing application-specific verification polling

When a citizen submits an application, there is a delay while verifications are generated for that
application. You can enable verification polling to handle this delay, allowing the page to wait and present
the verifications when they become available. You can set the polling on (default) or off, and adjust the

interval and duration.

For more information about environment variables, see the React environment variable reference (on page
204).

Edit the . env file in the root of your application and update values for
REACT_APP_VERIFICATION_POLLING.

For example:

REACT_APP_VERI FI CATI ON_POLLI NG={"api ": "/v1/ual/subnmitted_applications", "timeout": "10000", "interval": "1000"}
Where:

* api

Specifies a URL to call to check the submitted applications for verifications. By default, / vi/ ua/

subm tted_applicati ons.
* ti neout

Specifies the timeout in milliseconds before the polling stops. By default, 10 second.
*interval

Specifies the interval in milliseconds between polling calls. By default, 1 second.

Related information

Submit application-specific documents (on page 30)

IBM Curam Social Program Management 7.0.11 | 8 - Customizing the Universal Access Responsive Web
Application | 332

Customizing with web services

In some scenarios, agencies handle interactions with citizens over the internet, but use an existing
legacy system for case processing. To cater for these scenarios, Universal Access can be configured to

communicate with various remote systems using web services.

Inbound and outbound web services

Universal Access supports specific outbound and inbound web services.

The following outbound web services are supported:

« Submit an application for benefits.
- Withdraw an application for benefits.
« Send a life event.

The following inbound web services are supported:

« Create a citizen account on Universal Access.

« Link a user to a remote system (gives them the right to send information to those systems and
receive information from them in turn).

« Unlink a user from a remote system.

* Receive an update to the status of a submitted application.

« Receive an update to the status of a request to withdraw an application.

« Receive a citizen message (for display on a citizen account).

* Receive payment information.

« Receive case contact information.

Web services security

Connections to remote systems can be configured through the remote systems configuration page in the

administrator application.

Remote systems can invoke web services on Universal Access and must supply user name and password
credentials as part of the SOAP header, details of how to do this are described using sample web service
requests. It is strongly recommended that a different username and password be assigned to each
remote system. The username associated with a remote system is set in the Source User Name field

of the remote system configuration page. Having a different user name for each remote system allows
Universal Access to perform proper data-based security checks on the incoming service requests. This
prevents one remote system sending requests to update data that is properly the concern of a different

remote system.

IBM Curam Social Program Management 7.0.11 | 8 - Customizing the Universal Access Responsive Web
Application | 333

Process application service

The process application web services consists of receive application and receive withdrawal request.

Receive application

When the Receive application outbound web service is started on remote systems, it
communicates an application for benefits for one or more social programs. The Web Service
Description Language (WSDL) describing this service can be found in <CURAM DI R>

\ EJBSer ver\ conponent s\ Wr kspaceSer vi ces\ axi s\ ProcessAppl i cati onServi ce

\ ProcessApplicationService.wsdl.

A web service request of this type contains the following information:

* i ntakeAppl i cati onType - An ID that uniquely identifies an Intake Application Type.

* appl i cati onRef erence — A unique reference for a particular application. This reference is a human-
readable ID that is displayed to citizens after they complete an application; for example, 512 or 756.
The application reference is used as an argument to other web services and needs to be stored by
the receiver.

« appl i cati onLocal e — Denotes the preferred locale of the user who entered the application, for
example en_us. This information needs to be stored by the receiver. Remote systems can send
various information back to the citizen's account. Some of this information must be localized by
the sender to the preferred locale of the citizen.

* subni t t edDat eTi e — The date and time at which the application was submitted. This information is
in XML schema dat eTi ne format, for example, 2012-05-29T15:34:49.000+01:00.

* progr ansAppl i edFor — This field contains a list of the programs that were applied for as part of this
application. Each program is referred to by a unique reference. This information corresponds to the
value of the Reference field configured in the Programs section of Universal Access configuration.

For example:

<ns1: progranmsAppl i edFor >
<ns1: progranilypeRef er ence>CashAssi st ance</ ns1: progr anTypeRef er ence>
<ns1: progr aniTypeRef er ence>SNAP</ ns1: pr ogr anilypeRef er ence>

</ nsl: progransAppl i edFor >

- appl i cati onbDat a — Contains a base64 encoded representation of the intake data. This intake data
is the XML representation of the XML data store associated with an application.

* appl i cati onSchemaNane — The name of the schema that is used to create the data store for the
application.

* sender | denti fi cati on — Identifies the sender of the request. The sender identification contains two
parts, 1) the identifier of the system from which the request originates, 2) The Citizen Workspace

IBM Curam Social Program Management 7.0.11 | 8 - Customizing the Universal Access Responsive Web
Application | 334

Account ID of the user that created the request. The second part is optional, applications
submitted anonymously do not contain part two but applications that are submitted by a logged in
user do.

* suppl enent ar ylI nf or mat i on — optional, reserved for future use.

The receiver of this information is expected to record the details of the application keyed against sender

identification and intake application reference.

On success, the implementation of this web service must return the Boolean value t r ue to indicate that
the request was processed successfully. In the case that a problem occurs in processing the request, a
fault must be returned containing a string to indicate the nature of the problem. The String needs to be

localized to the locale of Universal Access server since it appears in the server log files.

(L N
Note:

The receiver can receive multiple applications with the same Intake Application reference

but the intake application reference is always unique for a particular sender. For example,

Systems A and B send arecei veAppl i cati on() request to system X. Both requests have the

appl i cati onRef erence 256.

Note:

The receiver never should receive two applications from A with an application reference of 256.
N /

Receive withdrawal request

IBM® Curam Universal Access invokes this outbound web service on remote systems. It is
used by citizens to withdraw an application that they have previously submitted using the
Receive Application Service. WSDL describing this service can be found in <CURAM DI R>

\ EJBSer ver\ conponent s\ Wr kspaceSer vi ces\ axi s\ ProcessAppl i cati onServi ce

\ ProcessAppl i cati onService. wsdl .

A web service request of this type contains the following information:

- applicationReference — A unique reference for the application to be withdrawn. This refers to the id
transmitted with the Receive Application service request.

- programTypeReference — A reference that identifies the program being withdrawn. Each program
type is referred to by a unique reference. This corresponds to the value of the Reference field
configured in the Programs section of IBM® Curam Universal Access configuration. For example

"CashAssistance".

IBM Curam Social Program Management 7.0.11 | 8 - Customizing the Universal Access Responsive Web
Application | 335

« requestSubmittedDateTime — A timestamp indicating when the request was submitted in XML
Schema dateTime format. For example, 2012-05-29T15:34:49.000+01:00
- withdrawalRequestReason — The value is taken from the code table WithdrawalRequestReason.
Values for this code table are
o WRES1001 — Attained employment
o WRES1002 - Change of circumstances
o WRES1003 - Filed in error
- withdrawalRequestID — An id that uniquely identifies this withdrawal request from the sending
instance of Universal Access.
- senderldentification — Identifies the sender of the request. The sender identification contains two
parts, 1) the identifier of the system from which the request originates, 2) The Citizen Workspace
Account ID of the user that created the request.

- supplementarylnformation — optional, reserved for future use.

The expected result following successful processing is a receiveWithdrawalRequestResponse as follows:

<recei veW t hdr awal Request Response>
<result>true</result>

</recei veWt hdr awal Request Response>

The service implementation should return a fault if there is an error processing the request. The fault
string should be globalized to the locale of the IBM® Cudram Universal Access server since it will appear in
the server log files. Some problems that may arise include:

- A withdrawal request with the given ID has already been sent by the given instance of Universal
Access.
- The application reference referred to is not recognized as an application previously transmitted in a

Receive Application service invocation from the same Universal Access instance.

The withdrawal request application is processed by the receiving agency after which a response should
be sent in the form of a withdrawal request update. See the sample SOAP request for this web service.

Update Application Service

The Update Application web services consists of the Intake Program Application Update and the
Withdrawal Request Update.

IBM Curam Social Program Management 7.0.11 | 8 - Customizing the Universal Access Responsive Web
Application | 336

Intake Program Application Update

The Intake Program Application Update is an inbound web service invoked by remote systems on IBM®

Curam Universal Access.

The Intake Program Application Update is used to inform Universal Access of changes to the status of an
application for benefits that was previously received via the Receive Application web service. The status
of an application can transition to Approved, Denied or Withdrawn. Where an application is denied a
reason can be included in the web service message. The schema for the payload of web service requests
of this type can be found in <CURAM_DIR>\EJBServer\components\WorkspaceServices\webservices
\UpdateApplication.xsd. See the sample SOAP request for this web service.

A web service request of this type contains the following information:

« curamReferencelD — This must match the applicationReference element for the corresponding
Receive Application request.
- programApplicationStatus — This can take the following values:
> [PAS1002 — Withdrawn
> IPAS1003 — Approved
> [PAS1004 - Denied
« programApplicationDisposedDateTime — This is a formatted date time string in the standard IBM
Curam 1S08601 format - "YYYYMMDD HH:MM:SS".
- programApplicationDenialReason — Optional, if the status sent is IPAS1004, this contains free text
describing the reason for denial. The denial reason should be taken from the code table IBM Curam
IntakeProgApplDenyReason.

The web service request needs to be sent with a Cliram security credential (see a sample SOAP message
for details). The user name placed within the credential must match the Source User Name entered into
the Remote System entry corresponding to the peer system sending the request.

Withdrawal Request Update

The Withdrawal Request Update is an inbound web service invoked by remote systems on IBM® Curam
Universal Access.

The Withdrawal Request Update is used to inform Universal Access of changes to the status of

a Withdrawal Request that was previously submitted using the Receive Withdrawal Request web
service. You can find the schema for the payload of web service requests of this type in <CURAM DI R>

\ EJBSer ver\ conmponent s\ Wr kspaceSer vi ces\ webser vi ces\ Updat eAppl i cati on. xsd. See
the sample SOAP request for this web service.

IBM Curam Social Program Management 7.0.11 | 8 - Customizing the Universal Access Responsive Web
Application | 337

A web service request of this type contains the following information:

« curamReferencelD — This must match the withdrawalRequestID in the corresponding Receive
Withdrawal Request message.
- withdrawalRequestStatus — This an enumeration taking the following values:
- WREQ1002 — Approved
> WREQ1003 - Denied
- resolvedDateTime — A time stamp in the standard IBM Cdram 1S08601 format — "YYYYMMDD
HH:MM:SS".
- withdrawalRequestDenialReason — Optional. In the case there the withdrawal request was denied,
a textual explanation for the denial. The sender must localize this to the locale of the citizen who

originally submitted the application.

See the sample SOAP request for the Withdrawal Request Update operation.

On success this operation returns a document indicating that the request has succeeded. On failure, a

fault is raised. Reasons for failure include:

- The withdrawal request id does not match a known withdrawal request id.

 The withdrawal request state transition is invalid.

life event service

The life event service is an outbound web service is invoked by IBM® Cudram Universal Access on
remote systems. WSDL describing this service can be found in <CURAM_DIR>\EJBServer\components

\WorkspaceServices\axis\LifeEventService\LifeEvent.wsdI.

A request for this web service contains the following fields:

- lifeEventReference — Describes the type of the life event, for example "Change of Address”

- senderldentification — Identifies the sender of the request. The sender identification contains two
parts, 1) the identifier of the system from which the request originates, 2) The Citizen Workspace
Account ID of the user that created the request.

- lifeEventData - Contains a base64 encoded representation of the life event data. This life event
data is the XML representation of the XML datastore associated with an life event.

- lifeEventSchemaName — The name of the schema used to create the data store for the life event.

- submittedDateTime — The date and time when the life event was submitted. An XML Schema
dateTime. For example, 2012-05-29T15:34:49.000+01:00

- supplementarylnformation — optional, reserved for future use.

IBM Curam Social Program Management 7.0.11 | 8 - Customizing the Universal Access Responsive Web
Application | 338

The implementation should return a response of type lifeEventResponse with the content "true" when the
life event is successfully processed. If there is an error processing the life event then the system should
return a fault in accordance with the WSDL specification.

Create account service

The create account service is an inbound web service invoked by remote systems on IBM® Curam
Universal Access. The service creates a Citizen Workspace Account for users who previously submitted
an Intake Application anonymously.

The create account service performs two functions:

« Create an account for a previously anonymous user.

« Link that account to the remote system that is invoking the Create Account Web Service.

If a Citizen Workspace user is "linked" to a remote system, it means that user is registered on the remote
system and the remote system will recognize requests from that Citizen Workspace user as relating to

a particular case, cases or an individual on the remote system. This has serious security implications

on the remote system — The remote system sending a request to link a user or create an account for

a user must be convinced of the identity of the individual who owns the account. The schema for the
payload of web service requests of this type can be found in <CURAM DI R>\ EJBSer ver\ conponent s
\ Wor kspaceSer vi ces\ webser vi ces\ Ext er nal Account Cr eat e. xsd. See the sample SOAP
request for this web service.

A create account request contains the following information:

- firstName — The first name.

- middleName - The middle name. Optional.

« surname — The last name.

- username — The username for the newly created account.

« password — The password for the newly created account.

« confirmPassword — Confirmation of the password. Must match password.

- secretQuestionType — The type of secret question selected to unlock the user's account. Values
should correspond to entries from the SecretQuestionType code table. For example, SQT1 -
Mother's maiden name.

- answer — An answer to the secret question. Non empty.

- termsAndConditionsAccepted — Boolean indication that the citizen has accepted the terms and
conditions on which the account is created.

IBM Curam Social Program Management 7.0.11 | 8 - Customizing the Universal Access Responsive Web
Application | 339

- intakeApplicationReference — Refers to the unique applicationReference passed in as part of the
receive application request. If this is specified, a link will be created between the application and
the newly created account.

- clientIDONRemoteSystem — This is a unique identifier that can be used to identify the user of this
account on the remote system. There is no prescribed form for this id, it could be a Social Security
Number for example. It must be capable of uniquely identifying the citizen on the remote system.

- sourceSystem - Identifies the remote system that sent this request. This must match the name
of a remote system configured in the administration application. For more information about
configuring remote systems, see Configuring remote systems.

If successful this returns the id of the created citizen workspace account. Problems that occur during the

processing of the request are flagged by a fault response. Possible issues include:

« An account has already been associated with the intake application reference.

» The username already exists.

« The user name or password do not meet minimum mandatory criteria such as password strength,
user name length.

Link service

The link service is an inbound web service invoked by remote systems on IBM® Curam Universal Access.
The link service is used to link a Citizen Workspace account to a remote system.

See the section on Create Account Service for a general discussion of the implications of linking a
user. The schema for the payload of web service requests of this type can be found in <CURAM DI R>

\ EJBSer ver\ conponent s\ Wr kspaceSer vi ces\ webser vi ces\ Ext er nal Account Li nk. xsd.
See the sample SOAP request for this web service.

This web service request contains the following information:

« sourceSystem — The name of the remote system sending the request. Must match the name of a
remote system configured in the system.

- citizenWorkspaceAccountID — The unique citizen workspace account id.

- clientIDOnRemoteSystem - This is a unique identifier that can be used to identify the user of this
account on the remote system. There is no prescribed form for this id, it could be a Social Security
Number for example. It must be capable of uniquely identifying the client on the remote system.

- createdByUsername — The username on the remote system responsible for this request.

On success this operation returns a document indicating that the request has succeeded. On failure, a
fault is raised. Reasons for failure include:

IBM Curam Social Program Management 7.0.11 | 8 - Customizing the Universal Access Responsive Web
Application | 340

« The citizen workspace account id is invalid, does not exist or is associated with a de-activated
account.

« The citizen workspace account in question is already linked to this remote system.

Unlink service

The unlink service is an inbound web service invoked by remote systems on IBM® Cdram Universal
Access. The unlink service is used to unlink a Citizen Workspace Account from a remote system.

After executing this service it will not be possible for the user of the unlinked account to submit life events
to this remote system, for example. The schema for the payload of web service requests of this type

can be found in <CURAM DI R>\ EJBSer ver \ conponent s\ Wor kspaceSer vi ces\ webser vi ces

\ Ext er nal Account Unl i nk. xsd. See the sample SOAP request for this web service.

This web service request contains the following information:

« sourceSystem — The name of the remote system sending the request.
- citizenWorkspaceAccountID — The unique ID of the Citizen Workspace Account being unlinked.

On success this operation returns a document indicating that the request has succeeded. On failure, a
fault is raised. Reasons for failure include:

- The indicated account does not exist or is not active.
« The indicated account is not linked to the remote system sending the request.

Citizen message

The citizen message is an inbound web service invoked by remote systems on IBM® Curam Universal
Access. The citizen message is used to send Citizen Messages that are displayed on a user's Home Page
when they log in to the Citizen Account.

The schema for the payload of web service requests of this type can be found in
<CURAM DI R>\ EJBSer ver \ conponent s\ Wr kspaceSer vi ces\ webservi ces
\ Ext ernal Citi zenMessage. xsd. See the sample SOAP request for this web service.

This web service request contains the following information:

- sourceSystem — The name of the remote system sending the request.

« citizenWorkspaceAccountID — The unique citizen workspace account id.

- citylndustryType — Denotes the type of industry associated with the message. The values for this
element must match codes from the Citylndustry code table.

IBM Curam Social Program Management 7.0.11 | 8 - Customizing the Universal Access Responsive Web
Application | 341

- relatedID - Refers to the id of an underlying entity in the remote system to which the message
refers. For example, if the message concerns a payment then the related ID identifies the ID of the
payment within the remote system.

- externalCitizenMessageType — The external citizen message type, taken from the
ExternalCitizenMessageType codetable.

- messageTitle — The title of the message. It is the responsibility of the remote system to localize
this to the locale of the end user.

- messageBody — The body of the message. It is the responsibility of the remote system to localize
this to the locale of the end user.

- effectiveDate — Optional. The date from which the message is effective. It will only be displayed
from this date onwards. The date must be in the format — "YYYY-MM-DD". If an effective date is not
provided then the current date is taken as the effective date.

« expiryDate — The date that the message is set to expire. Following this date, the message will not
be displayed to the user. The date must be in the format - "YYYY-MM-DD".

- priority — A boolean value to indicate whether this message is a high priority.

Some messages are designed such that a newer message can replace an older one. For example, a
message is sent concerning a meeting. The time of the meeting changes and a new message is sent with
the updated time for the meeting. The citizen does not see both messages, rather the second message
replaces the first and only the second message is seen. One external message will automatically replace
another external message if the following fields match those of an existing message: sourceSystem,
externalCitizenMessageType and relatedID.

Payment service

The payment service is an inbound web service invoked by remote systems on IBM® Curam Universal
Access. The payment service is used to transmit information about one or more payments.

The schema for the payload of web service requests of this type can be found in <CURAM DI R>
\ EJBSer ver \ conponent s\ Wr kspaceSer vi ces\ webser vi ces\ Ext er nal Paynent . xsd. See the
sample SOAP request for this web service.

This web service request can contain one or more Payments. This allows the remote system to batch
up payments and send them as a single request for performance reasons. Each payment can relate to
an entirely separate citizen account. A single payment may contain a payment breakdown. A payment

breakdown may contain one or more payment line items.

A single payment contains the following information:

IBM Curam Social Program Management 7.0.11 | 8 - Customizing the Universal Access Responsive Web
Application | 342

- paymentID — Together with the source system, this uniquely identifies a payment.

« sourceSystem — The name of the remote system sending the request. Must match the name of a
remote system configured in the system.

- citizenWorkspaceAccountID — The unique citizen workspace account id.

- citylndustryType — Denotes the type of industry associated with the payment. The values for this
element must match codes from the Citylndustry code table. Optional.

- paymentAmount — The headline value for the payment as a whole. This payment may optionally be
further broken into a number of line items.

- currency — The currency in which the payment was made, contains values from the Currency code
table. Optional.

» paymentMethod — The method by which the payment was made, contains values from the
MethodOfDelivery code table.

- paymentStatus — The status of the payment, for example cancelled, processed, suspended etc.
Contains values from PmtReconciliationStatus code table.

- effectiveDate — The effective date of the payment in the format "YYYY-MM-DD".

- coverPeriodFrom — The start date of the period covered by this payment. In the format "YYYY-MM-
DD".

« coverPeriodTo — The end date of the period covered by this payment. In the format "YYYY-MM-DD".

- dueDate — The date that the payment was due to be paid. In the format "YYYY-MM-DD".

- payeeName — The name of the payee for this payment.

- payeeAddress — The address that the payment was sent to (in the case of a cheque). Optional.

- paymentReferenceNo — Uniquely identifies a payment within a given remote system.

« bankSortCode - The sort code of the bank account to which this payment is delivered.

« bankAccountNo — The bank account number to which payment is made.

« A payment may contain a Payment Breakdown (optional).

A Payment Breakdown contains one or more Payment Line ltems. A Payment Line Item contains the

following information:

- caseName — The human readable name of the case on the remote system with which this payment
is associated.

- The case name must be localised to the locale of the citizen. This case name must match the case
name displayed on the Contact Information page.

- caseReference — This uniquely identifies the case on a given remote system.

- componentType — This contains a code from the FinComponentType code table.

« debitAmount — The amount debited if this payment was a debit.

« creditAmount — The amount credited if this payment was a credit.

IBM Curam Social Program Management 7.0.11 | 8 - Customizing the Universal Access Responsive Web
Application | 343

- coverPeriodFrom - The start date of the period covered by this payment. In the format "YYYY-MM-
DD".
- coverPeriodTo — The end date of the period covered by this payment. In the format "YYYY-MM-DD".

It is important to note that payments can supersede previously submitted payments. For example, a
payment is submitted from TestSystem with paymentID 1234. Subsequently another payment arrives
from TestSystem with the same paymentID, 1234. This payment replaces the previous payment. The
previous payment is physically removed along with all its related payment line items. A typical example of

where this might occur is when a previously issued payment is cancelled.

Contact service

The contact service is an inbound web service invoked by remote systems on IBM® Curam Universal
Access. The contact service is used to update a register of caseworker contact details relating to a

remote system.

The schema for the payload of web service requests of this type can be found in <CURAM DI R>
\ EJBSer ver \ conponent s\ Wr kspaceSer vi ces\ webser vi ces\ Ext er nal Cont act . xsd. See the

sample SOAP request for this web service.

A contact web service request contains the following information:

- sourceSystem — The name of the remote system sending the request. Must match the name of a
remote system configured in the system.

- contactReference — A reference for the contact, unique within the source remote system.

« fullName — The full name of the caseworker.

« phoneNumber — The phone number of the caseworker. Optional.

» mobilePhoneNumber — The mobile/cell phone number of the caseworker. Optional.

- faxNumber - The fax number for the caseworker. Optional.

- email — The email address of the caseworker. Optional.

If a request is received with the same source system and contact reference as a preexisting entry then the

information in the newer request supersedes the preexisting information.

Case service

The case service is an inbound web service invoked by remote systems on IBM® Curam Universal

Access. The case service is used to update details of cases associated with a particular Citizen Account.

IBM Curam Social Program Management 7.0.11 | 8 - Customizing the Universal Access Responsive Web
Application | 344

The schema for the payload of web service requests of this type can be found in <CURAM DI R>
\ EJBSer ver \ conponent s\ Wr kspaceSer vi ces\ webser vi ces\ Ext er nal Case. xsd. See the

sample SOAP request for this web service.

A web service request of this type contains the following information:

- sourceSystem — The name of the remote system sending the request. Must match the name of a
remote system configured in the system.

- contactReference — A reference for the contact, unique within the source remote system, this must
match a contact reference previously transmitted via a Contact Service request.

- caseReference — This is a case reference and must be unique within the remote system that is the
source of this request.

- caseName - The human readable name of the case on the remote system. The case name must
be localized to the locale of the client. Case names used in the Payment web service should match
case names provided in this request.

- citizenWorkspaceAccountID — The unique citizen workspace account id.

If a request is received with the same source system and case reference as a preexisting entry then the

information in the newer request supersedes the preexisting information.

Sample SOAP requests

Use the sample SOAP requests to help you develop real SOAP requests.

Intake program application update

Sample intake program application update SOAP request.

<soapenv: Envel ope xmnl ns: soapenv="htt p://schemas. xnm soap. or g/ soap/
envel ope/" xm ns:rem="http://renote. external servi ces. wor kspaceservi ces
.curanmt’ xm ns: xsd="http://dom w3c. or g/ xsd" >
<soapenv: Header >
<curam Credential s xm ns: curan¥"http://ww. curansof t war e. cont' >
<User nanme>user f or peer syst enx/ User name>
<Passwor d>passwor d</ Passwor d>
</ curam Credenti al s>
</ soapenv: Header >
<soapenv: Body>

<r em updat el nt akePr ogr amAppl i cat i on>

IBM Curam Social Program Management 7.0.11 | 8 - Customizing the Universal Access Responsive Web
Application | 345

<rem xm Message>
<i nt akePr ogr amAppl i cati onUpdat e>
<appl i cati onRef er ence>256</ appl i cat i onRef er ence>
<appl i cati onPr ogr anRef er ence>j oannespr ogr am
</ appl i cati onProgr anRef er ence>
<pr ogramAppl i cati onSt at us>l PAS1004</ pr ogr amAppl i cati onSt at us>
<pr ogr amAppl i cati onDi sposedDat eTi me>
20120528 17:19: 47
</ progr amAppl i cati onDi sposedDat eTi ne>
<pr ogr amAppl i cati onDeni al Reason>| PADR1001
</ progr amAppl i cat i onDeni al Reason>
</i nt akePr ogr amAppl i cat i onUpdat e>
</rem xm Message>
</ rem updat el nt akePr ogr amAppl i cati on>
</ soapenv: Body>

</ soapenv: Envel ope>

Withdrawal request update

Sample withdrawal request update SOAP request.

<?xm version="1.0" encodi ng="UTF- 8" ?>

<t abl e name=" SEARCHSERVI CEFI ELD" >

<col um nane="

sear chServi ceFi el dl d

" type="text" />
<col um name="

sear chServi cel d

" type="text" />
<col um nane="

namne

" type="text" />
<col um name="

i ndexed

' type="bool" />

<col um nane="

IBM Curam Social Program Management 7.0.11 | 8 - Customizing the Universal Access Responsive Web
Application | 346

type
" type="text" />
<col um name="

stored

" type="bool" />
<col um nanme="

entityName

" type="text" />
<col um name="

anal yzer Nanme

" type="text" />
<col um nanme="

unt okeni zed

type="bool " />

<r ow>
<attribute name="searchServiceFi el dl d">
<val ue>
fieldo
</ val ue>
</attribute>
<attribute name="searchServicel d">
<val ue>
Per sonSear ch
</ val ue>
</attribute><attribute name="nanme">
<val ue>
pri maryAlternatel D
</ val ue>
</attribute><attribute name="i ndexed"> <soapenv: Envel ope
xm ns: soapenv="htt p://schemas. xm soap. or g/ soap/ envel ope/ "
xm ns:ren¥"http://renote. external servi ces. workspaceservi ces. cur ant
xm ns: xsd="htt p://dom w3c. or g/ xsd" >
<soapenv: Header >
<curam Credential s xm ns: curan¥"http://ww. curansof t ware. cont' >
<User nanme>user f or peer syst enx/ User name>

<Passwor d>passwor d</ Passwor d>

IBM Curam Social Program Management 7.0.11 | 8 - Customizing the Universal Access Responsive Web
Application | 347

</ curam Credenti al s>
</ soapenv: Header >
<soapenv: Body>
<rem updat eW t hdr awal Request >
<rem xn Message>
<w t hdr awal Request Updat e>
<cur anRef er encel D>- 6897262829317914624</ cur anRef er encel D>
<w t hdr awal Request St at us>WREQL002</ wi t hdr awal Request St at us>
<r esol vedDat eTi ne>20120525 11: 30: 50</r esol vedDat eTi ne>
</ wi t hdr awal Request Updat e>
</rem xm Message>
</ rem updat eW t hdr awal Request >
</ soapenv: Body>

</ soapenv: Envel ope>

Create account

Sample create account SOAP request.

<soapenv: Envel ope xm ns: soapenv="http://schemas. xnl soap. or g/ soap/
envel ope/" xm ns:rem="http://renote. external servi ces. wor kspaceser vi ces.
curant’ xm ns: xsd="http://dom w3c. or g/ xsd" >
<soapenv: Header >
<curam Credential s xm ns: curan¥"http://ww. curansof t ware. cont' >
<User nanme>adm n</ User nanme>
<Passwor d>passwor d</ Passwor d>
</ curam Credenti al s>
</ soapenv: Header >
<soapenv: Body>
<rem cr eat eAccount >
<l--Optional:-->
<rem xm Message>
<l--Optional:-->
<cre: Account Create xm ns:cre="http://ww. curansof t war e. conf
Wor kspaceSer vi ces/ Ext er nal Account Cr eat e" >
<first Nane>John</fir st Name>
<m dd| eName>M</ m dd| eName>

<sur nanme>Doe</ sur nanme>

IBM Curam Social Program Management 7.0.11 | 8 - Customizing the Universal Access Responsive Web
Application | 348

<user name>j ohnndoe</ user nanme>
<passwor d>passwor d1</ passwor d>
<confi r mMPasswor d>passwor d1</ confi r mfPasswor d>
<secr et Questi onType>SQrl</secret Questi onType>
<answer >mypasswor d1</ answer >
<t er neAndCondi ti onsAccept ed>t r ue</t er nsAndCondi t i onsAccept ed>
<i nt akeAppl i cati onRef er ence>256</ i nt akeAppl i cat i onRef er ence>
<cl i ent | DOnRenot eSyst en>112233445566</ cl i ent | DOnRenpt eSyst en>
<sour ceSyst enpTest Syst enx/ sour ceSyst en>
</ cre: Account Cr eat e>
</rem xm Message>
</ rem cr eat eAccount >
</ soapenv: Body>

</ soapenv: Envel ope>

Account link

Sample account link SOAP request.

<soapenv: Envel ope xm ns: soapenv="http://schemas. xnl soap. or g/ soap/
envel ope/" xm ns:rem="http://renote. external servi ces. wor kspaceser vi ces.
curant’ xm ns: xsd="http://dom w3c. or g/ xsd" >
<soapenv: Header >
<curam Credential s xm ns: curan¥"http://ww. curansof t ware. cont' >
<User nanme>adm n</ User nanme>
<Passwor d>passwor d</ Passwor d>
</ curam Credenti al s>
</ soapenv: Header >
<soapenv: Body>
<rem | i nkTar get Syst eniffoAccount >
<rem xm Message>
<l nk: Account Li nk xm ns: | nk="htt p://ww. curansof t war e. com
Wor kspaceSer vi ces/ Ext er nal Account Li nk" >
<sour ceSyst enpTest Syst enx/ sour ceSyst en>
<citi zenWir kspaceAccount | D>7081910414040104960
</ citizenWrkspaceAccount | D>
<cl i ent | DOnRenpt eSyst en>112233445566</ cl i ent | DOnRenpt eSyst en>

<cr eat edByUser nane>t est user </ cr eat edByUser nane>

IBM Curam Social Program Management 7.0.11 | 8 - Customizing the Universal Access Responsive Web
Application | 349

</| nk: Account Li nk>
</rem xm Message>
</rem | i nkTar get Syst eniffoAccount >
</ soapenv: Body>

</ soapenv: Envel ope>

Account unlink

Sample account unlink SOAP request.

<soapenv: Envel ope xmnl ns: soapenv="http://schemas. xnl soap. or g/ soap/
envel ope/" xm ns:rem="http://renote. external servi ces. workspaceservi ces.
curant’ xm ns: xsd="http://dom w3c. or g/ xsd" >
<soapenv: Header >
<curam Credential s xm ns: curan¥"http://ww. curansof t war e. cont' >
<User nane>admi n</ User nane>
<Passwor d>passwor d</ Passwor d>
</ curam Credenti al s>
</ soapenv: Header >
<soapenv: Body>
<rem unl i nkTar get Syst enfFr omAccount >
<!--Optional :-->
<rem xnl Message>
<unl : Account Unl i nk xm ns: unl ="http://ww. curansof t war e. cont
Wor kspaceSer vi ces/ Ext er nal Account Unl i nk" >
<sour ceSyst en>Test Syst enx/ sour ceSyst en>
<ci ti zenWr kspaceAccount | D>7081910414040104960
</citizenWrkspaceAccount | D>
</ unl : Account Unl i nk>
</rem xm Message>
</rem unl i nkTar get Syst enfr omAccount >
</ soapenv: Body>

</ soapenv: Envel ope>

Citizen message

Sample citizen message SOAP request.

IBM Curam Social Program Management 7.0.11 | 8 - Customizing the Universal Access Responsive Web
Application | 350

<soapenv: Envel ope xml ns: soapenv="http://schenmas. xnl soap. or g/ soap/
envel ope/" xm ns:rem="http://renote. external servi ces. wor kspaceservi ces.
curant xm ns: xsd="http://dom w3c. or g/ xsd" >
<soapenv: Header >
<curam Credentials xm ns: curan¥"http://ww. curansof t war e. cont' >
<User nane>admi n</ User nanme>
<Passwor d>passwor d</ Passwor d>
</ curam Credenti al s>
</ soapenv: Header >
<soapenv: Body>
<rem cr eat eMessage>
<rem xnl Message>
<cm Citi zenMessage xm ns:cm="http://ww. curanmsof t war e. conl
Wor kspaceSer vi ces/ External G ti zenMessage" >
<sour ceSyst enpTest Syst enx/ sour ceSyst en>
<ci tyl ndust ryType>CM 9001</ ci tyl ndust ryType>
<ci ti zenWor kspaceAccount | D>7081910414040104960
</ citizenWrkspaceAccount | D>
<r el at edl D>6060</r el at edl D>
<external Citi zenMessageType>PMI2004</ ext ernal Ci ti zenMessageType>
<messageTi tl e>Hel | o, Worl d! </ nessageTitl e>
<messageBody>This is the body of the nessage. </ nessageBody>
<ef fecti veDat e>2000- 01- 01</ ef f ect i veDat e>
<expi ryDat €>2020- 01- 01</ expi r yDat e>

<priority>fal se</priority>

</cm CitizenMessage>
</rem xm Message>
</ rem cr eat eMessage>
</ soapenv: Body>

</ soapenv: Envel ope>
Payment (simple)
Sample payment (simple) SOAP request.

<soapenv: Envel ope xmnl ns: soapenv="http://schemas. xnl soap. or g/ soap/

envel ope/" xm ns:rem="http://renote. external servi ces. workspaceservi ces.

IBM Curam Social Program Management 7.0.11 | 8 - Customizing the Universal Access Responsive Web
Application | 351

curant’ xm ns: xsd="http://dom w3c. or g/ xsd" >
<soapenv: Header >
<curam Credential s xm ns: curam="htt p: // ww. cur ansof t war e. conl' >
<User nane>admi n</ User nanme>
<Passwor d>passwor d</ Passwor d>
</ curam Credenti al s>
</ soapenv: Header >
<soapenv: Body>
<rem creat e>
<rem xnl Message>
<tns: Paynment xm ns:tns="http://ww. curansoftware. conl
Wor kspaceSer vi ces/ Ext er nal Paynment " >
<paynent | D>1554</ paynent | D>
<sour ceSyst enrTest Syst enx/ sour ceSyst en>
<ci tyl ndustryType>CM 9001</ ci tyl ndustryType>
<citi zenWr kspaceAccount | D>7081910414040104960
</ citizenWrkspaceAccount | D>
<paynent Amount >50. 00</ paynent Anount >
<currency>EUR</ currency>
<paynent Met hod>CHQ</ paynent Met hod>
<paynent St at us>PRO</ paynent St at us>
<effectiveDat e>2012- 01- 01</ ef f ect i veDat e>
<cover Peri odFrom>2012- 01- 01</ cover Per i odFr on>
<cover Peri 0dTo>2012- 01- 01</ cover Peri odTo>
<dueDat e>2012- 01- 01</ dueDat e>
<payeeNanme>Dor ot hy</ payeeNanme>
<payeeAddress>12 G oster St., WA 6008</payeeAddress>
<paynent Ref er enceNo>F</ paynent Ref er enceNo>
<bankSor t Code>933384</ bankSor t Code>
<bankAccount No>88776655</ bankAccount No>
<Paynent Br eakdown>
<Paynent Li nel t en>
<caseNane>| </ caseName>
<caseRef er enceNo>J</ caseRef er enceNo>
<conponent Type>C10</ conponent Type>
<debi t Amount >22. 45</ debi t Amount >

<cr edi t Anbunt >50. 76</ cr edi t Anount >

IBM Curam Social Program Management 7.0.11 | 8 - Customizing the Universal Access Responsive Web
Application | 352

<cover Peri odFron>2012- 01- 01</ cover Per i odFr on>
<cover Peri odTo>2012- 01- 01</ cover Peri odTo>
</ Paynent Li nel t en>
</ Paynent Br eakdown>
</t ns: Paynent >
</rem xm Message>
</rem create>
</ soapenv: Body>

</ soapenv: Envel ope>

Payment (batched)

Sample payment (batched) SOAP request.

<soapenv: Envel ope xml ns: soapenv="http://schemas. xnl soap. or g/ soap/
envel ope/" xm ns:rem="http://renote. external servi ces. wor kspaceservi ces.
curant’ xm ns: xsd="http://dom w3c. or g/ xsd" >
<soapenv: Header >
<curam Credential s xm ns: curan¥"http://ww. curansof t ware. cont' >
<User nanme>adm n</ User nanme>
<Passwor d>passwor d</ Passwor d>
</ curam Credenti al s>
</ soapenv: Header >
<soapenv: Body>
<rem creat e>
<rem xm Message>
<tns: Payments xm ns:tns="http://ww. curansoftware.conf
Wor kspaceSer vi ces/ Ext er nal Paynent " >
<Paynent >
<paynent | D>2346</ paynent | D>
<sour ceSyst en>Test Syst enx/ sour ceSyst en>
<ci tyl ndust ryType>CM 9001</ ci tyl ndust ryType>
<ci ti zenWr kspaceAccount | D>8306889512684879872
</citizenWrkspaceAccount | D>
<paynent Anount >48. 00</ paynent Anount >
<currency>EUR</ currency>
<paynent Met hod>CHQ</ paynent Met hod>

<paynent St at us>PRO</ paynent St at us>

IBM Curam Social Program Management 7.0.11 | 8 - Customizing the Universal Access Responsive Web
Application | 353

<effectiveDat e>2012-01- 01</ ef f ecti veDat e>
<cover Peri odFron>2012- 01- 01</ cover Per i odFr on>
<cover Peri 0dTo>2012- 01- 01</ cover Per i odTo>
<dueDat e>2012- 01- 01</ dueDat e>
<payeeNanme>D</ payeeNanme>
<payeeAddr ess>E</ payeeAddr ess>
<paynent Ref er enceNo>F</ paynment Ref er enceNo>
<bankSor t Code>G</ bankSor t Code>
<bankAccount No>H</ bankAccount No>
<Paynent Br eakdown>
<Paynent Li nel t en»>
<caseNane>| </ caseNanme>
<caseRef er enceNo>J</ caseRef er enceNo>
<conponent Type>C24000</ conponent Type>
<debi t Anbunt >22. 45</ debi t Anbunt >
<credi t Anobunt >49. 76</ cr edi t Anount >
<cover Peri odFron>2012- 01- 01</ cover Peri odFr on>
<cover Peri 0dTo>2012- 01- 01</ cover Peri odTo>
</ Paynent Li nel t en>
<Paynent Li nel t en>
<caseNane>| </ caseName>
<caseRef er enceNo>J</ caseRef er enceNo>
<conponent Type>C24000</ conponent Type>
<debi t Amount >22. 45</ debi t Amount >
<cr edi t Amount >49. 76</ cr edi t Amount >
<cover Peri odFron>2012- 01- 01</ cover Per i odFr on>
<cover Peri 0dTo>2012- 01- 01</ cover Peri odTo>
</ Paynent Li nel t en>
</ Paynent Br eakdown>
</ Paynent >
</ tns: Paynent s>
</rem xm Message>
</rem create>
</ soapenv: Body>

</ soapenv: Envel ope>

IBM Curam Social Program Management 7.0.11 | 8 - Customizing the Universal Access Responsive Web
Application | 354

Contact

Sample contact SOAP request.

<soapenv: Envel ope xmnl ns: soapenv="htt p://schemas. xn soap. or g/ soap/
envel ope/" xm ns:rem="http://renote. external servi ces. wor kspaceservi ces
curant’ xm ns: xsd="http://dom w3c. or g/ xsd" >
<soapenv: Header >
<curam Credential s xm ns: curan¥"http://ww. curansof t war e. cont' >
<User nanme>admi n</ User nanme>
<Passwor d>passwor d</ Passwor d>
</ curam Credenti al s>
</ soapenv: Header >
<soapenv: Body>
<r em updat eExt er nal Cont act >
<rem xm Message>
<con: Contact | nfo xm ns: con="htt p: //ww. cur ansof t war e. conl
Wor kspaceSer vi ces/ Ext er nal Cont act ">
<sour ceSyst enrTest Syst enx/ sour ceSyst en>
<cont act Ref er ence>CON_100</ cont act Ref er ence>
<ful | Name>Harry Nei |l an</ful | Nane>
<phoneNunber >1- 800- CALL- ME</ phoneNunber >
<nobi | ePhoneNunber >1- 800- CALL- MOB</ nobi | ePhoneNunber >
<f axNunber >1- 800- CALL- FAX</ f axNunber >
<emai | >harry@. org</emai | >
</ con: Cont act | nf 0>
</rem xm Message>
</ rem updat eExt er nal Cont act >
</ soapenv: Body>

</ soapenv: Envel ope>

Cases

Sample cases SOAP request.

<soapenv: Envel ope xmnl ns: soapenv="htt p://schemas. xn soap. or g/ soap/
envel ope/" xm ns:rem="http://renote. external servi ces. wor kspaceservi ces
curant’ xm ns: xsd="http://dom w3c. or g/ xsd" >

<soapenv: Header >

IBM Curam Social Program Management 7.0.11 | 8 - Customizing the Universal Access Responsive Web
Application | 355

<curam Credential s xm ns: curan¥"http://ww. curansof t war e. cont' >
<User nanme>admni n</ User nanme>
<Passwor d>passwor d</ Passwor d>
</ curam Credenti al s>
</ soapenv: Header >
<soapenv: Body>
<r em updat eExt er nal Case>
<rem xm Message>
<cas: Casel nfo xm ns: cas="http://ww. curansof t war e. coni
Wor kspaceSer vi ces/ Ext er nal Case" >
<sour ceSyst enrTest Syst enx/ sour ceSyst en>
<cont act Ref er ence>CON_100</ cont act Ref er ence>
<caseRef erence>CAS_109</ caseRef er ence>
<caseName>My Benefit Case - 103</caseNane>
<citi zenWr kspaceAccount | D>8306889512684879872
</ citizenWrkspaceAccount | D>
</ cas: Casel nf 0>
</rem xm Message>
</ rem updat eExt er nal Case>
</ soapenv: Body>

</ soapenv: Envel ope>

Customizing appeals

You can customize appeals to suit your organization. You can integrate with an appeals system of your
choice. If you are licensed for the IBM® Curam Appeals application module, the IBM Cdram Social

Program Management appeals functionality is available on installation.

You can customize the following aspect of appeals:

« The Your rights to appeal content text on the dashboard.

 The Your appeals page. The Appeals page is shown only when a citizen has a case to appeal,
otherwise it is not displayed.

 The Request an Appeal Overview page, from which you can start the Request an Appeal form.

 The Request an Appeal IEG script, in which you specify the contents of the form.

 The Confirmation and next steps page.

IBM Curam Social Program Management 7.0.11 | 8 - Customizing the Universal Access Responsive Web
Application | 356

 The Appeal cards on the Appeals home page, which contain information about each appeal
request that a user creates. Each card shows the status of the appeal request in a colored badge,
with text such as Appeal Request Submitted or Appeal Request Pending. The color depends on
the status. For example, Appeal Request Submitted is blue. You can customize the label text.

1. The Appeals feature is unavailable by default. Enable Appeals in the application, see Enabling and
disabling appeals (on page 356).

2. Review the text on application pages. For more information about modifying text on pages, see
Changing text in the application (on page 137).

3. Review the Request an Appeal form. For more information, see Configuring appeal requests (on
page 282).

4. Review the Appeal Request cards on the Your appeals page, which show the appeals status.
For more information about customizing the appeals statuses, see Customizing appeal request
statuses (on page 368).

Related information
Appeal (on page 46)

Enabling and disabling appeals

The Appeals feature is disabled by default. Use the REACT_APP_FEATURE_APPEALS_ENABLED
environment variable to enable or disable the Appeals pages and options in your application. When you
enable Appeals, it is available only to linked users with an existing case that they can appeal.

For more information about linked users, see User account types (on page 234).

The following Appeals functionality can be enabled or disabled:

 The Appeals tab on the home page.

 The Appeals Request page.

* Your rights of appeal message on the home page.
« Appeals-related URLs, for example / appeal s.

1. Edit the . env file in the root of your application.
2. Set REACT_APP_FEATURE_APPEALS_ENABLED to t r ue or f al se. If you don't define the
environment variable, the appeals feature defaults to enabled.

IBM Curam Social Program Management 7.0.11 | 8 - Customizing the Universal Access Responsive Web
Application | 357

Customizing the citizen account

Users can use the citizen account to log in to a secure area where users can screen and apply for

programs.

Users also use the citizen account to view information relevant to them, including individually tailored
messages, system-wide announcements, updates on their payments, contact information for agency staff
and outreach campaigns that might be relevant to them. The citizen account also provides a framework

for customers to build their own pages or override the existing pages.

Related information

Track (on page 35)

Messages

When a linked citizen logs in, messages are gathered from the system and from remote systems for

display.

The curamci ti zenmessages. i mpl . Gi ti zenMessageControl | er APl gathers and displays messages. The API
reads persisted messages by participant from the Parti ci pant Message database table. The API also raises
the dtizenMessagesEvent . user Request sMessages event, inviting listeners to add messages to a list that

is passed as part of the event parameter. The messages that are gathered from each source are sorted,
turned into XML, and returned to the citizen for display.

Configuring citizen messages

Global configurations are included that can be specified for Citizen Messages, such as enabling certain
types and configuring their display order. The different types of messages also include their own
configuration points. Specific information about how to customize the various message types is provided
later.

The textual content of a message type also can be configured. Each message type has a related
properties file that includes the localizable text entries for the various messages displayed for that type.
These properties also include placeholders that are substituted for real values related to the citizen at run
time.

The wording of this text can be customized, by inserting a different version of the properties file into the
resource store. The following table defines which properties file need to be changed for each type of

message:

IBM Curam Social Program Management 7.0.11 | 8 - Customizing the Universal Access Responsive Web
Application | 358

Table 16. Message properties files

Message type Property file name

Payments CitizenMessageMyPaynent s. properties

Application Acknowledgment [Citi zenMessageAppl i cati onAcknow edgenent . properties

Verifications CitizenMessageVerificati onMessages. properties
Meetings Citi zenMessageMeet i ngMessages. properties
Referral CitizenMessagesReferral . properties

Service Delivery CitizenMessagesServi ceDel i very. properties

You can also remove placeholders (which are populated with live data at run time) from the properties.
However, there is currently no means to add further placeholders to existing messages. A custom type of

message must be implemented in this situation.

Adding a new type of citizen message

Messages are gathered by the controller in two ways: the controller

reads messages that were persisted to the database by using the

curamcitizennessages. persi stence. i npl. Partici pant Message API, and also gathers them
by raising the cur am parti ci pant nessages. events.inpl.Citi zenMessagesEvent

A decision needs to be made regarding whether to 'push’ the messages to the database, or else have
them generated dynamically by a listener that listens for the event that is raised when the citizen logs
in. The specific requirements of the message type need to be considered, along with the benefits and

drawbacks of each option.

Persisted messages

In this scenario, when something takes place in the system that might be of interest to the citizen, a
message is persisted to the database. For example, when a meeting invitation is created, an event is
fired. The initially configured meeting messages function listens for this event. If the meeting invitee is a
participant with a linked account, a message is written to the Part i ci pant Message table that informs the

citizen that they are invited to the meeting.

One benefit of this approach is that little processing is done when the citizen logs in to see this message:
the message is read from the database and displayed, as opposed to calculation that takes place that

would determine whether the message was required. However, the implementation also needs to handle

IBM Curam Social Program Management 7.0.11 | 8 - Customizing the Universal Access Responsive Web
Application | 359

any changes to the underlying data that might invalidate or change the message, and take appropriate

action.

For example, the meeting message function also listens for changes to meetings to ensure the meeting
time, location, and similar, are up to date, and to send a new message to the citizen to inform the citizen

that the location or time was changed.

Dynamic messages

These messages are generated when the citizen logs in, by event listeners
that listen for the cur am parti ci pant nessages. events. i npl .

Citi zenMessagesEvent . user Request sMessages event.

Because the message is generated at runtime, code is not required to manage change over time.
The message is generated based on the data within the system each time the citizen logs in. If some
underlying data changes, the next time the citizen logs in, they will get the correct message.

A drawback to this approach is that significant processing might be required at run time to generate the
message. Care must be taken to ensure that this processing does not adversely affect the load time of
the Citizen Account dashboard.

Performance considerations must be evaluated against the requirements of the specific message type
and the effort that is required to manage change to the data that the message is related to over time.

For example, the initially configured verification message is dynamic. When a citizen logs in, it checks

to see whether any outstanding verifications exist for that citizen. This process is a relatively simple
database read, whereas it would be complicated to listen for various events in the Verification Engine and
ensure that an up-to-date message was stored in the database related to the participants' outstanding
verifications. Alternatively, the meeting messages need to inform the citizen of changes to their meetings,
so functionality had to be written to manage changes to the meeting record and its related message over

time.
Implementing a new message type
Organizations can implement a dynamic message or a persisted message.

To implement a new message type, regardless of whether the message is persisted or is generated

dynamically, complete the following steps.

IBM Curam Social Program Management 7.0.11 | 8 - Customizing the Universal Access Responsive Web
Application | 360

Common tasks

« In the administration system, add an entry to the CT_Parti ci pant MessageType code table to
represent the new message type.

- Add a DMX entry for the ParticipantMessageConfig database table. This entry stores the type and
sort order of the new message type and is used for administration. For example:

<r ow>

<attribute name="PARTI Cl PANTMESSAGECONFI G D' >
<val ue>2110</ val ue>

</attribute>

<attribute name="PARTI Cl PANTMESSAGETYPE" >
<val ue>PMr2001</ val ue>

</attribute>

<attribute name="ENABLEDI ND'>
<val ue>1</val ue>

</attribute>

<attribute name="SORTORDER'>
<val ue>5</val ue>

</attribute>

<attribute name="VERS|I ONNO' >
<val ue>1</val ue>

</attribute>

</ row>

- Add a properties file to the App Resource store that contains the text properties and image
reference for the message.
« Add an image for this message type to the resource store.

Implementing a dynamic message

To implement a dynamic style message, an event listener must be implemented to
listen for the Ci t zenMessagesEvent . user Request sMessages event. This event
argument contains a reference to the Participant and a list, to which the listener adds
curam partici pant nessages. i npl . Parti ci pant Message Java™ objects.

For more information, see the Javadoc™ API for Ci t zenMessagesEvent in the

<CURAM DI R>/ EJBSer ver / conponent s/ cor e/ doc directory. For a full explanation, see
the Javadoc™ API for cur am parti ci pant nessages. i npl . Parti ci pant Message and
curam partici pant messages. i npl . Parti ci pant Messages.

IBM Curam Social Program Management 7.0.11 | 8 - Customizing the Universal Access Responsive Web
Application | 361

The message text is stored in a properties file in the resource store. A dynamic listener retrieves the
relevant properties from the resource store, and creates the ParticipantMessage object. The message
text for a message can include placeholders. Values for placeholders are added to ParticipantMessage
objects as parameters. The CitizenMessagesController resolves these placeholders, replacing them with
the real values for the participant.

For example, look at this entry from the Ci t i zenMessageMyPaynent . properti es file:

Message. Fi rst. Paynent =

Your next paynent is due on {Paynent. Due. Date}

The actual payment due date of the payment is added to the ParticipantMessage object as a
parameter. The CitizenMessagesController then resolves the placeholders, populating the text with

real values, and then turns the message into XML that is rendered on the citizen account. A public
CitizenMessageController method also exists, which returns all messages for a citizen as a list, see the
Javadoc™.

From the cur am parti ci pant nessages. i npl . Parti ci pant Message API:
[**
* Adds a paraneter to the map. The paranReference
* shoul d be present in the message title or body so
* it can be replaced by the paranVal ue before the nessage

* is displayed.

* @ar am par anRef er ence
* a string place holder that is present in either the
* message title or body. Used to indicate where the val ue

* paraneter should be positioned in a nessage.

* @ar am par anVal ue

* the value to be substituted in place of the place hol der
&

public void addParaneter(final String paranReference,

final String paranval ue) {

par anet er s. put (par anRef er ence, paranVval ue);

The call to the method would look like this:

IBM Curam Social Program Management 7.0.11 | 8 - Customizing the Universal Access Responsive Web
Application | 362

partici pant Message. addPar anet er (" Paynent . Due. Date", "1/1/2011");

Messages can also include links, which are also resolved at run time. Links can use placeholder values for

the link text. A link is defined in a properties file as shown.

Cick {link:here: paynentDetails} to view the paynent details.

In this example, her e is the text to display, and paynent Det ai | s is the name of the

link to be inserted at that point in the text. For more information, see the Advisor

Developer's Guide. For a dynamic listener to populate this link with a target, it creates a

curam partici pant nessages. i npl . Partici pant MessagelLi nk object, specifying a target and a

name for the link. The code would look like this example:

Pari ci pant Messageli nk partici pant MessageLi nk =
new Partici pant MessagelLi nk(fal se,

"CitizenAccount _|istPaynments", "paynmentDetails");

partici pant Message. addLi nk(parti ci pant MessagelLi nk) ;

Before the dynamic listener composes the message, it must check to ensure that the
message type in question is enabled. The curam parti ci pant messages. confi gurati on.
i npl . Parti ci pant MessageConf i gur at i on record for that message type is read, and the i senabl ed method is

used to determine whether this message type is enabled. If not, processing stops.

Note:

You can separate the code that listens for the event and the code that composes a specific

message to adhere to the philosophy of “doing one thing and doing it well”.

Implementing a persisted message

To display a persisted message to the citizen, it must be written to the database with the

curam citi zenmessages. persi stence. i npl. Partici pant Message API. Message
arguments are handled by persisting a cur am advi sor . i npl . Par anet er record and associating
it with the ParticipantMessage record. Links are handled by the cur am advi sor. i npl . Li nk

API. Parameter names map to placeholders in the message text. Link names relate to

the names of links that are specified in the message text. For more information, see the

Javadoc™ forcuram ci ti zennessages. persi stence. i npl . Parti ci pant Message,

curam advi sor. i npl . Par anet er,and cur am advi sor . i npl . Li nk.

IBM Curam Social Program Management 7.0.11 | 8 - Customizing the Universal Access Responsive Web
Application | 363

An expiry date time must be specified for each ParticipantMessage. After this date time, the message is

no longer be displayed.

Messages can be removed from the database. If a message needs to be replaced with a modified
version, or removed for another reason, use the curam ci ti zennessages. per si st ence.

i mpl . Partici pant Message API.

Each message has a related ID and type that is used to track the record that the message is related to.
For example, meeting messages store the Activity ID and a type of meet i ng. Messages can be read by
participant, related ID, and type by the Parti ci pant MessageDAO.

Before it persists the message, the dynamic listener checks to ensure that the message type in question
is enabled. The curam parti ci pant nessages. confi guration. inpl.Partici pant MessageConfi guration
record for that message type is read, and the i senabl ed method is used to determine whether this
message type is enabled. If not, no further processing occurs.

Customizing specific message types

Organizations can customize the default message to create a referral message or a service delivery

message.

Referral message

This message type creates messages related to referrals. This is a dynamic message. When the citizen
logs in, a message will be created for each referral that exists for the citizen in the system, provided that
referral has a referral date of today or in the future, and provided that a related Service Offering has been
specified for this referral. The properties file EJBSer ver \ conponent s\ Ci ti zenWor kspace\ dat a
\initial\blob\prop\CtizenMessageReferral.properties contains the properties for the
referral message text, message parameters, links and images. This properties file is stored in the resource
store. This resource is registered under the resource name Ci t i zenMessageRef err al . To change the
message text of the message, or to remove placeholders or change links, a new version of this file must
be uploaded into the resource store.

Service delivery message

This message type creates messages related to service deliveries. This is a dynamic message.

When the citizen logs in, a message will be created for each service delivery that exists for the

citizen in the system, provided that service delivery has a status of 'In Progress' or 'Not Started'. The
properties file EJBSer ver \ conponent s\ Ci ti zenWor kspace\ dat a\i ni ti al \ bl ob\ prop
\CitizenMessageServi ceDel i very. properti es contains the properties for the service delivery
message text, message parameters, links and images. This properties file is stored in the resource store.

IBM Curam Social Program Management 7.0.11 | 8 - Customizing the Universal Access Responsive Web
Application | 364

This resource is registered under the resource name Ci t i zenMessageSer vi ceDel i very. To change
the message text of the message, or to remove placeholders or change links, a new version of this file
must be uploaded into the resource store.

Payment messages

The payment message type creates messages based on the payments that are issued or canceled for a

citizen.

The payment messages are persisted to the database. They replace each other, for example, if a
payment is issued and then canceled, the payment issued message is replaced with a payment
canceled message. The properties file EJBSer ver \ conponent s\ Ci ti zenWr kspace\ dat a
\initial\blob\prop\CtizenMessageMyPaynents. properti es contains the properties for
financial message text, message parameters, links, and images. This properties file is stored in the
resource store. This resource is registered in the resource name Ci t i zenMessageMyPaynent s.
To change the message text of financial messages, or to remove placeholders or change links,
upload a new version of this file to the resource store. The following table lists the messages that
are created when events that are related to payments occur in the system, and the related property in
CitizenMessageMyPaynent s. properti es.

Table 17. Payment messages and related properties

Payment event Message Property
First payment issued on a case Message.First.Payment
Latest payment issued Message.Payment.Latest
Last payment issued Message.Last.Payment
Payment canceled Message.Cancelled.Payment
Payment reissued Message.Reissue.Payment

Payment stopped (case suspend- Message.Stopped.Payment

ed)

Payment / Case unsuspended Message.Unsuspended.Pay-

ment

Customization of the payment messages expiry date

You can set the number of days that the payment message is displayed to the citizen with a system
property. By default the property value is set to 10 days, but you can override this default from property

administration.

IBM Curam Social Program Management 7.0.11 | 8 - Customizing the Universal Access Responsive Web
Application | 365

Table 18. Payment message expiry property

Name Description

curam.citizenaccount.payment.message.expiry- The number of days that the payment message is displayed to the participant.

.days

Meeting messages

The meeting message type creates messages based on meetings that citizens are invited to, provided
that they are created by using the curam nmeet i ngs. sl . i npl . Meet i ng AP

The API raises events that the meeting messages functionality consumes. There are other ways of
creating Activity records without this API, but meetings created in these ways do not have related
messages created as the events are not raised. These messages are persisted to the database.

They replace each other, for example, if a meeting is scheduled and then the location is changed,

the initial invitation message is replaced with one informing the citizen of the location change. The
properties file EJBSer ver\ conponent s\ Ci ti zenWbr kspace\ data\ini ti al \ bl ob\ prop
\CitizenMessageMeet i ngMessages. properti es contains the properties for the meeting
messages text, message parameters, links and images. This properties file is stored in the resource
store. This resource is registered in the resource name Ci t i zenMessageMeet i ngMessages.

To change the message text of meeting messages, or to remove placeholders or change links, a

new version of this file must be uploaded into the resource store. Table 1 describes the messages
created when various events related to meetings occur in the system, and the properties in

Citi zenMessageMeet i ngMessages. properti es that relates to each message created. Different
versions of the message text are displayed depending on whether the meeting is an all day meeting,
whether a location has been specified, and whether the meeting organizer has contact details registered
in the system. Accordingly, the property values in this table are approximations that relate to a range of
properties within the properties file. Refer to the properties file for a full list of the message properties.

Table 19. Meeting messages

Meeting event Message Properties

Meeting invitation | Non.Allday.Meeting.Invitation.*, Allday.Meeting.Invitation-

*

Meeting update | Non.Allday.Meeting.Update.*, Allday.Meeting.Update.*

Meeting canceled | Allday.Meeting.Update.*, Allday.Meeting.Cancellation.*

IBM Curam Social Program Management 7.0.11 | 8 - Customizing the Universal Access Responsive Web
Application | 366
Customization of the meeting messages display date

The number of days before the meeting start date that the message should be displayed to the citizen can
be configured using a system property. By default the property value is set to 10 days, however, this can
be overridden from property administration.

The meeting message expires (it is no longer displayed to the citizen) at the end of the meeting, that is,
the date time at which the meeting is scheduled to end.

Table 20. Meeting message display date property

Name Description

curam.citizenaccount.meeting.message.effective- | The number of days before the meeting start date that the message should be displayed to the

.days citizen.

Application acknowledgment message

The application acknowledgment message type creates a message when an application is submitted by a

citizen.

The message is persisted to the database. The properties file EJBSer ver

\ conponent s\ Ci ti zenWor kspace\ data\i ni tial\ bl ob\ prop

\ Ci ti zenMessageAppl i cati onAcknow edgnent . properti es contains the

properties for the messages text, message parameters, links and images. This properties

file is stored in the resource store. This resource is registered under the resource name
CitizenMessageAppl i cati onAcknowl edgnent . To change the message text of the message, or to
remove placeholders or change links, a new version of this file must be uploaded into the resource store.

Customization of application acknowledgment message expiry date

The number of days the Application Acknowledgment message will be displayed to the citizen can be
configured using a system property. By default the property value is set to 10 days, however, this can be
overridden from property administration.

Table 21. Application acknowledgment message expiry property

Name Description

curam.citizenaccount. intake.application.acknowledgement.message.expiry.days The number of days the application acknowledgment mes-

sage will be displayed to the participant.

IBM Curam Social Program Management 7.0.11 | 8 - Customizing the Universal Access Responsive Web
Application | 367

Customizing the Notices page

By default, the notices relevant to the linked user are listed on the Notices page. You can replace the

default CitizenCommunicationsStrategy implementation with your own custom implementation.

For example, you can create a custom implementation to retrieve the communications of all of the
household members of the logged-in citizen, instead of just the citizen.

Create an alternative implementation of the
curam citi zenaccount.inpl.C tizenConmruni cati onsStrategy.|istC tizenComuni cati ons(Concer nRol eKey)

method for listing the citizen communication records.

In addition, a number of default hooks are available for custom implementations to customize the

behavior of the communication processing module.

Related information
The Notices page (on page 42)

Communication processing hooks and events

How electronic notices are managed and supported in the Citizen Portal affects the communication

processing module.

While the default implementation doesn’t address or implement any of the impacts, the following default

hooks are available for the custom implementation to customize the communication processing module.

curam.core.hook.impl.PreCreateCommunicationHook - can be used in customized scenarios for any kind

of pre creation processing for communication records.

curam.core.hook.impl.PreModifyCommunicationHook - can be used in customized scenarios for any

kind of pre modify processing for communication records.

For e.g.; in situations where create or modify operation is not applicable, this hook points can be used
to redirect the user with customized messages before the creation or modification of communication

records using custom exception handling.

curam.core.hook.impl.CommunicationlnvocationStrategyHook - can be used as a toggle the above
hooks i.e., PreModifyCommunicationHook and PreCreateCommunicationHook should be invoked or not.

The following communication processing methods have been updated by the pre creation and pre

modification hooks that are mentioned above to enable further customization.

IBM Curam Social Program Management 7.0.11 | 8 - Customizing the Universal Access Responsive Web
Application | 368

« curam.core.facade.impl.Communication.modifyWordDocument(ModifyWordDocumentDetails)
« curam.core.facade.impl.Communication.modifyEmail(ModifyEmailCommbDetails,
ModifyEmailCommKey)
« curam.core.facade.impl.Communication.modifyRecordedCommunication1(ModifyRecordedCommkKey,
ModifyRecordedCommbDetails1)
« curam.core.facade.impl.Communication.modifyProForma1(ModifyProFormaCommDetails1)
« curam.core.facade.impl.Communication.createEmailCommunication(CreateEmailCommDetails)
« curam.core.facade.impl.Communication.createEmail(CreateEmailCommDetails)
« curam.core.facade.impl.Communication.createMSWordCommunication1(CreateMSWordCommunicationDetails 1)
« curam.core.facade.impl.Communication.createCaseMSWordCommunication1(CreateMSWordCommunicationDetai
« curam.core.facade.impl.Communication.createRecordedCommunication1(RecordedCommbDetails1)
« curam.core.facade.impl.Communication.createProForma1(CreateProFormaCommbDetails1)

« curam.core.facade.impl.Communication.createProFormaCommunication1(CreateProFormaCommbDetails1)

Communication events
curam.core.events. CONCERNROLEACOMMUNICATION.INSERT_CONCERN_ROLE_COMMUNICATION
curam.core.events. CONCERNROLEACOMMUNICATION.MODIFY_CONCERN_ROLE_COMMUNICATION

These are the events that are raised post-creation or post-modification of a communication record.
Custom implementations can listen to these events for any kind of post processing requirements.

Customizing appeal request statuses

You can create an implementation to enable the display of appeal request status from an external appeals

system in the citizen account by using the provided API.

The curam.core.onlineappealrequest.impl.OnlineAppealRequestStatus interface takes an appeal request as

an input and passes back a code-table value. You can modify code-table entries as required.

 The appeal status text that you see in the application is hardcoded as <descri pt i on>tags in two
CT_Citi zenAppeal Request St at us. ct x files.
o The EJBSer ver\ conponent s\ cor e\ codet abl e
\CT_CitizenAppeal Request St at us. ct x file contains the code table value for the
Appeal Request Submitted status. This is so you can submit an appeal even if IBM® Curam
Appeals is not installed and the Appeal s. j ar file is not present. You can modify the
description for the Appeal Request Submitted status in this file.

IBM Curam Social Program Management 7.0.11 | 8 - Customizing the Universal Access Responsive Web
Application | 369

o When IBM® Curam Appeals is installed and the Appeal s. j ar is present, more
appeal status values are available. You can modify the descriptions for the other
code table status values in the EJBSer ver \ conponent s\ Appeal \ codet abl e
\CT_Citi zenAppeal Request St at us. ct x file.
For information about editing code tables, see Customizing a code table file.

« The color of each appeal status is set by the Badge component in the Social Program
Management Watson Design System. The Appeal Request sConponent . j s file contains a
get BadgeDat aByCodet abl e function. The get BadgeDat aByCodet abl e function is a map of code tables
to badge type. For example, the CARS1001 code table is mapped to the war ni ng badge type so
it is displayed in red. In your Web app development environment, you can see the badge colors
by opening the Web Design System Storybook documentation at @ovhhs/ govhhs- desi gn-
systemreact/doc/index. ht M and expanding to Components > Badge.

1. Identify the appeal request ID from the caseworker application.

2. Use the appeal request ID to associate the appeal request status from the external system with the
appeal request status in IBM® Curam Universal Access.

3. Implement the curam.core.onlineappealrequest.impl.OnlineAppealRequestStatus interface to return
the appropriate code table value based on the OnlineAppealRequest.
For example, a custom implementation of this class might call a remote system and map the
return value to an appropriate code table value.

4. Customize an appeal status message to display in the Citizen Account.

5. If you create a new status, you must map it to a badge type to specify a color to display.

Related information
Customizing appeals (on page 355)

Error logging in the citizen account

When a citizen submits an application, when a citizen clicks Submit a deferred process starts. If a

mapping failure occurs, an error is logged.
Application property

The application property curam.workspaceservices.application.processing.logging.on increases the level
of detail of error messages.

When curam.workspaceservices.application.processing.logging.on is set to true, detailed error messages
are written to the application log files if the submission process fails.

../ServerDeveloper/r_SERDEV_Message1CustomizingCodeTableFile1.html

IBM Curam Social Program Management 7.0.11 | 8 - Customizing the Universal Access Responsive Web
Application | 370

Error codes

Each error message is prepended with an error code. These error codes help to automatically scan
application logs so that unexpected failures can be identified. The error codes that are returned by the
application is defined in the code table file CT_Appl i cati onProcessi ngError. ct x.

The range of codes that are reserved for internal processing is APROCER001 — APROCER500. Customers
can use the range APROCER501 — APROCER999 to log errors in custom processing, for example error
codes for extension-mapping handler class.

The list of error codes that are returned by the application, and a brief description of the problem, is listed
in Table 1.

Table 22. Application error codes

Code Description
APROCERO0O01 An error occurred creating a person.
APROCER002 An error occurred creating a prospect person.
APROCER003 A relationship error occurred creating a person.
APROCER004 An error occurred creating a case.
APROCER005 An error occurred while performing a "map-attribute” mapping.
APROCER006 An error occurred while performing a "set-attribute" mapping.
APROCER007 An error occurred while performing a "map-address" mapping.
APROCERO008 General mapping failure.
APROCER009 Error creating evidence.
APROCERO010 More than one PDF form is registered against the program type.
APROCERO011 Error setting the alternate id type for a Prospect Person.
APROCERO012 Invalid alternate ID value.
APROCERO013 Error the Evidence Application Builder has not been correctly configured.
APROCERO014 Evidence type not listed in the Mapping Configuration.
APROCERO015 No parent evidence entity found.
APROCERO16 An error occurred when trying to unmarshal the application XML.
APROCERO017 An error occurred when trying to set a field value.

IBM Curam Social Program Management 7.0.11 | 8 - Customizing the Universal Access Responsive Web

Application | 371

Table 22. Application error codes (continued)

Code Description

APROCER018 An error occurred when trying to create the PDF document.

APROCERO019 An error occurred when trying to create the PDF document. A form code
could not be mapped to a codetable description.

APROCER020 An error occurred when trying a WorkspaceServices mapping extension han-
dler.

APROCERO021 Missing source attribute in datastore entity.

APROCER022 An attribute in an expression is not valid.

APROCER023 Application builder configuration error.

APROCER024 Failed creating DataStoreMappingConfig, no name specified.

APROCER025 Failed creating DataStoreMappingConfig, the name is not unique.

APROCER026 The mapping to datastore had to be abandoned because the schema is not
registered.

APROCER027 There was a problem parsing the Mapping Specification.

APROCER028 General mapping error. Mapping XML included.

APROCER029 Cannot have multiple primary participants.

APROCER030 No programs have been applied for.

APROCERO031 An error occurred while attempting to map to Person data.

APROCER032 An error occurred while attempting to map to Relationship data.

APROCERO033 An error occurred while creating Cases.

APROCER034 An error occurred while creating evidence.

APROCER035 No programs have been applied for.

APROCER036 An error occurred reading data from the datastore.

APROCER037 Specified integrated case type does not exist.

APROCERO038 Specified case type does not exist

APROCER039 Duplicate SSN entered for prospect person.

APROCER040 Duplicate SSN entered.

IBM Curam Social Program Management 7.0.11 | 8 - Customizing the Universal Access Responsive Web
Application | 372

Table 22. Application error codes (continued)

Code Description
APROCER041 There was a problem with the workflow process.
APROCER042 No primary participant has been identified as part of the intake process.

Artifacts with limited customization scope

A description of IBM® Curam Universal Access artifacts that have restrictions on their use. Customers
that want to change these artifacts should consider alternatives or request an enhancement to Universal
Access.

Model

Customers are not supported in making changes to any part of the Universal Access model. Changes in
the model such as changing the data types of domains can cause failure of the Universal Access system
and upgrade issues. This applies to the model files in the following packages:

» WorkspaceServices
« CitizenWorkspace

« CitizenWorkspaceAdmin
Code tables

See Extending code tables for a list of restricted code tables.

Related information

Extending code tables

https://www.ibm.com/support/knowledgecenter/SS8S5A_7.0.11/com.ibm.curam.content.doc/DevelopmentCompliancy/c_COMPDEV_Developing1ExtendingCodetables1.html

Chapter 9. IEG in the Universal Access Responsive
Web Application

Universal Access uses forms to gather information about citizens, such as when they apply for benefits.
IBM Universal Access Responsive Web Application forms that gather data as evidence are implemented
in IEG, as in the classic Universal Access citizen application. However, forms are now rendered in the
browser by the IEG React Player, rather than the IEG Java™ player, and in some cases, the IEG behavior is
different.

Due to the technology and user interface changes, your existing IEG scripts must be tested before use,
and in most cases, at least some minor changes are needed for existing scripts to work in the new

application.

The default connectivity handling in the Universal Access Responsive Web Application helps to prevent
citizens losing data in IEG forms by preventing them from leaving pages with unsaved changes. For more

information about data loss prevention in IEG, see Connectivity handling.

IEG elements and attributes specific to the design system and
Universal Access Responsive Web Application

The following IEG elements and attributes apply to the design system and Universal Access Responsive

Web Application only.

Display elements and attributes

» The conbo- box element, which is a child element of the quest i on element.

» The expl ai ner element, which is a child element of the cl ust er, quest i on- page, and
rel ati onshi p- page elements.

» The hi nt-text element, which is a child element of the cont ai ner, | i st - questi on, and
questi on elements.

* The next - but t on- | abel element, which is a child element of the quest i on- page,
rel ati onshi p- page, and sunmar y- page elements.

» Therel ati onshi p-det ai | - header element, which is a child element of the
rel ati onshi p-summary-1ist element.

» The qui ck- add- | i st element, which is a child element of the rel at i onshi p- page

element.
Display element attributes

* The gr oupi ng- i d attribute of the cl ust er element.

../CitizenEngagement/c_CE_connectivity_handling.html

IBM Curam Social Program Management 7.0.11 | 9 - IEG in the Universal Access Responsive Web
Application | 374

Flow-control element attribute

« The value 'hidden’ for the loop-type attribute of the loop element.

Meta-display elements

» The cl ass- names element, which is a child element of the | ayout element.
» The dat e- pi cker value for the t ype child element of the | ayout element.

For more information about IEG elements, see the IEG script element reference.

IEG configuration not currently supported for the Universal
Access Responsive Web Application

The following IEG configuration is not currently supported by the IBM Social Program Management

Design System or the Universal Access Universal Access Responsive Web Application.

Question matrices

Question matrices display a list of questions that are based on a code table and, for each of
the code table values and each entity, a check box is displayed for you to select the values

that apply to a particular entity.
Three-field date picker

The three-field date picker is no longer supported. Dates either default to a single-field date

input field or can be configured with a date picker component by using the | ayout element.
Grouping individual question help at cluster level

Cluster-level help is supported, however, the conpi | e. cl ust er . hel p property, which groups
the help text for each of the questions in a cluster into the cluster help panel is not

supported.

Display elements and attributes

* The cust om out put element, which renders custom HTML on summary pages only.

* The show- page- el enent s attribute on the edi t - 1 i nk element for editing specific

clusters.

» Thefooter-fiel d element, which displays values that are calculated from

expressions in the f oot er - r ow element of a list.

../AuthoringScriptsUsingIEG/r_AUTHIEG_Elements1IegScriptElementReference1.html

IBM Curam Social Program Management 7.0.11 | 9 - IEG in the Universal Access Responsive Web
Application | 375

* The f oot er - r owelement, which adds an extra row at the end of a list to display total

or summary information.

* The hel p-t ext element, which displays help text, is not supported for pages.

» Thei con element, which is used to add images to either the title area of a page or the
sections panel.

* The | abel -al i gnnent element, which is used in the | ayout element for a cluster to
control the text alignment of the labels in the cluster.

» The | abel - wi dt h element, which is used in the | ayout element for a cluster to control
the width of the labels in the cluster.

» The num col s element, which is used in the | ayout element for a cluster to control the
number of columns in the cluster.

» The type element, which is used in the | ayout element for a cluster to control the
layout of labels in relation to input controls.

» The wi dt h element, which is used in the | ayout element for a cluster to control the
width of the cluster on the page.

» The I egi sl ati on element, which creates legislation links at page and question level to
point to relevant legislative information.

* The pol i cy element, which creates policy links at page and question level to point to
relevant policy information

- The ski p- fi el d element, which enables a more flexible layout of elements within

clusters or footer rows in lists where no visible display element is needed.

* The row hel p element, which specifies help for rows in a list.

 The set - f ocus attribute of the questi on- page element, which sets focus for a page.

Meta-display elements

 The codet abl e- hi erar chy- 1 ayout element, which is used in questions with a code
table hierarchy type to control different aspects of the layout.

IBM Curam Social Program Management 7.0.11 | 9 - IEG in the Universal Access Responsive Web
Application | 376

Structural, administrative, and other elements and attributes

* The hi de-for-control - questi on attribute on the i eg- scri pt element, which hides the
label and value of control questions for loops when the loop is entered.

» The hi ghl i ght - val i dat i on attribute on the i eg- scri pt element. Validations are now
always displayed with the failing input field.

* The show progr ess- bar attribute on theieg-script element. Progress through
sections is now indicated by text and the section title. For example, STEP 2 OF 4 -
HOUSEHOLD.

For more information about IEG elements, see the IEG script element reference.

Customizing the Back button in IEG forms

You can customize the behavior of the Back button in IEG forms to suit your applications.

For the best user experience, set the behavior of the Back button in IEG according to whether you have
a single form or multiple forms in your application. Where you have multiple forms, you typically want to
navigate back to the previous form.

» Where you have a single form, always disable the Back button on the first page of the IEG
form. The Back button goes back one page in the form, not in the application, so you don't
need one on the first page. For more information about the show back- but t on element, see
https://www.ibm.com/support/knowledgecenter/en/SS8S5A_7.0.11/com.ibm.curam.ieg.doc/
AuthoringScriptsUsinglEG/r_AUTHIEG_Elements1Questionpage1.html.

Typically, an application has multiple forms. By default, a feature with two forms, Apply and
Submit is provided in the uni ver sal - access- ui package. The default feature has two instances of

BaseFor mCont ai ner, Appl i cat i onFor mCont ai ner and Subni ssi onFor nCont ai ner .
By default, the Apply form has the Back button disabled on its first page.

In Universal Access Responsive Web Application 3.0.4 or later, the Back button of the Submit form

goes to the Apply form in the Subni ssi onFor nCont ai ner component by default.

If you are customizing or overriding Subni ssi onFor nCont ai ner component, or using an earlier
version, you must add some code to the Subni ssi onFor nCont ai ner component to ensure that the

Back button goes to a previous form.

../AuthoringScriptsUsingIEG/r_AUTHIEG_Elements1IegScriptElementReference1.html
https://www.ibm.com/support/knowledgecenter/en/SS8S5A_7.0.11/com.ibm.curam.ieg.doc/AuthoringScriptsUsingIEG/r_AUTHIEG_Elements1Questionpage1.html
https://www.ibm.com/support/knowledgecenter/en/SS8S5A_7.0.11/com.ibm.curam.ieg.doc/AuthoringScriptsUsingIEG/r_AUTHIEG_Elements1Questionpage1.html

IBM Curam Social Program Management 7.0.11 | 9 - IEG in the Universal Access Responsive Web
Application | 377

> Add a function to the component logic, for example:

handl eBackFor FirstPage = () => {
const { history, submissionFornDetails } = this.props;
const { applicationFormd } = subm ssionFornDetails;
hi st ory. push({
pat hnane: " ${ PATHS. APPLY}/ ${appl i cati onForm d} ",

)5

> Then, inside the render function, pass the function to the BaseFor nCont ai ner component by

using the onBackFor Fi r st Page prop, for example:

render () {

const { submi ssionFornDetails, match } = this. props;

RESTSer vi ce. handl eAPI Fai | ure(t hi s. props. creat eAppl i cati onUsi ngFor nDet ai | sError);
RESTSer vi ce. handl eAPI Fai | ure(t hi s. props. creat eSubni ssi onFornError);
RESTSer vi ce. handl eAPI Fai | ure(t hi s. props. del et eAppl i cati onFornError);

RESTSer vi ce. handl eAPI Fai | ure(t hi s. props. get Submi ssi onFor nDet ai | sError);

if (match. paranms. submi ssi onForm d && submi ssi onFornDetails) {
return (
<BaseFor nCont ai ner
i egFor m d={ mat ch. par ans. submi ssi onFor i d}
i egHookBi ndi ngKey={ HookBi ndi ngs. SUBM SSI ON}
onBackFor Fi r st Page={t hi s. handl eBackFor Fi r st Page}
onExi t ={t hi s. handl eExi t}
onFi ni sh={t hi s. handl eFi ni shScri pt}
onSaveAndExi t ={t hi s. handl eSaveAndExi t }
title={(subm ssionFornDetails && subm ssionFornDetails.applicationTitle) || "'}

/>

IBM Curam Social Program Management 7.0.11 | 9 - IEG in the Universal Access Responsive Web
Application | 378

return <AppSpi nner />;

For more information about the onBackFor Fi r st Page property, see Customizing script behavior with

BaseFormContainer (on page 397).

Configuring section navigation for forms

If you are developing scripts in IEG, you can enable section navigation to guide people through forms.

You can use section navigation on any forms, but it is particularly useful for longer forms. If you enable
section navigation, it is a good idea to use section summary pages so that users can review their changes
regularly.

In your IEG script, add the show sect i on element to the i eg-scri pt element.

Related information

Controlling the Flow using Sections (Universal Access Responsive Web Application)

Configuring progress information for forms

If you are developing pages in IEG, you can show progress text and the section title so citizens can see
where they are in the script, for example, STEP 2 OF 4 - HOUSEHOLD.

Add the following IEG configuration property to the i eg- conf i g. properti es file to configure the text.
The section title is added automatically.

Text progress bar indicator

progress. bar.indicator.text=Step %ds of s

Where 9s is the current step number and the %:s is the total number of steps on the script. The message

is calculated based on the total number of sections and the current section.

The IEGPageMetadata(JSON); component contains all of the metadata for each IEG form. The text
progress indicator is displayed if IEGPageMetadata finds the net adat a[' i eg-confi g'] [' progr ess-

i ndi cator'] element in the JSON.

Configuring dynamic titles on forms

If you are developing pages in IEG, you can configure the relationship pages with more relevant titles that

are based on the user's responses.

../AuthoringScriptsUsingIEG/c_AUTHIEG_Control1ControllingFlowUsingSections1-UA.html

IBM Curam Social Program Management 7.0.11 | 9 - IEG in the Universal Access Responsive Web
Application | 379

The relationship page title accepts an International Components for Unicode (ICU) message template.
Page titles and subtitles accept a specific formatting syntax based on ICU. It should be used in loops and
will give more context to the users.

These six keywords are defined:

* i ndex

* i nner | ndex

¢ out er | ndex
¢ ordi nal

¢ i nner Or di nal

* out er Or di nal

You can use i ndex and or di nal in simple non-nested loops. If they are used in a nested loop, it is

synonymous to out er I ndex and out er Or di nal .
Refer to these examples.
"Add {ordinal} nenber" displays Add first member, Add second member, ...

"Add the {innerOrdinal} income for the {outerOrdinal} nenmber” displays Add the first income for the

first member ...

"{index, select, 0 {Add your {innerOrdinal} incone} other {Add %s's {innerOrdinal} incone}}"
displays Add your first income or Add Jane's first income depending on the value of index (this is equal
to ordinal - 1).

"Ajouter |a {ordinal}#feninine# personne" displays Ajouter la premiére personne.

"Ajouter la {innerOdinal}#fem nine# recette du {outerOdinal }#%pel | out - ordi nal - mascul i ne#
menbre” displays Ajouter la premiére recette du premier membre.
You can define the title as follows:

{index, select, O {Your relationships} other {{personNane}'s relationships}}

The outcome of this message template on the first relationship question page is Your relationships. On
the following relationship question pages, it shows [personName]’s relationships. The reserved word
per sonNane displays the person's first name on the title of the page.

IBM Curam Social Program Management 7.0.11 | 9 - IEG in the Universal Access Responsive Web
Application | 380

Configuring rich text on forms

You can configure rich text to display with a number of IEG display elements in IEG forms. You can also

configure external links in rich text to open in a new tab or window.

Rich text is supported in the following IEG display elements that support text:

« cl ust er title, help, and description

- cont ai ner title, help, and description
¢ di spl ay-text

e di vi der

« li st title, help, and description

* quest i on label and help

*subtitle

For more information about IEG elements, see Display elements.

Configuring external links to open in a new tab or window

You can configure external links to open in a new tab or window in IEG forms. By default, links open in the

current tab.

For security reasons, HTML in rich text is sanitized to remove certain attributes before display, including
the HTML target attribute. You must configure the rich text to leave the target attribute in the sanitized

content so that the link opens in a new tab or window.

For example, the ny | i nk</ a> linkin rich text opens in the current tab as
intended. Thenmy |inklinkisintendedto openina
separate tab or window. However, because the rich text is sanitized with DOMPurify before display, the

target attribute is removed and the link opens in the current tab by default.

To configure DOMPurify to leave specific attributes, you must add donpuri fy to the dependencies and
specify a DOMPurify persistent configuration in any JavaScript or JSX code that runs when the app is
loaded. For example, App. j s. For more information about DOMPurify, see https://github.com/cure53/

DOMPurify#persistent-configuration.

Only one active configuration at a time is allowed. After you set the configuration, any extra configuration
parameters that are passed to DOVPuri fy. sani ti ze are ignored. The DOMPurify configuration persists until

the next call to DovPuri fy. set Confi g, or until DOVPuri fy. cl ear Confi g is called to reset it.

../AuthoringScriptsUsingIEG/r_AUTHIEG_Elements1DisplayElements1.dita
https://github.com/cure53/DOMPurify#persistent-configuration
https://github.com/cure53/DOMPurify#persistent-configuration

IBM Curam Social Program Management 7.0.11 | 9 - IEG in the Universal Access Responsive Web
Application | 381

1. Add donpuri fy to the dependencies in the package. j son file.

npminstall donpurify

2. To configure DOMPurify to leave the target attribute, specify the following DOMPurify persistent
configuration in any JavaScript or JSX code that runs when the app is loaded.
inport DOVPurify from ' donpurify';

DOWPuri fy. set Config({ ADD_ATTR ['target'] });

Configuring hint text for forms

You can use short sentences of hint text to explain the expected input format or content in IEG forms. For
example, you can explain the expected format for a telephone number.

Hint text is suitable for short sentences and does not support HTML tags. If you want to add more text or
format text with HTML tags, use the hel p-t ext or expl ai ner elements instead. For more information, see

explainer, hint-text, and help-text.

- ™
Note:
Specific globalization considerations apply to the date format when it is used in hint text and
messages. Ensure that you have the same date format in the REACT_APP_DATE_FORMAT environment
variable, and in thepat eAdapt er _Dat eFor mat and Errors_dat e messages in theintel I i gent -

evi dence- gat heri ng- | ocal es package.
- J

In your IEG script, you can add the hi nt -t ext element to any cont ai ner, questi on Or | i st - questi on

element.

For example:

» Container

<cont ai ner show- cont ai ner - hel p="true">
<title id="primaryPhoneNunber" >pri maryPhoneNurmber</title>

<hi nt-text id="PhoneNunber. H nt">PhoneNunber. Hi nt </ hi nt -t ext >

<hel p-text id="PhoneNunber. Hel p">Tel ephone nunmber nust only contain nunbers, parentheses, or dashes and be
10 digits. For exanple, (212) 555-0010 or 2125550010. </ hel p-text >

<question id="prinmaryPhoneType" mandatory="true">

<hel p-t ext id="PhoneNunber. Hel p*>Tel ephone nunber must only contain nunbers, parentheses, or

dashes and be 10 digits. For exanple, (212) 555-0010 or 2125550010. </ hel p-t ext >

<l abel id="PrinmaryPhoneType. Label ">Pri mary Phone Type</| abel >

../AuthoringScriptsUsingIEG/r_AUTHIEG_Elements1explainer.html
../AuthoringScriptsUsingIEG/r_AUTHIEG_Elements1hint-text.html
../AuthoringScriptsUsingIEG/r_AUTHIEG_Elements1Helptext1.html

IBM Curam Social Program Management 7.0.11 | 9 - IEG in the Universal Access Responsive Web
Application | 382

</ question>

</ cont ai ner>

* Question

<question id="firstNane" nmandatory="true">
<hi nt-text id="FirstNane.H nt">FirstNane. H nt </ hi nt-text>
<l abel id="FirstNane.Label ">First Nane</|abel >

</ question>

« List question

<list-question entity="Person" id="currentlyWrking" nandatory="fal se">
<l abel id="CurrentlyWrking.Label">Pl ease sel ect the people that have a job:</|abel >
<hi nt-text id="Currentl|yWrking.H nt">Current!|yWrking. H nt</hint-text>
<item| abel >
<l abel -el enent attribute-id="firstNanme" />
</item| abel >

</1ist-question>

Configuring explainer text for forms

You can use the expl ai ner element to provide extra text in IEG forms that is initially hidden and that can
be expanded to show further explanation. For example, you can provide background information that a

user can choose to expand only if needed.

You can use the expl ai ner element to provide a large amount of text without cluttering up the form. For

more information, see explainer, hint-text, and help-text.
In your IEG script, add the expl ai ner element to any cl ust er, quest i on- page, Or rel at i onshi p- page element.

For example:

® cluster

<cl uster>
<expl ai ner>
<title id="ExplainerCluster.Title">Wy do we ask for your Social Security Nunber?</title>
<descri ption id="Expl ai ner.Description">Your Social Security Nunber ensures that your application is
uni que to you and reduces processing tine.</description>

</ expl ai ner >

../AuthoringScriptsUsingIEG/r_AUTHIEG_Elements1explainer.html
../AuthoringScriptsUsingIEG/r_AUTHIEG_Elements1hint-text.html
../AuthoringScriptsUsingIEG/r_AUTHIEG_Elements1Helptext1.html

IBM Curam Social Program Management 7.0.11 | 9 - IEG in the Universal Access Responsive Web
Application | 383

<question control -question="fal se" id="isSSN' nmandatory="true" multi-sel ect="fal se"
show-fi el d- hel p="f al se">
<l abel id="1sSSN. Label ">Wat is your Social Security Nunmber?</I|abel >
</ question>

</cluster>

® questi on- page

<questi on- page>
<expl ai ner>
<title id="ExplainerSSN Title">Wy do we ask for your Social Security Nunmber?</title>
<description id="Expl ai ner SSN. Descri pti on">Your Social Security Number ensures that your application is unique
to you and reduces processing tine.</description>
</ expl ai ner >

</ quest i on- page>

*rel ati onshi p- page

<rel ati onshi p- page>
<expl ai ner>
<title id="ExplainerSSN Title">Wy do we ask for your Social Security Number?</title>
<descri ption id="Expl ai ner SSN. Descri pti on">Your Social Security Number ensures that your application is unique
to you and reduces processing tine.</description>
</ expl ai ner >

</rel ati onshi p- page>

Configuring the 'Help' label for forms

You can change or remove the 'Help' label from the help icon for input controls in the application by
overriding the default text. To remove the label, override the default text with a single space characterin a

custom messages file.

1. Create asrc/ | ocal e/ messages_en. j son messages file with a single space character as the value for

the help label message ID, W dget Hel p_hel pToggl eText .

"W dget Hel p_hel pToggl eText": " "

2. Update the src/config/intl.config.js filein the English locale to point to the custom messages
file.

IBM Curam Social Program Management 7.0.11 | 9 - IEG in the Universal Access Responsive Web
Application | 384

locale: "en',
di spl ayNane: ' English',
| ocal eData: require('react-intl/local e-data/en'),
messages: require('../local e/ nessages_en'),
I

T

3. Rebuild and deploy the application to see your changes.

Related information
Changing text in the application (on page 137)

Configuring required or optional labels for form fields

You can choose whether to indicate the required fields or the optional fields in IEG forms. As the majority
of questions in a typical form should be required, indicating the optional questions rather than the
required questions typically results in a less cluttered form. By default, optional fields are highlighted in
IEG forms.

By default, fields that are not configured as required in the IEG script are labeled as Optional and required
fields are not labeled. If you choose to indicate required fields instead, fields that are configured as

required in the script are labeled Required and optional fields are not labeled.

Show labels for required questions only by adding the REACT_APP_DI SPLAY_REQUI RED_LABEL environment
variable to your . env file with a value of t rue.

For example:

REACT_APP_DI SPLAY_REQUI RED_LABEL=t r ue

Configuring input formats and constraints for form fields

You can customize field inputs and constraints on IEG forms, such as phone numbers, social security
numbers (SSN), dates, currencies, and percentages. You can adjust the width of form fields to match the

length of the expected input, and choose to use a date picker for dates where appropriate.

Where users need to type confidential information, you can obscure the input values to ensure privacy.
This configuration is done in the data store schema by setting a new data type and cannot be used with
masks. Instead of using a mask, you can also implement any extra constraints, such as the number of

IBM Curam Social Program Management 7.0.11 | 9 - IEG in the Universal Access Responsive Web
Application | 385

characters, in the data store schema by creating a custom domain, see Configuring inputs to be obscured
for privacy (on page 389).

Masked input fields increase input field readability by formatting or constraining typed data. You can
apply input masks with the IEG cl ass- names element, which is a child element of the | ayout element.
The cl ass- nanes element adds the content of the element to the HTML that is generated for the
component, this element accepts multiple values that are separated by a space. For more information
about the IEG | ayout element, see https://www.ibm.com/support/knowledgecenter/en/SS8S5A_7.0.11/
com.ibm.curam.ieg.doc/AuthoringScriptsUsinglEG/r_AUTHIEG_Elements1Layout1.html.

Input field masks
If the class name matches any of the reserved input mask class names, that class name is
applied to the HTML control input. If the class name does not match a reserved input mask
class name, the class name is applied to the <di v> element that contains the HTML element

(cl uster, question, Orlist-question). You can use the following design system CSS classes

as input masks to format and constrain input values for questions:

* wds-j s-i nput - mask- currency

Masks input for currencies. The character limit is 21 characters. You can also set
optional environmental variables for currency symbols, see Configuring currency
symbols (on page 389).

* wds-j s-i nput - mask- nurer al
Masks input for numerical input.
* wds-j s-i nput - mask-yyyy- nm dd
Masks input for the YYYY-MM-DD date format.
* wds-j s-i nput - mask- per cent age
Masks input for percentage characters.
* wds-j s-i nput - mask- phone
Masks input for phone number fields according to the defined locale for the
application. Configuring the phone number input mask requires some additional

steps and you can also set optional environmental variables for delimiters and

country codes, see Configuring phone numbers (on page 387).

* wds-j s-i nput - mask- post al - code

https://www.ibm.com/support/knowledgecenter/en/SS8S5A_7.0.11/com.ibm.curam.ieg.doc/AuthoringScriptsUsingIEG/r_AUTHIEG_Elements1Layout1.html
https://www.ibm.com/support/knowledgecenter/en/SS8S5A_7.0.11/com.ibm.curam.ieg.doc/AuthoringScriptsUsingIEG/r_AUTHIEG_Elements1Layout1.html

IBM Curam Social Program Management 7.0.11 | 9 - IEG in the Universal Access Responsive Web
Application | 386

Masks input for 2 groups of 3 characters that are separated by a space, XXX XXX,
such as a Canadian postal code. Alphabetic characters are converted to uppercase.

* wds-j s-i nput - mask-sin
Masks input for 3 groups of 3 characters that are separated by spaces, XXX XXX XXX,
such as a Canadian Social Insurance Number (SIN).
* wds-j s-i nput - mask- ssn
Masks input for digits that are separated by dashes and grouped as follows, XXX-XX-
XXXX, such as a US social security number (SSN).
* wds-j s-input-layout-size--field_size
Adjusts the width of form fields to match the length of the expected input. Where
fiel d_si ze is one of the following sizes:
x-snal |
Use for 2 - 3 characters, such as DD, MM, or title.
smal |
Use for 4 - 6 characters, such as ZIP code, postal code, or CVV number.
medi um
Use for around 8 characters, such as SSN or DD/MM/YYYY.
| arge
Use for around 16 characters, such as credit card numbers.
x-1 arge

Use for around 24 characters, such as email addresses.

Form field width

To avoid confusion about expected inputs, always match the width of form fields to the

expected input. For example, use a form field that matches the length of the SSN.

Date picker

For date questions, in addition to the masked input, you can choose to add a date picker
for dates by setting the value of the t ype child element of the I ayout element to dat e-

pi cker . For those questions, you can then use the calendar or type the date. By default, date
questions are displayed with the masked input field if no layout t ype is specified.

IBM Curam Social Program Management 7.0.11 | 9 - IEG in the Universal Access Responsive Web
Application | 387

1. In your IEG script, add the appropriate CSS classes to the I ayout element for the question. For

example:

<question id="ssn" mandatory="true">
<| abel id="SSN. Label ">SSN</ | abel >
<l ayout >
<cl ass- nanes>cust om css-cl assl wds-j s-i nput - mask-ssn wds-j s-i nput-| ayout - si ze- - nedi um
</ cl ass- nanes>
</ | ayout >

</ question>

2. If you want to add a custom mask, use a mask-f or mat element in the | ayout element. Define the
mask- f or mat text value by using an XML CDATA section with a JSON object with reference to the
Cleave.js documentation,

For example,

<l ayout ><nask- f or mat ><! [CDATA[{ "delimiter": " ", "blocks": [2, 2, 2],

"numericOnly": true }]]></nask-formt><l ayout>

Configuring phone numbers

You can configure an input mask class name to format phone number fields in IEG forms according to the
defined locale for the application. You can also configure a phone number delimiter or a country prefix if
needed.

1. Add cl eave. | s as a dependency in your package. j son file.
"cleave.js": "<version>"
Where version is the version that you want to use.

2. Import the region-specific . j s file in your initializing . j s file.

For example:

inport 'cleave.js/dist/addons/cl eave-phone.[country]';

Where country is the locale that you want to use.
3. Add a REACT_APP_PHONE_MASK_FORMAT environment variable to your . env file.

REACT_APP_PHONE_MASK_FORMAT=[count ry]

Where country is the locale that you want to use.
4. In your IEG script, add the wds- j s- i nput - mask- phone class name to the question. For example:

<question id="primaryPhoneNunber" mandatory="true" show-fiel d-hel p="true">

<l ayout >

https://nosir.github.io/cleave.js/

IBM Curam Social Program Management 7.0.11 | 9 - IEG in the Universal Access Responsive Web
Application | 388

<cl ass- nanmes>wds- j s-i nput - mask- phone</ cl ass- nanes>
</l ayout > <l abel id="PrimaryPhoneNunber.Label ">Primary Phone Nunber</| abel >

</ question>

5. Optional: You can set a custom delimiter for phone numbers by adding the
REACT_APP_PHONE_MASK_DELI M TER environment variable to your . env file.
For example, to convert 1 636 5600 5600 to 1-636-5600-5600, set the environment variable as

follows:

REACT_APP_PHONE_MASK_DELI M TER=-

6. Optional: You can set a fixed country code for phone numbers by adding the
REACT_APP_PHONE_MASK_LEFT_ADDON environment variable to your . env file.
For example, to convert 1-636-5600-5600 to +1-636-5600-5600, set the environment variable as

follows:

REACT_APP_PHONE_MASK_LEFT_ADDON=+

Configuring date formats
You can configure the date format in IEG forms by setting the REACT_APP_DATE_FORMAT environment

variable.

By default, the date format is MM/DD/YYYY if you do not set a value for the REACT_APP_DATE_FORMAT
environment variable. If you set an invalid value, the default date format is used.

The valid values are:

dd- nm yyyy
mt dd- yyyy

yyyy- mm dd

(o
Note:
Specific globalization considerations apply to the date format when it is used in hint text and
messages. Ensure that you have the same date format in the REACT_APP_DATE_FORMAT environment
variable, and in the Dat eAdapt er _Dat eFor mat and Errors_dat e messages intheintel I i gent -

evi dence- gat heri ng-1 ocal es package.

N

Change the date format by adding the REACT_APP_DATE_FORMAT environment variable to your . env file.
For example, to change the date format to DD/MM/YYYY, set the environment variable as follows:

REACT_APP_DATE_FORVAT=dd- mm yyyy

IBM Curam Social Program Management 7.0.11 | 9 - IEG in the Universal Access Responsive Web
Application | 389

Configuring currency symbols

You can configure currency symbols for currency fields in IEG forms by setting either the

REACT_APP_CURRENCY_MASK_LEFT_ADDON Of the REACT_APP_CURRENCY_MASK_RI GHT_ADDON environment variables.

« L@Add a currency symbol for currency fields by adding the REACT_APP_CURRENCY_MASK_LEFT_ADDON Of
REACT_APP_CURRENCY_MASK_RI GHT_ADDON environment variables to your . env file.
For example, to set the currency symbol for US dollars, enter the following command to set the

environment variable:

REACT_APP_CURRENCY_MASK_LEFT_ADDON=$

If both environment variables are set, REACT_APP_CURRENCY_NMASK_LEFT_ADDON takes precedence.

« To align the currency symbol on either the left side or the right side of the currency field, add
the REACT_APP_CURRENCY_MASK_LEFT_ADDON OF REACT_APP_CURRENCY_MASK_RI GHT_ADDON environment
variables to your . env file.

For example, to set the currency symbol for US dollars, enter the following command to set the

environment variable:

REACT_APP_CURRENCY_MASK_LEFT ADDON=$

If both environment variables are set, REACT_APP_CURRENCY_MASK_LEFT_ADDON takes precedence.

Configuring inputs to be obscured for privacy

Where users need to type confidential information, you can obscure the input values to ensure privacy.
Users can show or hide the text as they type. The user input is obscured when they type the confidential
information, such as their Social Security Number (SSN). By default no constraints are applied, but you
can create a custom domain to apply custom constraints where needed. For example, you can restrict the

number of characters.

You can obscure inputs by setting the data type for a specified attribute of an entity to | EG 0BSCURED in the
data store schema. This configuration cannot be used with masks. Instead of using a mask, you can also
implement any extra constraints, such as the number of characters, in the data store schema by creating

a custom domain.

For more information about data types and IEG domains, see https://www.ibm.com/support/
knowledgecenter/SS8S5A_7.0.11/com.ibm.curam.ieg.doc/AuthoringScriptsUsinglEG/
c_AUTHIEG_Expressions1DataTypesSupportedOperations1.html.

https://www.ibm.com/support/knowledgecenter/SS8S5A_7.0.11/com.ibm.curam.ieg.doc/AuthoringScriptsUsingIEG/c_AUTHIEG_Expressions1DataTypesSupportedOperations1.html
https://www.ibm.com/support/knowledgecenter/SS8S5A_7.0.11/com.ibm.curam.ieg.doc/AuthoringScriptsUsingIEG/c_AUTHIEG_Expressions1DataTypesSupportedOperations1.html
https://www.ibm.com/support/knowledgecenter/SS8S5A_7.0.11/com.ibm.curam.ieg.doc/AuthoringScriptsUsingIEG/c_AUTHIEG_Expressions1DataTypesSupportedOperations1.html

IBM Curam Social Program Management 7.0.11 | 9 - IEG in the Universal Access Responsive Web
Application | 390

For more information about data store schemas, see https://www.ibm.com/support/knowledgecenter/
en/SS8S5A_7.0.11/com.ibm.curam.ieg.doc/WorkingWithintelligentEvidenceGathering/
c_WORKIEG_Getting2CreateSchema1.html.

1. In the entity, identify the attributes for which you want to obscure the input.
For example, the ssn attribute for the social security number.

2. Edit the data store schema . xsd file for the IEG script and in the entity, change the type of the
attribute to | EG_ OBSCURED.
For example,

<xsd:attribute name="ssn" type="|EG OBSCURED"/ >

3. Optional: To apply further input constraints to the field, create a custom domain.
For example, to constrain the user from typing more than 9 characters in the input field for an SSN,

you can create a custom domain called SSN_OBSCURED.

a. Create a custom domain like the following domain.

<xsd: i ncl ude schemalLocati on="1EGDomai ns"/>
<I-- NEW TYPE BEGQ N-->
<xsd: si npl eType name="SSN_OBSCURED' >
<xsd:restriction base="|EG OBSCURED" >
<xsd: m nLengt h val ue="8"/>
</xsd:restriction>

</ xsd: si npl eType>

<l-- NEW TYPE END ->
<xsd: el enent name="Application">

b. Edit the data store schema . xsd file for the IEG script and change the type of the ssn
attribute to SSN. OBSCURED.

For example,

<xsd:attribute name="ssn" type="SSN OBSCURED"/ >

https://www.ibm.com/support/knowledgecenter/en/SS8S5A_7.0.11/com.ibm.curam.ieg.doc/WorkingWithIntelligentEvidenceGathering/c_WORKIEG_Getting2CreateSchema1.html
https://www.ibm.com/support/knowledgecenter/en/SS8S5A_7.0.11/com.ibm.curam.ieg.doc/WorkingWithIntelligentEvidenceGathering/c_WORKIEG_Getting2CreateSchema1.html
https://www.ibm.com/support/knowledgecenter/en/SS8S5A_7.0.11/com.ibm.curam.ieg.doc/WorkingWithIntelligentEvidenceGathering/c_WORKIEG_Getting2CreateSchema1.html

IBM Curam Social Program Management 7.0.11 | 9 - IEG in the Universal Access Responsive Web
Application | 391

Configuring code-table hierarchies for form fields

You can use code-table hierarchies to add two related questions in IEG forms. When you answer the first

question, the second question is enabled.

Any question where the data type is defined as a code table hierarchy is displayed as two separate
questions in vertically aligned drop-down menus. The first question menu corresponds to the root code
table in the hierarchy, and displays the label that is specified for the question. The second question menu
corresponds to the second-level code table in the hierarchy, and displays a label that corresponds to

the code table display name. The second menu is disabled until a selection is made in the first menu.

Summary pages display both questions.

Displaying a code-table hierarchy value in a list, or the codet abl e- hi er ar chy- | ayout options, are not

supported.

To ensure that the label is displayed correctly for the second question, you must ensure that, for each
code table nane element, there is a corresponding | ocal e element within the di spl aynames element in your

code-table definition.

For example, see the following code-table definition.

<codet abl es package="curam codet abl e" hi erarchy_name="CountyGCi tyHi erarchy">
<l-- Parent codetable - County -->
<codet abl e java_i dentifier="COUNTYCODE" name="CountyCode">
<di spl aynanes>
<nane | anguage="en">Count y</ nane>
<l ocal e | anguage="en">Count y</ nanme>
</ di spl aynanmes>
<l-- code itens... -->
</ codet abl e>
<!-- Child codetable - City -->
<codet abl e java_identifier="Cl TYCODE' nane="CityCode" parent_codet abl e="Count yCode" >
<di spl aynanes>
<nane | anguage="en">Ci t y</ name>
<l ocal e | anguage="en">C ty</ name>
</ di spl aynames>
<l-- code items... -->
</ codet abl e>

</ codet abl es>

IBM Curam Social Program Management 7.0.11 | 9 - IEG in the Universal Access Responsive Web
Application | 392

Implementing a combo box for form fields

You can implement a combo box question with an auto-complete search function to help you to complete
form fields in IEG forms as you type. For example, known address fields can be automatically selected
when you enter an address. You can implement the option to add new items if they are not found, for

example, add an address.

You must implement a search function in the Universal Access Responsive Web Application and register
the search function with | EGregi st ry. The search function can point to an internal or external search
service to provide the information. Then, update the datastore schema definition and your IEG script.

ﬁ Click here for a video presentation that gives an overview of the combo box.

Implementing search functions for ConboBox components

You can implement the comboBox component to search external data sources as you type in a form field,
with a built-in filter function. Implement a search function and associated error handling, and make that
search function available to the IEG form. If needed, you can implement an Add New option so that users
can add an item if it is not found.

Procedure

1. Implement the search function. A search function is a JavaScript™ function that receives one
parameter that contains the value of the conboBox, and returns an array of items to be displayed by

the ConboBox.

The response of sear ch-functi on is an array of items, {i t ens} . Each item is an object with the
following structure:

{
id:"key"
val ue: "val ue"

item { "attributel": "valuel", "attribute2": "value2" },

Where:

° i d is a mandatory attribute to store the ID in the data store.

o val ue is the value of the question to store in the data store and to render in the list of options
of the ComboBox.

o i t emis an optional complex object with the structure of the f or nDat a to be populated if that
element is selected in the conboBox component.

https://mediacenter.ibm.com/media/t/1_4j2t82kx

IBM Curam Social Program Management 7.0.11 | 9 - IEG in the Universal Access Responsive Web
Application | 393

The structure of the item object must match the f or nDat a of the target entity. The following simple

example populates the Resi denti al Addr ess entity:

{
‘streetl': 'streetl',
‘street2': 'street2',
‘city': 'city',
' zi pCode' : ' zi pCode',
‘state': 'state',

}

2. Register the search function with the | EGregi st ry object. | EGFor mhas access to | EGRegi stry and all
registered functions. | EGror mreads the custom functions from | EGRegi st ry and stores them on its
f or nCont ext SO | EGFor mcan call custom functions.
a. Implement the JavaScript™ functionin any . j s file.
b. Import | EGRegi st ry in a JavaScript™ initial file, such as aApp. j s, and add the custom function
to the registry. For example:

inport { |EGRegistry } from' @pnicore';

inport { searchCity, custonfunction } from'./exanpl es/pl ayground/ custonfFunctions';

const App = () => {

| EGRegi stry. regi st er ConboBoxSear chFuncti ons({ searchCty, custonfunction });

Add New option
If you want to render an Add New option in the menu that is displayed by the conboBox, the response of the
JavaScript™ function must follow the structure:

{
newitem { id: '-1', label: 'Add New, value: ' ', position: '"top' },

itens,

Where:

* newl t emis a complex object with the definition of the Add New option.

«idis the ID of the new option.

IBM Curam Social Program Management 7.0.11 | 9 - IEG in the Universal Access Responsive Web
Application | 394

* | abel is the label of the new option.
« val ue is the value of the new option.
* posi ti on is the position where the new option renders. The possible values are bott omand t op.

Error messages

The search function must implement its own logic to handle errors if an error needs to be displayed on the

Ul, the response of the search function must be:

{errorMessage: 'Controlled Error Message'}

The error message is displayed underneath the comboBox.

Configuring combo box scripts and schemas

Add the conbo- box element to a question in your IEG script and configure the conbo- box element attributes.
Add a cluster after the question to display the information to the user when they select a menu item.

Update the schema definition with the appropriate elements.

The quest i on schema type must be a string. You cannot use a quest i on with a conbo- box child element as

a control question.

You can review the design system usage guidance for the conboBox component. In your development
environment, open the Social Program Management Design System Storybook documentation at
<pat h>@ovhhs/ govhhs- desi gn- syst em r eact / doc/ i ndex. ht ni and search for ConboBox.

For more information about the IEG conbo- box element, see combo-box.

1. Add the conbo- box child element to the quest i on element. For example:

<questi on- page i d="About TheApplicant_GB" read-only="fal se" set-focus="false" show back-button="fal se"
show-exi t-button="true" show next-button="true" show person-tabs="fal se" show save-exit-button="true"

entity="Person" >

<!-- ConboBox -->
<cl uster entity="SearchAddress">
<title id="SearchAddress. Title">Your address</title>
<question id="full Address" nandatory="true" show-field-hel p="fal se">
<l abel id="Full Address. Label ">Search for your address</|abel >
<conbo-box key="id" search-function="searchAddress" target-entity="Residential Address"
filter-items="true" />

</ question>

../AuthoringScriptsUsingIEG/r_AUTHIEG_Elements1combo-box.html

IBM Curam Social Program Management 7.0.11 | 9 - IEG in the Universal Access Responsive Web
Application | 395

</cluster>

</ quest i on- page>

Where:

o key is the id to be stored in the data store and renders as a hidden widget on the front end.
It is mandatory and the entity must define this property in the schema definition. The key
schema type must be a string.

o sear ch- f unct i on is the name of the JavaScript™ search function to be called on each
keydown event.

o target-entity is an optional attribute to show information to the user when they select a
combo box menu item. In t ar get - ent i ty, specify the cluster entity to be populated with the
value of the sear ch- functi on result item attribute. Update the script to display the cluster
entity on the page, the target entity must be shown on the same page as the combo box. If
more than one cluster on the page is related to the same entity name, the first cluster that
matches the entity attribute value with the t arget - ent i t y value is populated.

o filter-itens is an optional attribute that, if true, filters the items as you type with the built-in
filter. By default, it is false.

2. Add a cluster to display the target-entity information when a user selects a menu item.

<questi on- page i d="About TheApplicant_GB" read-only="fal se" set-focus="fal se" show back-button="fal se"
show-exi t-button="true" show next-button="true" show person-tabs="fal se" show save-exit-button="true"

entity="Person" >

<!-- ConmboBox -->
<cl uster entity="SearchAddress">
<title id="SearchAddress. Title">Your address</title>
<question id="full Address" mandatory="true" show-field-hel p="fal se">
<l abel id="Full Address. Label ">Search for your address</|abel >
<conbo-box key="id" search-function="searchAddress" target-entity="Residential Address"
filter-items="true" />
</ question>

</cluster>

<!-- ConboBox -->
<cluster entity="Residential Address">
<title id="Address. Titl e">Enter address</title>
<hel p-t ext id="ADHel p">You nust enter the address in which you physically reside (residential

addr ess) . </ hel p-t ext>

IBM Curam Social Program Management 7.0.11 | 9 - IEG in the Universal Access Responsive Web
Application | 396

<question control -question="fal se" id="streetl" mandatory="true" nulti-sel ect="fal se"
show-fi el d- hel p="f al se">
<l abel id="Streetl.Label">Street 1</I|abel >
</ question>
<question control -question="fal se" id="street2" nandatory="fal se" nulti-select="fal se"
show-fi el d- hel p="f al se">
<l abel id="Street2.Label">Street 2</|abel >
</ question>
<question control -question="fal se" id="city" mandatory="fal se" multi-select="fal se"
show-fi el d- hel p="f al se">
<l abel id="City. Label ">City</|abel >
</ question>
<question control -question="fal se" id="zi pCode" mandatory="fal se" nulti-select="fal se"
show-fi el d- hel p="f al se">
<l abel id="Zi pcode. Label ">ZI P code</| abel >
</ question>
</cluster>

</ quest i on- page>

3. Edit the schema definition and add an element for the combo box and the target entity, for
example:

<!-- ConmboBox -->
<xs: el enent name="Sear chAddress">
<xs: conpl exType>
<xs:attribute name="id" type="1EG STRING' />
<xs:attribute name="ful | Address" type="IEG STRING'/ >
</ xs: conpl exType>
</ xs: el enent >
<!-- Target Entity -->
<xs: el ement nane="Resi denti al Address">
<xs: conpl exType>
<xs:attribute name="street1l" type="1EG STRING'/>
<xs:attribute name="street2" type="|EG STRING'/>
<xs:attribute name="city" type="1EG STRI NG'/>
<xs:attribute nanme="zi pCode" type="|EG STRING'/>
</ xs: conpl exType>
</ xs: el enent >

2. Associate that new elenent to a Person entity.

IBM Curam Social Program Management 7.0.11 | 9 - IEG in the Universal Access Responsive Web
Application | 397

<xs: el enent name="Person">
<xs:conpl exType>
<xs:sequence m nCccurs="0">

<xs: el ement ref="SearchAddress" m nCccurs="0" maxQccurs="1"/>

<xs: el ement ref="Residential Address" m nCccurs="0" maxCccurs="unbounded"/ >

</ xs: el ement >

</ xs: conpl exType>

Customizing script behavior with BaseFormContainer

The behavior of scripts in the application is controlled by the BaseFor mCont ai ner . j s container
component. Each form calls this container component, which controls script behavior such as whether
partial submission is allowed, or where to go on exiting the script. You can customize the behavior for

individual scripts by modifying BaseFor nCont ai ner properties.

The following BaseFor nmCont ai ner properties are available:

« i egFor m d. (Mandatory) This property corresponds to the IEG execution ID that is obtained from
one of the following options:
> An API that starts the script, by creating the execution with the necessary script ID and data
store schema.
o Existing executions that can be resumed.

o ™
Note:
Later, the ID is used on the server to ensure that the current user matches the user who is
associated with the execution in the Gi ti zenScri pt I nf o table. The ID also ensures that the

execution is not completed.
- J

- title. (Mandatory) The title to be displayed in the header. You can convert the property by using
the f or mat Message forreact-int! .

* i sLogi nOr Si gnupAl | owed. If the property is t rue when Save and exit is clicked and the user is not
logged in, the log-in screen is displayed. The default value is True.

* i sPartial Submi ssi onAl | owed. Specifies that partially completed scripts can be submitted. The
corresponding option must be added to the header. The default value is False.

* onExi t . Specifies what happens when a user exits the script without saving. By default, it goes to

the home page.

IBM Curam Social Program Management 7.0.11 | 9 - IEG in the Universal Access Responsive Web
Application | 398

- onFi ni sh. Specifies what happens when the last page of the script is submitted. By default, it goes
to the home page.

* onParti al Submi ssi on. Specifies what happens when a partial script is submitted. By default, it
saves the current page and then starts the onFi ni sh handler.

* onSaveAndExi t . Specifies what happens when a user saves and exits the script. By default, it saves
the current page and determines what page to go to. If the user is not logged in, the log-in page is
displayed. If the user is logged in, the dashboard is displayed.

- onRef . A function that receives the instance of the current BaseFor nCont ai ner to provide
access to its defined functions and props. You can use this function to customize the default
BaseFor nCont ai ner functions. For an example of using the onref function to customize the behavior
of Save and exit, see the Sanpl eAppl i cat i onFor nConponent in the sanpl eAppl i cati on.

« onBackFor Fi r st Page. A function that is called on the back-button click event of the first page
of a form to redirect back to another form. The function contains the code responsible for the
redirection. For example, you might want to go back to an application script from a submission
script to change something before you submit an application.

To modify the behavior for an existing form feature, follow the standard steps in Reusing existing features
(on page). For example, to customize the form that is loaded from the / el i gi bl i t y/ f or mURL,
do the following steps:

1. Find the path variable in the node_nodul es/ @pn uni ver sal - access-ui / rout es/
Pat hs. j s file.
For example, search for/ el i gi bi | t y/ f or mto locate PATHS. ELI G BI LI TY. FORM

2. Search the Rout es file for the path variable to find the location of the feature that it loads.
For example, in the node_nodul es/ @pn uni ver sal - access-ui/src/routes/ Routes.js
file search for the PATHS. ELI G BI LI TY. FORMpath variable that you located in the previous step. The
path variable maps to the f eat ur e/ For ns/ El i gi bi | i ty location.

3. Copy the source code from the feature folder that you identified in the previous step to your
custom folder.
For example, copy node_nodul es/ @pni uni ver sal - access-ui / src/ f eat ur es/ For ns/
Eligibilitytotheyour-custom app/src/features/Forns/Eligibility folder.

4. Add aroute inthe your - cust om app/ src/ r out es. j s file with the same path as the original
PATHS. ELI Gl BI LI TY. FORMfeature.

a. Map the new route to your custom version of the form feature.

5. Update the properties of the form container according to your requirements.
For example, use custom functions to change the behavior of the on-exit and on-finish flows, as
shown in the following code sample:

../CitizenEngagement/t_CESUST_add_feature.html
../CitizenEngagement/t_CESUST_add_feature.html
../CitizenEngagement/t_CESUST_add_feature.html
../CitizenEngagement/t_CESUST_add_feature.html
../CitizenEngagement/t_CESUST_add_feature.html
../CitizenEngagement/t_CESUST_add_feature.html
../CitizenEngagement/t_CESUST_add_feature.html

IBM Curam Social Program Management 7.0.11 | 9 - IEG in the Universal Access Responsive Web
Application | 399

<BaseFor nCont ai ner
i egFor m d={f or nl d}
i egHookBi ndi ngKey={ HookBi ndi ngs. SCREENI NG
onExi t ={t hi s. nyCust onHandl eExi t For n}
onFi ni sh={t hi s. nyCust ontHand| eFi ni shFor n}

title={nyCustonTitle || "'}

Merging clusters with the cluster element grouping-id
attribute

If you are developing pages in IEG, you can merge several clusters on summary pages by using the cluster
element grouping-id attribute. The grouping-id attribute is not supported for standard IBM Curam Social

Program Management web applications.

Related data fields can be defined within different clusters under the following conditions. You can use
the grouping-id attribute to merge these related data fields into a single cluster on IEG pages.

- Data is defined within different schema entities but a single cluster can be defined for a single
entity only.
« Data is defined within a conditional cluster but it must be included in a non-conditional cluster

when the condition is met.

All clusters with a specific grouping-id attribute are merged into the first cluster with that grouping-id
attribute. Aside from the questions, the cluster elements are shown as defined by the first cluster. Ensure
that the other cluster elements in the first cluster, such as the title or buttons, are suitable for the merged

cluster.

Where possible, do not have a conditional cluster as the first cluster if you are merging conditional and
non-conditional clusters. If the first cluster is conditional and the condition is not met, then the merged
cluster is not displayed. If a conditional cluster must be positioned before non-conditional clusters in a
merged cluster, then add a non-conditional cluster with no questions as the first cluster with the grouping-
id.

This sample XML snippet merges three clusters into a single cluster with the grouping-id attribute. The

three clusters have data fields from three different entities and the last cluster is conditional.

<cluster entity="Residential Address" groupi ng-i d="100">
<title id="Address.Title">Address</title>

<edit-1ink

IBM Curam Social Program Management 7.0.11 | 9 - IEG in the Universal Access Responsive Web
Application | 400

ski p-t o- sunmar y="f al se"
start - page="About TheAppl i cant _GB"
/>
<l ayout >
<type>fl ow</type>
<num col s>2</ num col s>
<l abel - al i gnment >| ef t </ | abel - al i gnnent >
</ | ayout >
<question

id="street1"

<l abel id="Streetl. Label ">Street 1:</I|abel>

</ question>

</ cluster>
<cluster entity="Person" grouping-id="100">
<question

i d="appl yToMi | i ngAddr ess"

<l abel id="Appl yToMuilingAddress. Label ">Mai|l to Same Address?</| abel >
</ question>
</cluster>
<condi tion expressi on="Person. appl yToMai | i ngAddr ess==" ; N2O TYN2" ; ">
<cluster entity="MilingAddress" grouping-id="100">
<question

id="street1"

<l abel id="Streetl. Label ">Street 1:</I|abel >

</ question>

</cluster>

Configuring relationship pages questions

If you are developing pages in IEG, you can configure the text of the relationship questions on relationship

pages.

IBM Curam Social Program Management 7.0.11 | 9 - IEG in the Universal Access Responsive Web
Application | 401

By default, the question label is dynamic, in the first relationship question page, it renders as “What is
[Name and Age of the Person related] to you?”. On the following relationship question pages, it renders
“What is [Name and Age of the Person related] to [Name and Age of the Person]?

The attribute name for the start date must be st art Dat e.

To show age in the relationship question label, you must populate the date of birth, which is defined as the

dat eOf Bi rt h attribute of the per son entity.

You can use the following IEG configuration property to configure the default text.

rel ationship question |abel on relationship page

rel ationshi p. question. | abel ={i ndex, select, 0 {What is %s to you?} other {Wat is %s to %ds?}}

The example ICU template does the following:
In the first iteration:
What is %s to you?
Where 92s is the related person in the first iteration.
From the second iteration until the end:
What is %®s to %s?

Where s is the new main person in the iteration and %:s is the related person in the iteration.

Configuring relationship starting dates on relationship
summary pages

If you are developing pages in IEG, you can configure the start date of relationships for relationship
summary pages. For example, Married since Jun 12, 2014.

You can use the following IEG configuration property to configure the default text.

relationship type and start date |abel.

rel ationshi p. type. date. | abel =%ds since %s

Where 9 is the relationship type and %s is the relationship start date.

IBM Curam Social Program Management 7.0.11 | 9 - IEG in the Universal Access Responsive Web
Application | 402

Configuring qui ck- add- | i st

The qui ck-add- 1 i st feature is enabled at the IEG script level. The qui ck- add- 1 i st component receives two
parameters, ent i t y with the Entity object is managed by the component and cri t eri a with any specific

criteria that the component might need to meet.

Common pattern

The code that follows is an example of a fully functional implementation of the qui ck- add-I'i st

component in a section of an IEG script:

<section>
<questi on- page i d="AnyMenber Page" show back-button="true" show exit-button="false" show save-exit-button="true"
show- per son-t abs="f al se" >
<title id="AnyMenber Page. Titl e">Househol d</title>
<descri ption id="AnyMenber Page. Descri pti on">Pl ease enter details about the other people besides yourself who live in
your hore including those who are not related to you. Once you're finished please check the box to confirmthe nunber
of other people living in your home (not including yourself).
</ descri ption>
<condi tion expression="fal se">
<cluster entity="Application">
<question id="dunmy" default-val ue-expressi on="househol dCount ()"/>
</cluster>
</ condi ti on>
<qui ck-add-list entity="Person" criteria="isPrimaryParticipant==fal se">
<title id="Househol dLi st.Titl e">Househol d menbers</title>
<qui ck-edit-link >
<page-title id="Edit.PageTitle">Edit %s (9%s)<argunent id="Person.firstNane"/><argunment id="Person. age"/>
</ page-title>
</ qui ck-edit-Iink>
<qui ck-del et e-1i nk>
<page-title id="Del ete.PageTitle">Renove %ds %s (%Bs) fromthe househol d?<ar gunent
i d="Person. firstNane"/><argunent id="Person.|astNane"/><argunent id="Person. age"/></page-title>
<confirm nessage i d="Del ete. Message">Are you sure you want to renopve %s?<argunent
i d="Person. firstNane"/></confirm nmessage>
<confirmbutton id="Del ete. Button">Renmpbve %ls<argunent id="Person.firstNanme"/></confirmbutton>
</ qui ck- del et e-1i nk>

<qui ck- add- | i nk>

IBM Curam Social Program Management 7.0.11 | 9 - IEG in the Universal Access Responsive Web
Application | 403

<page-title id="Add. PageTitl e">Add new person to househol d</ page-title>
<title id="Add. Title">Add new nenber</title>
</ qui ck- add- | i nk>
<page- cont ent i d="Househol dMenber"/>
</ qui ck- add-1i st >
<condi tion expression="Application. househol dCount != 0">
<cl uster>
<question i d="doneEditi ngHousehol d* nmandatory="true" control -questi on="true"
control - question-type="| EG BOOLEAN' >
<l abel id="HasCQ her Menbers. Label ">There are %s other people in your home not including
your sel f <argument i d="Application. househol dCount"/></1| abel >
</ question>
</ cl uster>
</ condi tion>
<condi tion expressi on="Application. househol dCount == 0">
<cl uster>

<question i d="doneEdi ti ngHousehol d" mandatory="true" control -question="true"
control - question-type="|EG BOOLEAN' >
<l abel id="HasQ her Menbers. Label ">There are no other people in your household, just yourself</|abel>
</ question>
</cluster>
</ condi tion>
</ quest i on- page>
<l oop | oop-type="hi dden" entity="Person" criteria="isPrimryParticipant==fal se">
<questi on- page i d="Househol dMenber" >
<title id="Househol dMenber. Titl e">Househol d</title>
<cl uster>
<title id="Househol dMenber. d uster.Title">Personal details</title>
<question id="firstNane" mandatory="true">
<l abel id="FirstNane.Label ">First Nane</|abel >
</ question>
<question id="|ast Nane" nmandatory="true">
<l abel id="IlastName. Label ">Last Name</| abel >
</ question>
<question id="dateO'Birth" mandatory="true">
<l abel id="DateCBirth.Label">Date of birth</|abel >

</ question>

IBM Curam Social Program Management 7.0.11 | 9 - IEG in the Universal Access Responsive Web
Application | 404

</cluster>
</ quest i on- page>
</ | oop>

</ section>

The qui ck-add-1i st component uses a custom function househol dCount that updates the number of
household members. The logic for that custom function can be written as follows:

publ i c Adaptor get AdaptorVal ue(final Rul esParaneters rul esParaneters)

throws AppException, |nformational Exception {

final | EQContext ieg2Context = (| EQContext) rul esParaneters;
final |ong executionl D = i eg2Cont ext.get Executionl D();

final long rootEntitylD = i eg2Cont ext.get Root Entityl D();

final | EGScriptExecution scriptExecution = | EGScri pt Executi onFactory
.getlnstance().get Scri pt Executi onCbj ect (executionlD);
Dat astore ds = nul | ;
try {
ds = Dat ast oreFact ory. new nst ance()
. openDat ast or e(scri pt Executi on. get SchemaNane()) ;
} catch (final NoSuchSchemaException e) {

t hrow new AppExcepti on(l EG | D_SCHEVA_NOT_FQOUND) ;

final Entity rootEntity = ds.readEntity(rootEntitylD);

final Entity[] personEntities =

rootEntity.getChildEntities(ds.getEntityType("Person"));

root Entity. set TypedAttri bute("househol dCount"”, personEntities.length - 1);

root Entity. update();

return Adaptor Fact ory. get Bool eanAdapt or (true);

Chapter 10. Troubleshooting and support

Use this information to help you to troubleshoot issues with the IBM® Cdram Universal Access

Responsive Web Application or IBM Social Program Management Design System.

The IBM Curam Social Program Management supported assets can be installed, customized, and
deployed separately from IBM Curam Social Program Management, before being integrated into the

system.

When troubleshooting web applications that are integrated with IBM Curam Social Program Management,
use this troubleshooting information in conjunction with the troubleshooting information for IBM Cdram
Social Program Management. For more information, see the Troubleshooting and support related link.

Related information

Troubleshooting and support

Examining log files
Log files are a useful resource for troubleshooting problems.
Examining the browser console logs

For JavaScript applications, you can examine the browser console logs for errors that might be relevant to
investigating problems. For the exact details about how to locate the console logs within the browser, see

your browser documentation.

(L N
Note:
When you are developing applications with the IBM Social Program Management Design System,
console logging information might also be displayed in the console that runs the start process for

the application.
N /

Examining the HTTP Server log files

When you deploy a built application on an HTTP Server, the built application introduces a new point with
which logging is captured in your system topology. The IBM® HTTP Server, Oracle HTTP Server, and the

Apache HTTP Server include comprehensive logging system and related information.

For more information about troubleshooting the IBM® HTTP Server, see Troubleshooting IBM HTTP

Server.

https://www.ibm.com/support/knowledgecenter/SS8S5A_7.0.11/com.ibm.curam.content.doc/Troubleshooting/ctr_Troubleshooting.html
https://www.ibm.com/support/knowledgecenter/en/SSEQTJ_9.0.0/com.ibm.websphere.ihs.doc/ihs/tihs_troubsteps.html
https://www.ibm.com/support/knowledgecenter/en/SSEQTJ_9.0.0/com.ibm.websphere.ihs.doc/ihs/tihs_troubsteps.html

IBM Curam Social Program Management 7.0.11 | 10 - Troubleshooting and support | 406

For more information about troubleshooting the Oracle HTTP Server, see Managing Oracle HTTP Server

Logs.

For more information about troubleshooting the Apache HTTP Server, see Log Files.

Connect a React development environment to an SPM server

A common troubleshooting technique is to connect your React development environment on
| ocal host : 3000 to an Social Program Management (SPM) deployment, typically a test system
deployment. In this environment, you must complete some extra configuration steps to handle browser

CORS security features.

With this environment, you can debug issues in the React application without having to rebuild an SPM
development environment, which can save time in many scenarios. For example, where replicating the
problem scenario in the development environment is onerous, but you can troubleshoot it on the test

server.

Due to CORS security features built into browsers, you must change the Cross-Site Request Forgery
(CSRF) and session cookies that the React application uses, from the default sanesi t e=Lax to

samesi t e=None. Otherwise, browsers report CORS errors and the React application cannot communicate
with the SPM server.

You can deploy a gateway web server in front of SPM to modify the cookie by using this directive:

Header edit Set-Cookie "(.*)$ $1; SaneSite=None; Secure

For SPM clusters, place this directive in the web servers where SPM applications are mapped.

Citizen Engagement components and licensing

You can use and customize the IBM Universal Access Responsive Web Application for your organization,
or develop your own custom web applications in addition to the standard IBM Curam Social Program
Management application. Use this information to understand the IBM Cdram Social Program
Management components, supported assets, and licenses that you need.

Installable components
IBM Social Program Management Design System supported asset

The design system provides foundational packages for building accessible and responsive
web applications. It consists of a React Ul component library, React development resources,
and a style guide for creating web applications.

https://docs.oracle.com/middleware/1212/webtier/HSADM/man_logs.htm#HSADM218
https://docs.oracle.com/middleware/1212/webtier/HSADM/man_logs.htm#HSADM218
https://httpd.apache.org/docs/2.4/logs.html

IBM Curam Social Program Management 7.0.11 | 10 - Troubleshooting and support | 407

IBM Universal Access Responsive Web Application supported asset

The IBM Universal Access Responsive Web Application provides a reference web
application, which you can use and customize for your organization. The IBM Universal
Access Responsive Web Application requires the IBM Social Program Management Design
System and the Universal Access application module.

Universal Access application module

The Universal Access (UA) application module provides the Universal Access administrator
application and the Universal Access REST APlIs that expose interfaces to Universal Access
functions for consumption by the IBM Universal Access Responsive Web Application.

Universal Access requires the IBM® Curam Social Program Management Platform.

Licensing Universal Access

You can buy the Universal Access application module, which entitles the IBM Universal Access
Responsive Web Application asset, and IBM® Curam Social Program Management Platform, which

entitles the IBM Social Program Management Design System asset.

Alternatively, you can buy Citizen Engagement, which includes the Universal Access application module,
the IBM® Curam Social Program Management Platform, and both assets.

Licensing the IBM Social Program Management Design System

To develop custom web applications to complement the IBM® Curam Social Program Management
Platform, you can buy the IBM® Curam Social Program Management Platform, which entitles the IBM

Social Program Management Design System asset.

Citizen Engagement support strategy

The Citizen Engagement assets are typically released monthly, and they can be upgraded independently of
IBM Curam Social Program Management (SPM) . Each release is a full release and not a delta release.

The assets are supported for the lifetime of the latest supported SPM version available at the time of the

asset release.

» The main asset line is released monthly and contains new features, enhancements, security

updates, defects, and support for the latest SPM version.

- IBM Universal Access Responsive Web Application 2.6 continues to be supported with security
updates and critical defect fixes for older compatible SPM versions.

IBM Curam Social Program Management 7.0.11 | 10 - Troubleshooting and support | 408

Although new features can be delivered in any asset release, they are typically delivered at the same time
as the Universal Access application module release that contains the new APIs for those features. Where
possible, Universal Access REST API changes are delivered in refresh pack or other impact-free releases
that impose no forced upgrade impact.

Semantic versioning

The assets use semantic versioning. As a general guideline, this means:

» MAJOR version for incompatible APl changes
» MINOR version for adding functionality in a backwards-compatible manner
» PATCH version for backwards-compatible bug fixes

Known limitations

Review the known limitations for the Universal Access Responsive Web Application, and, where available,

workaround information.

Landing page error caused by the public messages environment variable not being
correctly disabled

Universal Access Responsive Web Application 5.0.0 fails to load the application landing page when it
is used with either Social Program Management 7.0.10 or 7.0.11. Social Program Management 8.0.0

provides a/ ua/ publ i c_messages APl that displays public messages on the landing page.

The / ua/ publ i c_messages APl is not available in Social Program Management 7.0.10 or 7.0.11. If you are
using the Universal Access Responsive Web Application 5.0.0 with either Social Program Management
7.0.10 or 7.0.11, you can resolve the issue by disabling the public messages feature. To disable the public

messages feature, configure the following environment variable in your . env file:

REACT_APP_DI SABLE_PUBLI C_NESSAGES =t r ue

Navigation section breaks when you edit household members from the Summary page
without saving your changes

When you edit household members from the Summary page but you don't save your changes, clicking the
section that contains the Quick Add list in the Go to section menu brings you to the Summary page.

https://semver.org/

cdix

Notices

This information was developed for products and services offered in the United States.

IBM® may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM® representative for information on the products and services currently available

in your area. Any reference to an IBM® product, program, or service is not intended to state or imply that
only that IBM® product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM® intellectual property right may be used instead. However, it is the

user's responsibility to evaluate and verify the operation of any non-IBM® product, program, or service.

IBM® may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You can send

license inquiries, in writing, to:
IBM® Director of Licensing IBM® Corporation North Castle Drive, MD-NC119 Armonk, NY 10504-1785 US

For license inquiries regarding double-byte character set (DBCS) information, contact the IBM®

Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing Legal and Intellectual Property Law IBM® Japan Ltd. 19-21, Nihonbashi-
Hakozakicho, Chuo-ku Tokyo 103-8510, Japan

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS" WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. Some jurisdictions do not allow disclaimer of express or implied warranties in certain
transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM® may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM® websites are provided for convenience only and do not in
any manner serve as an endorsement of those websites. The materials at those websites are not part of
the materials for this IBM® product and use of those websites is at your own risk.

IBM® may use or distribute any of the information you provide in any way it believes appropriate without
incurring any obligation to you.

cdx

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM® Director of Licensing IBM® Corporation North Castle Drive, MD-NC119 Armonk, NY 10504-1785 US

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by
IBM® under terms of the IBM® Customer Agreement, IBM® International Program License Agreement or

any equivalent agreement between us.

The performance data and client examples cited are presented for illustrative purposes only. Actual

performance results may vary depending on specific configurations and operating conditions.

Information concerning non-IBM® products was obtained from the suppliers of those products,

their published announcements or other publicly available sources. IBM® has not tested those
products and cannot confirm the accuracy of performance, compatibility or any other claims related to
non-IBM®products. Questions on the capabilities of non-IBM® products should be addressed to the

suppliers of those products.

Statements regarding IBM®'s future direction or intent are subject to change or withdrawal without notice,
and represent goals and objectives only.

All IBM® prices shown are IBM®'s suggested retail prices, are current and are subject to change without
notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to change before the

products described become available.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to actual people or business enterprises is

entirely coincidental.
COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM®, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform

cdxi

for which the sample programs are written. These examples have not been thoroughly tested under
all conditions. IBM®, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. The sample programs are provided "AS IS", without warranty of any kind. IBM® shall not be

liable for any damages arising out of your use of the sample programs.

Privacy Policy considerations

IBM® Software products, including software as a service solutions, (“Software Offerings”) may use
cookies or other technologies to collect product usage information, to help improve the end user
experience, to tailor interactions with the end user or for other purposes. In many cases no personally
identifiable information is collected by the Software Offerings. Some of our Software Offerings can help
enable you to collect personally identifiable information. If this Software Offering uses cookies to collect
personally identifiable information, specific information about this offering’s use of cookies is set forth
below.

Depending upon the configurations deployed, this Software Offering may use session cookies or other
similar technologies that collect each user's name, user name, password, and/or other personally
identifiable information for purposes of session management, authentication, enhanced user usability,
single sign-on configuration and/or other usage tracking and/or functional purposes. These cookies or
other similar technologies cannot be disabled.

If the configurations deployed for this Software Offering provide you as customer the ability to collect
personally identifiable information from end users via cookies and other technologies, you should seek
your own legal advice about any laws applicable to such data collection, including any requirements for
notice and consent.

For more information about the use of various technologies, including cookies, for these purposes, see
IBM®'s Privacy Policy at http://www.ibm.com/privacy and IBM®’s Online Privacy Statement at http://
www.ibm.com/privacy/details the section entitled “Cookies, Web Beacons and Other Technologies” and
the “IBM® Software Products and Software-as-a-Service Privacy Statement” at http://www.ibm.com/
software/info/product-privacy.

Trademarks

IBM®, the IBM® logo, and ibm.com® are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM® or other companies. A current list of IBM® trademarks is available on the Web at “

Copyright and trademark information ” at http://www.ibm.com/legal/copytrade.shtml.

http://www.ibm.com/privacy
http://www.ibm.com/privacy/details
http://www.ibm.com/privacy/details
http://www.ibm.com/legal/copytrade.shtml

cdxii

Adobe™, the Adobe™ logo, PostScript™, and the PostScript™ logo are either registered trademarks or

trademarks of Adobe™ Systems Incorporated in the United States, and/or other countries.

Java™ and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or
its affiliates.

The registered trademark Linux® is used pursuant to a sublicense from the Linux Foundation, the
exclusive licensee of Linus Torvalds, owner of the mark on a worldwide basis.

Microsoft™, Windows™, Windows NT™, and the Windows™ logo are trademarks of Microsoft™ Corporation

in the United States, other countries, or both.
UNIX™ is a registered trademark of The Open Group in the United States and other countries.

Other names may be trademarks of their respective owners. Other company, product, and service names
may be trademarks or service marks of others.

	IBM Cúram Social Program Management 7.0.11
	Note
	Edition
	Contents
	Chapter 1. Universal Access
	Chapter 2. What's new and release notes for Universal Access
	What's new in Universal Access
	Release notes
	Fix related to deselected list-question relationship not stored (7794)

	Chapter 3. Business overview of the Universal Access Responsive Web Application
	Screen
	Filtered and eligibility screening types
	Filtered screening
	Eligibility screening
	The relationship between filtered and eligibility screening

	Anonymous or authenticated screening
	Anonymous screening
	Authenticated screening
	Pre-populating citizen data
	Saving screenings for authenticated citizens
	In-progress screenings
	The Benefits you might get pane
	Configuring rescreening

	The Check what you might get page
	The Here's what you might get screening results page
	How to apply
	Applying for benefits offline
	Transferring data from screening to application

	Screening from a citizen account

	Apply
	Start an application
	What can I configure or customize?

	Complete the application form
	What can I configure or customize?

	Sign and submit
	Log-in requirements
	In-progress and submitted applications
	Partial submissions
	Specify a submission script
	Processing a submitted script
	Mapping application data to case evidence tables
	Association of requested programs with application cases
	Display submission confirmation
	Submission confirmation
	Manage existing applications
	Withdrawing an application
	Deleting an application

	Submit application-specific documents

	Verify
	Citizen alerts and to-do messages
	Viewing verifications
	Submitting documents
	Sharing and reusing documents

	Caseworker tasks

	Track
	Creating a citizen account and logging in
	Creating an account
	Administration configurations
	Logging in

	The Dashboard page
	The All payments page
	Payment type

	Citizen account messages
	Displaying a message
	Prioritization and ordering
	Message duration
	System messages
	Predictive Response Manager

	Verifications messages

	The Your benefits page
	The 'Your documents' page
	Verifications
	Verification details

	The Notices page
	What can you configure or customize?

	The Profile page
	Citizen information
	Tell us what has changed

	Selecting a language

	Update
	Key business flow scenario
	Enter a life event
	The 'Tell us if anything has changed' pane
	The life event Overview page
	The life event Summary page
	The life event Confirmation page
	The life event Consent page
	The life events change history
	Submit documents for verification

	Appeal
	Decide to appeal
	Submit an appeal request
	Appeals processing

	View your appeals
	Appeals notices and notifications
	Requesting an appeal from the citizen account

	Chapter 4. Installing the application development environment and web server
	Prerequisites and supported software
	IBM® Cúram Social Program Management Platform and the IBM® Cúram Universal Access application module
	Node.js
	Platforms
	Interactive Development Environment (IDE)
	Application server, web server, and database
	HTTP servers
	Web browsers
	Accessibility
	Previous versions

	Installing the IBM® Cúram Universal Access development environment
	Upgrading the IBM Universal Access Responsive Web Application
	Install and configure IBM® HTTP Server with WebSphere® Application Server
	Generating an IBM® HTTP Server plug-in configuration
	Configuring the IBM® HTTP Server plug-in

	Install and configure Oracle HTTP Server with Oracle WebLogic Server
	Installing Oracle HTTP Server and its components
	Configuring the Oracle HTTP Server plug-in

	Installing and configuring Apache HTTP Server
	Building the Universal Access Responsive Web Application for deployment
	Deploying your web application to a web server

	Chapter 5. Developing with the Universal Access Responsive Web Application
	Starter pack and packages
	universal-access-starter-pack
	universal-access
	universal-access-ui
	universal-access-ui-locales
	universal-access-mocks
	mock-server
	core
	core-ui
	core-ui-locales
	intelligent-evidence-gathering
	intelligent-evidence-gathering-locales
	spm-web-dev-accelerator
	spm-web-dev-accelerator-scripts
	spm-test-framework
	spm-eslint-config

	Sample application project structure
	package.json
	/mock
	/public
	/src
	.env and .env.development

	Developing compliantly
	Never use undocumented APIs
	Observe the Redux reducer namespace
	Don't modify the starter application files
	Don't modify or source control any code that is generated

	Enforce good code style with ESLint and EditorConfig
	ESLint
	Overriding ESLint config rules in the sample config
	EditorConfig
	Automation

	Universal Access UI coding conventions
	Features
	Components
	Messages

	The sampleApplication feature
	Apply for Benefits workflow
	Looking at the SampleModule module
	Overview of the sample application code

	Manage state with React Hooks
	Custom hooks

	Redux in Universal Access
	What is Redux?
	How is Redux used in Universal Access?
	Creating a Redux store
	Configuring the store
	Clearing Redux store data
	Adding reducers
	Universal Access Redux modules
	Modules and APIs
	Blackbox
	Reusing Universal Access modules in your custom components

	Social Program Management Web Development Accelerator
	How it works
	Generating custom hooks
	Generating Universal Access Redux modules

	Error handling with a React higher-order component (HOC)
	Examples

	Connectivity handling
	Preventing data loss in IEG
	Implementing a connectivity handler

	Developing with routes
	The Routes component
	Routes component

	Adding routes
	Replacing routes
	Wrap your routes in a <Switch> component
	Add a route with the same path

	Redirecting routes
	Redirecting a route

	Removing routes
	Advanced routing
	Code splitting
	Titled routes
	Authenticated routes

	Connecting to Universal Access REST APIs
	Configuring the Universal Access API end point
	The mock server API service
	Configuring the mock server
	Running the mock server
	Adding mock APIs
	Using universal-access mock APIs

	The RESTService utility
	Authentication
	Handling responses
	User Language
	Cross-Site Request Forgery (CSRF)
	Handling timeouts
	Simulating slow responses

	Adding metadata to file uploads
	Universal Access REST API reference
	Appeals
	Applications
	Document service
	Life events
	Messages
	Notices
	Organization
	Payments
	System
	User
	Screening
	Verifications

	Developing toast notifications
	The <Toaster> component
	The <Toast> component
	The Toaster module

	Localization
	Configuring languages in the application
	Translating your application
	Extracting translatable content
	Including translated content in your application
	Translating the multilingual messages for when JavaScript is disabled

	Regional settings

	Customizing the application
	Changing text in the application
	Customizing images, fonts, and files
	Adding images for IEG scripts

	Customizing the color scheme or typography
	Sass
	The file structure of the starter pack
	Changing the color palette
	Example

	Adding content to the application
	Styling content with the Social Program Management Design System
	Changing the application header or footer
	Customizing headers and footers
	Headers and footers
	Header
	Login and sign up in the header
	Footer

	Creating an IBM Cúram Social Program Management API
	Connecting to REST APIs from the application
	Testing REST API connections with Tomcat
	Handling failures in the application
	Before you begin
	Universal Access ErrorBoundary component
	Error boundaries in the Universal Access application
	Faking an API error
	Catching an API failure
	Throwing an error

	Implementing a loading mask
	Reusing existing features

	Implementing page view analytics
	Implementing a test environment
	End-to-end test environment
	End-to-end test helper files
	Browser.js
	Page.js
	PageObject.js
	Verify.js

	End-to-end test initial setup and configuration
	Project directory structure
	Initial config directory setup

	Page object development and best practices
	Best practices

	The pageObject class
	The PageObject constructor parameters
	@param {JSON} clickList parameter
	@param {JSON} clickIfDisplayedList parameter
	@param {JSON} clearAndTypeTextList parameter and @param {JSON} typeTextList parameter
	@param {JSON} selectList parameter
	@param {JSON} getValueList parameter
	@param {JSON} getIsSelectedList parameter
	@param {JSON} getDropdownSelectionList parameter
	@param {JSON} getTextContentList parameter
	@param {JSON} getIsReadOnlyList parameter

	Adding custom behavior to your page objects
	Sample page object with custom behavior

	Building, exporting and configuring your page objects
	Building your page objects
	Exporting your page objects from page-objects/index.js
	Configuring your page objects

	Writing end-to-end scripts
	Scenario 1: Logging in redirects the user to the home page

	Running end-to-end tests

	Jest and Enzyme test environment
	Unit and snapshot test initial setup and configuration
	Project directory structure
	Configuring the setup-tests.js file
	Configuring the test-mapper.js file
	Configuring the unit.config.js and snap.config.js files

	Unit and snapshot test helper files
	IntlEnzymeTestHelper.js
	TestUtils.js
	To use the helper files in your Jest tests

	Guidelines for writing unit test scripts
	To unit test or to snapshot test?
	Decide what must be tested
	Ensure that all tests can be ran independently
	Use clear test descriptions
	Minimize the number of assertions for each test

	Running Jest and Enzyme tests

	React environment variable reference
	REST API
	User session
	Security
	Locale
	Unauthorized redirect
	Feature toggles
	Connectivity handler
	User account status polling
	Application-specific verification polling
	Document uploads
	Social Program Management Web Development Accelerator
	Application authentication
	Simple authentication for development
	Single sign-on (SSO) authentication
	Intelligent Evidence Gathering (IEG)

	Chapter 6. Security for the Universal Access Responsive Web Application
	Build secure web apps with the Social Program Management Design System
	Protect yourself during development
	Protect your production environment
	How is your deployed code created?
	Use npm audit to identify security issues
	When to run npm audit?
	Consider penetration testing

	How to address security vulnerabilities

	Securing access to Universal Access REST APIs
	Enabling Cross-Site Request Forgery (CSRF) protection for Universal Access

	Universal Access authentication
	Authentication services
	JAAS authentication
	Simple authentication (Development Mode)
	SSO authentication
	Custom authentication
	User account types
	Tracking the logged in user
	Logged in on the client or the server
	Customizing the authentication method

	Authenticating with external security systems
	Configuring SAML SSO for Universal Access
	Identity Only authentication
	Integrating with IdPs for multifactor authentication
	External security authentication example for Universal Access
	Example customization requirements
	Configuring an alternative login ID
	Deploying in identity-only mode for registered users
	Configuring the application server to use LDAP for authentication in Identity–Only mode
	Configuring properties to deploy in identity-only mode for registered users

	Disabling the Create Account screens
	Redirecting users to register with an external system
	Enabling users to log on immediately after registration with CentralID

	User account types
	Public citizen account
	Anonymous account
	Registered accounts
	Linked accounts

	User account authorization roles and groups
	Authorization for the citizen account
	Ensure that the currently logged-in user is the correct type
	Ensure that the logged-in user has permission to access the requested records

	Customizing account creation and management
	Account management configurations
	Account management events
	CitizenWorkspaceAccountManager API

	Data caching
	Server caching
	Browser caching

	Chapter 7. Configuring the Universal Access Responsive Web Application
	Configuring the browser
	Cookies and JavaScript

	Configuring service areas
	Configuring service areas
	Enabling citizens to search for a local office

	Configuring PDFs
	PDF forms for offline applications
	PDF summary
	Customizing the generic XSL template for the PDF summary
	Configuring a PDF application form template for the PDF summary
	PDF forms for appeal requests
	Defining PDF forms
	Specifying a PDF application form for program applications
	Specifying a PDF application form for screening results
	Defining PDF summary mappings for a program

	Configuring programs
	Configuring a program
	Defining a name and reference
	Defining an intake processing system
	Defining case processing details
	Defining the integrated case strategy
	Specifying a client selection strategy
	Specifying a product delivery type
	Submitting a product delivery automatically

	Configuring timers
	Configuring multiple applications
	Defining a URL
	Defining description and summary information
	Defining local office application details

	Defining local offices for a program
	Defining program evidence types

	Configuring screenings
	Configuring a new screening
	Defining a name
	Defining program selection
	Defining a More Info URL
	Allowing re-screening
	Defining an icon for a screening

	Configuring eligibility and screening details
	Configuring eligibility screening details
	Configuring filtered screening details
	Reusing rule sets across screenings

	Configuring screening display information
	Summary information
	Here's what you might get text
	Description
	How to apply text

	Defining programs for a screening
	The screening auto-save property
	Configuring rescreening
	Prepopulating the screening script
	Resetting data captured from a previous screening
	Writing Rule Sets For Screening
	Addin a data store schema
	The screening rules interface

	Configuring applications
	Configuring applications in the administration application
	Configuring application information and display information
	Configuring scripts

	Configuring application properties
	Configuring other application settings

	Configuring online categories
	Defining online categories
	Associating screenings and applications

	Configuring life events
	Configuring a life event
	Defining a name
	Defining a channel type
	Defining a display name
	Displaying question and answer scripts
	Defining a schema
	Defining the display ruleset
	Enabling citizen consent
	Defining the channel
	Defining a display description
	Defining additional information
	Defining the submission text
	Defining an icon

	Mapping life event information to evidence entities
	Defining a question script, answer script, and schema
	Categorizing life events
	Defining Remote Systems

	Configuring the citizen account
	Configuring messages
	Account messages
	Creating appeal request acknowledgment or appeal rejection messages
	Creating application acknowledgments
	Creating meeting messages
	Creating payment messages

	System messages
	Configuring message duration
	Switching off messages

	Configuring last logged in information
	Configuring contact information
	Citizen contact information
	Caseworker

	Configuring user session timeout
	Configuring appeal requests
	Configuring communications on the Notices page

	Chapter 8. Customizing the Universal Access Responsive Web Application
	Customizing screenings
	Track the volume, quality, and results of screenings
	Populating a custom screening results page

	Customizing applications
	Linking directly to an application
	Creating a direct link by using a custom URL
	Creating a direct link by using a generic URL

	Customizing application overview pages
	Customizing an application overview page accessed by a custom URL
	Customizing an application overview page accessed by a generic URL

	Customizing the intake application workflow
	Customizing the generic PDF summary form for processed applications
	Configuring the generic PDF summary template
	Customizing generic PDF summary forms based on the WSXSLTEMPLATEINST001.xsl template

	Using events to extend intake application processing
	Customizing the concern role mapping process
	Enable the ConcernRoleMappingStrategy API
	Use the ConcernRoleMappingStrategy API

	How to send applications to remote systems for processing

	Customizing life events
	Enabling and disabling life events
	How to build a life event
	Customizing advanced life events
	When to use advanced life events
	How to build a life event
	Analysis
	Considerations for life events analysis
	Building the components of a life event
	Writing life event IEG Scripts
	Pre-populating a life event
	How the Data Hub works for reading
	Authoring Read Transforms
	Defining Filters for Evidence
	Using Pre-Packaged View Processors

	Driving updates from life events
	How the Data Hub works for updating
	Writing transforms for updating
	Writing transforms that create new case participants
	Updating Non-Evidence entities

	Configuring the evidence broker for use with the holding case
	Configuring sharing from the Holding Case
	Round-tripping and configuring sharing to the Holding Case
	Issues for consideration

	Putting it all together

	Event APIs for life events

	Customizing verifications
	Enabling or disabling verifications
	Enabling the submitted document review feature for citizen verifications

	Customizing file formats and size limits for file uploads
	Customizing a file upload lead time for verifications
	Customizing how verification information is presented
	Customizing verifiable data item grouping

	Customizing verification names
	Customizing caseworker tasks
	Customizing application-specific verification polling

	Customizing with web services
	Inbound and outbound web services
	Web services security
	Process application service
	Receive application
	Receive withdrawal request

	Update Application Service
	Intake Program Application Update
	Withdrawal Request Update

	life event service
	Create account service
	Link service
	Unlink service
	Citizen message
	Payment service
	Contact service
	Case service
	Sample SOAP requests
	Intake program application update
	Withdrawal request update
	Create account
	Account link
	Account unlink
	Citizen message
	Payment (simple)
	Payment (batched)
	Contact
	Cases

	Customizing appeals
	Enabling and disabling appeals

	Customizing the citizen account
	Messages
	Configuring citizen messages
	Adding a new type of citizen message
	Persisted messages
	Dynamic messages

	Implementing a new message type
	Common tasks
	Implementing a dynamic message
	Implementing a persisted message

	Customizing specific message types
	Referral message
	Service delivery message
	Payment messages
	Customization of the payment messages expiry date

	Meeting messages
	Customization of the meeting messages display date

	Application acknowledgment message
	Customization of application acknowledgment message expiry date

	Customizing the Notices page
	Communication processing hooks and events
	Communication events

	Customizing appeal request statuses
	Error logging in the citizen account
	Application property
	Error codes

	Artifacts with limited customization scope
	Model
	Code tables

	Chapter 9. IEG in the Universal Access Responsive Web Application
	IEG elements and attributes specific to the design system and Universal Access Responsive Web Application
	IEG configuration not currently supported for the Universal Access Responsive Web Application
	Customizing the Back button in IEG forms
	Configuring section navigation for forms
	Configuring progress information for forms
	Configuring dynamic titles on forms
	Configuring rich text on forms
	Configuring external links to open in a new tab or window

	Configuring hint text for forms
	Configuring explainer text for forms
	Configuring the 'Help' label for forms
	Configuring required or optional labels for form fields
	Configuring input formats and constraints for form fields
	Configuring phone numbers
	Configuring date formats
	Configuring currency symbols
	Configuring inputs to be obscured for privacy

	Configuring code-table hierarchies for form fields
	Implementing a combo box for form fields
	Implementing search functions for ComboBox components
	Procedure
	Add New option
	Error messages

	Configuring combo box scripts and schemas

	Customizing script behavior with BaseFormContainer
	Merging clusters with the cluster element grouping-id attribute
	Configuring relationship pages questions
	Configuring relationship starting dates on relationship summary pages
	Configuring quick-add-list
	Common pattern

	Chapter 10. Troubleshooting and support
	Examining log files
	Examining the browser console logs
	Examining the HTTP Server log files

	Connect a React development environment to an SPM server
	Citizen Engagement components and licensing
	Installable components
	Licensing Universal Access
	Licensing the IBM Social Program Management Design System

	Citizen Engagement support strategy
	Semantic versioning

	Known limitations
	Landing page error caused by the public messages environment variable not being correctly disabled
	Navigation section breaks when you edit household members from the Summary page without saving your changes

	Notices
	Privacy Policy considerations
	Trademarks

