
Cúram 8.2.0
Universal Access Responsive
Web Application Guide 7.11.0

Note

Before using this information and the product it supports, read the information in Notices on page
365

© Merative US L.P. 2012, 2025

© Merative US L.P. 2012, 2025

Edition

This edition applies to Cúram 8.2.0.

© Merative US L.P. 2018, 2025

© Merative US L.P. 2012, 2025

© Merative US L.P. 2012, 2025

Contents vii

Contents

Note.. iii

Edition... v
1 Universal Access.. 15
2 What's new and release notes for Universal Access.. 17
2.1 What's new in Universal Access... 17

2.2 Release notes..17

2.3 V7 Migration.. 18
3 Business overview of the Cúram Universal Access Responsive Web

Application.. 23
3.1 Screen..23

Filtered and eligibility screening types.. 23
Anonymous or authenticated screening.. 25
The Check what you might get page...26
The Here's what you might get screening results page...27
Screening from a citizen account..28

3.2 Apply.. 29
Start an application..30
Complete the application form.. 30
Sign and submit...32
Submit application-specific documents... 36

3.3 Verify..36
Citizen alerts and to-do messages..37
Viewing verifications.. 38
Submitting documents... 38
Caseworker tasks.. 39

3.4 Track.. 40
Creating a citizen account and logging in...40
The Dashboard page... 41
The Your benefits page...45
The 'Your documents' page.. 45
The Notices page... 47
The Profile page... 47
Selecting a language...48

3.5 Update... 48
Enter a life event... 49

3.6 Appeal..50
Decide to appeal... 51

© Merative US L.P. 2012, 2025

Cúram 8.2.0 viii

Submit an appeal request... 52
View your appeals... 52
Appeals notices and notifications..53
Requesting an appeal from the citizen account..53

4 Installing the application development environment and web server..................... 55
4.1 Prerequisites and supported software...55

4.2 Installing the Merative ™ Cúram Universal Access development environment....................... 61

4.3 Upgrading the Merative ™ Cúram Universal Access Responsive Web Application.................66

4.4 Install and configure IBM® HTTP Server with WebSphere® Application Server......................69

Generating an IBM® HTTP Server plug-in configuration.. 71

Configuring the IBM® HTTP Server plug-in.. 71

4.5 Install and configure Oracle HTTP Server with Oracle WebLogic Server............................... 72
Installing Oracle HTTP Server and its components..73
Configuring the Oracle HTTP Server plug-in.. 74

4.6 Installing and configuring Apache HTTP Server... 74

4.7 Building the Cúram Universal Access Responsive Web Application for deployment.............. 76

4.8 Deploying your web application to a web server.. 77
5 Developing with the Cúram Universal Access Responsive Web Application......... 79
5.1 Starter pack and packages... 79

5.2 Sample application project structure... 82

5.3 Developing compliantly..83

5.4 Enforce good code style with ESLint and EditorConfig...84

5.5 Universal Access UI coding conventions.. 86

5.6 The sampleApplication feature.. 88

5.7 Manage state with React Hooks... 90

5.8 Redux in Universal Access... 92
Universal Access Redux modules...94
Web Development Accelerator..98

5.9 Error handling with a React higher-order component (HOC).. 100

5.10 Connectivity handling...102
Implementing a connectivity handler...102

5.11 Developing with routes.. 106
The Routes component... 107
Adding routes...107
Replacing routes..108
Redirecting routes..109
Removing routes..109
Advanced routing...109

5.12 Connecting to Universal Access REST APIs.. 111
The mock server API service..112
The RESTService utility...113

© Merative US L.P. 2012, 2025

Contents ix

Adding metadata to file uploads..115
Universal Access REST API reference...116

5.13 Developing toast notifications..123

5.14 Localization.. 125
Configuring languages in the application.. 125
Regional settings... 130

5.15 Customizing the application.. 131
Changing text in the application..131
Adding content to the application..137
Styling content with the Social Program Management Design System.................................138
Changing the application header or footer..139
Creating an Cúram API...145
Connecting to REST APIs from the application.. 145
Testing REST API connections with Tomcat.. 149
Handling failures in the application... 151
Implementing a loading mask... 154
Reusing existing features.. 156

5.16 Implementing page view analytics.. 158

5.17 Implementing a test environment.. 159
End-to-end test environment... 160
Jest and Enzyme test environment...177

5.18 React environment variable reference.. 182
6 Security for the Cúram Universal Access Responsive Web Application...............195
6.1 Build secure web apps with the Social Program Management Design System.................... 195

Protect yourself during development...196
Protect your production environment.. 197
How to address security vulnerabilities...199

6.2 Securing access to Universal Access REST APIs..199
Enabling Cross-Site Request Forgery (CSRF) protection for Universal Access................... 200

6.3 Universal Access authentication..200
Customizing the authentication method.. 202

6.4 Authenticating with external security systems...204
Integrating with IdPs for multifactor authentication... 204
External security authentication example for Universal Access.. 204

6.5 User account types..210

6.6 User account authorization..211

6.7 Customizing account creation and management.. 215
Account management configurations.. 215
Account management events.. 215
CitizenWorkspaceAccountManager API.. 215

6.8 Data caching..216
7 Configuring the Cúram Universal Access Responsive Web Application.............. 217
7.1 Configuring the browser.. 217

© Merative US L.P. 2012, 2025

Cúram 8.2.0 x

7.2 Configuring service areas..217

7.3 Configuring PDFs.. 218
Defining PDF forms... 219
Specifying a PDF application form for program applications.. 219
Specifying a PDF application form for screening results.. 220
Defining PDF summary mappings for a program... 220

7.4 Configuring programs.. 221
Configuring a program...221
Defining local offices for a program.. 225
Defining program evidence types..226

7.5 Configuring screenings..226
Configuring a new screening...226
Configuring eligibility and screening details.. 227
Configuring screening display information.. 228
Defining programs for a screening..229
The screening auto-save property...229
Configuring rescreening...229
Prepopulating the screening script..230
Resetting data captured from a previous screening... 230
Writing Rule Sets For Screening...230

7.6 Configuring applications.. 232
Configuring applications in the administration application...233
Configuring application properties... 234
Configuring other application settings... 236

7.7 Configuring online categories..236

7.8 Configuring life events...237
Configuring a life event... 237
Mapping life event information to evidence entities.. 239
Defining a question script, answer script, and schema...239
Categorizing life events... 240
Defining Remote Systems...240

7.9 Configuring the citizen account... 240
Configuring messages... 241
Configuring last logged in information...249
Configuring contact information...249
Configuring user session timeout..250
Configuring appeal requests..251
Configuring communications on the Notices page..252
Configuring payments..252

8 Customizing the Cúram Universal Access Responsive Web Application............. 255
8.1 Customizing screenings...255

Track the volume, quality, and results of screenings..255
Populating a custom screening results page.. 255

© Merative US L.P. 2012, 2025

Contents xi

8.2 Customizing applications... 256
Linking directly to an application...256
Customizing application overview pages.. 257
Customizing the intake application workflow...259
Using events to extend intake application processing.. 265
Customizing the concern role mapping process... 265
How to send applications to remote systems for processing..266

8.3 Customizing life events... 267
Enabling and disabling life events...267
How to build a life event... 267
Customizing advanced life events...268

8.4 Customizing verifications... 287
Enabling or disabling verifications...287
Customizing file formats and size limits for file uploads... 288
Customizing a file upload lead time for verifications...289
Customizing how verification information is presented... 289
Customizing verification names...291
Customizing caseworker tasks.. 291
Customizing application-specific verification polling..292

8.5 Customizing with web services... 293
Inbound and outbound web services.. 293
Web services security... 293
Process application service...294
Update Application Service... 296
life event service..297
Create account service..298
Link service..299
Unlink service.. 299
Citizen message.. 300
Payment service.. 301
Contact service.. 302
Case service.. 303
Sample SOAP requests.. 303

8.6 Customizing appeals... 311
Enabling and disabling appeals.. 312

8.7 Customizing the citizen account..312
Messages...312
Customizing the Notices page.. 320
Customizing appeal request statuses... 321
Error logging in the citizen account...322

8.8 Artifacts with limited customization scope...324
9 IEG in the Universal Access Responsive Web Applications.................................. 325
9.1 IEG in the Cúram Universal Access Responsive Web Application....................................... 325

© Merative US L.P. 2012, 2025

Cúram 8.2.0 xii

9.2 IEG elements and attributes specific to the design system and Cúram Universal Access
Responsive Web Application.. 325

9.3 IEG configuration not currently supported for the Cúram Universal Access Responsive
Web Application.. 326

9.4 Customizing the Back button in IEG forms.. 327

9.5 Configuring section navigation for forms...329

9.6 Configuring progress information for forms...329

9.7 Configuring dynamic titles on forms..329

9.8 Configuring rich text on forms...330
Configuring external links to open in a new tab or window...331

9.9 Configuring hint text for forms...331

9.10 Configuring explainer text for forms.. 332

9.11 Configuring the 'Help' label for forms..333

9.12 Configuring required or optional labels for form fields.. 334

9.13 Configuring input formats and constraints for form fields..334
Configuring phone numbers.. 337
Configuring date formats... 338
Configuring currency symbols... 338
Configuring inputs to be obscured for privacy.. 339

9.14 Configuring code-table hierarchies for form fields...340

9.15 Implementing a combo box for form fields..341
Implementing search functions for ComboBox components... 341
Customizing Screen Reader Announcements for ComboBox search results...............343
Configuring combo box scripts and schemas... 345

9.16 Customizing script behavior with BaseFormContainer..347

9.17 Merging clusters with the cluster element grouping-id attribute................................ 348

9.18 Configuring relationship pages questions... 349

9.19 Configuring relationship starting dates on relationship summary pages............................. 350

9.20 Configuring quick-add-list.. 351

9.21 Configuring how and when server-side validations are displayed.......................................353
10 Universal Access for Authorized Representatives..355
10.1 Authorized Representative Sample App... 355

10.2 Customizing Cúram Web APIs to allow authorized representatives to assist citizens.........357

10.3 Customizing the authorization strategy... 359
11 Troubleshooting and support..361
11.1 Examining log files.. 361

11.2 Connect a React development environment to an Cúram server....................................... 362

11.3 Citizen Engagement components and licensing... 362

11.4 Citizen Engagement support strategy... 363

11.5 Known limitations...364

© Merative US L.P. 2012, 2025

Contents xiii

Notices.. 365
Privacy policy... 366

Trademarks.. 366

© Merative US L.P. 2012, 2025

Cúram 8.2.0 xiv

© Merative US L.P. 2012, 2025

1 Universal Access 15

1 Universal Access

Cúram Citizen Engagement provides a configurable citizen-facing application that enables
agencies to offer a web self-service solution to their citizens. It uses the Merative ™ Cúram
Universal Access Responsive Web Application, a citizen-facing web application to provide
citizens with online facilities. The Universal Access client uses modern technologies, such as
React JavaScript, and the Cúram Design System to enable citizens to better access services in a
browser from desktop, tablet, and mobile devices.

Cúram Citizen Engagement also supports authorized representatives, users who assist citizens in
applying for benefits by extending the authorization beyond the citizen.

Cúram Platform and the application module provide the configurable business processes on the
Cúram server.

The Merative ™ Cúram Universal Access Responsive Web Application client asset is updated
at more regular intervals than Cúram Platform and the Merative ™ Cúram Universal Access
application module and has its own version number scheme.

Note: Online documentation for Universal Access is provided for the most recent version
only. To read the documentation for older versions of the Cúram Universal Access Responsive
Web Application asset, or Merative ™ Cúram Universal Access with the classic client
application, see the Cúram PDF library.

© Merative US L.P. 2012, 2025

https://www.merative.com/support/spm/product-documentation/pdf-library

Cúram 8.2.0 16

© Merative US L.P. 2012, 2025

2 What's new and release notes for Universal Access 17

2 What's new and release notes for Universal Access

Read about what's new and the release notes for recent versions of Merative ™ Cúram Universal
Access.

2.1 What's new in Universal Access

Read about the enhancements and improvements in Merative ™ Cúram Universal Access with the
Merative ™ Cúram Universal Access Responsive Web Application.

7.11.0 (23 October 2025)

Button text wrapping is configurable via an environment variable

The application now supports text wrapping within buttons, resolving issues with long labels
or tight layouts, which resulted in the truncation of button text. This behavior can be enabled or
disabled as needed through a new environment variable. When enabled, button text truncation is
prevented, improving readability for buttons with longer labels and ensuring the complete text is
always visible.

To enable text wrapping for all buttons in the application, add the following to your environment
configuration:

REACT_APP_BUTTON_WRAP_TEXT_ENABLED=true

When this variable is not provided or set to false, buttons will maintain their default behavior
with no text wrapping. By default, the variable is set to false. Note, this environment variable
should be used in conjunction with the AppButton component (available in @spm/core-ui).

New AppButton Component

A new AppButton component has been added to @spm/core-ui, which
dynamically applies text wrapping to buttons based on an environment variable
(REACT_APP_BUTTON_WRAP_TEXT_ENABLED). This component should be used in custom code
instead of importing ‘Button’ directly from the GovHHS design system.

2.2 Release notes

Read about enhancements and defect fixes in Merative ™ Cúram Universal Access with the
Cúram Universal Access Responsive Web Application.

For more information about changes that depend on server-side updates, see the release notes for
your specific version of Cúram at Merative Social Program Management.

For more information about compatibility with Cúram versions, see 4.1 Prerequisites and
supported software on page 55.

We also provide migration guidelines that we recommend you follow to upgrade from your
current version of CE. See 2.3 V7 Migration on page 18.

© Merative US L.P. 2012, 2025

https://curam-spm-devops.github.io/wh-support-docs/spm/overview/

Cúram 8.2.0 18

7.11.0 (23 October 2025)

Edit screen not reflecting previous answers when accessed from summary page
(SPM-148051)

Previously, some answers did not appear on the Edit screen when accessed from the summary
pages. Now, answers display correctly on the Edit screen when accessed from the summary page.
(DT037414)

Lengthy input in form fields causes a change to input numerals (SPM-146956)

Previously, when a form field type was set to ‘int64’, values exceeding 16 digits were rounded,
altering the value entered by the user. This limitation stems from how JavaScript handles ‘int64’.
We now restrict input to 16 digits and provide a hint informing users of this limit. (DT037411)

Deletion overlay modals have a non-descriptive "Delete confirmation" message
(SPM-146599)

Previously, deletion modals displayed a generic message, "Are you sure you wish to delete this
item?" without specifying what "this item" meant. Now, the delete dialog adapts to the deletion
context, giving users clearer information about what they will delete. This improvement applies
only to fallback values when no customization exists. To use this enhanced context-awareness,
remove any custom delete dialog content or description text currently in use. This will allow the
system to generate context-aware messages automatically. (DT037404)

When zoomed to 400%, the labels for many buttons are truncated (SPM-146386,
SPM-146568, SPM-145921)

Previously, when the browser zoom level was set to 400%, the text for many buttons was
truncated. Now, the text within buttons will wrap when necessary to avoid truncation.
(DT037397, DT037403, DT037374)

2.3 V7 Migration

This migration guide should be followed if upgrading an application built using V6 of the
Universal Access Responsive Web Application to V7. If upgrading from versions lower than V6,
you must complete the migration steps in the associated migration guides in order.

When migrating to V7, you must complete steps 1 to 5 in 4.3 Upgrading the Merative ™ Cúram
Universal Access Responsive Web Application on page 66, followed by the migration steps
below:

This guide outlines the migration steps required to upgrade the reference application provided
with the Universal Access Responsive Web Application asset. Customized
versions of the application may require additional work and further analysis should be carried
out to identify that work. It is recommended that a file comparison is carried out between all files
received in the extracted universal-access-starter-pack.tgz file in the V7 asset and the
equivalent file in your project. Differences will need to be reviewed and applied manually. The
following section will highlight many of these differences.

1. Update the devDependencies and dependencies in "package.json"

© Merative US L.P. 2012, 2025

2 What's new and release notes for Universal Access 19

The package.json file has changed. Compare your project's package.json file with the
version the /package folder created when you unzip the universal-access-start-
pack.tgz file. Note the following changes.

• React-scripts is no longer supported and Vite should be installed instead.

• Remove the following dependencies from devDependencies:

• "react-scripts"
• "source-map-explorer"

• Add the following 4 dependencies to devDependencies (use the versions specified in
V7 package.json):

• "vite"
• "rollup-plugin-visualizer"
• "@vitejs/plugin-react"
• "cssnano"

• React has been upgraded to version 18. Update the versions of the following 2
dependencies: (use the versions specified in V7 package.json)

• "react"
• "react-dom"

• IE11 is no longer supported, remove its polyfill dependency from dependencies:

• "react-app-polyfill"
2. Update the scripts in "package.json"

• The following 5 scripts must be added (or updated) in your package.json

"scripts": {
 "prebuild": "node ./src/config/createIntlConfigTemplate.js",
 "build": "npm-run-all -s build-css && wda-generate && vite build",
 "install-ce-deps": "npx cross-env ./installCEDeps.sh",
 "start:client": "vite",
 "preview-production": "vite preview",
 "preview-production:mock-server": "npm-run-all -p start:mock-server
 preview-production",
 },

• The "analyse" script can be removed from your package.json scripts.
3. Create the Vite Config File

Copy the vite config file named “vite.config.js” in the /package folder and add it to the root
of your project.

4. Update index.html:

• The location for the index.html file needs to be changed from “/public” to the root of
the project.

• Any instance of %PUBLIC_URL% will no longer be required as it is now being
set inside vite.config.js and should be removed. E.g. <href="%PUBLIC_URL%/
favicon.ico”> will need to change to <href=“/favicon.ico”>

• The script tag <script type="module" src="/src/index.js"></script> needs to be
included inside the body tag of index.html. It should be at the same level as the other

© Merative US L.P. 2012, 2025

Cúram 8.2.0 20

HTML elements inside the body tag, one level down. See /package/index.html file
for reference.

5. Update SASS files

SASS absolute paths (using character ~) are no longer supported.

• Search custom sass files (with .scss extension) for absolute paths with '~'. E.g.

• <$icon-path: "~@govhhs/govhhs-design-system-core/dist/icons”;>
• Remove the '~' E.g.

• <$icon-path: "@govhhs/govhhs-design-system-core/dist/icons”;>
6. Replace require() with import.

• The require() function is not supported by Vite. Files in the universal-access-starter-
pack that use require() have been updated to replace it. Update your project to reflect the
changes in V7.

• Copy the createIntlConfigTemplate.js file from /package/src/config into your project
"src/config" directory.

• Replace IntlInit.js in your src/intl folder with the two files IntlInit.js & InitUtils.js in /
package/src/intl.

• Replace CompatibilityInit.js in your src/compatibility folder with the version in /
package/src/compatibility.

• If your project depends on an intl.config.js file and uses ‘require()’ to import modules it
must be replaced with dynamic ‘import()’. See the src/config/intl.config.js.sample for
guidance.

• Replace all other instances of require() in your custom code with the import function.
Search for “require(” text inside your project directory and replace references with
import x from y.

7. Updates required in src/index.js for React 18 and ending support of IE11

• Remove the IE11 polyfill: import 'react-app-polyfill/ie11';
• ReactDOM is no longer supported by React 18. Remove import ReactDOM from

'react-dom';
• Replace the following code that uses ReactDom.render in your src/index.js file:

ReactDOM.render(<App />, document.getElementById('root'));

with createRoot. It should be as follows:

import { createRoot } from 'react-dom/client';
...
const container = document.getElementById('root');
const root = createRoot(container);
root.render(<App />);

8. Updates to test frameworks

If you are using the React Testing Library, it needs to be upgraded to version 14 or above.
You can use the version declared in V7 package.json file. For example

"@testing-library/react": "^14.1.2",

© Merative US L.P. 2012, 2025

2 What's new and release notes for Universal Access 21

If using Enzyme to do unit testing you will need to do the following

• The adapter library to support Enzyme in React 17 called “@wojtekmaj/enzyme-adapter-
react-17” needs to be replaced with “@cfaester/enzyme-adapter-react-18”. You can use
the version declared in V7 package.json file. For example:

• "@cfaester/enzyme-adapter-react-18": "^0.7.1",

• Some unit tests might fail with a warning:

Warning: An update to <component> inside a test was not wrapped in act(...).
When testing, code that causes React state updates should be wrapped into
 act(...):
 act(() => {
 /* fire events that update state */
 });
 /* assert on the output */
This ensures that you're testing the behavior the user would see in the
 browser.
Learn more at https://reactjs.org/link/wrap-tests-with-act

To fix this issue a wrapper using act() will be required. See https://legacy.reactjs.org/
docs/test-utils.html#act.

The warning above will identify the problematic <component>, E.g. SSOVerifier. Any
state update to this component within a test needs to be wrapped in act(). In the example
below:

• The SSOVerifier is mounted
• "await runAllPromises();" is when the component gets updated. This code needs to be

wrapped in act()

IntlEnzymeTestHelper.mountWithIntlWithStore(
 <SSOVerifier>
 <div>children</div>
 </SSOVerifier>
);
await act(async () => {
 await runAllPromises();
});

9. Install newly added dependencies and build your project

npm install --legacy-peer-deps
npm run build

10. Start your app

npm start

Additional Notes on how to use Vite in Universal Access

• Vite by default exposes env variables on the special import.meta.env object. However,
process.env is still supported. Configuration was added to vite.config.js that loads all
process.env. files during the build and defines them as import.meta.env. The .env object
is only available for the Node process. Vite hardcodes these variables into the bundle when
creating a build.

• Note: The vite.config.js file applies a filter for the environment variables loaded via the
loadEnv function. The filter must be correctly applied to ensure that only environment
variables required by your React application are included. The environment that the build

© Merative US L.P. 2012, 2025

https://legacy.reactjs.org/docs/test-utils.html#act
https://legacy.reactjs.org/docs/test-utils.html#act

Cúram 8.2.0 22

is produced from may include sensitive information such as secrets in the environment
variables. If not correctly filtered, the environment variables will be added to the JavaScript
files downloaded to the browser when the application loads. The filter will only include
variables that match the prefixes passed to the loadEnv function, see code example below.
See ‘Review your build files for secrets' section of ‘Build secure web apps with the Social
Program Management Design System’ for instructions on how to ensure you are protected.

const env = loadEnv(mode, process.cwd(), [
 'REACT_APP_',
 'VITE_',
 'PUBLIC_URL',
 'GENERATE_SOURCEMAP',
]);

• To run the app in production mode with a mock server add the below variables to
the .env.production.local file before executing: “npm run preview-production:mock-server”.

REACT_APP_AUTH_METHOD=DevAuthentication
REACT_APP_REST_URL=http://localhost:3080
REACT_APP_RESPONSE_TIMEOUT=60
REACT_APP_RESPONSE_DEADLINE=120

© Merative US L.P. 2012, 2025

3 Business overview of the Cúram Universal Access Responsive Web Application 23

3 Business overview of the Cúram Universal Access
Responsive Web Application

Citizen Engagement uses the Merative ™ Cúram Universal Access Responsive Web Application,
a citizen-facing web application to provide citizens with online facilities. Citizen Engagement
provides domain-specific predefined business processes that you can configure to meet your
organization's needs.

Cúram Platform and the Merative ™ Cúram Universal Access application module provide the
configurable predefined business processes on the server.

3.1 Screen

Citizens can self-check their eligibility for benefits and services before they submit an
application. Checking for eligibility is implemented by using the Screening feature.

Screening has many advantages for both citizens and agencies:

• Citizens can check their eligibility for the benefits that the agency offers before they apply,
and without having to go through the whole application process.

• Screening reduces the need for citizens to interact with the agency.
• Screening reduces the time and effort that caseworkers need to spend on screening tasks,

freeing them up to concentrate on their core duties.
• Screening can quickly determine whether citizens are potentially eligible for one or

more benefits based on a short set of guided questions and eligibility rules. Based on this
determination, citizens can then decide whether to apply for the benefits.

Related concepts
Configuring screenings on page 226
Define the different types of screenings that citizens can complete to identify programs that they
might be eligible to receive.

Filtered and eligibility screening types

To balance the need for quick screening results against the need to gather detailed citizen
information, Merative ™ Cúram Universal Access supports two types of screening. Screening
results indicate the programs for which citizens might be eligible.

Filtered screening

Filtered screening allows citizens to quickly see whether they are eligible for benefits before they
go through the more detailed eligibility screening process. Asking questions about their marriage
or pregnancy status can quickly identify and eliminate programs for which citizens are unlikely to
be eligible.

Filtered screening is defined by specifying a simple filter script and rules. Typically, a filtered
screening script is not longer than two pages. If filtered screening is defined, the system

© Merative US L.P. 2012, 2025

Cúram 8.2.0 24

immediately displays the filtered screening script when citizens select the screening. The system
does not prompt citizens to select programs. Instead, the system runs the rules for all programs
that are defined in the filtered screening rule set.

You can easily and quickly customize a filtered screening. For each screening, you configure the
available programs and eligibility requirements. You then configure the script, rules, and data
schema to collect and process citizen information, and define what information is displayed to
citizens. When defined, citizens can screen themselves to identify programs that they might be
eligible to receive. For more information, see 7.5 Configuring screenings on page 226.

Program selection takes precedence over filtered screening. For more information about program
selection, see 3.1 Screen on page 23.

Eligibility screening

Eligibility screening determines citizens' potential eligibility to receive a program or programs.
To gather the more detailed information that is needed to determine whether citizens qualify for
benefits, eligibility screening uses a longer and more detailed IEG script. Typical questions can
relate to the citizen's income, or resources, for example, savings, stocks, or bonds.

Eligibility screening consists of a script to collect data and a rule set to determine the citizen's
potential eligibility for one or more programs.

Eligibility screening rules are run upon completion of the screening script and the results are
displayed for citizens on the Here's what you might get page.

The eligibility screening rules are run only for programs that are associated with the screening.

The relationship between filtered and eligibility screening

Some points to note regarding the two screening types:

• Filtered screening is a precursor to eligibility screening.
• Filtered screening is optional. Citizens can screen for eligibility without doing a filtered

screening.
• After they complete a filtered screening, citizens must then complete an eligibility screening

before they can apply for benefits.

For more information about the flow of an IEG script configuration, see the Authoring Scripts
using Intelligent Evidence Gathering Guide.

Related concepts
The screening auto-save property on page 229
Use the screening curam.citizenworkspace.auto.save.screening property to set whether screenings
are automatically saved for authenticated citizens.

Configuring screenings on page 226
Define the different types of screenings that citizens can complete to identify programs that they
might be eligible to receive.

© Merative US L.P. 2012, 2025

3 Business overview of the Cúram Universal Access Responsive Web Application 25

Anonymous or authenticated screening

Merative ™ Cúram Universal Access supports both anonymous and authenticated screening.
Citizens who are not logged in, and want to retain a degree of anonymity, can screen themselves
for benefit eligibility while unauthenticated. Citizens who are logged in can complete an
authenticated screening.

Anonymous screening

Unauthenticated citizens can screen themselves for benefits without logging in but they cannot
save their screening until they log in. Administrators can use an IEG script configuration to set if
citizens have an option to save their progress. If an administrator sets the option to save progress
on a particular script, unauthenticated citizens are taken to the Log in page when they select to
save. When logged in or signed up, citizens' screening progress is saved and they are taken to the
Dashboard.

For more information about IEG script configuration, see the Authoring Scripts using Intelligent
Evidence Gathering Guide.

Authenticated screening
Citizens who are logged in to Universal Access can complete an authenticated screening.

Pre-populating citizen data

Citizens might want the convenience of having their data pre-populated when they start
screening. Use the curam.citizenaccount.prepopulate.screening system property to pre-populate
citizen data into a screening form for linked users:

• If enabled, basic details for citizens are populated in the script.
• If disabled, citizens must complete their details.

For more information, see Prepopulating the screening script on page 230.

Saving screenings for authenticated citizens

Authenticated citizens can save a screening and resume it later. As citizens progress through
the script, information that is entered on the previous page is automatically saved each time that
citizens click Next in the IEG script. If there is a timeout or the browser is closed accidentally,
automatically saving the information prevents the loss of the screening information. Use the
curam.citizenworkspace.auto.save.screening system property to set whether screenings are
automatically saved in the citizen account. For more information, see The screening auto-save
property on page 229.

In-progress screenings

When citizens save an in-progress screening, or it is automatically saved by the system, an in-
progress screening message is displayed in the citizens' dashboard as a reminder. Citizens can
complete an in-progress screening or they can delete it. When citizens complete a screening,
the Here's what you might get page is displayed and the in-progress message is removed. The
screening also appears on the Benefits checker page on the Dashboard.

© Merative US L.P. 2012, 2025

Cúram 8.2.0 26

The Benefits you might get pane

Citizens can view completed screenings on the Benefits you might get pane in the citizen
Dashboard. To ensure that the most recent results of a screening are kept relevant for the citizen,
one screening of the same type can be in the complete state at a time. Citizens can use the
Benefits you might get pane to view the results of the screening or delete the screening from the
pane.

Configuring rescreening
Citizens might need to change a screening if they forget to provide some information or their
circumstances change. In the administration application, you can set whether to allow citizens to
change and resubmit their screening.

• If the setting is set to Yes, citizens can rescreen from the Benefits you might get pane or from
the Screening results page.

• If the setting is No, citizens do not see these links, in this case if the citizen wants to rescreen,
they must delete their screening and start again.

For more information, see Configuring rescreening on page 229.
Related concepts
Prepopulating the screening script on page 230
When citizens screen from a citizen account, you can prepopulate information that is already
known about the citizen who is screening.

The screening auto-save property on page 229
Use the screening curam.citizenworkspace.auto.save.screening property to set whether screenings
are automatically saved for authenticated citizens.

Related tasks
Configuring rescreening on page 229
Configure whether citizens can change and resubmit their screenings.

The Check what you might get page

Screening starts when citizens select Check what you might get on the organization Home page.

When citizens select to create a new account, an account creation screen is displayed. After the
citizen successfully creates the account, the citizen is automatically logged in to the system and
the screening process proceeds.

If citizens are logged in and they click Check on any screening where they have a previously
completed or in-progress screening of that type, they are alerted to the existence of that previous
screening. Citizens can then either view the current progress of that screening or they can start
screening again.

If citizens start screening again, any in progress screenings are overwritten. Any completed
screening is only overwritten when citizens get to the screening results page.

The Check what you might get page lists and describes each of the screenings that are available.

© Merative US L.P. 2012, 2025

3 Business overview of the Cúram Universal Access Responsive Web Application 27

Note: The Check what you might get page is laid out as follows:

• Page description - a banner indicating to citizens that they can screen themselves.
• A list of screenings with a description of what each screening is.
• A list of benefits with a description of what each benefit offers.

A screening might allow citizens to screen for one or more programs. Citizens are prompted to
select the programs for which they want to be screened. However, there are three situations when
citizens are not prompted to select programs:

• If filtered screening is defined for the screening. In this instance, citizens are prompted to
select the programs for which they want to be screened when filtered screening is complete.

• If a single program is defined for the screening.
• If a screening has been configured to disable program selection by citizens. The Program

Selection indicator determines whether citizens can select specific programs to screen for
or whether they are brought directly into a screening script where they are screened for
all programs associated with the screening. For more information, see Defining Program
Selection.

Note: Program selection takes precedence over filtered screening. Also, if filtered
screening is enabled but only one program configured, citizens are brought directly to
eligibility screening for that single program.

Citizens select the screening and the programs for which they want to be screened and then click
Check. The system then starts the associated IEG script so that screening can start.

Related concepts
Configuring screenings on page 226
Define the different types of screenings that citizens can complete to identify programs that they
might be eligible to receive.

The Here's what you might get screening results page

When a screening is submitted, the eligibility rules run and the list of programs is displayed with
the results on Here's what you might get page.

• Programs that the citizens might be eligible for are marked with the Eligible

icon. Citizens can click Apply to apply for these programs online through the Apply for
benefits flow.

• Programs for which eligibility cannot be determined are listed with a suitable message, which
can be configured in the administration application. For example:

Based on what you have told us, we are unable to make a
 determination for Child Care Assistance.

Administrators can use Cúram Express® Rules (CER) to provide detailed explanatory text to help
citizens understand the decisions that are made about potential eligibility.

© Merative US L.P. 2012, 2025

Cúram 8.2.0 28

If citizens' circumstances change, they can screen again at any time by clicking Check again for
what you might get.

How to apply

For each screening type, you can configure helpful, informative text to display on the Here's
what you might get page header. For example, "You can apply online using the Apply button,
print the application and mail it to the office, or visit our office and speak to a caseworker."

You can configure this text in the How to apply rich text editor in the administration application.
For more information, see Configuring screening display information on page 228.

The How to apply editor can include links. This is useful if the agency wants citizens to visit
their local office. For example, the agency might choose to use Google Maps, or any maps
provider of their choice, to show citizens where their local office is.

Applying for benefits offline

The Here's what you might get page also indicates whether benefits can be applied for offline.
Benefits that can be applied for offline typically have a Download application link to download
the application form, see Specifying a PDF application form for screening results on page 220.

Transferring data from screening to application

You can configure the application so that citizens' screening data can be reused when they apply
directly from the Here's what you might get page. When configured, some details based on the
schema that is applied are transferred into the application. This existing information saves the
citizen time when they are completing their application.

Related concepts
Configuring screening display information on page 228
You can configure the screening information display fields for each screening.

Screening from a citizen account

Citizens can screen themselves for programs while logged in to their citizen account.

By using a short set of guided questions and eligibility rules, citizens can determine whether they
might be eligible for one or more programs. Based on this determination, the citizen can decide
whether to apply for the programs identified.

To perform a screening, citizens take the following steps:

1. Select Check what you might get on the organization Home page.
2. Select Check on the eligibility category.
3. Select the benefits they think they might get on the Include benefits page
4. Select Continue to start the check eligibility process.
5. Citizens then answer the questions on the screening script.
6. Select Next to navigate through the pages in the script.
7. When the process is complete, citizens are shown the benefits they might be eligible for on the

Here's what you might get page.

© Merative US L.P. 2012, 2025

3 Business overview of the Cúram Universal Access Responsive Web Application 29

8. Citizens can then Apply for benefits.

Related concepts
Prepopulating the screening script on page 230
When citizens screen from a citizen account, you can prepopulate information that is already
known about the citizen who is screening.

3.2 Apply

Citizens can apply for benefits online by submitting an application form that includes personal
details like income, expenses, employment, and education. This information becomes evidence on
the citizen's case that agencies can use to determine their eligibility for benefits. Citizens can also
apply offline by downloading the application form to send to the agency or to bring to their local
agency office.

Figure 1: Key business flow for Apply

Related concepts
Configuring applications on page 232

© Merative US L.P. 2012, 2025

Cúram 8.2.0 30

Use Cúram administration and system administration applications to define the applications that
are available for citizens. For each application, you can configure the available programs and an
application script and data schema. You must also configure the remaining applications details,
such as application withdrawal reasons.

Start an application

Citizens can browse the available benefits and apply for the benefits that they need. Benefit
applications can include single or multiple benefits.

Note: The term benefit in Merative ™ Cúram Universal Access Responsive Web Application
is synonymous with program in Cúram.

If configured, citizens can apply for multiple benefits with a single application. For example,
citizens might use the Income Support application to apply for the Food Assistance and Cash
Assistance benefits.

Applications for benefits can be grouped into categories, for example Unemployment services.
A customizable icon can be displayed for each benefit type along with the benefit name and a
description of the benefit.

Citizens can also click Learn more to learn more about each application or can click Download
application to print the application form, complete it by hand and mail it or bring it to the agency.

What can I configure or customize?

• Administrators can define the applications, benefits, and categories in the Universal Access
section of the Administration Application. The application and benefit descriptions and benefit
icons are configurable. Benefits are displayed in alphabetical order by default, but you can
override this order when you configure the online categories.

• The configuration property Multiple application is available at the program level. If this
property is set to No and there is a pending decision for the program, the Apply option is
disabled.

The multiple applications configuration property to allow multiple applications for the same
benefit is available at the benefit level. The Apply button is conditionally displayed if it is set
to Yes or if multiple applications set to No and the citizen has no pending applications.

• If the More Info URL setting is configured for the application, Learn more is displayed.
• If the PDF Application Form setting is configured for the application, Download application

is displayed, see Specifying a PDF application form for program applications on page 219.

Complete the application form

Application forms in the Cúram Universal Access Responsive Web Application are created with
IEG scripts and rendered by IEG. When citizens click Start application to complete the form,

© Merative US L.P. 2012, 2025

3 Business overview of the Cúram Universal Access Responsive Web Application 31

they are starting an IEG script, which is known as an intake script. Citizens complete the form to
be ready to submit the application.

Depending on how authentication is configured, applications are managed in one of the following
ways:

• Citizens must log in to their account to apply. They are prompted to log in or sign up from the
application overview page, or at the end of the application form.

• Citizens can submit an application without an account.

Typically, an application form consists of an overview page, a form divided into sections, and
a summary page. If the application can be used for multiple benefits, a page where citizens are
prompted to select the benefits that they want to apply for can be shown.

By default, applications are automatically saved for logged-in citizens each time that they click
Continue in the application form. Citizens can also manually save in-progress applications.
Applications are not saved for citizens who are not logged in.

When citizens quit a benefit application, three options are available depending on how the intake
application is configured.

• Save the application.

If citizens try to save the application without being logged in, the login screen opens so they
can log in or create an account. If citizens create an account, they are automatically logged
in to the system and the intake process starts. The system also checks whether they have any
existing applications.

• Leave the application without saving.

If citizens try to quit the application without saving it, the application displays a warning
dialog box to prevent accidental loss of information.

Note: Citizens must click the application name on the page to see the Leave this
application dialog box. The application name is also conditionally enabled depending on
whether the quit and delete option is enabled in the IEG script.

• Cancel the application.

Clicking Cancel returns citizens to the point at which they left the application script with the
previously entered data available. Citizens can cancel an application without saving at any
point before they submit. Citizens can cancel only when the application is in progress, if they
Save and Exit, they can then only Delete the application.

What can I configure or customize?

• The curam.citizenaccount.prepopulate.screening system property sets whether the IEG script
is pre-populated with any available citizen information.

• Where the system is configured to allow multiple benefits for an application, citizens are
prompted to select benefits, with the following exceptions.

• If a single benefit is defined for the application.
• Each application is configured so that the citizen can select a benefit or automatically select

all of the programs that are associated with the application.

© Merative US L.P. 2012, 2025

Cúram 8.2.0 32

The program selection configuration property is available at the application level:

• If set to Yes, an Include benefits page is displayed that allows a citizen to select some or
all of the benefits. If an application contains a single benefit, the Include benefits page is
not displayed.

• If set to No and the application contains multiple programs, all the benefits are
automatically applied for and the Include benefits page is not displayed.

• A system property specifies whether applications are automatically saved.
• You can configure the application to require citizens to log in to apply for benefits:

• Typically, citizens can start an application without logging in, but to save an application
they must log in or sign up for an account. Citizens who are logged in can save an
application for a benefit before they submit it and then return later to complete the
application.

The agency can configure the system to specify whether citizens need to be authenticated
before they apply for benefits:

• If authentication is enabled, citizens must either create a new user account or log in to
an account before they start the application process.

• If authentication is disabled, citizens can proceed with the application without
authentication.

The curam.citizenworkspace.authenticated.intake configuration property specifies whether
citizens must log in to apply for benefits. If the property is set to NO, citizens do not have
to log in to apply for benefits. If the property is set to YES, citizens must create an account
or log in to an existing account to apply for benefits.

Sign and submit

Depending on the configuration, the application can be submitted when citizens complete the
form or when they exit a form before it completes. After citizens submit an application for a
benefit, the way the intake script is processed depends on how the benefit is configured.

An intake application can be configured so that it can be submitted before it is complete or only
when complete. If the property is enabled, citizens must log in to an existing account or create a
new account before the application can be sent to the agency.

When citizens send an application to the agency, either by exiting or completing a script, the
screen that is displayed depends on:

• Whether citizens are logged in.
• Whether citizens must either create or log in to an account before the application is submitted.

If citizens are not logged in, they are prompted to log in or create a new account. For more
information, see Manage existing applications on page 35.

Log-in requirements

The system can be configured as follows:

© Merative US L.P. 2012, 2025

3 Business overview of the Cúram Universal Access Responsive Web Application 33

• Citizens are not required to identify themselves to the system and can send an application to
the agency without logging in or creating an account.

• Citizens must log in or create an account.

In-progress and submitted applications

If citizens log in before they submit the application, the system can determine whether they have:

• In-progress application of the same type. Citizens can choose to submit the new application or
discard it and keep the saved application. The options available are to Start again or Resume
the in-progress application.

• Previously submitted applications for the same programs that are still pending disposition, that
is, awaiting a decision by the agency. If citizens submit applications for the same programs,
the system determines whether they can still submit any of the programs to the agency for
processing.

• Benefits can be configured so that multiple applications can be submitted for the program
at any time. For example, submitting a new application for cash assistance for a different
household unit than a previously submitted application that the agency is processing. This
screen indicates that the application cannot be submitted for all of the programs for which the
citizen wants to apply. However, the application might still be sent to the agency. There are
three options:

• Continue to submit the application for the programs for which the citizen can apply.
• Save the application.
• Delete the application.

Partial submissions

You can configure the application so citizens can submit a partial application without logging in.

If the Submit on Completion Only administration setting is selected, citizens can submit
a partially completed application. Citizens see the option to submit a partially completed
application on the Save and Exit modal when they save and exit an IEG script. If the Submit
on Completion Only administration setting is not selected, citizens cannot submit a partially
completed application. Citizens don't need to be logged in to submit the partial application.

Specify a submission script

To allow citizens to submit an application to the agency, you must specify a submission script
for the application in the administration system. The submission script is required because
applications require additional information, which does not form part of the application, to be
captured before the applications can be submitted.

For example, a Cash Assistance application requires information that relates to the citizen's ability
to attend an interview. This information would not be appropriate for another type of application
that does not require an interview to be conducted, for example, unemployment insurance.
Electronic signatures are another example of the type of information that would typically be
captured by using a submission script.

This data might not be captured as part of the script, as citizens can submit the application before
they complete the script.

© Merative US L.P. 2012, 2025

Cúram 8.2.0 34

Processing a submitted script

The processing that happens on completion of the submission script depends upon the
configuration of the programs for which citizens are applying. Program eligibility can be
configured such that it might be determined by using Cúram or a remote system.

If Cúram is specified as the eligibility system, an application case creation process is started.
The application case creation process includes a search and match capability, which attempts
to match citizens on a new application to registered persons on the system based on configured
search criteria. When search and match finishes, one or more application cases are created. If
the programs that are applied for are configured for different application case types, multiple
application cases are created. If the application was submitted within the business hours of
the root location for the organization, the application date on the application case is set to
today's date. If the application is submitted outside of the business hours of the organization, the
application date is set to the next business date.

Mapping application data to case evidence tables

The data that is entered for the application might be mapped to case evidence tables. The
mappings are configured for a particular program by using the Cúram Data Mapping Editor.
A mapping configuration is needed for a program so that evidence entities can be created and
populated in response to an online application submission for that program.

Association of requested programs with application cases

When the application case is created, the programs that are requested by the citizen are associated
with the relevant application case. Some organizations might impose time limits within which
an application for a program must be processed. A number of timer configuration options are
available for a particular program. These timers are set when a program is associated with an
application case.

If the eligibility is determined by a remote system, configurations are provided to allow a web
service to be started on a remote system.

Display submission confirmation

A submission confirmation is displayed upon successful submission of an application, which
displays the reference number that is associated with the submitted application. Citizens can use
this reference number in any further correspondence about the application with the agency.

Submission confirmation

When citizens successfully sign and submit an application, they see an overview of their
application. The stages specific to the application process are now updated with a confirmation
message to indicate that the application was successfully submitted. The message can contain:

• A customizable icon.
• An application reference number.
• Informational message for the citizen.

© Merative US L.P. 2012, 2025

3 Business overview of the Cúram Universal Access Responsive Web Application 35

• A Save submitted application PDF link that allows citizens to download a PDF summary
of information that is entered as part of the application, see 7.3 Configuring PDFs on page
218.

Manage existing applications
When a citizen logs in, their existing applications are listed and the citizen has different options
that depend on the state of the application.

Existing applications are in one of the following categories:

• Application in progress. The application is in progress but is not yet submitted. Citizens can
either continue or delete applications in this category.

• Pending decision. The application is awaiting a decision from the caseworker. Citizens can
either download or withdraw applications in this category.

• Active. The caseworker authorized the application.
• Denied The caseworker rejected the application.
• Authorization failed. Citizens can download applications in this state.
• Withdrawn. Citizens can withdraw an application if it is in Pending decision or Denied

status.

The application lists are displayed only if there are items in the list, that is, if there are no saved
applications.

Citizens can resume or delete an incomplete application, withdraw a submitted application, or
start a new application. Citizens can apply for benefits that they previously applied for.

Citizens can:

• Resume an application from where it was last saved by selecting the Continue link on the
Your benefits page, or by selecting Continue on an in-progress application alert in the
Dashboard. The application is resumed from where it was last saved.

• Withdraw an application. If available, the withdraw option is displayed for the pending
decision application on the Your benefits page.

• Delete an application. Citizens can delete in-progress applications only that were not yet
submitted to the agency.

Withdrawing an application

Citizens can withdraw a successfully submitted application or they can also withdraw
applications for all or any one of the programs.

Citizens can withdraw each program individually. The reasons for withdrawing the program
application can be configured for the intake application in the administration system.

The Reason field contains a list of configurable code table values that are defined by the
administrator. The list of values is configured at application level.

The First name, Last name, and Reason fields are mandatory.

The submit action on the page withdraws the application. The system automatically updates the
status of the programs that are associated with the application case to Withdrawn and sends a
notification to the application caseworker.

© Merative US L.P. 2012, 2025

Cúram 8.2.0 36

Deleting an application

Citizens can delete applications before they are submitted to the agency. Deleting an application
physically deletes the application record.

Submit application-specific documents

Citizens with linked accounts can upload the required supporting documents for their application.
After a citizen signs and submits their application, they are shown the information that they need
to verify and the documents that they can upload to prove that information.

Citizens can add and submit one or more documents. If previously submitted documentation
is suitable, citizens can select and submit that documentation, or choose to submit new
documentation.

When they add a document, they must specify the type of document from the list of eligible
document types. For phones or tablets, the file picker uses the native functionality of the device
so they can take a photo, select a picture, or select a file.

By default, the allowed file formats are JPG, JPEG, PNG, TIFF, and PDF and the file size limit
is 5 MB. The allowed file formats and file size limit can be customized by the organization. On
desktop devices, they select only valid file formats. On mobile devices, an error is shown if they
select an unsupported file type.

Citizens can view or change their uploaded documents to check them before they submit them to
the agency.

When citizens successfully submit documents, the caseworker is notified that documents are
ready to verify. A task is generated for the caseworker in the Cúram caseworker application.

3.3 Verify

If your organization includes the online submission of documents in their business process,
citizens are notified in the Cúram Universal Access Responsive Web Application when some of
their information needs to be verified with supporting documentation. They can then provide that
supporting documentation online. Both citizens and caseworkers receive notifications, alerting
them to any steps to take. Case workers control the verification of evidence, ensuring adherence
to agency standards.

© Merative US L.P. 2012, 2025

3 Business overview of the Cúram Universal Access Responsive Web Application 37

Figure 2: Key business flow for Verifications

Related concepts
Customizing verifications on page 287
If your organization includes the online submission of documents in their business process,
citizens can upload and submit documents from the Merative ™ Cúram Universal Access
Responsive Web Application to prove information that they provided in their benefit applications.
You can customize a number of aspects of the verifications functionality in the application.

Citizen alerts and to-do messages

When citizens must provide documentation to the agency, they see an alert in their dashboard, and
a to-do message for each application or benefit case where documents are needed. Only linked
users see the verification alert and to-do messages.

The alert is removed when there is at least one document submitted for each verification.

To-dos are grouped by case, so a citizen can have multiple to-dos if they have multiple
applications or cases. The to-do messages for a case are removed when all documents are
provided for that case.

© Merative US L.P. 2012, 2025

Cúram 8.2.0 38

Viewing verifications

Citizens who are linked users can upload and submit documents to prove information that they
provide. For example, they can submit a birth certificate to prove a date of birth and a caseworker
can then verify the evidence with the submitted document.

Verifications are displayed whenever they are generated for that user, either by online or in-
person interactions with the organization. For example, verifications can be generated during
an online benefit application process, or on receipt of a postal application form, or when a
caseworker meets with a client in the office.

Verifications that are raised for any case members on a case or application for which the citizen
is the primary client are displayed to the citizen. If there are verifications raised on behalf of an
entire family, the verification is raised against the primary client and are displayed as such to the
citizen.

Where there are multiple people on an application or case, you can see and can submit
documentation for each person's outstanding verification requirements.

Verified and non-verified verifications are displayed, but canceled verifications are not displayed.
When the information is verified, the verification's status is updated. If a verification item
utilization expires, the verification is shown here again and a message indicates that more recent
documentation is needed.

Related concepts
The 'Your documents' page on page 45
When a citizen who is a linked user is logged in, they see a Your documents page that provides
a consolidated view of their verifications and submitted documents. Citizens can see what
information they need to provide documentation for, information for which they have submitted
documentation, and verifications that were done in the past.

Submitting documents

Citizens can add and submit one or more documents. For phones or tablets, the file picker uses
the native functionality of the device so they can take a photo, select a picture or select a file.
When they submit a document, they must specify the type of document from the list of eligible
document types. The caseworker is notified that documents are ready to verify.

To prevent unnecessary submissions, citizens cannot submit further documents when the
verification status is Verified.

A verification is displayed for each item of information for which caseworkers need
documentation to verify. Citizens can see a list of the information to be verified and the eligible
documents that a caseworker can use to verify that information.

When submitting documents on desktop devices, Citizens can select only files in valid file
formats. If you are using a phone or tablet, the file picker uses the native functionality of the
device so you can take a photo, select a picture or select a file. On mobile devices, an error is
shown if you select an unsupported file format. By default, the allowed file formats are JPG,
JPEG, PNG, TIFF, and PDF and the file size limit is 5 MB. You can customize the allowed file
formats and file size limit.

© Merative US L.P. 2012, 2025

3 Business overview of the Cúram Universal Access Responsive Web Application 39

Citizens specify the type of document from the list of eligible document types such as a passport.
The eligible document types are based on the verification item utilization.

Citizens can check a document before they submit by clicking the thumbnail image to see the
document. They can delete a document before they submit.

On submission, the verification status is updated and a task is generated for the caseworker in the
Cúram caseworker application.

Sharing and reusing documents

You can configure whether documents of a certain type can be shared and reused across
verifications that require the same document type.

• If you choose that a document can only be used against that verification, and must be unique,
then the document is not shared across any other verifications that might use the same
document type. A citizen might need to resubmit the document multiple times if they have
multiple cases with the same information.

• If you chose that a document can be shared and reused, the submitted documents can be
associated with other relevant verification items. If previously submitted documentation is
suitable, citizens can select that documentation to reuse for the verification.

Administrators can configure a verification item utilization by setting the Usage Type to Shared
or Unique.

For more information, see the Verification Guide.

Caseworker tasks

When documents are submitted for verification by a citizen, a task is generated for the
caseworker that is assigned to the citizen’s case.

The task indicates that evidence on the case or for the person is now ready for verification, based
on the documents submitted.

A system configuration is available to determine whether the task is generated when all
documents for an evidence record are received, or when all documents for all evidence records on
the case are received.

When the caseworker opens the task, details of the evidence, it’s related documentation and
whether it’s ready for verification are visible to the caseworker for review.

Related tasks
Customizing caseworker tasks on page 291
When a citizen submits a document for a verification, a task is generated for the caseworker.
Tasks are displayed to the caseworker that is assigned to the citizen's case when they log in to the
caseworker application. System administrators can configure the system to display a task each
time a citizen provides all documents for an individual evidence record on a case, or to display
the task only when a citizen has provided all documents for every evidence record on a case.

© Merative US L.P. 2012, 2025

Cúram 8.2.0 40

3.4 Track

When citizens create a secure citizen account, they can access a range of relevant information.
Citizens can also use the citizen account to track and manage their interactions with the agency.
Related concepts
Configuring the citizen account on page 240
Although customization is required to modify some citizen account information, you can
configure information on the citizen account and the Contact Information tab.

Customizing the citizen account on page 312
Users can use the citizen account to log in to a secure area where users can screen and apply for
programs.

Creating a citizen account and logging in

Citizens can create a citizen account at any time, including during the check eligibility and
application processes.

Creating an account

Citizens can select Sign up on the organization Home page to create an account. Citizens then
enter their first and last names, an optional email address, and an account password. If citizens
select I don't have an email address, they can specify a user name instead.

Administration configurations

• Number of login attempts before the account is locked out: 5
• Number of remaining login attempts before a user warning is displayed: 3
• Number of break-in attempts before an account is locked: 3
• Maximum and minimum characters in a user name
• Maximum and minimum characters in a password

For more information about user name and password length, see the Security Guide.

Logging in

To log in to the citizen account, citizens select Log in on the organization Home page. Depending
on how they created their account, citizens enter either an email or user name. They then enter
their password and click Next. You can configure the number of log-in attempts citizens have
before their account is locked out. For example, if you set the number of login attempts to three,
the account is locked for citizens who make more than three unsuccessful login attempts.

On a successful login, the Citizen account dashboard is displayed.

System messages

Agencies use system messages to broadcast messages to either all public citizens who are not
logged into an account, or specifically to clients who have a citizen account. System messages
that are broadcast to all public citizens are displayed on the organization Home page. For
example, agencies can use system messages to provide information and help line numbers

© Merative US L.P. 2012, 2025

3 Business overview of the Cúram Universal Access Responsive Web Application 41

to clients for a natural disaster, such as a flood. You can configure system messages in the
Administration application by using the New System Message page. For more information about
system messages, see Citizen account messages on page 43.

Related concepts
Screen on page 23
Citizens can self-check their eligibility for benefits and services before they submit an
application. Checking for eligibility is implemented by using the Screening feature.

Account management configurations on page 215
Use the following configuration properties to define the behavior of password validations for
citizen accounts. For the Cúram Universal Access Responsive Web Application, you must
implement these validations in the application before you enable them.

The Dashboard page

When a citizen is logged in, their Dashboard shows an overview of their account.

If your organization uses Appeals, and a citizen has applied for at least one benefit, they also see
an Appeals page. For more information, see Requesting an appeal from the citizen account on
page 53.

If your organization uses Verifications, and a citizen is a linked user with at least one verification
that needs documentation, they also see a Your documents page. For more information, see The
'Your documents' page on page 45.

• System messages
System messages are broadcast to all logged-in citizens and are displayed at the top of the
dashboard. For example, system messages can inform citizens about planned system outages.

Citizens who are linked users can see system messages about their verifications.
• In-progress applications messages

Messages about current in-progress applications are displayed at the top of the screen. Citizens
can either continue or delete their in-progress applications.

• The 'Check what you might get' card
Citizens can click Check what you might get to check their own eligibility for benefits. For
more information, see The Check what you might get page on page 26.

• The 'Apply for benefits' card
Citizens can click Apply for benefits to apply for a benefit. For more information, see Start an
application on page 30.

• The 'Review your profile' card
Citizens can click Review your profile to update their profile with a change in circumstances.
For more information, see Enter a life event on page 49.

• The Payments pane
Lists a summary of the most recent payments to the citizen. Citizens can click All payments
to view the payment details or see their payment history. For more information, see The All
payments page on page 42

• Expected and previous payments
Citizens can view their expected and previous benefit payments in their account, and see
how the payments were calculated. The payment dates, benefit type, and payment amount

© Merative US L.P. 2012, 2025

Cúram 8.2.0 42

are always displayed. The adjustment indicator displays whether the entitlement amount
has changed.

Note:

By default, the display of additional payment information is disabled. For information
about how to enable the display of additional payment information, see Configuring
payments on page 252.

• The 'Benefits you might get' pane
Lists a summary of any in-progress eligibility checks. Citizens can click recheck or delete
individual eligibility checks.

• The To-Dos pane
Lists actions that citizens must take to complete an application, including action messages
that the caseworker creates for the citizen. For example, a citizen might need to provide
supplementary information to support a benefit application.

Citizens who are linked users can see messages about their verifications.
• The Meetings pane

Lists a summary of meetings that citizens were invited to including the dates of the meetings.
The most recent meeting is shown first.

• The Notifications pane
Lists acknowledgments for all of the applications that citizens make. A date is included for
most notifications. The most recent notification is shown first. Example notifications include
application acknowledgment, appeal request messages, or service request messages.

Related concepts
Customizing specific message types on page 317
Organizations can customize the default message to create a referral message or a service delivery
message.

The All payments page
The All payments page shows more details about payments to the citizen. The messages that are
associated with these payments can be retrieved from Cúram or another remote system. Canceled
or expired payments are also displayed.

The All payments page has the same expected and previous payments sections as the user's
dashboard. Citizens can view their expected and previous benefit payments in their account, and
see how the payments were calculated. The payment dates, benefit type, and payment amount are
always displayed. The adjustment indicator displays whether the entitlement amount has changed.

If a payment consists of more than one benefit, all benefits and case numbers are included in
the title. The improved layout of the breakdown shows each payment, and any deductions or
components that make up the overall payment amount for that benefit. If a benefit has been
adjusted, the adjustment increase or decrease amount is displayed.

© Merative US L.P. 2012, 2025

3 Business overview of the Cúram Universal Access Responsive Web Application 43

Note:

By default, the display of additional payment information is disabled. For information about
how to enable the display of additional payment information, see Configuring payments on
page 252.

Payment type

Payments can be by check, electronic funds transfer (EFT), cash, or voucher. Depending on the
payment type, the following details can be displayed for each payment:

• Check
Payee address and check number

• EFT
Bank sort code and bank account number

• Cash
Payee address

• Voucher
Payee address and voucher number

Citizen account messages
In addition to system messages and in-progress application messages, the Payments, To-
Dos, Meetings, and Notifications panes on the Dashboard display citizen account messages.
Messages from remote systems can also be displayed by using web services. For example,
messages can be about meetings for the citizen, or activities that are scheduled for the citizen.

Displaying a message

Each message has a title and an icon. In addition, the To-Dos and Notifications messages have an
effective date and time that specifies when the message is displayed. Usually the effective date of
a message is set to the current date, but you can set the effective date by configuration settings.

For example, you might not want to display a message immediately if a service is scheduled in
the future. You can configure the message to display a specified number of days before the start
date of the service. The system uses the number of days to populate the effective date.

Messages from remote systems are displayed based on the effective date that is specified in the
web service.

Prioritization and ordering

You can assign a priority to a message so that it is displayed at the top of the Meeting listing.

You can also configure the order of messages types in the administration system. For example,
you can configure payment messages to be displayed first and meeting messages to be displayed
second.

Message duration

The message type determines the length of time that the message is displayed. You can set the
message duration by start and end dates or by replacing one message with another.

© Merative US L.P. 2012, 2025

Cúram 8.2.0 44

Where items have start and end dates, you can use them to specify the duration that message is
displayed. For example, service messages are displayed until the start date of the service.

In other cases, you can replace a message with another message. Use a configuration setting to
determine whether to:

• Specify the duration for when a message is replaced.
• Specify the number of days after which the message is removed.

The duration of messages from remote systems is based on the expiry date that is defined in the
web service.

System messages

Agencies use system messages to broadcast messages to either all public citizens who are not
logged into an account, or specifically to clients who have a citizen account. For example,
agencies can use system messages to provide information and help line numbers to clients for
a natural disaster, such as a flood. You can configure system messages in the Administration
application by using the New System Message page.

The Title and Message fields define the title of the message and the message body that is
displayed to a client in the citizen application.

The Visibility field defines the user group that a message is visible to, for example, either only
logged-in users, only public users, or only public and logged-in users.

The Effective Date and Time field defines an effective date for the message, such as when
the message is displayed in the dashboard page. The Expiry Date and Time field defines an
expiry date for the message, for instance, when the message no longer is to be displayed in the
dashboard.

Messages are saved with a status of In-Edit. Messages must be published before they display in
the citizen account. After it is published, the message is active and is displayed either to public
citizens or in the Citizen Account, based on the visibility, effective date and expiry dates that you
have defined.

Predictive Response Manager

The Predictive Response Manager (PRM) is the infrastructure that is used to build and then
generate and display messages on the Citizen Account home page.

A number of default messages are provided and are described in this information along with their
associated configurations

For more information about configuring messages, see Customizing specific message types on
page 317.

Verifications messages
Verifications messages are displayed on the To-Dos pane. The messages are removed from the list
when documents for all verifiable data items are supplied.

Verifications are grouped by person or case, either application case or integrated case, rather than
as individual notifications. A case reference number is provided where appropriate. The verifiable
data items are displayed in a list.

© Merative US L.P. 2012, 2025

3 Business overview of the Cúram Universal Access Responsive Web Application 45

The Your benefits page

When a citizen is logged in, they can see all of their benefits applications and the application
status on the Your benefits page.

The Your benefits page displays applications that can be in one of the following states:

• Application in progress. The application is in progress but is not yet submitted. Citizens can
either continue or delete applications in this category.

• Pending decision. The application is awaiting a decision from the caseworker. Citizens can
either download or withdraw applications in this category.

• Active. The caseworker authorized the application.
• Denied The caseworker rejected the application.
• Authorization failed. Citizens can download applications in this state.
• Withdrawn. Citizens can withdraw an application if it is in Pending decision or Denied

status.

If a submitted application is approved by the caseworker and a product delivery case is created
for that application, the application is also displayed on the Your benefits page.

If enhanced benefit and payment information is enabled, the Your benefits page also displays a
message about the expected next payment for active benefits.

The 'Your documents' page

When a citizen who is a linked user is logged in, they see a Your documents page that provides
a consolidated view of their verifications and submitted documents. Citizens can see what
information they need to provide documentation for, information for which they have submitted
documentation, and verifications that were done in the past.

The verification items are organized based on their status:

• Documents required
Verifications that require citizens to submit documentation so that their information can be
verified by a caseworker.

• Documents received
Verifications for which citizens submitted documents for information to be verified by a
caseworker.

• Documents accepted
Verifications for which a citizen submitted documents, and their information was verified by a
caseworker.

Verifications

Each item of information for verification is shown. If needed, you can customize how information
is presented for individual verifications, see Customizing how verification information is
presented on page 289.

Verifications show the following summary information:

© Merative US L.P. 2012, 2025

Cúram 8.2.0 46

• The information to be verified, which can be a single verifiable data item, or a group of
verifiable data items related to an evidence record.

• The status of the verification:

• Not yet submitted. One or more documents are required to verify this information but
were not yet submitted.

• Documentation submitted. The caseworker is reviewing the submitted documents or has
verified some of the required documents for multiple verifiable data items.

• Verified A caseworker has successfully verified this item of information with the
submitted documents.

• The person for which information needs to be verified, that is, the case participant. For
example For James Smith.

• The due date, that is, the date by which the documents are to be submitted by the citizen. For
example, Due 26 Sept. By default, this is the same date as the date that the information needs
to be verified by the caseworker. If needed, your organization can configure a lead time to the
due date so that document are submitted earlier to give caseworkers enough time to verify the
evidence and process the application.

• The names of any programs that are associated with an application case, or product deliveries
that are associated with an integrated case, depending on whether a citizen is applying for
or receiving benefits. Application for ... <program> is shown for application cases, for
example, Application for Rent Assistance. The program name is shown for product delivery
cases, for example Food Assistance.

Verification details

The following verification details are shown:

• Provide documents that show

The details of the information that needs to be verified, which consists of the verifiable data
items, and a description of the evidence provided and what the verification was raised against.

• Eligible documents

A list of the documents that can be provided to prove the information. For example:

• Paid Medical Invoice
• Prescription Receipts
• Doctor's Letter

• Add or reuse documents

To prove information is correct, you can add documents or reuse documents that you have
already submitted.

• Your submitted documents

If documents were previously submitted for the validation, the documents are listed here. You
can download your previously submitted documents to see them in detail. A message indicates
any documents that are no longer valid.

Related concepts
Viewing verifications on page 38

© Merative US L.P. 2012, 2025

3 Business overview of the Cúram Universal Access Responsive Web Application 47

Citizens who are linked users can upload and submit documents to prove information that they
provide. For example, they can submit a birth certificate to prove a date of birth and a caseworker
can then verify the evidence with the submitted document.

The Notices page

When a citizen is logged in, they can see all communications that are relevant to them on the
Notices page, with sent, received, or normal status indicated. Notices are typically formal written
communications that are issued to meet legal, regulatory, or state requirements, which are created
by using letterhead templates.

For example, online appeal requests are shown on the Notices page.

By default, communications are listed where the logged-in citizen is the concern or is a
correspondent on the communication, in other words, for linked users.

Citizens can see the communication description and any attachment in the expanded view. They
can view or save attachments by clicking the View attachment link.

Citizens can request that notices are sent to them by mail. The system logs the request to send the
communication to the citizen. The request includes communication (ID), date, time, and status.
After a citizen requests a notice by mail, the Request this notice by mail link is disabled.

What can you configure or customize?

You can configure the number of communications that are listed. You can also create a custom
implementation to change what communications are shown, such as showing communications for
other family members.

The processing of requests for communications by mail is customizable, so customers can add
their own logic to deal with these requests.

Related concepts
Customizing the Notices page on page 320
By default, the notices relevant to the linked user are listed on the Notices page. You can
replace the default CitizenCommunicationsStrategy implementation with your own custom
implementation.

Related tasks
Configuring communications on the Notices page on page 252
You can configure the maximum number of communications that are displayed on the Notices
page. By default, up to 20 communications are displayed.

The Profile page

When a citizen is logged in, they can see their information, including contact information, on
their Profile page.

Citizen information

Citizens can see profile information, such as their contact information. Their
contact information can include information like their address, phone number, and

© Merative US L.P. 2012, 2025

Cúram 8.2.0 48

email address. A configuration setting determines whether the citizen's contact
information is displayed on the citizen account. For example, an agency can set the
curam.citizenaccount.contactinformation.show.client.details property
to false to disable citizen contact information. For more information, see Configuring contact
information on page 249.

Tell us what has changed

Citizens can submit updates to their profile information and contact details. For more information,
see 3.5 Update on page 48.

Related concepts
Configuring contact information on page 249
Configure contact information for citizens and caseworkers.

Selecting a language

Citizens can select a preferred language from the language drop-down in the footer of the
application. When citizens select a preferred language, the application is displayed in that
language. The application retains the preferred language setting based on a cached value in the
browser.

Note: The language drop-down only appears when more than one language is configured for
the application.

Note: A citizen's language preference is not saved if the browser is configured to block access
to its local storage, the application reverts to the default language (English) when the page is
reloaded.

3.5 Update

Citizens can update their details by submitting a change in their circumstances to the agency,
which is implemented by using the Life Events feature. Examples of changes in circumstances
include a change of address, a birth, or marriage. These significant events in citizens' lives might
affect the benefits or services that they are receiving or are due to receive.

Key business flow scenario

James Smith is in receipt of child benefit and is also working full time. However, he just lost his
job as the company that he works for is closing. James needs to tell the agency about losing his
job so that he can get his benefit reviewed. Life Events allows James to communicate this change
to the agency without visiting the office. This reduces the amount of interaction with the agency
and saves valuable caseworker time.

Related concepts
Configuring life events on page 237

© Merative US L.P. 2012, 2025

3 Business overview of the Cúram Universal Access Responsive Web Application 49

For each life event, you must define how information is collected, stored, and displayed. You
can configure life event information categories, mappings to dynamic evidence, and information
sharing with internal and external sources.

Enter a life event

Citizens who are logged in can review their existing profile information on the Profile page and
make any required changes. They can submit a change in their circumstances by selecting either
Review your profile on their dashboard or selecting Profile to open the Profile page.

The 'Tell us if anything has changed' pane

The Tell us if anything has changed pane displays the available life events, for example,
Change of Address or Change in Employment Status. Each configured life event is a card,
with a description that is configurable by an administrator in Universal Access life event
administration.

The administrator can categorize life events in Universal Access life event administration. For
example, you can categorize changing jobs, income changes, and change of address life events
under Employment. If a life event is not categorized, it appears in the All category tab. If citizens
cannot immediately see the life event that they want, they can select See more to see the life
events across all categories.

The life event Overview page

When citizens select a life event, the Overview page outlines the update process.

The steps list any information or documentation that they must provide, and approximately how
long the submission takes to complete. The steps can also include how the agency might inform
them of the change when the change of circumstance is complete.

When citizens read and understand the information that is presented, they can select Start to enter
the submission form.

When citizens begin a submission form, they are presented with a guided set of questions that
use Intelligent Evidence Gathering (IEG) to gather information. The IEG script for the form is
defined in Universal Access life event administration.

The life event Summary page

After they enter information, a Summary page displays so they can review their changes before
submission.

The life event Confirmation page

On successful submission of the life event, the Confirmation page is displayed.

The confirmation page can display information that is useful and relevant to the submitted life
event. This information can be defined in Universal Access life event administration.

• Text can be added. For example, agencies can say that a change might take some time as a
caseworker review is needed.

© Merative US L.P. 2012, 2025

Cúram 8.2.0 50

• The Next steps pane can display information such as actions that citizens might need to take
after they submit the change. For example, citizens might need to update their rent if they
move into a new home. The Next steps pane can also include links to external websites.

Citizens don't need to have a case on the system to submit a life event. If they don’t, the submitted
information isn’t transmitted to a case owner. Instead, the submitted information is stored
internally and the agency must decide what to do with the information.

The life event Consent page

An optional Consent page can be displayed so that citizens can consent to having their details
sent to selected other agencies or third parties. Administrators can configure the Consent page to
display for a life event in Universal Access life event administration. This action constitutes the
citizens' consent to send information to the selected agencies. The information can be transmitted
to a remote system through a web service or to the relevant case owners on an Cúram system
through the evidence broker.

The life events change history

Citizens can access their previously submitted life events from the dashboard by clicking Review
your profile > Previous changes. The list of life events is sorted by the submission date. They
can select a life event record from the history list to view a summary of the information that they
submitted to the agency.

Submit documents for verification

If your organization includes the online submission of documents in their business process,
citizens can upload and submit supporting documentation for information that they provide, so
caseworkers can verify their changes. For more information, see Submitting documents on page
38.

Related concepts
Configuring a life event on page 237
You can configure a life event in the administration application on the New Life Event page.

3.6 Appeal

If your organization includes appeals in their business process, citizens can appeal decisions on
their benefits online from their citizen accounts on their own devices. If your organization uses
the Cúram Appeals application module, your organization can process appeals through the full
appeals life cycle that is provided by that solution.

Figure 3: Key business flow for Appeals

© Merative US L.P. 2012, 2025

3 Business overview of the Cúram Universal Access Responsive Web Application 51

1. Decide to appeal on page 51
2. Submit an appeal request on page 52
3. View your appeals on page 52
4. Appeals notices and notifications on page 53

Related tasks
Customizing appeals on page 311
You can customize appeals to suit your organization. You can integrate with an appeals system of
your choice. If you are licensed for the Cúram Appeals application module, the Cúram appeals
functionality is available on installation.

Decide to appeal

If citizens don't agree with a decision on their benefits, they can appeal the decision. They
can appeal for themselves or a family member, and can appeal online regardless of how they
originally applied. A citizen must have applied for at least one benefit in order to appeal.

By default, they can appeal:

• An eligibility determination.

© Merative US L.P. 2012, 2025

Cúram 8.2.0 52

• A change to their eligibility.
• Their calculated benefit.

Citizens are informed of their rights of appeal, and an overview page explains anything that
citizens need to know before they request an appeal.

Submit an appeal request

After they read their appeal rights and understand the appeals process, citizens complete a form
with all of the relevant information. This information can range from details of the benefit itself to
supplemental information needed to establish informal reviews and hearings such as interpreters
or emergency needs.

You can configure the form to ask for the specific information that is needed by your
organization. The Cúram Design System accommodates a wide range of question formats to
enable the citizen to easily complete this form. You can use a summary page to provide further
information in the form to help the citizen and to alleviate specific concerns.

After they enter and review their appeal request details, citizens sign and submit the request
for appeal and get a confirmation of the submission. The confirmation page outlines the next
steps and sets out the time frames for the organization to respond, and any communications to be
expected.

Appeals processing

A caseworker or hearing official can receive notification of that appeal and begin processing.

• When the Cúram Appeals application module is installed, the full appeals lifecycle and
statuses in that solution are supported. A task is created and assigned to an appeal request
work queue when the citizen submits the request. The appeal request is recorded against
the citizen's person record. A PDF file is generated from the IEG script and is stored for
caseworker reference as a communication against the appellant in the caseworker application.

A caseworker can then act on the request and either acknowledge the request and continue
with the appeal process or reject the request. An acknowledgment or rejection message
is displayed in the citizen's account. A list of submitted appeal requests is provided in the
citizen's account and provides a view of the request's status.

• When the Cúram Appeals application module is not installed, a citizen can request an appeal.
They can receive an appeal request submitted status, and the organization must implement an
appeals solution to handle the submitted appeal requests and other appeal lifecycle processing.

• Alternatively, an organization can implement a solution to have a third-party appeals system
process the appeal and to generate the appropriate appeal lifecycle processing, statuses, and
messaging.

View your appeals

Citizens can see their appeals on the Appeals page. All appeals that citizens submit are displayed
and are updated with the appropriate color-coded statuses as they move through the Appeals

© Merative US L.P. 2012, 2025

3 Business overview of the Cúram Universal Access Responsive Web Application 53

lifecycle of hearings and decisions. At any stage, citizens can log in and understand what is
happening with their appeal.

The Appeals page displays each appeal in a card, with copy of the original appeal details if
needed. Typically, the details that are provided in the earlier form are added to a PDF, both the
citizen and the caseworker receive a copy.

The statuses of appeals are updated as the appeal moves through the appeals lifecycle, as pre-
configured for the Cúram Appeals application module, or as configured for your organization's
custom appeals process.

Appeals notices and notifications

Citizens receive both formal notices and informal notifications at specific milestones in the
appeals process. These updates provide them with instant status updates, while they wait for
formal notice of a decision or next steps.

• Notices
Citizens can see communications in the Notices page, which are typically formal written
communications about the appeal or hearing, typically issued to meet legal, regulatory, or state
requirements. Notices are often created by using letterhead templates.

• Notifications
Citizens can see messages in the Notifications pane on their dashboard, which are typically
informal messages that inform the citizen of any significant point in a process. For example,
for appeals, notification can inform citizens of any progression on their appeal request, such as
when their appeal request was first acknowledged, or if their appeal was accepted or denied.

Requesting an appeal from the citizen account

When logged into their citizen account, a citizen can review their rights of appeal. They can
request an appeal on a benefit decision if they are a participant on a Cúram application or case.

Before you begin

For example, a citizen might be deemed ineligible on application, or have their benefit payments
reduced. If they don't agree with the decision or the circumstances of the decision, they can
appeal the decision.

Procedure

1. Go to the Appeals page.
2. Click Request an appeal. The appeals process overview page is displayed.
3. Review the overview of the appeals process, and when you are ready, click Start. The appeal

request form opens.
4. Complete the appeal request form.
5. Sign and submit the form.
6. Your appeal request is complete. Review the Confirmation and next steps information.

© Merative US L.P. 2012, 2025

Cúram 8.2.0 54

© Merative US L.P. 2012, 2025

4 Installing the application development environment and web server 55

4 Installing the application development environment
and web server

The Merative ™ Cúram Universal Access Responsive Web Application requires a React
JavaScript development environment in addition to the Cúram Java development environment.
You can deploy your web application on a web server in a production-like environment as part of
your development process. Deployment in a production environment is outside the scope of this
documentation, but you can refer to the instructions for guidance.

Note: The Merative ™ Cúram Universal Access Responsive Web Application installation
includes the Cúram Design System so you don't need to install the design system separately.

4.1 Prerequisites and supported software

Before you install or upgrade, review the prerequisites and supported software to ensure
compatibility.

Cúram Platform and the Merative ™ Cúram Universal Access application module

Cúram Platform and the Merative ™ Cúram Universal Access application module installed on the
server are prerequisites for the Merative ™ Cúram Universal Access Responsive Web Application
client asset that is needed for Cúram Citizen Engagement.

Merative ™ Cúram Universal Access Responsive Web Application is released at more frequent
intervals and requires specific Cúram and Merative ™ Cúram Universal Access application
module versions to benefit from server-side enhancements, security updates, and defect fixes.

Note:

• From Merative ™ Cúram Universal Access Responsive Web Application 5.0.0 onwards,
new features, server-side enhancements, and defect fixes are supported only in the most
recent Cúram version lines. Security fixes and defect fixes are supported on Cúram
7.0.10-7.0.11.

• The Merative ™ Cúram Universal Access Responsive Web Application 3.x.x version line
continues to be supported for security updates and critical defect fixes only on the older
compatible version lines of Cúram, 7.0.10-7.0.11.

• The Merative ™ Cúram Universal Access Responsive Web Application 2.6 version line
continues to be supported for security updates and critical defect fixes only on the older
compatible version lines of Cúram, 7.0.4 -7.0.9.

For more information about the support strategy, see 11.4 Citizen Engagement support strategy on
page 363.

© Merative US L.P. 2012, 2025

Cúram 8.2.0 56

Table 1: Compatibility with Cúram

A list of the asset versions and their compatible Cúram versions.

Asset versions Compatible Cúram versions

7.11.0

7.10.1

7.10.0

7.9.0

• 8.2.0 for all new features, enhancements, and
defect fixes.

• 7.0.10-7.0.11 for security fixes and defect fixes.

7.8.0

7.7.1

7.7.0

7.6.2

7.6.1

7.6.0

7.5.0

7.4.0

• 8.1.3 for all new features, enhancements, and
defect fixes.

• 7.0.10-7.0.11 for security fixes and defect fixes.

7.3.1

7.3.0

7.2.0

7.1.0

7.0.2

7.0.1

7.0.0

• 8.1.2 for all new features, enhancements, and
defect fixes.

• 7.0.10-7.0.11 for security fixes and defect fixes.

6.3.1

6.3.0

6.2.3

6.2.2

• 8.1.1 for all new features, enhancements, and
defect fixes.

• 7.0.10-7.0.11 for security fixes and defect fixes.

6.2.1

6.2.0

6.1.4

• 8.1.0 for all new features, enhancements, and
defect fixes.

• 7.0.10-7.0.11 for security fixes and defect fixes.

6.1.3

6.1.2

6.1.1

6.1.0

• 8.0.3 for all new features, enhancements, and
defect fixes.

• 7.0.10-7.0.11 for security fixes and defect fixes.

© Merative US L.P. 2012, 2025

4 Installing the application development environment and web server 57

Asset versions Compatible Cúram versions

6.0.2

6.0.1

6.0.0

5.3.2

5.3.1

5.3.0

5.2.2

5.2.1

5.2.0

5.1.0

• 8.0.2 for all new features, enhancements, and
defect fixes.

• 7.0.10-7.0.11 for security fixes and defect fixes.

5.0.0 • 8.0.1 for all new features, enhancements, and
defect fixes.

• 7.0.10-7.0.11 for security fixes and defect fixes.

4.1.4

4.1.3

4.1.2

4.1.1

4.1.0

• 8.0.1 for all new features, enhancements, and
defect fixes.

4.0.3

4.0.2

4.0.1

4.0.0

• 8.0.0 for all new features, enhancements, and
defect fixes.

3.0.10

3.0.9

3.0.8

3.0.7

3.0.6

• 7.0.11 iFix 5 for essential maintenance, security
updates and critical defect fixes.

• 7.0.10 iFix 8 for essential maintenance, security
updates and critical defect fixes.

3.0.5

3.0.4

• 7.0.11 iFix 3 for all new features, enhancements,
and defect fixes.

• 7.0.10 iFix 7 for essential maintenance, security
updates and critical defect fixes.

3.0.3 • 7.0.11 iFix 3 for all new features, enhancements,
and defect fixes.

• 7.0.10 iFix 6 for essential maintenance, security
updates and critical defect fixes.

© Merative US L.P. 2012, 2025

Cúram 8.2.0 58

Asset versions Compatible Cúram versions

3.0.2 • 7.0.11 iFix 2 for all new features, enhancements,
and defect fixes.

• 7.0.10 iFix 5 for essential maintenance, security
updates and critical defect fixes.

3.0.1

3.0.0

• 7.0.11 iFix 1 for all new features, enhancements,
and defect fixes.

• 7.0.10 iFix 4 essential maintenance, for security
updates and critical defect fixes.

2.9.1

2.9.0

• 7.0.11 for all new features, enhancements, and
defect fixes.

• 7.0.10 iFix 3 for essential maintenance, security
updates and critical defect fixes.

2.8.6

2.8.5

(Including the 2.8.4 internal release)

2.8.3

2.8.2

2.8.1

2.8.0

2.7.0

• 7.0.10 iFix 3 for all new features, enhancements,
and defect fixes.

Note: Universal Access does not support the dual deployment of the classic client application
and the Merative ™ Cúram Universal Access Responsive Web Application client against the
same instance of the Cúram server. You can build and deploy your server without the classic
client application as described in Alternative Targets for IBM® WebSphere® Application
Server or Multiple EAR files for Oracle WebLogic Server. Alternatively, you must use another
strategy to block access to the classic client application URLs to ensure that users cannot
concurrently access both clients.

Node.js

Node.js is a prerequisite for installing the React application and for developing and deploying
your web application.

Compatible Node.js versions.

Supported software Version Prerequisite
minimum

Operating system restrictions

Node.js 22 LTS (latest)

20 LTS (latest)

20 LTS (latest) No

© Merative US L.P. 2012, 2025

../Deployment_WebsphereApplicationServer/c_WEBSPHAPS_Building2AlternativeTargets1.html
../Deployment_WeblogicServer/c_WEBLOGS_Building1MultipleEarFiles1.html

4 Installing the application development environment and web server 59

Note: By default, Node 16 uses Node Package Manager (npm) 8 and Node 18 uses npm 9.
To use either of these configurations, you must specify the npm option legacy-peer-deps
in your project. The way that npm treats peer dependencies changed. The Cúram Universal
Access Responsive Web Application is using the legacy-peer-deps option as a temporary
fix while we work to remove this constraint. For more information about legacy-peer-
deps, see npm Docs. The following steps outline how to configure the legacy-peer-deps
option:

1. Create a .npmrc file at the root of your project.
2. Add the legacy-peer-deps=true content to the file.

Platforms

There is no dependency on specific hardware platforms, but some minimum hardware
requirements apply:

• Desktop devices that meet Microsoft™ Windows™ 10 specifications.

Interactive Development Environment (IDE)

The Cúram Universal Access Responsive Web Application does not depend on a specific IDE,
you can choose your own. There are many IDEs that you can choose, for example Microsoft™

Visual Studio Code, Atom, and Sublime. However, Merative™ uses Microsoft™ Visual Studio
Code to develop the reference application, it supports many plugins that make development faster
and easier, for example it supports the following tools:

• Linting tools (ESLint)
• Code formatters (Prettier)
• Debugging tools (Debugger for Chrome)
• Documentation tools (JSDoc)

Merative ™ does not own, develop, or support these tools.

Application server, web server, and database

Deploying the web application requires a web server in the Cúram topology. The following
application server, web server, and database combinations are supported for developing and
deploying your custom application.

• IBM® WebSphere® Application Server, IBM® HTTP Server or Apache HTTP Server, and
IBM® Db2®

• IBM® WebSphere® Application Server, IBM® HTTP Server or Apache HTTP Server, and
Oracle Database

• Oracle WebLogic Server, Oracle HTTP Server or Apache HTTP Server, and Oracle Database

For more information about installing an application server or database for Cúram, see the Server
Developer's Guide.

© Merative US L.P. 2012, 2025

https://docs.npmjs.com/cli/v7/using-npm/config#legacy-peer-deps

Cúram 8.2.0 60

HTTP servers

These HTTP servers are supported for deployment.

Compatible HTTP server versions

Supported software Version Prerequisite minimum Operating
system
restrictions

9.0 9.0.0.5 NoIBM® HTTP Server

8.5.5 8.5.5.9 No

Oracle HTTP Server 12.2.1.3.0 and future
fix packs

12.2.1.3.190808 No

Apache HTTP Server 2.4 and future
patches

2.4 No

Web browsers

Merative ™ Cúram Universal Access with the Cúram Universal Access Responsive Web
Application is developed for public-facing applications. Every effort was made to ensure that the
application pages use standard web technologies and formats to be compatible with all browsers
that are listed. However, the browsers that are listed in the following table are the only browsers
that are officially supported.

Note: The browser Back and Forward buttons, and browser refresh, are now supported on
IEG pages in the Cúram Universal Access Responsive Web Application. Information that is
entered in IEG forms is now retained when the citizen clicks Next or goes back or forward
through a form.

Chrome, Firefox, Edge, and Safari release new versions more frequently than Internet Explorer,
and they install updates automatically by default. Cúram Universal Access Responsive Web
Application releases are tested on the latest browser versions that are available at the start of the
Merative™ development cycle.

Note: Only stable Chrome releases are tested.

If no issues result from the tests, Merative™ certifies the browser version.

For each new product release, the prerequisites list the version that is certified. If Merative™

cannot certify that version for any reason, you might need to revert to a previous version that is
fully certified. While Merative™ supports customers who use newer versions of these browsers
than the last certified version, customers must understand that the versions are not fully tested.

Supported software Version Operating system restrictions

Apple Safari 14 and future fix packs No

Google Chrome 91 and future fix packs No

Microsoft™ Edge 91 and future fix packs No

© Merative US L.P. 2012, 2025

4 Installing the application development environment and web server 61

Supported software Version Operating system restrictions

Mozilla Firefox 89 and future fix packs No

Accessibility

This accessibility software is certified.

Supported
software

Version Prerequisite
minimum

Operating system
restrictions

Browser

Freedom Scientific
JAWS screen
reader

2023 and
future fix packs

2023 No Microsoft Edge

Apple VoiceOver Any version
and future fix
packs

Any version Any version Safari

Note: The combination of Microsoft Edge and JAWS 2023 is the only certified screen reader
and browser combination.

Previous versions

To see the prerequisites and supported software for previous versions, see the Cúram PDF library.

4.2 Installing the Merative ™ Cúram Universal Access
development environment

You can install a lightweight or a full development environment. The Cúram Design System
is installed as part of the Merative ™ Cúram Universal Access installation and doesn’t need a
separate installation.

Before you begin

• Lightweight development environment

The lightweight development environment replaces the Cúram application with a Node.js
hosted mock server. This accelerates set up and development, but can't fully replicate
integration testing with the Cúram application. Use this environment to get started quickly.

1. Install the Merative ™ Cúram Universal Access React development environment.
2. Configure the Merative ™ Cúram Universal Access to connect to the mock server, see The

mock server API service on page 112.

• Full development environment
In the full development environment, you install the Cúram Java™ development environment
to develop and test your APIs instead of using mock APIs. For more information about
installing the Cúram Java™ development environment, see the Server Developer's Guide.

© Merative US L.P. 2012, 2025

http://www-01.ibm.com/support/docview.wss?uid=swg27041327

Cúram 8.2.0 62

Note: If you are working with a non-English version, you must ensure that the appropriate
language is installed on Cúram.

1. Install the Merative ™ Cúram Universal Access React development environment.
2. Install the Cúram Platform.
3. Install the Merative ™ Cúram Universal Access Application Module.
4. Install any additional Cúram components that you need:

• To use Cúram Appeals, install Cúram Appeals Application Module.
• To use Cúram Verifications, Cúram Verification Engine Application Module.

5. Configure the REST APIs, see 5.12 Connecting to Universal Access REST APIs on page
111.

© Merative US L.P. 2012, 2025

4 Installing the application development environment and web server 63

SPM Database

Universal Access
packages

Node.js

universal-access-starter-pack

Universal Access mock APIs

mock-server API service

REST APIs

SPM Server

SPM Design System
packages

SPM Java IDE
(Eclipse and Tomcat)

JavaScript IDE
(Visual Studio Code, Atom)

Main SPM Client

Apache Tomcat

Figure 4: Universal Access React and Java™ application development environments

• Troubleshooting environment
For troubleshooting, it can sometimes be useful to connect your lightweight or full
development environment directly to an Cúram server. For more information, see 11.2
Connect a React development environment to an Cúram server on page 362.

© Merative US L.P. 2012, 2025

Cúram 8.2.0 64

About this task

To install the Merative ™ Cúram Universal Access, first extract the spm-universal-
access-starter-pack React starter application. Then, install all of the Cúram Design
System and Merative ™ Cúram Universal Access Node packages into the starter application.

Attention: When you work with npm packages, it is important that you familiarize yourself
with the npm ecosystem and how package dependencies work so you can adopt a suitable
security strategy for your project.

Procedure

1. Download the Merative ™ Cúram Universal Access and Cúram Design System
Node packages. Open the Cúram Support, under Software Downloads, select Go to
Downloads, and follow the instructions to download the SPM_DS_<version>.zip and
UA_Web_App_<version>.zip archive files.

2. Extract SPM_DS_<version>.zip and UA_Web_App_<version>.zip archive files to
any directory.

3. Extract the spm-universal-access-starter-pack_<version>.tgz file into
UA_Web_App_<version>/packages. The extracted package directory forms the
React starter application. Now, you need to install all the other packages into this directory.

4. Rename the extracted package directory to reflect your project.
For example, universal-access-custom-app.

5.
Note: Step 5 can be time-consuming. In addition to the manual option, there is an
alternative automated version for this step.

(Manual option) Installing dependencies. Follow these two steps:

• First, from your custom application directory, install the Cúram Design System and the
Merative ™ Cúram Universal Access dependencies by entering the following command:

npm i --legacy-peer-deps \
<SPM_DS_version_path>/govhhs-govhhs-design-system-core-<version>.tgz \
<SPM_DS_version_path>/govhhs-govhhs-design-system-react-<version>.tgz \
<SPM_DS_version_path>/spm-core-<version>.tgz \
<SPM_DS_version_path>/spm-core-ui-<version>.tgz \
<SPM_DS_version_path>/spm-core-ui-locales-<version>.tgz \
<SPM_DS_version_path>/spm-intelligent-evidence-gathering-<version>.tgz \
<SPM_DS_version_path>/spm-intelligent-evidence-gathering-locales-<version>.tgz \
<SPM_DS_version_path>/spm-eslint-config-<version>.tgz \
<SPM_DS_version_path>/spm-test-framework-<version>.tgz \
<SPM_DS_version_path>/spm-web-dev-accelerator-<version>.tgz \
<SPM_DS_version_path>/spm-web-dev-accelerator-scripts-<version>.tgz \
<UA_Web_App_version_path>/spm-universal-access-<version>.tgz \
<UA_Web_App_version_path>/spm-universal-access-ui-<version>.tgz \
<UA_Web_App_version_path>/spm-universal-access-ui-locales-<version>.tgz \
<UA_Web_App_version_path>/spm-mock-server-<version>.tgz \
<UA_Web_App_version_path>/spm-universal-access-mocks-<version>.tgz

Where <SPM_DS_version_path> is the path to the extracted SPM_DS_<version>
folder and <UA_Web_App_version_path> is the path to the extracted

© Merative US L.P. 2012, 2025

https://ibmwatsonhealth.force.com/mysupport/s/?language=en_US

4 Installing the application development environment and web server 65

UA_Web_App_<version> folder. And <version> matches the version of the .tgz files in
the folder. For example:

/Install_Dir/SPM_DS_V7.0.0/govhhs-govhhs-design-system-core-1.42.0
/Install_Dir/UA_WebApp_V7.0.0/spm-universal-access-7.0.0.tgz

• Second, run the following command to install the 3rd party package dependencies, such as
react and redux.

npm install --legacy-peer-deps

Note: The Cúram Universal Access Responsive Web Application is using the legacy-
peer-deps option as a temporary fix while we work to remove this constraint. For more
information about legacy-peer-deps, see npm Docs.

Note: You must install all the dependencies as part of the same command because of
the npm idealtree feature, which predicts how your dependency tree specified in your
package.json file will look after installing all packages. If one of the required dependencies
specified above is missing in the command during installation, idealtree will fail with an
error.

Note: Ignore any Node package dependency warnings for now. If needed, you can resolve
them later.

(Automated option) Installing dependencies. Follow these two steps:

• First, move the extracted package used in steps 3 and 4 (e.g. universal-access-custom-app)
to the same directory level as SPM_DS_<version> and UA_Web_App_<version>”. After
this, your folder structure should look as follows:

.
├── UA_Web_App_<version>
├── SPM_DS_<version>
└── universal-access-custom-app
 ├── babel.config.js
 ├── bundle.stats.html
 ├── index.html
 ├── installCEDeps.sh
 ├── mock/
 ├── package.json
 ├── public/
 ├── src/
 ├── tests/
 └── vite.config.js

© Merative US L.P. 2012, 2025

https://docs.npmjs.com/cli/v7/using-npm/config#legacy-peer-deps

Cúram 8.2.0 66

Note: For Mac OS users when downloading the zip files, a quarantine flag will be
automatically added to the ./installCEDeps.sh script preventing it from executing. The
quarantine flag can be removed and the script can be made executable by running the
following commands:

xattr -d com.apple.quarantine ./installCEDeps.sh

chmod +x installCEDeps.sh

Note: For Windows OS users, please ensure you can run shell scripts from your command-
line tool of choice. We recommend installing Git for Windows so that Git and optional
Unix tools such as Bash are added to your PATH.

• Second, from your custom application directory, install the Cúram Design System and
the Merative ™ Cúram Universal Access Node packages by entering the following
commands:

npm run install-ce-deps

This command will automatically install the Cúram Design System and the Merative ™
Cúram Universal Access dependencies followed by installing the 3rd party dependencies such
as react and redux.

6. Build your application with Vite

npm run build

7. You can run the Universal Access starter application by entering the following command from
your application directory.

npm start

If the local host does not start automatically, browse to http://localhost:3000/ to see the
running application.

4.3 Upgrading the Merative ™ Cúram Universal Access
Responsive Web Application

You can upgrade your custom React application with the latest versions of the Merative ™ Cúram
Universal Access Responsive Web Application and Cúram Design System Node packages to
benefit from the most recent updates.

Before you begin
Before you upgrade, ensure that you review your custom application for any potential upgrade
impacts. For more information, see 5.3 Developing compliantly on page 83.

© Merative US L.P. 2012, 2025

http://localhost:3000/

4 Installing the application development environment and web server 67

Note: If you are migrating Merative ™ Cúram Universal Access Responsive Web Application
from version 6 to version 7, please refer to the Migration Guidelines from CE Version 6 to CE
Version 7.

Note: When upgrading to newer 7.X.X versions, it is advised to use the migration guide for
CE Version 7 as a starting point followed by a manual process guided by the release notes of
newer versions and a file comparison of the package that is being installed.

Procedure

1. Download the Merative ™ Cúram Universal Access Responsive Web Application and Cúram
Design System Node packages. Open Cúram Support, under Software Downloads, select Go
to Downloads, and follow the instructions to download the SPM_DS_<version>.zip and
UA_Web_App_<version>.zip archive files.

2. Extract SPM_DS_<version>.zip and UA_Web_App_<version>.zip archive files to
any directory.

3. Extract the spm-universal-access-starter-pack_<version>.tgz file inside
UA_Web_App_<version>/packages. The extracted package directory forms the React
starter application. Now, you need to install all the other packages into this directory.

4. Rename the extracted package directory to reflect your project. For example, universal-access-
custom-app.

Note: The next step 5 can be time-consuming. In addition to the manual option, there is an
alternative automated version for this step.

5. (Manual option) Installing dependencies. Follow these two steps:

• First, from your custom application directory, install the Cúram Design System and the
Merative ™ Cúram Universal Access dependencies by entering the following command:

npm i --legacy-peer-deps \
<SPM_DS_version_path>/govhhs-govhhs-design-system-core-<version>.tgz \
<SPM_DS_version_path>/govhhs-govhhs-design-system-react-<version>.tgz \
<SPM_DS_version_path>/spm-core-<version>.tgz \
<SPM_DS_version_path>/spm-core-ui-<version>.tgz \
<SPM_DS_version_path>/spm-core-ui-locales-<version>.tgz \
<SPM_DS_version_path>/spm-intelligent-evidence-gathering-<version>.tgz \
<SPM_DS_version_path>/spm-intelligent-evidence-gathering-locales-<version>.tgz \
<SPM_DS_version_path>/spm-eslint-config-<version>.tgz \
<SPM_DS_version_path>/spm-test-framework-<version>.tgz \
<SPM_DS_version_path>/spm-web-dev-accelerator-<version>.tgz \
<SPM_DS_version_path>/spm-web-dev-accelerator-scripts-<version>.tgz \
<UA_Web_App_version_path>/spm-universal-access-<version>.tgz \
<UA_Web_App_version_path>/spm-universal-access-ui-<version>.tgz \
<UA_Web_App_version_path>/spm-universal-access-ui-locales-<version>.tgz \
<UA_Web_App_version_path>/spm-mock-server-<version>.tgz \
<UA_Web_App_version_path>/spm-universal-access-mocks-<version>.tgz

Where <SPM_DS_version_path> is the path to the extracted SPM_DS_<version>
folder and <UA_Web_App_version_path> is the path to the extracted

© Merative US L.P. 2012, 2025

https://www.merative.com/support/spm

Cúram 8.2.0 68

UA_Web_App_<version> folder. And <version> matches the version of the .tgz files in
the folder. For example:

/Install_Dir/SPM_DS_V7.0.0/govhhs-govhhs-design-system-core-1.42.0
/Install_Dir/UA_WebApp_V7.0.0/spm-universal-access-7.0.0.tgz

• Second, run the following command to install the 3rd party package dependencies, such as
react and redux.

npm install --legacy-peer-deps

Note: The Cúram Universal Access Responsive Web Application is using the legacy-
peer-deps option as a temporary fix while we work to remove this constraint. For more
information about legacy-peer-deps, see npm Docs.

Note: You need to install all the dependencies as part of the same command because of
the npm idealtree feature, which predicts how your dependency tree specified in your
package.json file will look after installing all packages. If one of the required dependencies
specified above is missing in the command during installation, idealtree will fail with an
error.

Note: Ignore any Node package dependency warnings for now. If needed, you can resolve
them later.

(Automated option) Installing dependencies. Follow these two steps:

• First, move the extracted package used in steps 3 and 4 (e.g. universal-access-custom-app)
to the same directory level as SPM_DS_<version> and UA_Web_App_<version>”. After
this, your folder structure should look as follows:

.
├── UA_Web_App_<version>
├── SPM_DS_<version>
└── universal-access-custom-app
 ├── babel.config.js
 ├── bundle.stats.html
 ├── index.html
 ├── installCEDeps.sh
 ├── mock/
 ├── package.json
 ├── public/
 ├── src/
 ├── tests/
 └── vite.config.js

© Merative US L.P. 2012, 2025

https://docs.npmjs.com/cli/v7/using-npm/config#legacy-peer-deps

4 Installing the application development environment and web server 69

Note: For Mac OS users when downloading the zip files, a quarantine flag will be
automatically added to the ./installCEDeps.sh script preventing it from executing. The
quarantine flag can be removed and the script can be made executable by running the
following commands:

xattr -d com.apple.quarantine ./installCEDeps.sh

chmod +x installCEDeps.sh

Note: For Windows OS users, please ensure you can run shell scripts from your command-
line tool of choice. We recommend installing Git for Windows so that Git and optional
Unix tools such as Bash are added to your PATH.

• Second, from your custom application directory, install the Cúram Design System and
the Merative ™ Cúram Universal Access Node packages by entering the following
commands:

npm run install-ce-deps

This command will automatically install the Cúram Design System and the Merative ™
Cúram Universal Access dependencies followed by installing the 3rd party dependencies such
as react and redux.

6. Build your application with Vite

npm run build

7. You can run the Universal Access starter application by entering the following command from
your application directory

npm start

Related tasks
Installing the Merative Cúram Universal Access development environment on page 61
You can install a lightweight or a full development environment. The Cúram Design System
is installed as part of the Merative ™ Cúram Universal Access installation and doesn’t need a
separate installation.

4.4 Install and configure IBM® HTTP Server with WebSphere®

Application Server

Install and configure IBM® HTTP Server either on the same server as WebSphere® Application
Server or on a remote server. To enable cross-origin resource sharing (CORS), you can set the

© Merative US L.P. 2012, 2025

Cúram 8.2.0 70

curam.rest.allowedOrigins property for the REST application on your application server, or install
the IBM® HTTP Server plug-in for WebSphere® Application Server.

Before you begin

WebSphere® Application Server must be installed and configured.

You must install IBM® Installation Manager. For more information, see the IBM® Installation
Manager documentation. You can download IBM® Installation Manager from Installation
Manager and Packaging Utility download documents.

Note:

When the React application and the Cúram server are deployed in different hosts that don't
share the same top-level domain+1, and the web server where the React app is hosted doesn't
run a proxy plug-in towards the Cúram application servers, you must change the Cross-Site
Request Forgery (CSRF) and session cookies for cross-origin requests, from the default
Samesite=Lax to Samesite=None.

An alternative solution is to deploy a gateway web server in front of Cúram to modify the
cookie by using this directive:

Header edit Set-Cookie ^(.*)$ $1;SameSite=None;Secure

For Cúram clusters, place this directive in the web servers where Cúram applications are
mapped.

About this task

To enable cross-origin resource sharing (CORS), choose one of the following options:

• Set the curam.rest.allowedOrigins property for the REST application that is deployed on the
application server. For more information about setting the curam.rest.allowedOrigins property,
see the Cúram™ REST API Guide.

• Install and configure the IBM® HTTP Server plug-in for WebSphere® Application Server
to enable IBM® HTTP Server to communicate with WebSphere® Application Server.
WebSphere® Customization Toolbox is needed to configure the plug-in.

Procedure

1. Install IBM® HTTP Server. For more information, see Migrating and installing IBM HTTP
Server.

2. Optional: If you don't set the curam.rest.allowedOrigins property, you must install the
following software:
a) Install the IBM® HTTP Server plug-in for WebSphere® Application Server.

For more information, see Installing and configuring web server plug-ins.
b) Install the WebSphere® Customization Toolbox.

For more information, see Installing and using the WebSphere Customization Toolbox.

© Merative US L.P. 2012, 2025

https://www.ibm.com/support/knowledgecenter/en/SSDV2W/im_family_welcome.html
https://www.ibm.com/support/knowledgecenter/en/SSDV2W/im_family_welcome.html
http://www-01.ibm.com/support/docview.wss?uid=swg27025142
http://www-01.ibm.com/support/docview.wss?uid=swg27025142
https://www.ibm.com/support/knowledgecenter/en/SSEQTJ_8.5.5/com.ibm.websphere.ihs.doc/ihs/welc6top_miginstall_ihs_container.html
https://www.ibm.com/support/knowledgecenter/en/SSEQTJ_8.5.5/com.ibm.websphere.ihs.doc/ihs/welc6top_miginstall_ihs_container.html
https://www.ibm.com/support/knowledgecenter/en/SSAW57_8.5.5/com.ibm.websphere.nd.multiplatform.doc/ae/tins_webplugins.html
https://www.ibm.com/support/knowledgecenter/en/SSEQTP_8.5.5/com.ibm.websphere.installation.base.doc/ae/tins_wct.html

4 Installing the application development environment and web server 71

3. Start IBM® HTTP Server. For more information, see Starting and stopping the IBM HTTP
Server administration server.

4. To secure IBM® HTTP Server, see Securing IBM® HTTP Server.

Generating an IBM® HTTP Server plug-in configuration

This task is needed only if you install the IBM® HTTP Server plug-in for WebSphere®

Application Server. Use WebSphere® Customization Toolbox to generate a plug-in configuration.

Before you begin
Start WebSphere® Application Server. For more information, see Starting a WebSphere®

Application Server traditional server.

Procedure

To generate the IBM® HTTP Server plug-in configuration, complete the steps at the WebSphere®

Application Server Network Deployment plug-ins configuration topic.

Configuring the IBM® HTTP Server plug-in

Configure the IBM® HTTP Server plug-in for WebSphere® Application Server and WebSphere®

Customization Toolbox. This task is necessary only if you have chosen to install the IBM®

HTTP Server plug-in, instead of setting the curam.rest.allowedOrigins property for the REST
application that is deployed on the application server. Also, for information about how to
configure the web server's HTTP verb permissions to mitigate verb tampering, see the Security
Guide.

About this task
You can run the configurewebserverplugin target to complete the following tasks:

• Add the web server virtual hosts to the client hosts configuration in WebSphere® Application
Server.

• Propagate the plug-in key ring for the web server.
• Map the modules of any deployed applications to the web server.

Procedure

1. Start IBM® HTTP Server.

For more information, see Starting and stopping the IBM® HTTP Server administration
server.

2. On the remote WebSphere® Application Server, run the following command.

build configurewebserverplugin -Dserver.name=server_name

The configurewebserverplugin target requires a mandatory server.name argument
that specifies the name of the server when the target is invoked. For more information

© Merative US L.P. 2012, 2025

https://www.ibm.com/support/knowledgecenter/en/SSEQTP_8.5.5/com.ibm.websphere.ihs.doc/ihs/tihs_startadmserv.html
https://www.ibm.com/support/knowledgecenter/en/SSEQTP_8.5.5/com.ibm.websphere.ihs.doc/ihs/tihs_startadmserv.html
https://www.ibm.com/support/knowledgecenter/en/SSEQTJ_9.0.0/com.ibm.websphere.ihs.doc/ihs/tihs_sectaskov.html
https://www.ibm.com/support/knowledgecenter/en/SSEQTP_8.5.5/com.ibm.websphere.wdt.doc/topics/twsrtins.htm
https://www.ibm.com/support/knowledgecenter/en/SSEQTP_8.5.5/com.ibm.websphere.wdt.doc/topics/twsrtins.htm
https://www.ibm.com/support/knowledgecenter/en/SSAW57_8.5.5/com.ibm.websphere.nd.multiplatform.doc/ae/cins_webplugins.html
https://www.ibm.com/support/knowledgecenter/en/SSAW57_8.5.5/com.ibm.websphere.nd.multiplatform.doc/ae/cins_webplugins.html
https://www.ibm.com/support/knowledgecenter/en/SSEQTP_8.5.5/com.ibm.websphere.ihs.doc/ihs/tihs_startadmserv.html
https://www.ibm.com/support/knowledgecenter/en/SSEQTP_8.5.5/com.ibm.websphere.ihs.doc/ihs/tihs_startadmserv.html

Cúram 8.2.0 72

about the configurewebserverplugin target, see Configuring a web server plug-in in
WebSphere® Application Server.

3. Consider adding extra aliases to the client_host, as shown in the following examples:

• For WebSphere® Application Server, add port number 9044.
• For the default HTTP port, add port number 80.
• For HTTPS ports, add port number 433.

For more information about client host setup, see step 19 in the WebSphere® Application
Server port access setup topic.

4. To avoid port mapping issues from web applications, restart WebSphere® Application Server
and IBM® HTTP Server.

For more information, see Starting and stopping the IBM® HTTP Server administration
server.

4.5 Install and configure Oracle HTTP Server with Oracle
WebLogic Server

Install and configure Oracle HTTP Server on either the same server as Oracle WebLogic Server
or on a remote server.

Before you begin

Oracle WebLogic Server must be installed and configured. For more information, see Installing
and Configuring Oracle WebLogic Server and Coherence for Oracle HTTP Server 12.1.3, and
Installing and Configuring Oracle HTTP Server for Oracle HTTP Server 12.2.1.3.

Note:

When the React application and the Cúram server are deployed in different hosts that don't
share the same top-level domain+1, and the web server where the React application is hosted
doesn't run a proxy plug-in towards the Cúram application servers, you must change the Cross-
Site Request Forgery (CSRF) and session cookies for cross-origin requests, from the default
Samesite=Lax to Samesite=None.

An alternative solution is to deploy a gateway web server in front of Cúram to modify the
cookie by using this directive:

Header edit Set-Cookie ^(.*)$ $1;SameSite=None;Secure

For Cúram clusters, place this directive in the web servers where Cúram applications are
mapped.

© Merative US L.P. 2012, 2025

../Deployment_WebsphereApplicationServer/t_WEBSPHAPS_configwebsvrplugin.html
../Deployment_WebsphereApplicationServer/t_WEBSPHAPS_configwebsvrplugin.html
../Deployment_WebsphereApplicationServerOnZOS/t_WEBSPHZOS_Configuration5SetUpPortAccess1.dita#d1e1/step_clienthost
../Deployment_WebsphereApplicationServerOnZOS/t_WEBSPHZOS_Configuration5SetUpPortAccess1.dita#d1e1/step_clienthost
https://www.ibm.com/support/knowledgecenter/en/SSEQTP_8.5.5/com.ibm.websphere.ihs.doc/ihs/tihs_startadmserv.html
https://www.ibm.com/support/knowledgecenter/en/SSEQTP_8.5.5/com.ibm.websphere.ihs.doc/ihs/tihs_startadmserv.html
https://docs.oracle.com/middleware/1213/core/WLSIG/toc.htm
https://docs.oracle.com/middleware/1213/core/WLSIG/toc.htm
https://docs.oracle.com/en/middleware/fusion-middleware/12.2.1.3/wtins/index.html

4 Installing the application development environment and web server 73

Installing Oracle HTTP Server and its components

Install and configure Oracle HTTP Server in either a stand-alone domain, or in an Oracle
WebLogic Server domain. You must install and configure an Oracle web server plug-in for
proxying requests.

About this task

The Oracle web server plug-in allows requests to be proxied from Oracle HTTP Server to Oracle
WebLogic Server. If you install and configure the Oracle web server plug-in, requests that are
delegated to Oracle WebLogic Server still appear to originate from the Oracle HTTP Server, even
if Oracle HTTP Server and Oracle WebLogic Server are hosted on two different servers.

Because of the web browser same-origin policy, cross-origin resource sharing (CORS) is
restricted in many browsers by default. The web server plug-in enables CORS where Oracle
HTTP Server and Oracle WebLogic Server are installed on different computers.

CORS enables an instance of your web application that is deployed on Oracle HTTP Server
in one domain to request the REST services that are deployed on Oracle WebLogic Server in
another domain.

Procedure

1. Install Oracle HTTP Server for Oracle WebLogic Server. For more information, see Installing
and Configuring Oracle HTTP Server for Oracle HTTP Server 12.1.3, and Installing and
Configuring Oracle HTTP Server for Oracle HTTP Server 12.2.1.3.

2. To configure Oracle HTTP Server, choose one of the following options:

• To configure Oracle HTTP Server in a stand-alone domain, follow the instructions at
Configuring Oracle HTTP Server in a Standalone Domain for Oracle HTTP Server 12.1.3,
or Configuring Oracle HTTP Server in a Standalone Domain for Oracle HTTP Server
12.2.1.3.

• To configure Oracle HTTP Server in an Oracle WebLogic Server domain, follow the
instructions at Configuring Oracle HTTP Server in a WebLogic Server Domain for Oracle
HTTP Server 12.1.3, or Configuring Oracle HTTP Server in a WebLogic Server Domain
for Oracle HTTP Server 12.2.1.3.

3. If Oracle HTTP Server and Oracle WebLogic Server are installed in different domains, to
enable CORS, install a web server plug-in.
For more information about configuring an Oracle WebLogic Server proxy plug-in, see
Configuring the Plug-In for Oracle HTTP Server for Oracle HTTP Server 12.1.3, or
Configuring the Plug-In for Oracle HTTP Server for Oracle HTTP Server 12.2.1.3.

4. To secure Oracle HTTP Server, follow the procedure at Managing Application Security
12.1.3, or Managing Application Security for Oracle HTTP Server 12.2.1.3.

Results
The Oracle HTTP Server instance is now ready to for you to deploy the application. The
default location for deploying the application is OHS_INSTANCE/config/fmwconfig/
components/${COMPONENT_TYPE}/instances/${COMPONENT_NAME}/htdocs.
However, you can configure the default location value to a different location.

© Merative US L.P. 2012, 2025

https://docs.oracle.com/middleware/1213/core/install-ohs/install_gui.htm#WTINS125
https://docs.oracle.com/middleware/1213/core/install-ohs/install_gui.htm#WTINS125
https://docs.oracle.com/en/middleware/fusion-middleware/12.2.1.3/wtins/index.html
https://docs.oracle.com/en/middleware/fusion-middleware/12.2.1.3/wtins/index.html
https://docs.oracle.com/middleware/1213/core/install-ohs/standalone_domain.htm#WTINS333
https://www.ibm.com/links?url=https%3A%2F%2Fdocs.oracle.com%2Fen%2Fmiddleware%2Ffusion-middleware%2F12.2.1.3%2Fwtins%2Fconfiguring-standalone-domain.html
https://docs.oracle.com/middleware/1213/core/install-ohs/colocated_domain.htm#WTINS280
https://www.ibm.com/links?url=https%3A%2F%2Fdocs.oracle.com%2Fen%2Fmiddleware%2Ffusion-middleware%2F12.2.1.3%2Fwtins%2Fconfiguring-collocated-domain.html
https://docs.oracle.com/middleware/1213/webtier/develop-plugin/oracle.htm#PLGWL510
https://www.ibm.com/links?url=https%3A%2F%2Fdocs.oracle.com%2Fmiddleware%2F12213%2Fwebtier%2Fdevelop-plugin%2Foracle.htm%23PLGWL510
https://docs.oracle.com/middleware/1213/webtier/administer-ohs/security.htm#HSADM900
https://docs.oracle.com/middleware/12213/webtier/administer-ohs/security.htm#HSADM901

Cúram 8.2.0 74

What to do next
Start Oracle HTTP Server. For more information, see Next Steps After Configuring an Oracle
HTTP Server Domain for Oracle HTTP Server 12.1.3, and Next Steps After Configuring the
Domain for Oracle HTTP Server 12.2.1.3.

Configuring the Oracle HTTP Server plug-in

If a web server such as Oracle HTTP Server is configured in the topology, you must configure a
web server plug-in in Oracle WebLogic Server. The web server plug-in enables Oracle WebLogic
Server to communicate with Oracle HTTP Server. Also, for information about how to configure
the web server's HTTP verb permissions to mitigate verb tampering, see the Security Guide.

About this task
To enable an Oracle HTTP Server web server plug-in in Oracle WebLogic Server, you can run the
configurewebserverplugin target.

Procedure

1. Ensure the remote Oracle WebLogic Server Oracle WebLogic Server is running.
For more information, see Deploying the application (Oracle WebLogic Server).

2. On the remote Oracle WebLogic Server, run the following command.
The configurewebserverplugin target requires a mandatory server.name argument
that specifies the name of the server when the target is invoked.

build configurewebserverplugin -Dserver.name=server_name

For more information about the configurewebserverplugin target, see Deploying the
application (Oracle WebLogic Server).

3. Restart the remote Oracle WebLogic Server.
For more information, see Deploying the application (Oracle WebLogic Server).

4.6 Installing and configuring Apache HTTP Server

Install and configure Apache HTTP Server on either the same server as the application server
or on a remote server. To enable cross-origin resource sharing (CORS), you can set the
curam.rest.allowedOrigins property for the REST application on your application server, or install
the appropriate plug-in for your web server. Also, for information about how to configure the web
server's HTTP verb permissions to mitigate verb tampering, see the Security Guide.

Before you begin

An application server must be installed and configured.

© Merative US L.P. 2012, 2025

https://docs.oracle.com/middleware/1213/core/install-ohs/postins.htm#WTINS137
https://docs.oracle.com/middleware/1213/core/install-ohs/postins.htm#WTINS137
https://docs.oracle.com/en/middleware/fusion-middleware/12.2.1.3/wtins/next-steps-configuring-domain.html#GUID-16C01B4A-5054-473E-8C99-FB56E091D2E9
https://docs.oracle.com/en/middleware/fusion-middleware/12.2.1.3/wtins/next-steps-configuring-domain.html#GUID-16C01B4A-5054-473E-8C99-FB56E091D2E9
https://www.ibm.com/docs/en/atlas-policy-suite/6.0.3?topic=server-deploying-application-oracle-weblogic
https://www.ibm.com/docs/en/atlas-policy-suite/6.0.3?topic=server-deploying-application-oracle-weblogic
https://www.ibm.com/docs/en/atlas-policy-suite/6.0.3?topic=server-deploying-application-oracle-weblogic
https://www.ibm.com/docs/en/atlas-policy-suite/6.0.3?topic=server-deploying-application-oracle-weblogic

4 Installing the application development environment and web server 75

Note:

When the React application and the Cúram server are deployed in different hosts that don't
share the same top-level domain+1, and the web server where the React application is hosted
doesn't run a proxy plug-in towards the Cúram application servers, you must change the Cross-
Site Request Forgery (CSRF) and session cookies for cross-origin requests, from the default
Samesite=Lax to Samesite=None.

An alternative solution is to deploy a gateway web server in front of Cúram to modify the
cookie by using this directive:

Header edit Set-Cookie ^(.*)$ $1;SameSite=None;Secure

For Cúram clusters, place this directive in the web servers where Cúram applications are
mapped.

About this task

To enable cross-origin resource sharing (CORS), choose one of the following options:

• Set the curam.rest.allowedOrigins property for the REST application that is deployed on the
application server. For more information about setting the curam.rest.allowedOrigins property,
see the Developing Outbound REST APIs Guide.

• Install and configure the plug-in for your server.

Procedure

1. Install Apache HTTP Server. For more information, see Compiling and Installing in the
Apache HTTP Server documentation.

2. Optional: If you don't set the curam.rest.allowedOrigins property, you must choose one of the
following options:

• WebSphere® Application Server

Install the plug-in for WebSphere® Application Server, see Installing and configuring web
server plug-ins.

Install the WebSphere® Customization Toolbox, see Installing and using the WebSphere
Customization Toolbox.

To configure Apache HTTP Server with WebSphere® Application Server, see Configuring
Apache HTTP Server.

• Oracle WebLogic Server 12cR1 (12.1.3):

For more information about configuring an Oracle WebLogic Server proxy plug-in, see
Configuring the Plug-In for Oracle HTTP Server.

To configure Apache HTTP Server with Oracle WebLogic Server, see Configuring the
Plug-In for Apache HTTP Server.

• Oracle WebLogic Server 12cR2 (12.2.1.3):

© Merative US L.P. 2012, 2025

https://httpd.apache.org/docs/2.4/install.html
https://www.ibm.com/support/knowledgecenter/en/SSAW57_8.5.5/com.ibm.websphere.nd.multiplatform.doc/ae/tins_webplugins.html
https://www.ibm.com/support/knowledgecenter/en/SSAW57_8.5.5/com.ibm.websphere.nd.multiplatform.doc/ae/tins_webplugins.html
https://www.ibm.com/support/knowledgecenter/en/SSEQTP_8.5.5/com.ibm.websphere.installation.base.doc/ae/tins_wct.html
https://www.ibm.com/support/knowledgecenter/en/SSEQTP_8.5.5/com.ibm.websphere.installation.base.doc/ae/tins_wct.html
https://www.ibm.com/support/knowledgecenter/en/SSAW57_9.0.5/com.ibm.websphere.nd.multiplatform.doc/ae/tins_manualWebApache22.html
https://www.ibm.com/support/knowledgecenter/en/SSAW57_9.0.5/com.ibm.websphere.nd.multiplatform.doc/ae/tins_manualWebApache22.html
https://docs.oracle.com/middleware/1213/webtier/develop-plugin/oracle.htm#PLGWL510
https://docs.oracle.com/middleware/1213/webtier/develop-plugin/apache.htm#PLGWL395
https://docs.oracle.com/middleware/1213/webtier/develop-plugin/apache.htm#PLGWL395

Cúram 8.2.0 76

For more information about configuring an Oracle WebLogic Server proxy plug-in, see
Configuring the Plug-In for Oracle HTTP Server.

To configure Apache HTTP Server with Oracle WebLogic Server, see Configuring the
Plug-In for Apache HTTP Server.

3. Start Apache HTTP Server. For more information, see Starting Apache in the Apache HTTP
Server documentation.

4. To secure Apache HTTP Server server, see Security Tips and Apache SSL/TLS Encryption in
the Apache HTTP Server documentation.

4.7 Building the Cúram Universal Access Responsive Web
Application for deployment

Build the Cúram Universal Access Responsive Web Application for deployment on an HTTP
server. To quickly configure the universal-access-starter-pack application for
deployment, follow these basic steps.

Before you begin

For the relative URL, assuming that you want to deploy the application in https://
yourhostname.com/universal, set the environmental variable PUBLIC_URL=/universal
for the application build, or set the package.json homepage attribute to "/universal".
Otherwise, set your own specific value. For more information about build location options, see
Building for Relative Paths in the Create React App documentation.

For production builds, review all of the environment variables in your .env files, and check the
order of the environment variables where you have multiple .env files. For more information
about the priority of different .env files, see What other .env files can be used? in the Create
React App documentation.

Procedure

1. Edit the .env configuration file in the root of your app, and update the
REACT_APP_REST_URL environment variable with the hostname and port of the server where
the REST services are deployed, for example:

Where the Curam Rest API application is hosted/mapped
in the same server or domain as the Cúram Universal Access Responsive Web
 Application:
REACT_APP_REST_URL=/Rest

Where the Curam Rest API application is hosted/mapped in a different server or
 domain:
REACT_APP_REST_URL=https://restapplication.com/Rest

2. Enter the following command to install dependent packages:

npm install

© Merative US L.P. 2012, 2025

https://docs.oracle.com/middleware/12213/webtier/develop-plugin/oracle.htm#PLGWL510
https://docs.oracle.com/middleware/12213/webtier/develop-plugin/apache.htm#PLGWL395
https://docs.oracle.com/middleware/12213/webtier/develop-plugin/apache.htm#PLGWL395
http://httpd.apache.org/docs/2.4/invoking.html
http://httpd.apache.org/docs/2.4/misc/security_tips.html
http://httpd.apache.org/docs/2.4/ssl/
https://www.ibm.com/links?url=https%3A%2F%2Fcreate-react-app.dev%2Fdocs%2Fdeployment%2F%23building-for-relative-paths
https://facebook.github.io/create-react-app/docs/adding-custom-environment-variables#what-other-env-files-can-be-used

4 Installing the application development environment and web server 77

3. Enter the following command to build the application into a build folder in the
universal-access-starter-pack:

npm run build

4. Copy the build folder to the HTTP Server and deploy, see 4.8 Deploying your web
application to a web server on page 77.

4.8 Deploying your web application to a web server

To test your web application against an existing Cúram application that is deployed on an
enterprise application server, you can deploy the web application on one of the supported web
servers. The supported web servers are all based on Apache HTTP server so the deployment
procedure is similar.

Before you begin

You must have built your application for deployment.

About this task

The universal-access-starter-pack package includes a preconfigured .htaccess
file under the public folder that gets added to the built application. This file contains comments
to explain the web server configuration requirements for React Router BrowserRouter
enablement.

For more information about how to configure .htaccess files in a web server, see the Apache
HTTP Server Tutorial: .htaccess files related link.

For more information about React Router BrowserRouter, see Serving Apps with Client-Side
Routing.

Procedure

1. Copy the contents of the build directory to the appropriate directory for your HTTP server.

For more information about the <directory> directive, see the related links.
2. Configure the web server.

• If you use .htaccess, enable the directives in .htaccess by editing httpd.conf
and setting an appropriate value for the AllowOverride directive in the Directory section
for the HTTP server's DocumentRoot, or the corresponding directory where the resources
are being deployed.

© Merative US L.P. 2012, 2025

https://www.ibm.com/links?url=https%3A%2F%2Fcreate-react-app.dev%2Fdocs%2Fdeployment%2F%23serving-apps-with-client-side-routing
https://www.ibm.com/links?url=https%3A%2F%2Fcreate-react-app.dev%2Fdocs%2Fdeployment%2F%23serving-apps-with-client-side-routing

Cúram 8.2.0 78

In addition, you must load the mod_rewrite module for the React Router
BrowserRouter.

Enables mod_rewrite for React Router's BrowserRouter directives
<IfModule !mod_rewrite.c>
 LoadModule rewrite_module modules/mod_rewrite.so
</IfModule>
"/opt/IBM/HTTPServer/htdocs/universal" is the location
where the web application is deployed under the DocumentRoot.
Alternatively you can specify the DocumentRoot "/opt/IBM/HTTPServer/htdocs"
<Directory "/opt/IBM/HTTPServer/htdocs/universal">
 AllowOverride FileInfo Options=MultiViews
</Directory>

• If you do not use .htaccess, you can copy the directives in .htaccess and put them in
a LocationMatch section for your application in httpd.conf.

Enables mod_rewrite for React Router's BrowserRouter directives
<IfModule !mod_rewrite.c>
 LoadModule rewrite_module modules/mod_rewrite.so
</IfModule>
Below LocationMatch is set to "/universal" because the application
will be served from https://youhostname.com/universal
<LocationMatch /universal>
 #
 # place here your .htaccess directives
 #
</LocationMatch>

3. Tune your HTTP server for improved performance, see the Performance Tuning guide.

Related information
GitHub documentation: npm run build
Content Security Policy Quick Reference Guide
Apache core features V2.0: <Directory> Directive
Apache core features V2.4: <Directory> Directive
Apache HTTP Server Tutorial: .htaccess files

© Merative US L.P. 2012, 2025

https://merative.github.io/spm-performance-tuning
https://github.com/facebook/create-react-app/blob/master/packages/cra-template/template/README.md#npm-run-build
https://content-security-policy.com
https://docs.oracle.com/cd/B14099_19/web.1012/q20206/mod/core.html#directory
http://publib.boulder.ibm.com/httpserv/manual24/mod/core.html#directory
http://httpd.apache.org/docs/current/howto/htaccess.html

5 Developing with the Cúram Universal Access Responsive Web Application 79

5 Developing with the Cúram Universal Access
Responsive Web Application

Find out how to use the provided development resources to customize the Merative ™ Cúram
Universal Access Responsive Web Application reference application and build your custom
application.

5.1 Starter pack and packages

Using the Merative ™ Cúram Universal Access Responsive Web Application starter pack and
packages, and Social Program Management Design System packages, as your starting point, you
can customize Universal Access for your organization.

Each package includes a package-lock.json.sample file, which lists the packages and
versions that the release was built with. This file is for reference only and is not to be used
directly for building.

universal-access-starter-pack

This package contains a development environment and a fully functional and deployable
reference application. The starter application uses the other provided modules to provide an
external web application for Universal Access.

The starter pack demonstrates how a modern and responsive Universal Access client can be
built by using React, Redux, and the Cúram Design System. It includes a sample feature that
demonstrates coding conventions and the correct usage of the Web Development Accelerator
tool to help you to get started with developing your own custom features, see 5.6 The
sampleApplication feature on page 88. You can rename, modify, and extend the starter
application to suit the needs of your organization.

universal-access-sample-app-auth-rep

This package contains a development environment and a sample application. The sample
application is for illustrative purposes only and is not ready to deploy like the universal-access-
starter-pack.

This application illustrates how a web application aimed at a user acting as an authorized
representative might look. When you run the application you will notice that it is themed
differently to the universal-access-starter-pack application to differentiate it. A different home
page is presented to the user.

You can use this sample application to explore building applications that support authorized
representatives. For more on authorized representative support, see the Universal Access for
Authorized Representatives chapter in the Cúram Universal Access Responsive Web Application
guide.

© Merative US L.P. 2012, 2025

Cúram 8.2.0 80

universal-access

This package contains a module that connects the Cúram Universal Access Responsive Web
Application to the Cúram server. universal-access makes HTTP requests to the server to
allow the web application to interact with the Merative ™ Cúram Universal Access installation.
Redux is the storage mechanism for requests and responses. For more information, see 5.8 Redux
in Universal Access on page 92 and Universal Access Redux modules on page 94. This
module does not render content, it depends on universal-access-ui to render the content.

universal-access-ui

This package contains a set of Cúram Universal Access Responsive Web Application features that
presents views to the user, it depends on universal-access to provide the data that it needs for
those views.

universal-access-ui-locales

This package contains translated UI artifacts for the universal-access-ui package.

universal-access-mocks

This package contains a module that provides mock data specific to Universal Access business
scenarios for testing purposes. It is used by the mock server to provide mock APIs in the
development environment so you don't need to host an Cúram server during development.

mock-server

This package contains a lightweight server that can serve HTTP requests and return mock data as
a response. You can use mock-server during client development as a substitute for a real server
to test features.

core

This package provides JavaScript™ utilities to help you develop your application. For example,
use the RESTService utility to connect to a Cúram server-side REST API. Use IntlUtils to
format numbers and dates for globalization.

For more information about the core package utilities, see the JSDoc API documentation in
spm/core/doc.

core-ui

This package provides common React UI components to help you develop your application. For
example, use the AppSpinner component to display a spinning animation while a page loads, or
use the Toaster component to display notifications to the user.

For more information about the core-ui components, see the JSDoc API documentation in
spm/core-ui/doc.

core-ui-locales

This package provides translated artifacts for the core-ui components.

© Merative US L.P. 2012, 2025

5 Developing with the Cúram Universal Access Responsive Web Application 81

intelligent-evidence-gathering

This package enables IEG scripts that are configured in the Cúram application to run in your
application. An API is provided to call the IEG scripts.

For more information, see the API documentation in spm/intelligent-evidence-
gathering/doc.

intelligent-evidence-gathering-locales

This package contains translated artifacts for the intelligent-evidence-gathering
package.

spm-web-dev-accelerator

This package contains the Web Development Accelerator rapid feature development tool, which
generates Redux modules to handle the communication between your application and Cúram
REST APIs.

spm-web-dev-accelerator-scripts

This package contains a Swagger parser to retrieve information from Cúram REST APIs, and
scripts to generate the features and modules code from configuration information in the spm-
web-dev-accelerator package.

spm-test-framework

This package contains a number of reusable files to help you to set up a test environment for
testing with Test Cafe, Jest, and Enzyme. You can use the provided helper files to help you to
develop and write end-to-end tests, unit tests, or snapshot tests for your project.

spm-eslint-config

This package contains an ESLint configuration with predefined coding style rules and an
EditorConfig configuration file.

© Merative US L.P. 2012, 2025

Cúram 8.2.0 82

5.2 Sample application project structure

The project structure is based on the Facebook create-react-app.

For more information about create-react-app, see create-react-app.

.
├── mock
├── node_modules
├── package.json
├── public
├── src
| └── App.js
| └── Config
| └── css
| └── Features
| | └── sampleApplication
| | | └── confirmation
| | | | └── SampleApplicationConfirmation.js
| | | └── form
| | | | └── SampleApplicationForm.js
| | | └── overview
| | | | └── SampleApplicationOverview.js
| └── index.js
| └── intl
| └── modules
| └── paths.js
| └── redux
| └── routes.js
| └── routesMessages.js
| └── /sass
| └── serviceWorker.js
├── tests
├── .env
├── .env.development

The main files in the project are as follows:

package.json

The package.json file is customized to support the Universal Access starter application. For
more information on standard package.json, see package.json.

/mock

/mock contains the wiring that is needed to interact with the mock-server module. The mock
server replicates the Cúram APIs, providing the mocked end points that are used by the sample
application.

For more information about the mock server, see The mock server API service on page 112.

/public

/public is part of the create-react-app boilerplate. For more information, see create-react-app.

/src

/src is your working folder. The starter pack provides the basic infrastructure that interacts with
the universal-access modules that are the platform for your development effort. /src contains
the following components:

• /src/index.js Initiates the application and adds the following capabilities:

© Merative US L.P. 2012, 2025

https://github.com/facebookincubator/create-react-app
https://docs.npmjs.com/files/package.json
https://github.com/facebookincubator/create-react-app

5 Developing with the Cúram Universal Access Responsive Web Application 83

• Connection to a Redux store by using the react-redux module Provider component.
• Globalization is added by using react-intl and the LanguageProvider component.
• The universal-access module has a limited set of configurations that can be modified by

using the AppConfig component.
• src/App.js is launched from the index.js file and wraps the main application in the

react-router.
• src/css contains the compiled CSS styles.
• src/config contains theintl configuration files.
• src/features contains a sample feature to demonstrate how to implement a simple

version of the Apply for benefits feature, see 5.6 The sampleApplication feature on page
88.

• src/redux contains the configuration for Redux reducers and the store.
• src/intl handles React-Intl Initialization.
• src/routes.js provides a point of customization for adding, replacing, or removing

routes in your application.
• src/paths.js provides access the URLs that are mapped to each page by the route

configuration.
• src/routesMessages.js contains the text Routes to be displayed on the window's title.
• src/appconfig.sample.json allows parts of universal-access to be customized,

for example, specifying the default and other supported languages.
• src/sass/styles.scss contains the SCSS style definitions.
• src/sass/custom_variables.css provides a configuration point for CSS variables.

.env and .env.development

The .env file contains the environment variables for production. The .env.development
file supersedes the environment variables in .env and sets specific environment variables for
development. For more information about environment variables, see the 5.18 React environment
variable reference on page 182.

5.3 Developing compliantly

Follow these guidelines to protect your project from making customization changes that are
incompatible with the base product, or have the potential to incur upgrade impacts.

Never use undocumented APIs

JavaScript does not have access modifiers such as public, private. or protected. It is possible to
call functions in Cúram modules that are not intended for public use. Calling these functions is
not supported as those APIs can change in a future release and break your code.

The only JavaScript APIs that are intended for public use are documented in the docs folder of
the Cúram node_modules. For example, node_modules/@spm/core/docs/index.html.

© Merative US L.P. 2012, 2025

Cúram 8.2.0 84

Observe the Redux reducer namespace

If you use Redux, your Reducer names must not infringe on the namespace for Universal
Access reducers. All Universal Access reducers are prefixed with UA, for example.
UABenefitSelection. When Universal Access and custom reducers are combined, clashing
names override the Universal Access reducers. Customizing universal-access reducers is not
supported.

Don't modify the starter application files

While you can modify the starter application files in place, it is better to copy the files and change
the copy. Your upgrades will then be easier as you can compare files between the current and
previous version of the product without the added complexity of your customization changes.
Where upgrade changes are needed, manually apply the changes to your custom version.

Don't modify or source control any code that is generated

The Web Development Accelerator tool generates code from the metadata in the
modules_config.json file, which is the only file that you need to source control. The code is
generated each time that you click Generate in the tool, or run the npm install, npm run
build, or npm run wda-generate commands.

5.4 Enforce good code style with ESLint and EditorConfig

To help you to run static code analysis on your code, the spm-eslint-config package
contains an ESLint configuration with predefined coding style rules and an EditorConfig
configuration file.

ESLint

Most code editors support plug-ins for linting. ESLint plugin is a useful plug-in for Microsoft
Visual Studio Code. Code editor plug-ins highlight errors in the editor so they can be seen and
fixed during development. When all the developers in a team use a plug-in, it helps to maintain a
consistent code style.

If you use Microsoft™ Visual Studio Code, the provided configuration files prompt you to install
the recommended ESLint plug-in for code styling. If you use a different editor, you can manually
configure the plug-in. For example, for Atom you can configure the Atom ESLint plug-in.

The first time that you run a static code analyzer on your code, particularly if coding style was not
previously enforced, you might see numerous errors. Don't get discouraged, while it might take
some time to fix all of the violations, ensuring that your team uses a consistent coding style has
significant long-term benefits.

The ESLint configuration is in the ./node_modules/@spm/eslint-config/index.js file.

© Merative US L.P. 2012, 2025

https://marketplace.visualstudio.com/items?itemName=dbaeumer.vscode-eslint
https://atom.io/packages/eslint

5 Developing with the Cúram Universal Access Responsive Web Application 85

• Running ESLint

To check the code for ESLint violations, run the following command in the application root
directory. Errors are listed in the console.

npm run lint

• Fixing ESLint violations

Run the following command for ESLint to fix syntactic problems automatically:

npm run lint -- --fix

You must manually fix any violations that can't be resolved automatically.

Overriding ESLint config rules in the sample config

The sample .eslintrc.js file in the universal-access-sample-app is used for linting
by default when you run ESLint through an npm script or by using an editor ESLint plug-in. The
sample extends the configuration file in the spm-eslint-config package, which contains a set
of predefined coding style rules. You can override rules that are inherited from this configuration
file by using the instructions at https://eslint.org/docs/user-guide/configuring/configuration-
files#configuration-based-on-glob-patterns.

An example of overriding a rule is shown.

module.exports = {
 extends: ["./node_modules/@spm/eslint-config/index.js"],
 overrides: [
 {
 files: ['src/**/*.js'],
 rules: {
 // 0 is off / 1 is warn / 2 is error
 'react-hooks/exhaustive-deps': 2,
 },
 },
],
};

EditorConfig

EditorConfig helps maintain consistent coding styles for multiple developers who work on the
same project. The .editorconfig EditorConfig setup file is in the root directory of the sample
application.

The included EditorConfig configuration file ensures consistent coding style when it comes to
indentation, spacing, and quotation types. For more information about available Editor Config
plug-ins, see the EditorConfig downloads.

Automation

If you have a CD/CI pipeline, you can include linting as part of the testing phase. It is a good idea
to correct code with linting issues before you merge it into the codebase.

© Merative US L.P. 2012, 2025

https://eslint.org/docs/user-guide/configuring/configuration-files#configuration-based-on-glob-patterns
https://eslint.org/docs/user-guide/configuring/configuration-files#configuration-based-on-glob-patterns
https://editorconfig.org/
https://editorconfig.org/#download

Cúram 8.2.0 86

5.5 Universal Access UI coding conventions

The universal-access-ui package is responsible for the presentation of the UI in the
application. Coding conventions ensure that the UI code is separated by responsibilities, which
gives benefits such as easier maintenance. Features, Components, and Messages are coded to
render each page of the application.

Each page represents a business process function along a specific URL route. It is presented by
using individual Cúram Design System components, embedded with localizable messages, and
connected to the Redux store, in the universal-access package, to access and manage data in
the application state (where applicable).

Features

A feature is an intangible concept of individual business functionality that is translated into a
view navigable by a route.

A feature maps a particular business process or functionality, such as showing a user their
payments, and makes it visible to the user in a collection of files that work together and are
navigable by a URL route. For example /payments.

Multiple features can be used to implement a larger or more encompassing business process,
such as Life Events, depending on how many separate views or business process functions are
required.

Features are mainly defined through a path, a Routes.js entry, and a directory that references the
feature’s top-level React component.

• Paths.js

A simple JavaScript file that exports a JSON object that contains the properties with each
navigable path a user might traverse to in the application.

For a feature, the first step is to declare the appropriate navigable route here, for example:

const PATHS = {
 ...
 USER_ENROLMENT: '/user_enrolment'
 ...
}

• Routes.js entry

At a high-level, the Routes.js file in universal-access-ui (not the customizable
Routes.js file in the sample application) renders the feature’s top-level React component
(which is exported from the feature’s index.js file) depending on the current URL route.

react-loadable is used for component-centric code splitting. The feature’s top-level React
component is dynamically imported.

// UserEnrolmentContainer exported by /features/UserEnrolment/index.js
const UserEnrolment = Loadable({
 loader: () =>
 import(/* webpackChunkName: "SomeFeature" */ "../features/UserEnrolment"),
 loading: LoadingPage
});

© Merative US L.P. 2012, 2025

https://github.com/jamiebuilds/react-loadable

5 Developing with the Cúram Universal Access Responsive Web Application 87

Declare the route within the render() function, either as a TitledRoute or an
AuthenticatedRoute. Those familiar with React-Router might recognize some of the
props.

...
render() {
 return (

 ...
 <TitledRoute
 component={UserEnrolment}
 exact
 path={PATHS.USER_ENROLMENT}
 title={localisableRoutesMessageFile.userEnrolmentTitle}
 />
 ...
)
}

This effectively wires up the feature’s route to the feature’s React components in the internal
Routes.js file.

Adding features, or customizing existing features, for example overriding the FAQs, require
some implementation in your sample-app/src/routes.js file. You must add the new
feature or redirect a route of an existing feature to your custom feature. For information
about implementing similar routing in your custom application, see the Universal Access
Responsive Web Application Guide.

• Directory reference

The location of the feature in the file system. Each feature in universal-access-ui is a
directory within /universal-access-ui/src/features. The directory is named after
the business process function. It contains the files responsible for rendering the actual view
to the user. A single React component , typically the Container, is exported by the feature’s
index.js to represent the feature at higher levels, for example Routes.js.

The universal-access-ui package does contain other high-level directories that are
responsible for other functionality, but these are separate or complementary to the base feature
concept.

Components

A component is a React component whose responsibility is to manage the data concerns for the
piece of business functionality and render the user’s view of the business functionality by using
the data passed as props, text defined in Messages, and components from the Cúram Design
System.

Components are typically the highest-level React component that are exported from a feature (and
act as the starting renderable component) as generally every business process function requires
some type of data to retrieve, manipulate, and display. There are a few exceptions to this rule
when the feature is only an informational or static text view.

Components render the view of the business process function to the user.

By default, layouts, HTML elements, and more complex UI widgets (like buttons, cards, badges,
panels, sections, headers, etc.) are taken from the Cúram Design System. This provides a
standardized theme to the look-and-feel of all our features and benefit from common concerns,

© Merative US L.P. 2012, 2025

https://reacttraining.com/react-router/web/guides/quick-start

Cúram 8.2.0 88

such as accessibility and differing screen size layouts. We reference text defined in a separate
Messages file to render any text content.

Messages

Messages files define a JSON object that contains individual properties for each portion of text
that is used by a component and exported as a parameter to an API of the react-intl library.

Typically, every component renders text as part of it’s view. Each portion of text must be
translatable depending on the user’s language. Universal Access uses the react-intl library to help
manage the text content for translation.

For each component, there is a similarly created messages file, which contains
the text that is wrapped in the react-intl defineMessages() API. For example,
UserEnrolmentComponentMessages.js.

import { defineMessages } from 'react-intl';

export default defineMessages({
 userEnrolmentTitle: {
 id: 'UserEnrolment_Title',
 defaultMessage: 'User Enrolment',
 },
 userEnrolmentDescription: {
 id: 'UserEnrolment_Description',
 defaultMessage: "You can enrol in our user's program.",
 },
 userEnrolmentButtonLabel: {
 id: 'UserEnrolment_Button',
 defaultMessage: 'Continue',
 },
 ...
});

5.6 The sampleApplication feature

The sample feature illustrates the principles, tools, and technologies for developing features in the
application. It implements a simple Apply for Benefits workflow that complies with the coding
conventions.

The Web Development Accelerator tool significantly speeds up the development of the Redux
modules that connect the application to the REST APIs. The BaseFormContainer component
is used to implement IEG forms. The test framework speeds up the development of tests with
less code. Where possible, replacing React containers with standard and custom React hooks can
reduce complexity and further speeds up development.

Apply for Benefits workflow

• Landing page
The /sample-application page shows a list of application types, which were obtained
by using an API call. The code for that API call was generated with the Web Development
Accelerator tool. Select an application type to go the Overview page. When you select the
application type, the type is stored in a custom Redux store object that was also configured
with the tool.

© Merative US L.P. 2012, 2025

https://github.com/yahoo/react-intl
https://github.com/yahoo/react-intl/wiki/API#definemessages

5 Developing with the Cúram Universal Access Responsive Web Application 89

• Overview page
The /sample-application/overview page describes the benefit and provides the option
to start the application. Applying for the benefit starts an IEG script with a script ID that
is obtained from an API call. This API call is configured by using the Web Development
Accelerator.

• The Apply for Benefits form
The form is rendered from the IEG script by using the BaseFormContainer component.
Enter any needed values to complete the form. When the form is complete, the confirmation
page opens.

• Confirmation page
The /sample-application/confirmation page summarizes the information that you
entered.

Looking at the SampleModule module

To review the Redux module for the sample feature in Web Development Accelerator, start the
tool by running npm run wda. From the home page, select View Modules and then Edit on
SampleModule module. On the APIs tab, you can see the two APIs for the Apply for Benefits
workflow.

• The v1/ua/online_categories API returns a list of online categories where each online
category includes details of applications that a user can apply for. This API is used on the
landing page.

• The v1/ua/application_form API is used to start a new application form for the logged
in user. The selectedApplicationType value is defined when you click an application
type on the landing page and is then used on subsequent pages.

On the Store tab, you can see the selector and action for the selectedApplicationType.

Overview of the sample application code

• SampleApplicationComponent.js

Displays a list of benefit application types. This component shows you how to do the
following tasks:

• To generate a temporary user if the current user is not logged-in by using the
useGeneratedUserIfNotLoggedIn React hook.

• To retrieve information from the API and Redux store state by using the
SampleModuleHooks.useFetchOnlineCategories hook.

• To verify whether the Rest API is still fetching information by using the
SampleModuleHooks.useFetchOnlineCategories hook.

• To wrap the complete component with a React Higher Order Component (HOC). In this
case, the withErrorBoundary error boundary HOC.

• SampleApplicationConfirmation.js
A confirmation page with the identifier of the application submitted.

© Merative US L.P. 2012, 2025

Cúram 8.2.0 90

• SampleApplicationFormComponent.js
This component handles the application IEG scripts. General rendering and handling for IEG
is delegated to the BaseFormContainer component.

• SampleApplicationOverviewComponent.js
This component gives an end-to-end view of the application process to the user, along with a
summary of the application type and program types that they are applying for. This component
shows how to dispatch an action and create an application form by calling the useCallback
hook that is associated with a button onClick handler.

Related concepts
Generating custom hooks on page 99
To abstract the complexity of working with Redux, the Web Development Accelerator
automatically generates React Hooks to be imported directly into React components. You don't
need to know about Redux to use these hooks for state management in the application.

5.7 Manage state with React Hooks

React Hooks enable you to use state, execute effects, and other React features without writing a
class. You can use hooks to subscribe to the Redux store and dispatch actions, without having to
wrap your components in connect().

For more information about React Hooks, see Introducing Hooks in the React
documentationIntroducing Hooks in the React documentation at https://reactjs.org/docs/hooks-
intro.html.

If you use containers, you need to:

• Use a React Class Component.
• Implement mapDispatchToProps to have access to the dispatch object to call actions.
• Implement mapStateToProps to have access to the state object to call selectors.
• Use the connect higher-order component when you export the component to wire it with

Redux.

© Merative US L.P. 2012, 2025

https://reactjs.org/docs/hooks-intro.html
https://reactjs.org/docs/hooks-intro.html
https://reactjs.org/docs/hooks-intro.html

5 Developing with the Cúram Universal Access Responsive Web Application 91

For example:

class SampleContainer extends Component {

 componentDidMount() {
 //Initializations
 //Calling Action
 this.props.sampleAction();
 }

 ...

 render() {
 //Calling selector
 const selectorValue = this.props.sampleSelector();

 return <>Component body</>;
 }

 ...

}

// We need to implement this function to have access to the `dispatch` object
const mapDispatchToprops = dispatch => ({
 // Call actions using the dispatch object
 sampleAction: () => SampleModuleActions.actionName(dispatch);
})

// We need to implement this function to have access to the `state` object
const mapStateToProps = state => ({
 // Call selectors using the state object
 sampleSelector : () => SampleModuleSelectors.selectorName(state);
})

// To do the wiring with redux, we need to use the `connect` HOC passing the two
 functions: `mapStateToProps` and `mapDispatchToProps`
export connect(mapStateToProps, mapDispatchToProps)(SampleContainer);

To do the same with hooks:

• You don't use class components.
• You don't need to use connect, mapStateToProps or mapDispatchToProps.
• Use useDispatch to get the dispatch objects and call the actions.
• Use useSelector to get the state object and call the selectors.
• Use useEffect to simulate the life cycle events, for example componentDidMount

For example:

const SampleComponent = props => {
 //Get the dispatch object to call actions
 const dispatch = useDispatch();

 // Initializations - Calls on initial render (like componentDidMount) and only if
 dispatch function ever changes
 useEffect(() => {
 //Calling action
 SampleActions.actionName(dispatch);
 } , [dispatch])

 //To call the selectors you do:
 const selectorValue = useSelector(state => SampleSelectors.selectorName(state));

 return (<>Component body</>);

}

In addition to the reduced code, you can create custom hooks to further reduce the amount of
code.

© Merative US L.P. 2012, 2025

Cúram 8.2.0 92

Custom hooks

The following custom login hooks are provided.

• useGeneratedUserIfNotLoggedIn: On mounting a component, checks whether the user
is logged in. If not, calls REST APIs to create a temporary user and automatically authenticate
the user. This is useful for anonymous IEG forms.

• usePublicCitizenIfNotLoggedIn: On mounting a component, checks whether the user is
logged in. If not, automatically authenticates the user as a publicCitizen. For example, this
is useful for landing pages that need to call REST APIs to populate lists.

If you don't want to log out the existing generated user, you can set the
keepExistingGeneratedUser argument for these login hooks to true. By default, it is set to
false.

It is not possible to implement these two custom functions without hooks, as a utility JavaScript™
file for example, because they need to modify the React component state.

5.8 Redux in Universal Access

Redux is used as a client-side store to store data that is retrieved by Cúram APIs and data that is
used to present a consistent user experience.

What is Redux?

Redux is a client-side store that provides a mechanism for holding data in the browser.

• The store is typically used to manage state in the client application. State can include the
following types of data:

• System data that is returned from an API request.
• User input data that is collected before it is posted to APIs.
• Application data that is not sent from or to the server, but is created and maintained to

control how the application works. For example, transient user selections like hiding or
showing a side pane.

• Redux uses a unidirectional architecture, which simplifies the process of managing state.
• Redux can be used as a caching mechanism to avoid unnecessary network round-trips,

although consider this usage carefully to ensure the data that is presented is always current.
• Redux proves to be beneficial as your application grows and becomes more complex. By

centralizing state management and offering tools that give a holistic view of the application
state, development can scale more easily.

Note: This topic assumes that you are familiar with Redux and using Redux with React
components. If you are not familiar with these technologies and how they work together, you
should complete tutorials from the official sources for these technologies.

© Merative US L.P. 2012, 2025

5 Developing with the Cúram Universal Access Responsive Web Application 93

How is Redux used in Universal Access?

Merative ™ Cúram Universal Access uses Redux to store the data that is retrieved by the Cúram
APIs.

Each GET API used by Universal Access has an associated ‘store slice’ where the response
of the API is stored. React components can monitor the store for updates relevant to them and
automatically update as data changes. The store is also used for collecting user input, such as user
information that is requested while users sign up. This data can then be retrieved from the store
and posted to the Cúram server.

Other parts of the store are not tied to Cúram APIs, and track data that is used to present a
consistent user experience.

Creating a Redux store

By default, the Universal Access starter pack is configured to use a Redux store. This
configuration is needed to allow it to use the universal-access and universal-
access-ui packages. The store configuration is initiated from the src/redux/
ReduxInit.js file in the starter pack.

...

import store from './store';

...

// ===================================
// 1. Create the store and initialize the universal-access module.
// ==================================

// Create the app Redux store
this.appStore = store;

// Configure the Core package
CoreReduxStore.createStore(this.appStore);
}

...

For more information on Redux, see https://redux.js.org/.

Configuring the store

Configure the store in the src/redux/store.js file, which exports the configureStore
function that can be called to create a new Redux store. The configure store function can be
modified to:

• Add Redux 'middleware'.
• Provide a custom set of reducers.

Note: To work with the universal-access packages, the store must use the reducers
that are exported from the universal-access package.

Clearing Redux store data

The Redux store is a JavaScript object that is stored in the global object for the browser window.
The content of the store is visible through inspection, either programmatically or by browser

© Merative US L.P. 2012, 2025

https://redux.js.org/

Cúram 8.2.0 94

plug-in tools, such as the developer tools. It is critical that the store is cleared for the current user
when they log out to ensure that no sensitive user data is left on the device for malicious actors.
The log-out feature that is provided by the starter app triggers a Redux action that clears the store.

Adding reducers

If you decide to use Redux with your custom React components, you must create custom reducers
and add them to the store. All Universal Access reducers are prefixed with UA, for example
UAPaymentsReducer. The intelligent-evidence-gathering package also exposes
IEGReduxReducers reducers, prefixed with IEG. When adding custom reducers, you can
combine your custom reducers with existing reducers. Do not use the UA or IEG prefixes in
custom reducers to avoid overriding existing reducers. Overriding reducers is not supported, see
5.3 Developing compliantly on page 83.

The src/redux/rootReducer.js file defines the set of reducers for the store, and
combines them into a single root reducer that can be passed to the configureStore function in
the src/redux/store.js file.

For convenience, the file defines an AppReducers object where you can add custom reducers.
The custom reducers that are defined in the AppReducers object are combined with the
UAReducers imported from the universal-access package, and the superset of reducers is
returned.

The following code excerpt shows the rootReducer function that returns the combination of
Universal Access reducers and custom reducers.

const AppReducers = {
 // Add custom reducers here...
 // customReducer: (state, action) => state,
};

/**
 * Combines the App reducers with those provided by the universal-access package
 */
const appReducer = combineReducers({
 ...AppReducers,
 ...UAReduxReducers,
});

/**
 * Returns the rootReducer for the Redux store.
 * @param {*} state
 * @param {*} action
 */
const rootReducer = (state, action = { type: 'unknown' }) => {
 ...
 return appReducer(state, action);
};

Universal Access Redux modules

Modules in the Cúram Universal Access Responsive Web Application communicate between the
application and the Cúram REST APIs and manage data for the API in the Redux store.

This design allows the React components to focus on presentation and reduces the complexity
of the code in the presentation layer. Modules manage the communication between the

© Merative US L.P. 2012, 2025

5 Developing with the Cúram Universal Access Responsive Web Application 95

client application and the Cúram REST APIs, including authentication, locale management,
asynchronous communication, error handling, Redux store management and more.

Modules typically follow the re-ducks pattern for scaling with Redux

Modules and APIs

Modules consist of collection of artifacts that work together to communicate withCúram REST
APIs and manage the storage and retrieval of the response in the application state. For example,
the Payments module is responsible for communicating with the /v1/ua/payments API. For
more information about Cúram APIs, see the Cúram™ REST API Guide.

• Models

The models.js file is your data representation of the response from the API. It must map the
JSON response properties to an object that can be referenced within your web application.

class UserProfile {
 constructor(json = null) {
 if (json) {
 this.personFirstName = json.personFirstName;
 this.personMiddleName = json.personMiddleName;
 this.personSurname = json.personSurname;
 this.personDOB = json.personDOB
 this.userName = json.userName;
 this.userType = json.userType;
 ...
 }
 }
}

export default UserProfile;

• Utils

The utils.js file is responsible for the actual communication to the required API. On
successful contact with the API, it constructs the model with the response. For simple GET
calls, you can use RESTService.get to handle the API call. For more information, see the
RESTService utility.

import { RESTService } from "@spm/core";
import UserProfile from "./models";

const fetchUserProfileUtil = callback => {
 const url = `${process.env.REACT_APP_REST_URL}/user_profile`;
 RESTService.get(url, (success, response) => {
 const modelledResponse = new UserProfile(response);
 callback(success, modelledResponse);
 });
};

export { fetchUserProfileUtil };

• ActionTypes and Actions

Module actions are used to modify the Redux store, like inserting, modifying, or deleting data
from the store. For example, the PaymentsActions action modifies the payments slice of the
store.

Some actions include calls to APIs. For example, PaymentsActions.getData action calls
the v1/ua/payments API and dispatches the result to the payments slice of the store, or
sets an error if the API call fails.

© Merative US L.P. 2012, 2025

https://medium.freecodecamp.org/scaling-your-redux-app-with-ducks-6115955638be

Cúram 8.2.0 96

The actionTypes.js file represents the type of action that is being performed. At its core,
they are simple string types. For more information, see the Redux Glossary.

const FETCH_USER_PROFILE = "UA-CUSTOM/USER_PROFILE/FETCH_USER_PROFILE";

export { FETCH_USER_PROFILE };

The actions.js file contains the Redux actions, which are objects that represent an intention
to change the application state. They are exported to be accessible to call from a Container
component.

The following example is a representation of the action that calls the API and attaches the
response to the dispatch, but you might further improve by adding fallback behavior.

import { FETCH_USER_PROFILE } from "./actionTypes";
import { fetchUserProfileUtil } from "./utils";

export default class actions {
 static fetchUserProfile = dispatch => {
 fetchUserProfileUtil((success, payload) => {
 if (success) {
 dispatch({
 type: FETCH_USER_PROFILE,
 payload: payload
 });
 }
 });
 };
}

• Reducer

The reducers.js file contains the Redux Reducers. Redux Reducers are just functions
that take the existing state and current actions and calculate a new state, thus updating the
application state.

The following example represents a data reducer that updates the state based on the API result.
You can implement more complex reducers based on the action to represent API errors or
failures or if the API is awaiting a response, like an isFetchingUserProfile reducer.

Reducers aren’t called from Container components.

import { combineReducers } from "redux";
import { FETCH_USER_PROFILE } from "./actionTypes";

const fetchUserProfileReducer = (state = {}, action) => {
 if (action.type === FETCH_USER_PROFILE) {
 return { ...state, payload: action.payload };
 } else {
 return state;
 }
};

const reducers = combineReducers({
 fetchUserProfile: fetchUserProfileReducer
 // room for more reducers!
});

export default { reducers };

© Merative US L.P. 2012, 2025

https://redux.js.org/glossary#action
https://redux.js.org/basics/reducers

5 Developing with the Cúram Universal Access Responsive Web Application 97

• Selectors

Module selectors are used to query the Redux store. They provide the response to predefined
store queries. For example, the PaymentsSelector.selectData selector returns the /
payments/data slice from the store, and the PaymentsSelector.selectError selector
returns the value of the /payments/error slice of the store.

The selectors.js file is responsible for retrieving the data from the application state for use
in the Container component (and likely passed as props to the Presentational component). It
selects information from the state by using the state’s ‘slice’ identifier.

export default class selectors {
 static moduleIdentifier = "UACustomUserProfile";

 static fetchUserProfile = state =>
 state[selectors.moduleIdentifier].fetchUserProfile.payload;
}

• Index

You must export the parts of a module that must be accessible. Instead of creating an
index.js per module, create one in the module directory that exports the Actions, Model,
and Selectors of each custom module. These classes or functions are the only ones that need to
be accessed from the container components.

// Modules
export { default as UserProfileActions } from "./UserProfile/actions";
export { default as UserProfileSelectors } from "./UserProfile/selectors";
export { default as UserProfileModels } from "./UserProfile/models";

Blackbox

Modules are blackbox so are not open to customization or extension. The modules expose actions
and selectors to interact with the module. The actions and selectors are APIs that are documented
in the <your-project-root>/node_modules/@spm/universal-access/docs/
index.html file.

Reusing Universal Access modules in your custom components

You can use the actions and selectors from the universal-access package to connect your
custom components to existing Cúram APIs and the Redux store. You can use the react-
redux module to connect your components. Examples of this technique can be found in the
universal-access-ui features.

For example, the following code is from the PaymentsContainer file in the Payments
feature. The code shows how the actions and selectors from the Payments module are connected
to the properties of the Payments component.

© Merative US L.P. 2012, 2025

Cúram 8.2.0 98

This pattern is documented extensively in the official Redux documentation.

import { connect } from 'react-redux';
import React, { Component } from 'react';

...

/**
 * Retrieves data from the Redux store.
 *
 * @param state the redux store state
 * @memberof PaymentsContainer
 */
const mapStateToProps = state => ({
 payments: PaymentsSelectors.selectData(state),
 isFetchingPayments: PaymentsSelectors.isProcessing(state),
 paymentsError: PaymentsSelectors.selectError(state),
});
/**
 * Retrieve data from related rest APIs and updates the Redux store.
 *
 * @export
 * @param {*} dispatch the dispatch function
 * @returns {Object} the mappings.
 * @memberof PaymentsContainer
 */
export const mapDispatchToProps = dispatch => ({
 loadPayments: () => PaymentsActions.getData(dispatch),
 resetError: () => PaymentsActions.resetError(dispatch),
});
/**
 * PaymentsContainer initiates the rendering the payments list.
 * This component holds the user's payment details list.
 * @export
 * @namespace
 * @memberof PaymentsContainer
 */
export default connect(
 mapStateToProps,
 mapDispatchToProps
)(PaymentsContainer);

Web Development Accelerator

The Web Development Accelerator is a tool that automatically generates code for application
state, such as custom hooks and Redux modules. Select and configure Cúram REST APIs and
automatically generate all of the hook or module code.

How it works

1. Add a module and provide a module name and description.
2. Click Add API and select and configure the Cúram REST APIs that are required for the

module.
3. Select the Store the API response in Redux? checkbox if you want to store the API response

in the Redux store. If you select this option, hooks cache the responses of APIs.
4. Save the module. Your configuration is saved as metadata in a JSON file, which is the only

code that you need to source control.
5. Generate the code. The module and hooks code is generated from the metadata and placed

into a specified directory in the project.
6. Review the generated code in the Code preview tab. The tab contain the following sub-tabs,

Hooks, Actions, ActionTypes, Utils, Models, Reducers, and Selectors.
7. Import the module or hook into your React components.

© Merative US L.P. 2012, 2025

5 Developing with the Cúram Universal Access Responsive Web Application 99

Note: You don't need to source control the generated code. The code is generated each time
that you click Generate in the tool, or when you run npm install, npm run build or
npm run wda-generate.

Generating custom hooks
To abstract the complexity of working with Redux, the Web Development Accelerator
automatically generates React Hooks to be imported directly into React components. You don't
need to know about Redux to use these hooks for state management in the application.

The generated hooks are responsible for the integration with the Redux modules, and handle all
the caching that is needed to avoid unnecessary HTTP calls to REST APIs.

React Hooks are generated for each API and store objects that are added to the modules by using
the Web Development Accelerator. The hooks provide all data and functions that are needed by
the React components. There is no need to interact directly with the Redux files, that is, Actions
or Selectors.

For each API, a hook is generated with the following structure:

GET APIs:

const { data, isFetching, error, reFetchData, resetData } = useActionName([params],
 deps
 = []);

For DELETE, POST, PUT APIs:

const { actionName, data, isFetching, error } = useActionName();

Hooks are also generated for custom store objects that are defined in the Store tab of the Web
Development Accelerator:

const { object, setObject } = useSetObject();

For more information about how to interact with the React Hooks, see the Sample Application
Feature at: /src/features/sampleApplication

Related concepts
The sampleApplication feature on page 88
The sample feature illustrates the principles, tools, and technologies for developing features in the
application. It implements a simple Apply for Benefits workflow that complies with the coding
conventions.

Generating Universal Access Redux modules
In the Web Development Accelerator, you can create a module, select and configure your REST
APIs, and generate all of the code that is needed to handle the API requests and manage your
application state with Redux.

Before you begin
Check that the Web Development Accelerator environment variables are set correctly, see 5.18
React environment variable reference on page 182.

© Merative US L.P. 2012, 2025

Cúram 8.2.0 100

Procedure

1. In the root directory of the universal-access-starter-app, run the command:

npm run wda

The Web Development Accelerator opens locally at http://localhost:3000/.
2. On the home page, click View modules.
3. Click Add module or click an existing module to edit the module.
4. To add APIs, select the APIs tab and click Add API.
5. From the list of available APIs that is defined by the Swagger specification in the

WDA_SPM_SWAGGER environment variable, select the APIs that you need.
The APIs are added to the model metadata JSON file that is specified in the
WDA_MODULES_CONFIG environmental variable.

6. You can customize the default Action functions, Selectors, and Reducers for an API by
changing their names, or by specifying whether the API response is stored in Redux.
a) By default, function names are defined by a convention based on the API URI and verb.

Click a function name to rename the function.
b) By default, each REST API response is cached in the Redux store. If you don't want to

store the API response, clear the Store the API response in Redux? check box. The
corresponding functions are removed from the model.

The APIs are defined in the model.
7. To create a custom store object to cache JavaScript objects, select the Store tab, click Add

Store, enter a name for the store object, and click Confirm.
8. You can preview the code to be generated from the modules metadata by selecting the Code

Preview tab.
9. You can generate the code as follows:

a) From the Modules page, click Generate
b) By using npm, run the command:

npm run wda-generate

The code is also generated each time that the project is installed or built by running npm
run start or npm run build.

The modules and the generated code are written directly to the directory that is defined in the
WDA_MODULES_OUTPUT environment variable.

5.9 Error handling with a React higher-order component (HOC)

You can use the withErrorBoundary function as a higher-order component (HOC) to handle
API errors on features. You can then focus on implementing components and delegate the error

© Merative US L.P. 2012, 2025

5 Developing with the Cúram Universal Access Responsive Web Application 101

handling to the function. Additionally, this approach reduces the amount of code that is needed to
implement the component and its tests.

The withErrorBoundary function is provided in the @spm/core-ui package and provides
the following functions:

• Retrieves the list of all errors from the Redux Store by calling the
ReduxUtils.generateGlobalErrorSelector selector, or you can provide a single
selector that is generated by the Web Development Accelerator.

• For any errors that are stored on the Redux store, the withErrorBoundary function throws a
JavaScript exception that is caught by the nearest ErrorBoundary.

• Wraps a component in an ErrorBoundary.
• Clears the errors from the Redux Store when the component is unmounted.

Table 2: The withErrorBoundary parameters

Parameter Mandatory Details

wrappedComponent Yes The component or container to
wrap.

errorSelector No The selector to get
the errors. If you don't
provide an error selector,
ReduxUtils.generateGlobalErrorSelector
is used.

resetErrorAction No The action to reset the errors.

Examples

Exporting a component with the withErrorBoundary function.

• Default values

import withErrorBoundary from '@spm/core-ui';

class Container extends Component {
 ...
 ...
 ...
}

export default withErrorBoundary(Container)
);

• With parameters

import withErrorBoundary from '@spm/core-ui';
import { SampleModuleSelectors, SampleModuleActions} from '../../modules/generated';

class Container extends Component {
 ...
 ...
 ...
}

export default
 withErrorBoundary(Container,SampleModuleSelectors.fetchCustomAPIError ,
 SampleModuleActions.resetFetchCustomAPIError)
);

© Merative US L.P. 2012, 2025

Cúram 8.2.0 102

This example handles errors that are related only to the specified API error selector, rather
than listening for errors in the data store.

5.10 Connectivity handling

By default, a connectivity handler prevents data loss in IEG forms and provides offline detection
for the rest of the application. You see a warning message when you are disconnected, giving
you a chance to check your internet connectivity. You see a success message when you recover
connectivity. You can choose to prevent data loss in pages outside IEG forms by implementing
the connectivity handler for other pages in the application.

If internet connectivity is lost or the service becomes unavailable when you are in the application,
a warning message is displayed.

You're disconnected. Check your internet connection or wait while
 we try to reconnect.

By default, connectivity is tested by pinging the server but you can customize this behavior with a
custom function. For example, to change the server URL or to ping a static file.

While connectivity is not strictly required for every page in the application, the connectivity
polling ping is used to detect if users are online. You can enable or disable connectivity handling
for all pages, but not for specific pages. The ping continues after session expiry. If the server can
respond with an error then there is still connectivity. If there is no response from the server, then
the application is set offline.

Preventing data loss in IEG

To prevent you from losing information that you enter in IEG forms, you are now prevented from
leaving IEG pages with unsubmitted changes when you are disconnected. An error message is
displayed and you remain on the page where you entered the information. You must check your
internet and get online or wait for the service to become available before you can continue. If
internet connectivity or the service remains unavailable, the error message persists.

You're still disconnected. Check your internet connection or try
 again later.

When you recover connectivity or the service becomes available, a success message is displayed
and you can save your changes.

You are now connected.

Implementing a connectivity handler

You can implement loss-of-connectivity handling to improve the resilience of the application.
Users are notified when they lose or recover internet connectivity or access to the service. In
addition, you can prevent user actions when they are offline to avoid errors or data loss. By
default, user actions are prevented in IEG forms to prevent information loss if users go offline
when in IEG forms.

© Merative US L.P. 2012, 2025

5 Developing with the Cúram Universal Access Responsive Web Application 103

Before you begin

The implementation consists of two components.

• The ConnectivityHandler component

Use the ConnectivityHandler React component in packages/core-ui/src/
Connectivity/ConnectivityHandler to detect offline and online events and to
notify the user. The ConnectivityHandler component wraps the application with the logic
to call the appropriate messages.

The ConnectivityHandler component provides the following functions:

• Registers browser offline and online events and runs the corresponding callback functions.
Internet connectivity is checked by making a periodic request to the server, by default
every 5 seconds.

• If the server request fails, it triggers the offline event callback. A dismissable warning
message is displayed:

You are offline, check your internet connection and try
 again.

• After connection is lost, a successful server request triggers the online event callback. A
dismissable success message that expires after 7 seconds is displayed:

You are back online.

• Reads the preventActionOnOffline Redux global state variable that is managed by the
Connectivity Redux module. When this state is true and a user tries to interact with a
page when they are offline, an error message is displayed:

You are still offline, check your internet connection and try
 again.

• The Connectivity Redux module

Use the Connectivity Redux module in packages/core/src/modules/
Connectivity to manage the connectivity global state of the application, and to provide an
option to prevent unwanted actions.

The Connectivity module has two selectors and two actions:

• The setOnline action sets the connectivity state of the application. Set to true for online
and false for offline.

• The getOnline selector returns the connectivity state of the application.
• The setPreventActionOnOffline action sets the prevent action state of the

application. Set true to prevent user actions while offline and false to allow user actions.
• The getPreventActionOnOffline selector returns the prevent action state of the

application.

Procedure

1. Wrap your application in the ConnectivityHandler component.

© Merative US L.P. 2012, 2025

Cúram 8.2.0 104

Place theConnectivityHandler component between the ErrorBoundary and
SSOVerifier components in the application tree as follows:

```
    <ReduxInit>
      <IntlInit>
        <Router basename={process.env.PUBLIC_URL}>
          <ScrollToTop>
            <ErrorBoundary
              footer={<ApplicationFooter />}
              header={<ApplicationHeaderComponent hasErrorBeenCaught />}
              isHeaderBoundary
            >
              <ConnectivityHandler>
                <SSOVerifier
                  placeholder={
                    <ApplicationHeaderComponent
                      isALinkedUser={() => false}
                      isAppealsEnabled={false}
                      isEmpty
                    />
                  }
                >
                 {/* Rest of the application tree */}
                </SSOVerifier>
              </ConnectivityHandler>
            </ErrorBoundary>
          </ScrollToTop>
        </Router>
      </IntlInit>
    </ReduxInit>
```

The application now notifies users of online and offline events.
2. Optional: Configure connectivity polling, which pings the server at intervals to check

connectivity. You can change the ping behavior and the interval for connectivity polling.
a) You can create a custom function to override the default polling behavior. For

example, to ping a static file, to use a different URL, or even to generate a URL
for every instance that includes a timestamp. To implement this, import the
registerConnectivityPollingFunction function in your App.js file, which
receives your custom function as a parameter.

import { registerConnectivityPollingFunction } from '@spm/core-ui’;

Refer to the following three examples for how to use this function:

• Example 1: Use the same application server but ping a different URL

import { registerConnectivityPollingFunction } from '@spm/core-ui';
import { RESTService } from '@spm/core';

const customPollingFunction = pingCallback => {
 const url = `${process.env.REACT_APP_REST_URL}/v1/ua/<NEW_API_ROUTE>`;
 RESTService.get(url, pingCallback);
};
registerConnectivityPollingFunction(customPollingFunction)

In the URL constant, replace <NEW_API_ROUTE> with the new route. The polling
function is called with the pingCallback function, which is responsible for notifying
users about online or offline events and must be used in this function as part of the
RESTService function parameters.

© Merative US L.P. 2012, 2025

5 Developing with the Cúram Universal Access Responsive Web Application 105

Make the REST request by using the RESTService.get(url,pingCallback)
function. This function receives the new URL and the pingCallback for online or
offline notifications as parameters.

• Example 2: Use a static file such as the fav icon

import { registerConnectivityPollingFunction } from '@spm/core-ui';
import { RESTService } from '@spm/core';

const customPollingFunction = pingCallback => {
 const url = ${window.location.origin}/fav.ico?_="${new Date().getTime()}";
 RESTService.getWithoutCredentials(url, pingCallback);
};
registerConnectivityPollingFunction(customPollingFunction)

Set the URL constant with the corresponding URL origin to access the public folder
resources where fav.ico is typically located.

You don’t need to pass the application credentials for this request so you can use
RESTService.getWithoutCredentials(url, pingCallback). This function
receives the generated URL and the pingCallback for online or offline notifications
as parameters.

• Example 3: Use a different server

import { registerConnectivityPollingFunction } from '@spm/core-ui';
import { RESTService } from '@spm/core';

const customPollingFunction = pingCallback => {
 const url = `${new_server_origin}/${api_route}`;
 RESTService.getWithoutCredentials(url, pingCallback);
};
registerConnectivityPollingFunction(customPollingFunction)

In the URL constant, replace <NEW_API_ROUTE> with the new route. The polling
function is called with the pingCallback function, which is responsible for notifying
users about online or offline events and must be used in this function as part of the
RESTService function parameters.

On your server, you must address any CORS issues and include a status parameter in
the API response, for example status:200. The pingCallback function reads this
value and sets the application to offline mode only when the value doesn’t exist.

b) By default, the system_configuration API is pinged at a sensible interval
of 5 seconds. If your testing indicates that an interval of 5 seconds is not
suitable for your application, you can change the interval by setting the
REACT_APP_CONNECTIVITY_INTERVAL environment variable, for example:

REACT_APP_CONNECTIVITY_INTERVAL=7000

For more information about environment variables, see 5.18 React environment variable
reference on page 182.

3. Optional: You can prevent user actions when they are offline with the Connectivity Redux
module. You can display a danger message to tell users that they are offline and that they need
to check their internet connection.
a) Use the getOnline selector to read the connectivity global state of the application.

© Merative US L.P. 2012, 2025

Cúram 8.2.0 106

b) Use the setPreventActionOnOffline action to notify ConnectivityHandler to
display the prevent action message.

For example:

preventOffline = callback => {
 const { isOnline, preventActionOnOffline } = this.props;
 return isOnline === false ? preventActionOnOffline() : callback;
 };

The example function uses { connect } from 'react-redux’. Its implementation
helps you to inject the selectors and actions from the connectivity global state of the
application as props. isOnline is the value that is returned by getOnline, and
preventActionOnOffline() calls getPreventActionOnOffline(true).

The preventOffline function receives the function to run or prevent when online or offline
as a callback.

The online status is received from props and the preventActionOnOffline function
displays the message.

When isOnline is false, call the function to display the message, otherwise call the
callback function.

5.11 Developing with routes

Routes define the valid endpoints for navigation in your application. Your application consists of
a network of routes that can be traversed by your users to access the application's pages.

Merative ™ Cúram Universal Access uses the react-router and react-router-dom packages to
manage navigation. React Router defines and works with routes. For more information, see the
React Router documentation at https://reacttraining.com/react-router/web/guides/philosophy.

© Merative US L.P. 2012, 2025

https://reacttraining.com/react-router/web/guides/philosophy

5 Developing with the Cúram Universal Access Responsive Web Application 107

The Routes component

The module for Universal Access exports the Routes component, which exposes the routes
defined by the module. The defined routes are the suite of pages that are prebuilt and available for
reuse in Universal Access.

Routes component

You can import and reuse the Routes component in your application. The code example shows
how import and reuse the Routes component in a sample application.

import React from 'react';
import { injectIntl, intlShape } from 'react-intl';
import { BrowserRouter } from 'react-router-dom';
import '@spm/web-design-system/js/govhhs-design-system-core.min';
import { Routes } from '@spm/universal-access';

const App = (props) => {
 return (
 {/** You must define your routes controller (Hash vs Browser) */}
 <BrowserRouter>
 <div className="app">
 <div className="my-header-navigation">
 Home | Faq
 </div>
 <Routes />
 </div>
 </BrowserRouter>
);
};

App.propTypes = {
 intl: intlShape.isRequired,
};

export default injectIntl(App);

Adding routes

You can add a route by including a new route anywhere inside your Router component.

The following code example adds a route to MyNewPageComponent into the router component:

import { BrowserRouter, Route } from 'react-router-dom';
…
<BrowserRouter>
 <div className="app">
 <div className="my-header-navigation">
 Home | New Page
 </div>
 <UARoutes />
 <Route path="/my-new-page" component={MyNewPageComponent} />
 </div>
</BrowserRouter>

© Merative US L.P. 2012, 2025

Cúram 8.2.0 108

Replacing routes

You can replace existing paths from the Universal Access module’s Routes component with your
preferred component.

Wrap your routes in a <Switch> component

You can replace existing paths from the Routes component with your preferred component. To
achieve this, you must first wrap your routes in a <Switch> component from react-router. This
action ensures that the first match of the requested path that is found in your application is used to
resolve the path. For more information on Switch, see https://reacttraining.com/react-router/web/
guides/philosophy.

Add a route with the same path

When you have wrapped in Switch, you add a route with the same path as the page you are
overriding.

Note: This route must come before the <Routes/> component to ensure it is matched first.

The following code example shows a replacement route to MyHomePageComponent enclosed in
a <Switch>:

import { BrowserRouter, Route, Switch } from 'react-router-dom';
…
<BrowserRouter>
 <div className="app">
 <div className="my-header-navigation">
 Home | New Page
 </div>
 <Switch>
 <Route path="/" component={MyHomePageComponent} />
 <Routes />
 <Route path="/my-new-page" component={MyNewPageComponent} />
 </Switch>
 </div>
</BrowserRouter>

© Merative US L.P. 2012, 2025

https://reacttraining.com/react-router/web/guides/philosophy
https://reacttraining.com/react-router/web/guides/philosophy

5 Developing with the Cúram Universal Access Responsive Web Application 109

Redirecting routes

You can redirect existing paths by using the react-router Redirect component.

Redirecting a route

The following code example imports the Redirect component and redirects the path '/bring-
me-home' to "/".

import { BrowserRouter, Route, Switch, Redirect } from 'react-router-dom';
…
<BrowserRouter>
 <div className="app">
 <div className="my-header-navigation">
 Home | New Page
 </div>
 <Switch>
 <Route path="/" component={MyHomePageComponent} />
 <Redirect from="/bring-me-home" to="/" />
 <Routes />
 <Route path="/my-new-page" component={MyNewPageComponent} />
 </Switch>
 </div>
</BrowserRouter>

Removing routes

You can remove unwanted routes from Merative ™ Cúram Universal Access.

You might want to reuse some but not all of the Universal Access <Routes/>. For those routes
that you want to remove instead of replacing, use the react-router <Redirect> component to send
users to a ‘404’ style page, or some other valid end point.

You must declare the redirect before the <Routes/> component. You must also wrap the redirect
in a <Switch> component. The following code example removes the route to "FAQ" by
redirecting to a 404 page:

<BrowserRouter>
 <div className="app">
 <div className="my-header-navigation">
 Home | FAQ
 </div>
 <Switch>
 <Redirect path="/faq" to="/404page" />
 <Routes />
 </Switch>
 </div>
</BrowserRouter>

Advanced routing

Merative ™ Cúram Universal Access is now code-split based on routes.

Code splitting

Code-split based on routes is achieved using react-loadable and the @spm/universal-
access-ui package that is in the default LoadingPage component. For more information, see

© Merative US L.P. 2012, 2025

Cúram 8.2.0 110

https://create-react-app.dev/docs/code-splitting and https://github.com/jamiebuilds/react-loadable.
The following example shows how to achieve the same split with the routes that you added:

import { LoadingPage } from ‘@spm/universal-access-ui’;
…
const MyNewPageComponent = Loadable({
 loader: () => import(/* webpackChunkName: “MyNewPageComponent” */ '../features/
MyNewPageComponent’),
 loading: LoadingPage,
});
…
 <Route
 component={MyNewPageComponent}
 exact
 path=‘/my-new-page’
 />

Titled routes

Accessibility rules require that a web page should have a descriptive title. You can implement a
descriptive title using the TitledRoute component of the @spm/universal-access-ui package. To
localize the title, TitledRoute exposes a title prop that accepts a react-intl message () and can be
used with or without code-split routes as shown in the following example:

import { TitledRoute } from ‘@spm/universal-access-ui’;
import { defineMessages } from 'react-intl';
…
const titles = defineMessages({
 myNewPage: {
 id: 'app.titles.myNewPage’,
 defaultMessage: ‘My New Page’,
 },
});
…
 <TitledRoute
 component={MyNewPageComponent}
 exact
 path=‘/my-new-page’
 title={titles.myNewPage}
 />

Authenticated routes

You can protect parts of the application in two ways:

1. On access, handle authentication failures to a REST API and redirect to a login page.
2. Block access to specific routes to avoid any cost in running the REST API.

The following example shows how to block access to specific routes. The @spm/universal-
access-ui package provides an AuthenticatedRoute component that accepts an authUserTypes
array prop of the allowed user types to access this route. AuthenticatedRoute also wraps

© Merative US L.P. 2012, 2025

https://create-react-app.dev/docs/code-splitting
https://github.com/jamiebuilds/react-loadable

5 Developing with the Cúram Universal Access Responsive Web Application 111

TitledRoute and therefore offers a title prop. The following is an example of using
AuthenticatedRoute:

import { AuthenticatedRoute } from ‘@spm/universal-access-ui’;
import { Authentication } from '@spm/universal-access';
import { defineMessages } from 'react-intl';
…
const titles = defineMessages({
 myNewPage: {
 id: 'app.titles.myNewPage’,
 defaultMessage: ‘My New Page’,
 },
});
…
 <AuthenticatedRoute
 authUserTypes={[Authentication.USER_TYPES.STANDARD,
 Authentication.USER_TYPES.LINKED]}
 component={MyNewPageComponent}
 exact
 path=‘/my-new-page’
 title={titles.myNewPage}
 />

The example blocks access to the /my-new-page routes for all users who are not of type
STANDARD or LINKED, these users are redirected to the /login route.

5.12 Connecting to Universal Access REST APIs

You must connect your web application to Cúram Universal Access REST APIs. You can use the
RESTService utility, and the mock server API service or Cúram APIs to help you to develop and
test your REST API connections.

For information about securing your Universal Access REST APIs, see 6.2 Securing access to
Universal Access REST APIs on page 199.

Configuring the Universal Access API end point

Use the REACT_APP_REST_URL environment variable in the .env or .env.development
file to nominate the host for the Cúram APIs.

For example, in a development environment where the Cúram Universal Access Responsive Web
Application is running on Node.js on a developer's local machine, and Cúram is running on port
9080 in Eclipse/Tomcat on the local machine, add the following to the .env.development file
in the React application.

REACT_APP_REST_URL=http://localhost:9080/Rest

And in a "deployed environment", such as IBM® HTTP Server hosting the Cúram Universal
Access Responsive Web Application and IBM® WebSphere® Application Server hosting
the Cúram application on port 9044 with hostname citizenportal.myorg.com, add the
following:

REACT_APP_REST_URL=https://citizenportal.myorg.com:9044/Rest

For more information about environment variables, see 5.18 React environment variable
reference on page 182.

© Merative US L.P. 2012, 2025

Cúram 8.2.0 112

The mock server API service

The mock server is a mock API service that is provided to aid rapid development. The mock
server serves APIs that simulate calling real web APIs. When you are developing your
application, the mock server provides a lightweight environment against which the React
components can be tested communicating with the services that provide their data.

Configuring the mock server

Configure the mock server location through the following properties in the
.env.development file. You can change these values to suit your needs.

• REACT_APP_REST_URL=http://localhost:3080

• MOCK_SERVER_PORT=3080

Running the mock server

Run the mock server by using the following command from the root directory of your project:

npm run start:mock-server

However, when you are developing locally, you can use the following command that starts both
the mock server and the client:

npm run start

See the package.json file in your project for the full list of commands.

Adding mock APIs

The universal-access project includes a number of mock APIs that simulate calling the Cúram
Universal Access APIs. These mock APIs support running some basic scenarios in development
mode for the existing set of features.

As you develop your application, you typically create new APIs that you also want to mock.
When the mock server starts, it looks to import the /mock/apis/mockapis file relative to the
folder the command was started from. In this file, the mock-server expects to find three objects,
GET, POST, and DELETE, that it can query to serve API requests for those HTTP methods.

© Merative US L.P. 2012, 2025

5 Developing with the Cúram Universal Access Responsive Web Application 113

The format of the mock definition is a relative URL that is assigned a JavaScript object. For
example, the following code assigns the object user to the URL /user, and the object
payments.json, which is read from a file, to the /payments URL.

const user = {

 'firstname': 'James',

 'surname': 'Smith',

 'gender': 'male',

 ...

}

const mockAPIsGET = {
 // ADD YOUR GET MOCKS HERE

 // Example of providing mock data in response to an API request in
 // the format uri:mockobject
 '/user': user,

 '/payments': readFile('./payments/payments.json)
};

If you use mocking extensively, it is better to use separate files and folders to structure your
mocks.

Using universal-access mock APIs

The mockapis.js file is preconfigured to import and use mock APIs defined and exported by
the universal-access package. This allows your project to reuse and extend the set of universal-
access mock APIs.

const mockAPIs = require('@spm/universal-access-mocks');

// Extract the existing universal access GET,POST and DELETE mocks for merging.
const UAMockAPIsGET = mockAPIs.GET;
const UAMockAPIsPOST = mockAPIs.POST;
const UAMockAPIsDELETE = mockAPIs.DELETE;

...

//create custom mocks

...

// Merge UA mocks with custom mocks
const GET = Object.assign({}, UAMockAPIsGET, mockAPIsGET);
const POST = Object.assign({}, UAMockAPIsPOST, mockAPIsPOST);
const DELETE = Object.assign({}, UAMockAPIsDELETE, mockAPIsDELETE);

module.exports = { GET, POST, DELETE };

Where the same URL is used by a custom mock that was previously assigned to a universal-
access package mock, the custom mock replaces the universal access version.

The RESTService utility

The @spm/core package provides the RESTService utility, which you can use to connect your
application to a REST API. The RESTService utility provides important functions for securing
and connecting to Cúram REST APIs, such as CSRF protection and SSO support. You can fetch
resources with alternatives such as Fetch API, SuperAgent, or Axis, but you must consider

© Merative US L.P. 2012, 2025

Cúram 8.2.0 114

implementing functionality that is handled by the RESTService utility, like CSRF protection and
SSO support.

The RESTService utility supports the GET, POST, and DELETE HTTP methods through the
following JavaScript methods:

• RESTService.get(url, callback, params)

• RESTService.post(url, data, callback)

• RESTService.del(url, callback)

See the full RESTService class documentation in the doc folder in the @spm/core package.

The RESTService utility hides details of calls, such as passing credentials, language, and errors.
The callback that is passed to the GET, POST, or DELETE methods is started after the API calls
return. API calls are asynchronous, so write your code to expect and handle a delay in receiving a
response.

The RESTService utility provides functions during communications for authentication, handling
responses, and user language.

Authentication

Authentication of the user is handled transparently by the RESTService utility. After a
user is authenticated, the REST APIs automatically send the needed 'credentials', that is, the
authentication cookies, with each request. For information about how authentication is handled
for REST, see the Universal Access Responsive Web Application Guide.

If a user's session is invalidated before a new request is made to a REST API, then the '401
unauthorized' response is returned by the server. The RESTService utility relays the response to
the callback function passed by the caller.

Handling responses

The RESTService utility formats the response from the server to ensure that callbacks receive
the response in a consistent manner.

Each GET, POST, and DELETE method accepts a callback function from the caller. When called
by the RESTService utility, the callback function receives a Boolean value that indicates the
success or failure of the API call and the response. The callback function can then deal with the
result. For example, a failure can be used to trigger your code to throw an error with the response
data that can be used to trigger an error boundary. For more information about the callback
function parameters, see the API documentation for the RESTService utility.

User Language

The 'Accept-Language' HTTP header is automatically set by the RESTService utility based on
the user's selected language, which the user can select with the language picker in the application.
This approach lets the server respond in the correct locale where locale sensitive information is
being handled on the server.

The locale that is passed in the header is set in the transaction that is initiated by that REST
request, and is used for the duration of that transaction. For more on transactions, see the Server
Developer's Guide.

© Merative US L.P. 2012, 2025

5 Developing with the Cúram Universal Access Responsive Web Application 115

Cross-Site Request Forgery (CSRF)

The RESTService utility manages REST API CSRF protection for Universal Access that
includes:

• Managing conditions on when to fetch a CSRF token.
• Pausing requests to fetch the CSRF token from the SPM server when needed.
• Storing the CSRF token in the application.
• Appending the CSRF token to the HTTP request header when appropriate.

Handling timeouts

The RESTService utility can manage unresponsive calls to the server. You can set environment
variables in the .env files to set thresholds for timeouts.

• REACT_APP_RESPONSE_TIMEOUT=10 Wait 10 seconds for the server to start sending.
• REACT_APP_RESPONSE_DEADLINE=60 but allow 1 minute for the file to finish loading.

Simulating slow responses

During development, it is important to test that your application continues to operate in an
acceptable way even when network responses are slow. You can simulate a slow network
connection by setting a property in the .env.development file in the root of your project.

For example, set REACT_APP_DELAY_REST_API=2 to delay the response from all GET requests
for 2 seconds. The value can be set to any positive integer to adjust the delay.

Related concepts
Universal Access authentication on page 200
The universal-access package exports the Authentication module, which can be used to
log in and out of the application and to inspect the details of the current user. The login service
is passed a username and password, and optionally a callback function that is called when the
authentication request is completed.

Related reference
React environment variable reference on page 182
A full list of Universal Access React environment variables categorized by function. You can
set environmental variables in .env files in the root directory of your application. If you omit
environment variables, either they are not set or the default values apply.

Adding metadata to file uploads

You can add metadata to files that you upload with the Document Service APIs by using the X-
IBM-Curam-File-MetaData attribute. That metadata can then be used, for example, as search
criteria in a content management system.

When a user wants to upload a file by using the Document Service API, a request is made to the
following API endpoint:

POST /v1/dbs/files

© Merative US L.P. 2012, 2025

Cúram 8.2.0 116

The body of the request is the file that you want to upload in binary format. The Content-
Type of the request is set to application/octet-stream.

// file data JSON object
const fileData = {
 caseReference,
 loggedInUserName,
 loggedInUserId,
 relatedPersonId,
 relatedPersonName,
 filename,
 classification,
 dateOfUpload: new Date(),
 }
// Stringify the file data
const metadata = JSON.stringify(fileData);
// Set headers
const headers = {
 'X-IBM-Curam-File-MetaData': encodeURIComponent(metadata),
};

To add metadata that relates to the file being uploaded, the X-IBM-Curam-File-MetaData
header is set to a URI encoded JSON string. The URI encoded JSON string is decoded on the
server so it is expected to be URI encoded before sending the request.

// POST request
RESTService.post(
 '/v1/dbs/files',
 // File being uploaded
 data,
 (success, body, header) => {
 callback(success, body, header);
 },
 // Set request body format
 'application/octet-stream',
 null,
 // Headers including metadata string
 headers
);

The headers are then included in the POST request to /v1/dbs/files. These headers are not
parsed or used in the default POST /v1/dbs/files API endpoint.

For more information, see encodeURIComponent().

Universal Access REST API reference

The following Cúram REST APIs are relevant to the key business functions of Merative ™ Cúram
Universal Access Responsive Web Application.

For the full list of supported Cúram APIs, see the Swagger specification, which is available
from a running Cúram instance at http://<hostname>:<port>/Rest/api/
definitions/v1.

Appeals

POST /v1/ua/appeals_form

Starts a new IEG execution for an appeal.

POST /v1/ua/appeals_form/exit

© Merative US L.P. 2012, 2025

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/encodeURIComponent

5 Developing with the Cúram Universal Access Responsive Web Application 117

Exits the Appeals IEG Form.

GET /v1/ua/appeals

Returns the list of appeals for the logged in user.

GET /v1/ua/appeals/{online_appeal_request_id}/attachment

Returns the attachment document for an appeal request.

Applications

GET /ua/online_categories

Returns a list of Online Categories. Each category includes details of the applications that a user
can apply for.

GET /ua/submitted_applications

Returns a list of applications that were previously submitted by the logged in user.

POST /ua/submitted_applications/{application_id}/application_programs/
{application_program_id}/withdrawal_request

Creates a withdrawal request for the specified program in a submitted application. The
application can be withdrawn only if it has a status of pending, and if there is not already a
pending withdrawal request for this application. For each program associated with the submitted
application, a separate withdrawal request must be created. Either a withdrawalReason or
reasonText value must be supplied, but not both. See /withdrawal_request_reasons
for the list of possible withdrawal reasons that were configured for the associated application
type.

GET /ua/submitted_applications/{application_id}/application_programs/
{application_program_id}/withdrawal_request_reasons

Returns a list of possible withdrawal reasons that a user can choose when they withdraw an
application.

GET /ua/application_types

Returns details of the application type definition of the specified draft or submitted intake
application.

GET /ua/application_types/{application_type_id}

Returns details of the specified application type.

GET /ua/application_submission_message

Returns details of an application submission message.

GET /ua/application_confirmation_message

© Merative US L.P. 2012, 2025

Cúram 8.2.0 118

Returns details of an application confirmation message. The details are configurable by an
administrator, by updating the details for the associated application type definition.

GET /ua/draft_applications

Returns a list of draft applications that are currently in-progress for the logged in user.

GET /ua/submitted_applications/{application_id}/attachment

Returns the attachment for the specified submitted application.

GET /ua/form_details/{application_form_id}

Gets details of a form instance.

POST /ua/application_form

Starts a new intake application form for the logged in user. Under the hood, a new datastore is
created to store the data provided in the application form, for later use for when the user is ready
to submit their intake application.

DELETE /ua/application_form/{application_form_id}

Cancels the specified intake application form without saving the details, which means the
application form cannot be retrieved or resumed at a later stage.

POST /ua/submission_form

Starts a submission form for the logged in user, which is used in association with the specified
intake application form.

GET /ua/submission_form/{submission_form_id}

Gets details of a submission form instance.

GET /ua/submission_form/{submission_form_id}/page_details

Returns details of questions for a single page of the specified form. If the page query parameter
value is next, or is empty, then questions are returned for the next unanswered page, or for the
first page if no answers were yet submitted. If the page query parameter value is previous,
questions are returned for the page before the last answered page. In this way, you can navigate
through the pages of a form. However, you cannot jump directly to a specific page.

POST /ua/applications

Creates an intake application based on the data that was previously supplied in the specified
intake application and submission forms.

Document service

POST /v1/dbs/files

© Merative US L.P. 2012, 2025

5 Developing with the Cúram Universal Access Responsive Web Application 119

Uploads a file and returns the URL for the file.

This API is disabled by default for security purposes, so you must ensure that you have
implemented the appropriate file security and validations for document uploads and enabled the
API before you can upload files to your system for verification, see the Server Developer's Guide.

GET /v1/dbs/files/{file_id}

Retrieves a specified file.

DELETE /v1/dbs/files/{fileId}

Deletes a specified file. The DELETE method is not currently used by the Cúram Universal
Access Responsive Web Application.

Life events

GET /ua/life_event_categories

Gets the list of life event categories and the life event contexts (of type Citizen/Online) that
are contained inside those categories, and the life event contexts that are not associated with any
category.

POST /ua/life_events_form

Get the formId given the lifeEventsContextId.

GET /ua/life_events_form/{formId}

Gets the Life Event Context record based on the IEG form.

POST /ua/life_events_form/exit

Submits the Life Event IEG form.

GET /ua/life_events_history

Get the life event history.

GET /ua/life_event_remote_systems/{formId}

Gets the list of Remote Systems that are associated with the Life Event Context of the specified
Life Event Form.

POST /ua/life_event_remote_systems/{formId}

Sends the Life Event data to the selected Remote Systems.

Messages

GET /ua/messages

© Merative US L.P. 2012, 2025

Cúram 8.2.0 120

Returns a list of messages that are applicable to logged-in users. The list includes account
messages and system messages whose visibility value is either Logged-in users, Public and
logged-in users, or an empty null value.

GET /ua/public_messages

Returns a list of public messages that are applicable to public users. The list includes system
messages whose visibility values are either Public users, or Public and logged-in
users.

Notices

POST /v1/ua/communications/{communication_id}/mark_send_by_post

Mark a communication to be sent by mail. An attribute on the return of the API indicates whether
a send by mail request exists for the communication.

GET /v1/ua/communications/

Returns the list of communications for the logged in user.

GET /v1/ua/communications/{communication_id}

Returns a communication.

GET /v1/ua/communications/{communication_id}/attachments/{attachment_id}

Returns the communication attachment details.

Organization

GET /ua/organisation

Returns the details of the organization.

GET /ua/local_offices

Returns a list of local offices. The list can be filtered either by county or by ZIP/postal code.

Payments

GET /ua/payments

Returns a list of payments for the logged in user. The returned list is ordered by payment date,
with the most recent payment listed first. The list can be filtered to return a single payment by
supplying both query parameters of payment_id and isPaymentByExternalParty.

GET /ua/payment_messages

© Merative US L.P. 2012, 2025

5 Developing with the Cúram Universal Access Responsive Web Application 121

Returns details of the user's next payment.

/ua/payments/{payment_id}

Returns payment-specific details by payment ID. For an external payment identification, append
the suffix \“E\” to payment_id.

/ua/payments_summaries

Returns a list of payment summaries for the logged-in user.

/ua/next_payments_summaries

Returns a list of next payment summaries for the logged-in user. Includes an adjustment indicator
to highlight where payments differ from the previous payment.

/ua/payments/simulate_payments

Generates the projected next payments based on current circumstances. Use this API to get
detailed information about next payments. You must supply a list of benefit IDs for simulation to
be performed for each benefit. Payment simulation is an expensive instruction, so use this API
judiciously.

System

GET /ua/system_configurations

Returns a list of system properties. The list can be filtered to return a single system property by
supplying the property ID.

GET /ua/app_image_resource

Returns the requested image resource.

GET /ua/icons/{icon_id}

Returns the requested icon.

User

GET /v1/ua/user

Returns information that is related to the current user, such as user permissions.

GET /ua/profile

Returns details of the logged in user.

GET /ua/profile_image/{image_id}

© Merative US L.P. 2012, 2025

Cúram 8.2.0 122

Returns the requested profile photo. This photo must belong to the logged in user. See /
profile for retrieving the details for the value to use for {image_id}.

POST /ua/user_account

Resets the user's password, with the new password specified. The specified existing password
must be valid, in order for the password to be successfully reset.

POST /ua/generated_user_accounts

Generates a temporary user account to be used to log in to thCúram system under the hood, when
the citizen user has not logged in or created their own user account. This account temporarily
stores the details of the citizen user, for example any intake applications or benefits they start, and
transfers these details to a permanent user account if the user signs up or logs in with their own
account at a later stage.

POST /ua/application_form_ownership

Changes the ownership of the specified intake application form to the currently logged in user.
This action can be completed only if the previous owner of the intake application form is a
system-generated user, it is not permissible to use this API to change the ownership from one
citizen account user to another.

GET /ua/user_account_login

Retrieve the users last successful login date time.

GET /ua/case_contacts

Returns a list of contact information for the caseworkers that are related to the logged in user's
cases.

Screening

GET /ua/screening_form

List all screening forms for the current user.

POST /ua/screening_form

Starts a new IEG execution based on the Screening Type.

GET /ua/screening_form/{formId}

Gets the Screening Type and Program selection for a specified Screening Form.

POST /ua/screening_form/{formId}

Updates the Program selection for specified Screening Form.

DELETE /ua/screening_form/{formId}

© Merative US L.P. 2012, 2025

5 Developing with the Cúram Universal Access Responsive Web Application 123

Delete a screening form.

POST /ua/filter_screening_form

Starts a new Filter Screening IEG execution based on the Screening Type.

POST /ua/screening_form/exit

Exits the Screening IEG Form.

GET /ua/screening_form/{formId}/results

Get the Screening Results.

Verifications

POST /v1/ua/verifications/link_file

Links an existing file on the system to a specified verification. A link record is created to link the
file and the verification.

GET /v1/ua/verifications

Returns details for all verifications for a specified person or case.

Universal Access passes in the ConcernRoleID for the primary participant, which returns
verifications for all case participants on all active cases where the person is the primary
participant.

GET /v1/ua/verifications/{verificationId}

Returns details for a specified verification.

DELETE /v1/ua/verifications/{verificationId}/file_links/{link_id}

Removes a link between a file and a verification without deleting the file. The link record is
deleted. You can delete the file by using the document service DELETE /v1/dbs/files/
{fileId}
API.

5.13 Developing toast notifications

A toast as a computing term refers to a graphical control element that communicates certain
events to the user without forcing them to react to the notification immediately. In the Cúram
Universal Access Responsive Web Application, we use the design system Alert component
as a base to represent our toast notifications and allow capability to display these notifications
independent of the main display content in any function within the application.

© Merative US L.P. 2012, 2025

Cúram 8.2.0 124

The <Toaster> component

The exposed <Toaster> component is used in App.js and is responsible for rendering
toast notifications retrieved directly from the Redux store. These notifications are displayed
independent of page content. This means that a deeply nested function can be used to display a
notification without regard to the current component render and/or functionality that is used to
navigate to different pages.

The <Toaster> component handles the retrieving of toast slice within the store, and in passing
functionality to remove toast notifications after they are dismissed.

The <Toast> component

The exposed <Toast> is the preferred component to display toast notifications. It accepts
properties as defined by the web design system Alert component, without requiring the need
to specify the component as an Alert and the banner, center, and toast properties. It also
requires a text property to be defined.

The Toaster module

Any component that intends to display a toast notification within it's processing must use the
Toaster module action fillToaster function. This can be either passed to the component
as a property, or connected to the Redux store and defining the action as a property. For more
information, see Universal Access Redux modules on page 94.

© Merative US L.P. 2012, 2025

5 Developing with the Cúram Universal Access Responsive Web Application 125

An example of a page that implements the Toaster module action fillToaster and a service
unavailable toast notification is shown.

import React from 'react';
import { connect } from 'react-redux';
import { ToasterActions } from '@spm/universal-access';
import { Toast } from '@spm/universal-access-ui';

...

/**
 * Updates the Toast slice of Redux store
 * @param {*} dispatch the dispatch function
 */
export function mapDispatchToProps(dispatch) {
 return {
 fillToaster: data => {
 ToasterActions.fillToaster(dispatch, data);
 },
 };
}

class MyComponent extends React.Component {

 ...

 doSomething({ success }) {
 if (success) {
 ...
 }
 else {
 this.props.fillToaster(
 <Toast
 dismissable={false}
 expireAfter={5}
 text="This service is currently unavailable"
 type="danger"
 />
);
 }
 }

 ...

export default connect(
 null,
 mapDispatchToProps
)(MyComponent);

5.14 Localization

You can add languages to the application, and apply regional settings for calendar and date
formats, and for currencies.

Configuring languages in the application

You can add languages to the application or change the default language. You must create a src/
config/intl.config.js file to be read by the src/intl/IntlInit.js component,
which handles storage of the configuration and creates the react-intl IntlProvider.

About this task

Review the src/config/intl.config.js.sample.md file, which contains the
intl.config.js object schema and an example src/config/intl.config.js file.

© Merative US L.P. 2012, 2025

Cúram 8.2.0 126

Translated messages for the default supported languages are provided in the following locations:

• For universal-access-ui components, in the universal-access-ui-locales
package at /node_modules/@spm/universal-access-ui-locales.

• For the core-ui components, in the core-ui-locales package at /node_modules/
@spm/core-ui-locales.

• For the intelligent-evidence-gathering components, in the intelligent-
evidence-gathering-locales package at /node_modules/@spm/intelligent-
evidence-gathering-locales.

© Merative US L.P. 2012, 2025

5 Developing with the Cúram Universal Access Responsive Web Application 127

Procedure

Create a src/config/intl.config.js file with reference to the following example from
the src/config/intl.config.js.sample.md file.

export default {
 defaultLocale: 'en',
 locales: [
 {
 locale: 'en',
 displayName: 'English',
 localeData: () => {
 require('@formatjs/intl-pluralrules/locale-data/en');
 require('@formatjs/intl-numberformat/locale-data/en');
 require('@formatjs/intl-relativetimeformat/locale-data/en');
 }
 },
 {
 locale: 'de',
 displayName: 'German',
 localeData: () => {
 require('@formatjs/intl-pluralrules/locale-data/de');
 require('@formatjs/intl-numberformat/locale-data/de');
 require('@formatjs/intl-relativetimeformat/locale-data/de');
 },
 messages: {
 ...require('@spm/core-ui-locales/data/messages_de'),
 ...require('@spm/intelligent-evidence-gathering-locales/data/messages_de'),
 ...require('@spm/universal-access-ui-locales/data/messages_de')
 }
 },
 {
 locale: 'ar',
 displayName: 'Arabic',
 direction: 'rtl',
 localeData: () => {
 require('@formatjs/intl-pluralrules/locale-data/ar');
 require('@formatjs/intl-numberformat/locale-data/ar');
 require('@formatjs/intl-relativetimeformat/locale-data/ar');
 },
 messages: {
 ...require('@spm/core-ui-locales/data/messages_ar'),
 ...require('@spm/intelligent-evidence-gathering-locales/data/messages_ar'),
 ...require('@spm/universal-access-ui-locales/data/messages_ar')
 }
 },
 {
 locale: 'ht',
 displayName: 'Haitian',
 /*
 Custom locale data
 Where the locale you need to support is not found in the react-intl locale data
 you can create your own locale data to handle this. Simply create an object with the
 locale property. You must include at a minimum the pluralRuleFunction
 See https://github.com/yahoo/react-intl/issues/1050
 */
 localeData: () => {
 return {
 locale: 'ht',
 pluralRuleFunction(arg1, arg2) {
 return arg1 && arg2 === 1 ? 'one' : 'other';
 }
 };
 },
 messages: require('../locale/messages_ht')
 }
]
};

© Merative US L.P. 2012, 2025

Cúram 8.2.0 128

Translating your application
Use react-intl and babel-plugin-react-intl to extract text from your application. You can then
translate the text into another language and include that translation in the application.
Extracting translatable content
You can follow the same method that Merative ™ uses during development to extract the
translatable content from your application.

About this task

react-intl (https://github.com/formatjs/babel-plugin-react-intl) and babel-plugin-react-
intl (https://github.com/yahoo/babel-plugin-react-intl) are used to globalize the application
during development.

Note: react-intl provides React components and an API to format dates, numbers, and
strings, including pluralization and handling translations. babel-plugin-react-intl
extracts string messages from React components that use react-intl.

Procedure

1. Use the react-intl defineMessages API to define the default message string entry
within the application.

2. Add babel-plugin-react-intl version ˆ5.0.0 and its dependencies babel-cli
version ˆ7.0.0 and babel-preset-react-app version ˆ7.0.0 to the application’s
devDependencies.

npm install --save-dev @babel/cli@^7.0.0 @babel/core@^7.0.0 babel-plugin-react-
intl@^5.0.0

3. Add a .babelrc file in the root of your project. Use .babelrc to configure the settings
for the babel-plugin-react-intl as shown in the following example .babelrc file:

{
 "presets": ["react-app"],
 "plugins": [
 [
 "react-intl", {
 "messagesDir": "translations/messages",
 }
]
]
}

4. Add the following line to your package.json "scripts":

“extractTranslations”: "NODE_ENV=production babel ./src >/dev/null"

"extractTranslations": "set NODE_ENV=production&&babel ./src > NUL"

© Merative US L.P. 2012, 2025

https://github.com/formatjs/babel-plugin-react-intl
https://github.com/yahoo/babel-plugin-react-intl

5 Developing with the Cúram Universal Access Responsive Web Application 129

5. Run the following extraction command to extract all translations to the translations/
messages directory, as specified in the .babelrc configuration:

npm run extractTranslations

Including translated content in your application
Merative ™ Cúram Universal Access exposes a src/intl/IntlInit component. This
component reads the configuration provided in the custom src/config/intl.config.js
to seed your application with messages for all the languages that you want your application to
support.

Procedure

1. Ensure that translations are returned for use in your product in the format of a single JSON
file per locale. The JSON file must be in the format that is expected by react-intl, which is
{[id: string]: string}, as shown in the following example:

{

“label1”: “Translated text1“,

“label2”: "Translated text2”,

}

Where id is the ID that is used in your defineMessages entry and subsequent extracted
message ID.

Note: The id in this file format {[id: string]: string} must match the ID that
you define in your code as in the defineMessages structure. For more information, see
https://formatjs.io/docs/react-intl/api/#formatmessag.

This file and its location in the application forms the entry to the messages value with the
intl.config.js for your configured locale, for example:

{
 locale: "de",
 displayName: "German",
 localeData: () => {
 require('@formatjs/intl-pluralrules/locale-data/de');
 require('@formatjs/intl-relativetimeformat/locale-data/de');
 },
 messages: require("../locale/messages_de")
},

2. react-intl also requires that its own locale configuration is provided to support some of
its internal functions. For more information, see https://formatjs.io/docs/react-intl and https://
formatjs.io/docs/polyfills/.

Results

When you have configured it correctly with the src/config/intl.config.js file, the
ApplicationFooter language selection drop-down should expose your new locale selection, it
should also load and apply the configured translation messages to the application.

© Merative US L.P. 2012, 2025

https://formatjs.io/docs/react-intl/api/#formatmessag
https://formatjs.io/docs/react-intl
https://formatjs.io/docs/polyfills/
https://formatjs.io/docs/polyfills/

Cúram 8.2.0 130

Note: If your application does not find messages for the currently selected language at run
time, react-intl defaults to the text of the defaultMessage entry that was used when the
message was defined in the source code.

Translating the multilingual messages for when JavaScript is disabled
The translation process is different for the multilingual messages that are displayed when
JavaScript is disabled in the browser. Because JavaScript is not available, the messages are
implemented in the static index.html file. You must customize this file to include translated
messages for each of your supported languages.

Procedure

1. Open the universal-access-sample-app/public/index.html file and review the
message and the provided languages.

2. Update the message if required and translate the message into all of your supported languages.
3. Edit the universal-access-sample-app/public/index.html file, and follow the

provided format to add messages.

<noscript>
 <div lang="en">
 <h1>
 <svg" focusable="false" aria-hidden="true"><use xlink:href="../../dist/
icons/icon-sprite-sheet.svg#info-16"></use></svg>
 JavaScript is switched off in your browser</h1>
 <p>To use this service, you must enable JavaScript in your browser setting and
 try again.
 For instructions to enable JavaScript, check your browser support website.</
p>
 </div> ...
 </noscript>

Screen readers that switch language profiles use the lang attribute to provide the correct
accent and pronunciation. Most language tags consist of a two- or three-letter language
subtab, often followed by a two-letter or three-digit region subtag. For information about
choosing a language tag, see Choosing a Language Tag.

4. To change the style of the messages, update the noscript.css file that is referenced in the
header.
For more information about styling the application, see Customizing the color and typography
of the application on page 134.

Regional settings

The universal-access module and its components respect the regional settings that are defined in
Cúram to ensure your application is synchronized with the Cúram instance on which it depends.

Regional settings for currencies, and for calendar and date formats in the user interface, are
defined inCúram.

For more information about regional settings, see the Regionalization Guide.

© Merative US L.P. 2012, 2025

https://www.w3.org/International/questions/qa-choosing-language-tags

5 Developing with the Cúram Universal Access Responsive Web Application 131

5.15 Customizing the application

As a developer, use these simple scenarios to learn how customize the Merative ™ Cúram
Universal Access Responsive Web Application.

The first scenario shows how to change default text on the My Details page. Each subsequent
scenario adds to the previous one to build out new content in your application.

Note: Follow the scenarios in sequence. If you start in the middle of the scenario list, you
might have to go back through previous scenarios.

Changing text in the application

You can change the default text, images, colors, or typography in the application. In this scenario,
an English language message is changed. Text is changed by providing custom text that overrides
the default text for any language.

Before you begin

You can find text in the application components and in IEG forms.

• Text in IEG scripts. For more information, see the Working with Intelligent Evidence
Gathering (IEG) Guide.

• Text in IEG configuration settings. For more information, see the Authoring Scripts using
Intelligent Evidence Gathering Guide.

About this task

Message or text strings in the application use the react-intl package, which supports
globalization of React applications. react-intl allows the messages to be extracted and
translated to other supported languages, it can also add placeholders for data.

To change the existing text of any of the languages that are provided by Merative ™, you must
provide a custom version of the message that is mapped to the same message id.

Procedure

1. To change an English language message, find the ID of the message you want to replace. In
your project, go to /node_modules/@spm/universal-access-ui/locale.
a) The locale folder contains message files for each supported locale. For your chosen

language, search the appropriate message_xx.json for the text string that you
want to replace. For example, to change the English text Apply for a benefit, search
messages_en.json for that string as shown in the following example. If there is more
than one instance of the string, you must find the correct message ID for the text you want

© Merative US L.P. 2012, 2025

Cúram 8.2.0 132

to change. The simplest way to find the correct instance is to try replacing each ID one by
one, reloading the page each time to see whether the new string is displayed.

"System_Messages_Alert_Description": "System messages alert description",

"Payments_NoPaymentMessages": "No payment messages",

"Payments_ApplyForABenefitLink": "Apply for a benefit",

"TODO_NoTODOMessages": "No to-dos",

"TODO_CaseworkerMessage": "Your caseworkers can create to-dos for you.",

"Meetings_NoMessages": "No meetings",

b) For the Apply for a benefit string, use the associated ID
"Payments_ApplyForABenefitLink" to override the message in your custom
messages_en.json.

2. Create a custom message file by creating a messages_en.json file in the src/locale
folder. Custom messages are injected into the application at application start. For more
information, see 5.14 Localization on page 125. By default, the starter application provides
a locale folder from where custom messages files are automatically loaded. You can add your
custom file to this folder: src/locale.

3. To replace the message, create a new id:message mapping in your custom message file by
using the same ID value as shown in the following example.

"Payments_ApplyForABenefitLink": "Click here to apply for a benefit",

4. Update the src/config/intl.config.js file in the English locale to point to the custom
messages file.

// [...]
 {
 locale: 'en',
 displayName: 'English',
 localeData: () => {
 require('@formatjs/intl-pluralrules/locale-data/en');
 require('@formatjs/intl-relativetimeformat/locale-data/en');
 },
 messages: require('../locale/messages_en'),
 },
// [...]

Related concepts
Localization on page 125
You can add languages to the application, and apply regional settings for calendar and date
formats, and for currencies.

© Merative US L.P. 2012, 2025

5 Developing with the Cúram Universal Access Responsive Web Application 133

Customizing images, fonts, and files
As the Cúram Universal Access Responsive Web Application is based on create-react-
app, you can follow one of their standard approaches for adding images, fonts, fonts and files,
depending on whether you are adding images for IEG scripts.

For the application in general, you can co-locate the image or file with the component that
requires the resource, then import this resource within the component as follows:

import React from 'react';
import image from './image.png';

const Component = () => {
 return ;
};

export default Component;

For more information, see Adding Images, Fonts, and Files in the create-react-app
documentation.

Adding images for IEG scripts

Some IEG <Text> elements support rich text content that might include HTML tags. If you need
to add an image as part of the text, the URL of the image must target to a resource in the public
folder of the application, for example:

• Create an img folder in the public directory of your application. The relative path should look
like this universal-access-sample-app/public/img.

• Store the image in the img folder, for example universal-access-sample-app/public/
img/image.png.

• Define an IEG text element in the script, for example <display-text
id="DisplayText.Image"/>.

• Define the content of the property as an HTML image tag in the property file :

DisplayText.Image=

Where the src path points to the folder created on the public folder.

Images added in this way are not sized to device screen sizes, therefore take a mobile-first
approach when adding images to IEG Scripts.

For more information about adding resources to the public folder, see Using the Public Folder
in the create-react-app documentation.

© Merative US L.P. 2012, 2025

https://facebook.github.io/create-react-app/docs/adding-images-fonts-and-files
https://facebook.github.io/create-react-app/docs/using-the-public-folder

Cúram 8.2.0 134

Customizing the color and typography of the application
You can customize the color scheme and typography of your application to help users recognize
and trust that they are interacting with the correct agency or organization. This can be achieved in
several ways, as explained in the next sections. Do not modify CSS files directly.

Note: The styling process is different for the multilingual messages that are displayed when
JavaScript is disabled in the browser. Because JavaScript is not available, the messages are
implemented in the static index.html file. To change the style of those messages, update the
noscript.css file that is referenced in the header. See Translating the multilingual messages
for when JavaScript is disabled on page 130.

Sass

The design system uses the Sass CSS preprocessor. The Sass files are compiled into CSS at build
time and your application uses the transpiled CSS.

The file structure of the starter pack

The starter pack is configured to use Sass. The relevant files are in a /css and /sass folders
under the /src folder in the file structure.

.
├── src
| └── css
| | └── styles.css // transpiled output, do not modify
| └── sass
| | └── customVariables.scss
| | └── styles.scss

Note: The contents of the /css folder are generated at build time. Don't directly edit any files
inside the /css folder.

You must edit the Sass files to make style changes. You can write CSS into these files if you don’t
want to use Sass features or are more familiar with CSS. By default, the Sass folder contains two
files:

• styles.scss - Use this file to import the design system stylesheets and all other styles that the
app might use.

• custom-variables.scss - Customize the file by overriding the design system variables values
with your intended values.

© Merative US L.P. 2012, 2025

5 Developing with the Cúram Universal Access Responsive Web Application 135

Customization can be achieved by adjusting the Sass variables directly. While this technique
is supported, customization of color schemes should be implemented using the ThemeBuilder
provided in the Design System Storybook tool.

// sass/custom-variables.scss
// Sass Variables - Previous method
@use '@govhhs/govhhs-design-system-core/src/stylesheets/govhhs-wds' as * with (
 $color-primary: your-custom-color-hex1,
 ...
);
// Design Token theming - Recommended method
[data-wds-theme='default'] {
 --cds-background: your-generated-color-hex1;
 --cds-background-brand: your-generated-color-hex2;
 ...
}
-

Design Tokens

Design tokens are a series of CSS, not Sass variables that are re-used throughout the Design
System to give consistent styling across components.

Each token represents a design decision, has a specific role, and has a relationship with other
design tokens. The design tokens are implemented using CSS Custom Properties. The tokens can
be customized to change the color scheme of the Design System. The full list of tokens can be
seen in the ThemeBuilder discussed below.

ThemeBuilder

The Design System ThemeBuilder tool comes with the Design System Storybook documentation.
The Storybook documentation can be located in the /docs folder of the Universal Access
Responsive Web Application asset.

The ThemeBuilder applies selected colors to a custom theme configuration but still maintains the
relationships between the underlying Design Tokens. As a result, the ThemeBuilder maintains the
accessibility of the UI.

The relationship between the underlying Design Tokens is consistent as the selected colors are
derived to respect the luminance stops of the colors being replaced. Controlling the relative
brightness and luminance enforces color contrasts between the design tokens ensuring color
schemes meet accessibility guidelines.

Themes used in the Design System are used to globally modify existing components or sections
of a page to fit a specific visual style.

If changing the color scheme of your application it is strongly recommended that you use the
ThemeBuilder to achieve this.

ThemeProvider

The Theme Provider tool comes with the Design System Storybook documentation. The
Storybook documentation can be located in the /docs folder of the Universal Access
Responsive Web Application asset.

The ThemeProvider is used in conjunction with the ThemeBuilder to implement inline theming
where a page or a section of a page is styled with a particular theme that differs from the base

© Merative US L.P. 2012, 2025

Cúram 8.2.0 136

theme. You might apply a scheme when your branding needs require different patterns of color
application, for example a light theme with a dark header.

Sass variables

As discussed above, the ThemeBuilder is the recommended approach for customizing the color
scheme in your application. However, using Sass variables to customize the application is also
supported.

You can use Sass to declare variables in CSS. Variables can be defined for colors, spacing, and
typography in a single place and reused throughout the Design System stylesheets. The complete
set of predefined variables can be viewed in the file

node_modules/@govhhs/govhhs-design-system-core/src/stylesheets/core/_variables.scss

If changing the color scheme for your application using the Sass variables technique, you should
ensure that color contrast values meet guidelines for accessibility. For users with low vision, low-
contrast text is difficult or impossible to read. For more information about color contrast and
testing your color scheme, see the Text elements must have sufficient color contrast against the
background in the WCAG guidelines and consider the user of color contrast analysis tools.

Changing the color pallet with Sass variables

Define the –darker, the -darkest, the light, and the lightest variants by using the lighten or the
darken Sass utilities.

$color-primary-darker: darken($color-primary, 10%);
$color-primary-darkest: darken($color-primary, 20%);
$color-primary-light: lighten($color-primary, 10%);
$color-primary-lightest: lighten($color-primary, 50%);

Or by hard-coding your new values.

$color-link: #2b4380;
$color-link-hover: #0535d2;
$color-visited: #7834bc;

Changing typography with Sass variables

Typography can be changed using the maps for the associated variables.

// Body font map
$body-font: (
'font-size': 20px,
'line-height': 33px,
'font-weight': 400
);
//Small font map
$small-font: (
'font-size': 16px,
'line-height': 26px,
'font-weight': 400
);

Custom styles

Custom styling outside of Design Tokens is not recommended. However, it can be achieved by
creating a custom file in the Sass folder. For example, my-custom-styles.scss. This file can be

© Merative US L.P. 2012, 2025

https://dequeuniversity.com/rules/axe/2.2/color-contrast
https://dequeuniversity.com/rules/axe/2.2/color-contrast

5 Developing with the Cúram Universal Access Responsive Web Application 137

imported into the styles.scss file. The order of the style import matters, import the new file
after the design system styles in the following order:

Adding content to the application

Build on the text change scenario from Changing application text to add a route. You also add
content that is displayed when the route is loaded.

Before you begin
If you are not familiar with React and React Router, you must take a basic course in building a
web application with React and React Router.

The term "feature" refers to the content that is displayed when a route is loaded, this content is
what citizens see on the user interface. A feature is an abstraction that includes all the content that
comes together to create the user experience. A feature can be a collection of JavaScript™ files,
JSON files, and APIs that work together to generate the user experience. The term "feature" can
be referred to as a page, view, or component in other application environments.

This scenario adds a feature that presents a logged-in person's details in the main content area
when a /person URL is loaded. This scenario is built on in later scenarios by calling APIs, by
using client-side stores, error handling, or globalization.

About this task

When you extend the Merative ™ Cúram Universal Access reference application, you might want
to introduce new content that is displayed when citizens click a link.

Procedure

1. Create the content for the feature, take the following steps:
a) Create a folder called features under the /src folder in your project
b) Create a person subfolder and create PersonComponent.js in the folder.

src/features/Person/PersonComponent.js

c) Add some HTML to display when the component is loaded. The following example
displays some data that is returned by an API:

import React from 'react';

const Person = () => { return (
 <div>
 <h1>James Smith</h1>
 <h2>Gender: Male</h2>
 <h2>Born: April 1st 1996</h2>
 </div>
)};
export default Person;

2. Add a route to link to your feature, take the following steps:
a) Declare an associated URI for each feature in the application. The URI allows React to

present the feature when the URI is requested in the browser. This technique is standard
'React Routing' for displaying features. For more information about routes, see 5.11

© Merative US L.P. 2012, 2025

Cúram 8.2.0 138

Developing with routes on page 106. Add a simple component that displays when the
route is loaded:

1. Open routes.js in your project.
2. Import a Person component from the folder features/person.
3. Add a "/person" route that loads the Person component as shown in the following

example:

import React from 'react';
import { Route, Switch } from 'react-router-dom';
import { Routes as UARoutes } from '@spm/universal-access-ui';
import Person from './features/PersonComponent'

export default (
 <Switch>
 <Route path="/person" component={Person} />
 <UARoutes />
 </Switch>
);

3. Load the new feature by using the route, take the following steps:
a) Run your application, enter the following command:

npm run start

b) Start a browser and enter the full URL for the feature, for example: http://localhost:8888/
person

Results

When the application loads, the person details are displayed in the main content area.

Related concepts
Developing with routes on page 106
Routes define the valid endpoints for navigation in your application. Your application consists of
a network of routes that can be traversed by your users to access the application's pages.

Styling content with the Social Program Management Design System

Build on the route and person content scenario that you added in Adding content to the
application by styling the content of a person's details.

Before you begin
The Cúram Design System is a design framework that helps you to build a cohesive and
consistent application. By selecting components from a design catalog and applying design
principles, design and development is faster and user experience is improved.

About this task

The full catalog of Social Program Management Design System components, including
descriptions of when and where to use them, is documented in the govhhs-design-system-react
package. You can access these packages through index.html file in /node_modules/
@govhhs/govhhs-design-system-react/docs. This scenario uses a number of Social
Program Management Design System components to improve the person feature.

© Merative US L.P. 2012, 2025

http://localhost:8888/#/person
http://localhost:8888/#/person

5 Developing with the Cúram Universal Access Responsive Web Application 139

Procedure

1. Import contents from the Social Program Management Design System. Enter the following
command to import the Avatar and MediaObject components from the package @govhhs/
govhhs-design-system-react:

import {Avatar, MediaObject} from '@govhhs/govhhs-design-system-react'

2. Update PersonComponent.js to use the Grid, Column, Card, MediaObject, Avatar, and
List components to display the person's details. You can also include an address in a separate
card.

Use the following code to replace the previous PersonComponent.js:

import React from 'react';
import {Grid, Column, Card,CardBody,CardHeader, List, ListItem, Avatar,
 MediaObject } from '@govhhs/govhhs-design-system-react'

const avatarMediaJames = <Avatar initials="JS" size="medium" tooltip="profile
 photo" />;
const Person = () => {
 return (
 <Grid className="wds-u-p--medium">
 <Column width="1/2">
 <Card>
 <MediaObject media={avatarMediaJames} title="James Smith">
 <List>
 <ListItem>Gender: Male</ListItem>
 <ListItem>Born: April 1st 1996</ListItem>
 </List>
 </MediaObject>
 </Card>
 </Column>
 <Column width="1/2">
 <Card title="Address">
 <CardHeader title="Address"/>
 <CardBody>
 <List>
 <ListItem>1074, Park Terrace</ListItem>
 <ListItem>Fairfield</ListItem>
 <ListItem>Midway</ListItem>
 <ListItem>Utah 12345</ListItem>
 </List>
 </CardBody>
 </Card>
 </Column>
 </Grid>
)};
export default Person;

3. Save PersonComponent.js.

Results

When you reload the application, you see the updated application style.

Changing the application header or footer

Build on the styling scenario from Using the Social Program Management Design System to style
content by adding a link to the application header or footer.

Before you begin

For more information about the application header and footer, see the Universal Access
Responsive Web Application Guide.

© Merative US L.P. 2012, 2025

Cúram 8.2.0 140

To customize the header, you must create your own custom version. To keep this scenario brief,
work on the header only and copy the existing header from universal-access-ui. Make some
small changes to the header to show how it can be customized. Alternatively, completely replace
the header or footer with your own version.

About this task

Change the application header to include a new link that to take you to the My Details page.

Procedure

1. Copy the Universal Access header by copying the node_modules/@spm/universal-
access-ui/src/features/ApplicationHeader folder to src/features.

2. Fix any broken imports. Take the following steps:
a) Use ESLint or a similar linting tool to find any errors where imports are not found.

Note: If you do not use a linting tool, you get build errors.

b) Errors are generated because the universal-access-ui uses relative paths when it
imports dependencies from its own project. For imports that are within the universal-
access-ui module, but outside the features/ApplicationHeader folder, you
must change the imports to reference the official exported version of those dependencies
from the universal-access-ui node module.

c) For each import that is not resolved, find the equivalent export in the universal-
access-ui package. Inspect node_modules/@spm/universal-access-ui/
src/index.js to find the list of exported artifacts and their exported names.

The Paths module is referenced in the ApplicationHeader by using the default
import from a relative path as shown in the following example: import PATHS from
'../../router/Paths' Amend module as shown in the following example: import
{ Paths } from 'universal-access-ui'

d) Repeat this procedure for all the files in the ApplicationHeader folder, some of
the imports of 'Paths', and for some other references such as 'ErrorBoundary' and
'AppSpinner'.

3. Replace the existing header with your custom version, take the following steps:
a) Open src/App.js file and remove the imported ApplicationHeader from

universal-access-ui.
b) Import your cloned version from ./features/ApplicationHeader as shown in

the following example:
import ApplicationHeader from './features/ApplicationHeader';

Import ApplicationHeader as a default import, without curly brackets, rather than a
named import. Alternatively, you can add a named export to your ApplicationHeader
feature.

4. Update the header feature to include a tab that loads the /person page take the following
steps:
a) Open constants.js in src/features/ApplicationHeader/components.

constants.js defines an object that represents a navigation item for the header.

© Merative US L.P. 2012, 2025

5 Developing with the Cúram Universal Access Responsive Web Application 141

b) Add and entry for the new page My Details as shown in the following example:

/**
 * Application navigation header tabs.
 */
const NAVIGATION_HEADER_TABS = {
 ...

 PROFILE: { NAME: 'PROFILE', ID: 'navigation-profile' },
 CHANGE_PASSWORD: { NAME: 'CHANGE_PASSWORD', ID: 'navigation-change-password' },
 MYDETAILS: { NAME: 'MYDETAILS', ID: 'my-details' },

};

c) Open ApplicationHeaderLogic.js. ApplicationHeaderLogic.js.
contains the logic that tracks which tabs are selected so they can be highlighted as active.

d) Update the isTabActiveForUrlPathname function to include the new My Details page
in the Your Account section. For brevity, the value is hardcoded in the following example.
However, you can replicate the pattern that is used by the universal-access code to
add it to Paths.

const isTabActiveForUrlPathname = (urlPathname, navigationTabName) => {

 ...
 switch (navigationTabName) {
 case FIND_HELP.NAME:
 return (
 urlPathname === Paths.HOME ||
 urlPathname === Paths.APPLY ||
 urlPathname === Paths.BENEFIT_SELECTION ||
 urlPathname === Paths.APPLICATION_OVERVIEW
);
 case YOUR_ACCOUNT.NAME:
 return (
 urlPathname === Paths.ACCOUNT ||
 urlPathname === Paths.BENEFITS ||
 urlPathname === Paths.PAYMENTS.ROOT ||
 urlPathname === Paths.PAYMENTS.DETAILS ||
 urlPathname === '/person'
);

Open ApplicationHeaderComponent.js, which renders the header, and find the
PrimaryNavigation component.

e) Add a tab called 'My Details' with a link to the person feature inside
ApplicationHeaderComponent.js. For brevity, the example is hardcoded values,

© Merative US L.P. 2012, 2025

Cúram 8.2.0 142

but you can replace these values with variables. If you want, you can also globalize the
tab.

..

<PrimaryNavigation>
 <Tabs>
 ...

 <Tab
 id={NAVIGATION_HEADER_TABS.YOUR_BENEFITS.ID}
 href={HASH_SYMBOL + LOCATIONS.BENEFITS}
 label={formatMessage(translations.headerYourBenefitsLabel)}
 />
 <Tab
 id="person_tab"
 href="/person"
 label="My Details"
 />
 </Tabs>
 ...
</PrimaryNavigation>

...

5. Save your file and restart the application.
6. You can modify the application footer in the same way by replacing the universal-

access-ui version in src/App.js with your own custom version.

Results

Go to the home page. A new tab that is called My Details is in the primary navigation area. When
you select My Details, the person feature is loaded in the main content area.

Related reference
Customizing headers and footers on page 142
Merative ™ Cúram Universal Access contains a predefined header and footer. You can customize
your application headers and footers by replacing the sample components with your own custom
versions.

Customizing headers and footers
Merative ™ Cúram Universal Access contains a predefined header and footer. You can customize
your application headers and footers by replacing the sample components with your own custom
versions.

Headers and footers

The header and footer contain content such as links, Log in, and Sign up buttons, and menus for
logged-in users.

The App.js file in the universal-access-sample-app module, reuses the sample
ApplicationHeader and ApplicationFooter components that are provided by the universal-access
module by placing them above and below the main content of the application:

© Merative US L.P. 2012, 2025

5 Developing with the Cúram Universal Access Responsive Web Application 143

App.js

 <BrowserRouter>
 <ScrollToTop>
 <div className="app">

 {formatMessage(translations.appSkipLink)}

 <Route path="/" component={ApplicationHeader} />
 <main id="main-content" className="main-content">
 <Content>{routes}</Content>
 </main>

 <ApplicationFooter />
 </div>
 </ScrollToTop>
 </BrowserRouter>

Header

Typically, an application header has two views. One view has items relevant to users who are
not logged in or signed up, for example a Sign Up button. The second view shows items that are
relevant to users who are signed up and logged in, for example an Update your profile button.

To facilitate the separate views, use a react-router-dom Route component. The App.js sample
demonstrates wrapping the ApplicationHeader component in a Route component and passing
Route information to the ApplicationHeader. This allows the ApplicationHeader to query the
Route properties and decide what to display based on the current location in the application. For
example, you might want to show a different view for the login page route (‘my-app-domain/
login’) from the application home page route (‘my-app-domain/’).

© Merative US L.P. 2012, 2025

Cúram 8.2.0 144

The following code sample shows how the ApplicationHeader queries its location property to
find out what page the application is displaying. The sample code then uses this information to
decide what to show in the header.

get isOnLoginPage() {
 return this.props.location.pathname === '/login';
}

render() {
 return (
 <Header
 title={this.pageTitle}
 type="scrollable"
 logo={<img src={logo}
 alt="agency"
 id={this.props.loggedInUser} />}>
 <PrimaryNavigation type="scrollable">
 <TabList scrollable>
 <Tab
 id="tab1"
 href="/"
 text={
 this.props.intl.formatMessage(translations.headerHomeLabel)}/>
 <Tab
 id="tab2"
 href="/my-applications"
 text={this.props.intl.formatMessage(
 translations.headerBenefitsLabel)}/>
 </TabList>
 </PrimaryNavigation>
 <SecondaryNavigation type="Scrollable"/>

 {/* Show signed out menu */}
 {!this.isOnLoginPage &&
 this.props.loggedInUser === null &&
 !this.isUserProfileLoaded &&
 this.signInMenu}

 {/* Show signed in menu */}
 {this.props.loggedInUser &&
 this.isUserProfileLoaded &&
 this.profileMenu}
 </SecondaryNavigation>
 </Header>
);
 }

Login and sign up in the header

If you are building your own customer header, you must identify which page you are currently
displaying the Header on, you must also differentiate between logged in and logged out users.
Whether a user is logged in or out can be determined by using the authentication API provided by
the universal-access module. The Authentication API provides functions to allow you to log in
and out of the application, and also allows you to query if a user is logged in and who that user is.
For more information, see 5.12 Connecting to Universal Access REST APIs on page 111.

The following code sample shows how the ApplicationHeader uses the Authentication API. In
this function, a check is made to see whether a user is logged in before it loads that user's profile.
The user's profile is needed to display the user's full name in the header.

fetchProfile() {
 if (Authentication.isLoggedIn() && !this.isUserProfileLoaded) {
 this.props.loadProfile();
 }
}

© Merative US L.P. 2012, 2025

5 Developing with the Cúram Universal Access Responsive Web Application 145

Footer

You can add a footer to the bottom of the application page in the same way as you add the header
to the top of the page. The universal-access module provides a sample application footer that is
used in the universal-access-sample-app, see the App.js sample. The sample footer is static and
does not change based on the location or the authentication state, however the footer can be made
dynamic by following the example from the header.

Creating an Cúram REST API

Build on the scenario from Changing the application header or footer, use a REST API to get
data to your application.

About this task

The most common way to get data to your application is to use a REST API to receive the
requested data as a JSON string that your application then parses and renders. Cúram provides
development tools and the runtime infrastructure that you can use to build and deploy a REST
API with your Cúram server. The REST API can be called by using standard HTTP verbs such
as GET, POST, and DELETE. The REST API returns data as a JSON string in the response body.
For more information about REST APIs, see the Cúram™ REST API Guide.

Connecting to REST APIs from the application

Build on the Cúram REST API that you created in the scenario Creating an Cúram REST API by
calling it from your application.

About this task

Features in your application rely on passing data to and from the Cúram server or another service.
The reference application already consumes a number of Universal Access APIs to support
business features.

This scenario updates the person feature to read the data from an API instead of just displaying
hardcoded values. The scenario shows you how to create and use the following items:

• Use the RESTService utility to helps you call APIs.
• Use the mock server to show you how to create a mock API so you can quickly develop your

feature without spending time building and deploying the real API that it eventually uses.
• Connect your application to a Cúram development environment that hosts the APIs by using

Tomcat to enable real integration testing in the development environment.

Procedure

1. Create a mock API by completing the following steps:
a) In your project, open /mock/apis/mockAPIs.js.

The mock server consumes mockAPIs.js, it contains the mappings from APIs to the
mock data. The mock server uses this information to provide the correct data when an
API call is made in development mode. mockAPIs.js also contains an import from the

© Merative US L.P. 2012, 2025

Cúram 8.2.0 146

universal-access-ui package and assignments for GET, POST, and DELETE APIs as
shown in the following example:

const mockAPIs = require('@spm/universal-access-mocks');

// Extract the existing universal access GET,POST and DELETE mocks for merging.
const UAMockAPIsGET = mockAPIs.GET;
const UAMockAPIsPOST = mockAPIs.POST;
const UAMockAPIsDELETE = mockAPIs.DELETE;

Use these APIs to test the Universal Access application. For more information, see The
mock server API service on page 112.

b) To add more mock data, add your mocks to the placeholders provided. This scenario adds
the person data for a person James Smith that is returned when the '/person' path is
loaded.

c) Add an object in mockAPIs.js to represent James Smith. For simplicity, do not
normalize the dates, or use code tables, later scenarios show you how to globalize and
handle code tables.

const user = {
 firstname: 'James',
 surname: 'Smith',
 dob: 'April 1st 1996',
 gender: 'male',
 address: {
 addr1:'1074, Park Terrace',
 addr2:'Fairfield',
 addr3:'Midway',
 addr4:'Utah 12345',
 }
}

d) Include a value for the URI '/user' in the mockAPIsGET object to return the mock
object as shown in the following example:

const mockAPIsGET = {
 '/user': user,
}

The new '/user' mock API is merged with the mocks from universal-access-ui
and is deployed by the mock server on port 3080.

e) Test that the new API is working, start the application by using npm start.
f) Using the browser, load the /person URL: http://localhost:3080/person. If successful, the

browser displays the response.
2. Use the RESTService utility from the core package to make an Ajax call to the API.

You can use many agents to make Ajax calls. The RESTService utility uses Superagent. The
RESTService utility handles the following functions:

• Authentication credentials are automatically handled for each call, and users are redirect to
log in when appropriate.

• The user's locale is passed to ensure that the response is in the correct locale.
• Timeouts are managed with environment variables in the .env file.
• Errors are captured and thrown in a standard fashion so that the error handling

infrastructure is invoked.

© Merative US L.P. 2012, 2025

http://localhost:3080/person

5 Developing with the Cúram Universal Access Responsive Web Application 147

For more information about the RESTService utility, see The RESTService utility on page
113.

3. Open PersonComponent.js file. Make the following changes, checking that your
application still displays the page after each step:
a) To enable lifecycle methods that are required to manage the API calls, convert the old

stateless component to a stateful React.Component class:

Old stateless Person component

const Person = () => {
 return (
 <JSX code here>
);
}

Updated stateful Person component

class Person extends Component {
 render(){
 return (
 <JSX code here>
)};
}

b) Create local state to hold the API data.

The local state stores the values returned by the API that drive the render function.
Whenever the state is updated, the component re-renders to reflect the state change. For
this scenario, hardcode the values for the state in your class constructor so that something
is displayed on the page. To differentiate between this temporary default data and the API
data, change the firstName to 'Roger'. Later, when you introduce the API, the data
for 'James' is returned from the API and not the default state as shown in the following
example:

constructor(props) {
 super(props);
 this.state= {
 user : {
 firstName:'Roger',
 surname:'Smith',
 dob:'April 1st 1996',
 gender: 'Male',
 address: {
 addr1:'1074, Park Terrace',
 addr2:'Fairfield',
 addr3:'Midway',
 addr4:'Utah 12345',
 }
 }
 }
}

c) Convert all hardcoded references to use the values from the state.

© Merative US L.P. 2012, 2025

Cúram 8.2.0 148

Now that you have a state object, replace all hardcoded values with references to the state.
Replace each hardcoded piece of data with a state reference {this.state.user.X}.
Examples are as follows:

...

class Person extends Component {
 render(){
 return (
 ...
 <Card>
 <MediaObject media={avatarMedia}
 title={this.state.user.firstName}>
 <List>
 <ListItem>Gender: {this.state.user.gender}</ListItem>
 <ListItem>{this.state.user.gender}</ListItem>
 </List>
 </MediaObject>
)};
 ...
}
...

d) Import the RESTService utility.

To call an API, you must invoke one of the methods of the RESTService utility. First you
must import it from the core package:import { RESTService } from '@spm/core'

e) Create a componentDidMount method to invoke the API call.

When your component is mounted by React, the componentDidMount function is
invoked. In componentDidMount the API call can be made to populate the component
state. Update your constructor to set the user values to blank when initializing, this setting
ensure that your data is being loaded from the API. Then, add the following code to your
Person component. The root location of the API is taken from the values set in your
.env.development file when in development mode. In production mode, it is taken
from the .env file.

The .env.development file specifies the mock server URL as
REACT_APP_REST_URL, which has the value http://localhost:3080/ where the mock
server is deployed. You can use this environment variable to prepend the /user API.

The RESTService API accepts a URL and a callback function as parameters. In the
following code, the callback function is passed as an anonymous function in the second
parameter. The 'success' is checked, before the state is updated with the response.

© Merative US L.P. 2012, 2025

http://localhost:3080/

5 Developing with the Cúram Universal Access Responsive Web Application 149

Note: Error scenarios are not handled in this code. The Handling failures in the
application on page 151 scenario contains details about failure responses, 'Error
Boundaries', and failure handling.

componentDidMount() {

 const url = ${process.env.REACT_APP_REST_URL}/v1/user;

 const user = RESTService.get(url, (success, response) => {

 if (success) {

 this.setState((user: response));

 }

 });

 }

Results

Start your application, log in and select the My Details tab. The tab loads using data that is pulled
from the /user API.

The REACT_APP_REST_URL environment variable that is defined in the .env and
.env.development files determines where the API is served. In development mode, the
API calls the mock server. In production mode, the API calls the Cúram server that hosts the
application REST APIs. You can seamlessly switch between development and production,
assuming the contract remains the same between your mock and real APIs. That is, that the JSON
structure matches in both.

Related reference
Handling failures in the application on page 151
Handle any failures that you find when you did integration testing in the Developing with Cúram
APIs by using Tomcat scenario.

Testing REST API connections with Tomcat

Build on the scenario in Calling an API from the application. Do your integration testing with the
real Cúram APIs instead of the mock APIs in your Universal Access client.

Before you begin
You must be familiar with the Cúram development environment, the development of REST APIs,
and the Merative ™ Cúram Universal Access development environment.

This scenario uses IP address 192.1.1.1 to represent the development computer for the Cúram
server, and 192.9.9.9 for the computer that hosts the Universal Access client. However, you can
use the same computer with the same IP address. Replace this address with the IP address of your
development computer.

© Merative US L.P. 2012, 2025

Cúram 8.2.0 150

About this task

The mock server is hosted on the same domain as the application during development http://
localhost. However, when your APIs are served from a different domain, you might encounter
Cross Origin Resource Sharing (CORS) issues. You can use Tomcat to configure your Universal
Access client and Merative ™ Cúram Universal Access server to allow Cross Origin requests.
To overcome the CORS issues, the REST toolkit uses a filter that provides the required HTTP
headers to allow browsers to accept responses from a different domain. In this scenario, the
domain is where the REST application is deployed.

Procedure

1. Configure the Cúram server, take the following steps:
a) In your development environment, add the following properties to

Bootstrap.properties and set the hostname/ipaddress of the computer where the
Universal Access client is to be deployed:

• curam.rest.refererDomains = 192.9.9.9

• curam.rest.allowedOrigins = 192.9.9.9

Note: If you develop the server and client on the same computer, you can use
"localhost".

The property curam.rest.allowedOrigins is the Origin value in the
CORS headers. Both properties can have comma-delimited domain names, for
example, curam.rest.allowedOrigins = 192.9.9.9, 192.9.9.8,
mymachine.mycorp.com to allow multiple domains to access the Cúram application.

b) Set the CATALINA_HOME environment variable to the location of your Tomcat installation.
For example, on Windows™ set the following variable: ‘set CATALINA_HOME=C:
\DevEnv\7.0.1\tomcat’

c) Build Cúram by using the appbuild server, database, client, and other components.
d) Run an extra target appbuild rest to create the REST project in your EJBServer

\build\RestProject\devApp directory.
e) Copy Rest.xml into your Tomcat conf/localhost folder. For more information

about building Cúram APIs, see the Cúram™ REST API Guide.
f) Start the server, RMILoginClient, and Tomcat in the normal way for Cúram.

The REST client starts automatically. When the client is running, the APIs are accessible
in the /Rest base path, for example: http://192.1.1.1:9080/Rest/<myapi>.

2. Configure the Universal Access client by completing the following steps:
a) Modify the following environment variable in the .env.development file in the root

of the application to point to the REST URL on Eclipse/Tomcat as shown in the
following example:

REACT_APP_REST_URL=http://192.1.1.1:9080/Rest

© Merative US L.P. 2012, 2025

http://localhost
http://localhost

5 Developing with the Cúram Universal Access Responsive Web Application 151

Note: If you develop the server and client on the same computer, you can use
"localhost".

If you want to connect to an application on WebSphere® Application Server, you must
change "http" to "https" and update to the correct port. 9044 is the default port.

b) Build the application, enter the following command: npm run build.
c) Start the application, enter the following command: npm run start.

Results

Your Universal Access client application now communicates with the REST API that is deployed
on Eclipse with Tomcat.

Note: Run the application in debug mode so it stops at breakpoints in the application code.

Handling failures in the application

Handle any failures that you find when you did integration testing in the Developing with Cúram
APIs by using Tomcat scenario.

Before you begin

You should build fault-tolerant web applications because, for example, web services such as a
REST API are never fully reliable. When handling the expected response, the application must
also allow for failures, such as network outages, timed out responses, internal server errors, or
software bugs.

Universal Access ErrorBoundary component

According to React, "Error boundaries are React components that catch JavaScript™ errors
anywhere in their child component tree, log those errors, and display a fallback UI instead of the
component tree that crashed."

An error boundary component is a React component that implements the componentDidCatch
lifecycle method. For more information about error boundaries, see https://reactjs.org/

The @spm/core-ui package exports a reusable ErrorBoundary component. The default
behavior of the component is to handle error scenarios by replacing the failing component with a
generic message.

Note: Authentication errors have a specific handler in the ErrorBoundary component.
If the error object that is received by the componentDidCatch method contains a status
attribute with a value of '401' (Unauthorized error), then the client forces a log-out in the client
application. Citizens are automatically redirected to the Log in page, so they can revalidate
and return to the page they were previously on. This situation typically happens if the session
times out or is invalidated on the server. The source code for the ErrorBoundary component
is available in the @spm/core-ui package.

© Merative US L.P. 2012, 2025

https://reactjs.org/

Cúram 8.2.0 152

This scenario shows API error handling in the My Details page where the API call fails. This
scenario also shows how to use the ErrorBoundary component to provide a better user
experience when failures occur.

Error boundaries in the Universal Access application

The Universal Access starter pack contains the following two error boundaries:

• The first wraps the entire application to capture errors that might occur when loading the
header or footer.

• The second wraps the main content to capture errors that are raised from components that are
loaded in the main content section.

The error boundaries are shown in the following example:

/**
 * App component entry point.
 */
const App = () => (
 <BrowserRouter>
 <ScrollToTop>
 <ErrorBoundary
 footer={<ApplicationFooter />}
 header={<ApplicationHeaderComponent hasErrorBeenCaught />}
 isHeaderBoundary
 >
 <ApplicationHeader />
 <ErrorBoundary>
 <Main pushFooter className="wds-u-bg--page">
 {routes}
 </Main>
 </ErrorBoundary>
 <ApplicationFooter />
 </ErrorBoundary>
 </ScrollToTop>
 </BrowserRouter>
);

The error boundary on the main section allows the application context to be retained. That is, the
header and footer continue to be displayed when the error is raised from the main section. This
continuity provides a better user experience.

You can replace these error boundaries with your own error boundaries.

Faking an API error

This API failure scenario uses a 404 response as the error, you trigger this failure by temporarily
changing the API call to a non-existent API.

Take the following steps:

1. Open src/modules/generated/SampleModule/utils.js.

© Merative US L.P. 2012, 2025

5 Developing with the Cúram Universal Access Responsive Web Application 153

2. Update the fetchOnlineCategoriesUtil function to call a non-existent API v1/ua/
online_categories1 as shown in the following example:

 const fetchOnlineCategoriesUtil = callback => {
 ReduxUtils.getModelDataFromRestAPI(
 callback,
 `v1/ua/online_categories1`,
 models.UAOnlineCategoryList
);
};

3. Save your code and wait for the application to reload.

The SampleApplicationComponent component cannot call the API and an error page is
displayed.

Catching an API failure

Using the Faking an API error failure scenario, you can modify the code to cater for this failure.
The API call is asynchronous, and the callback runs outside the context of the Component tree.
This execution mode means that the error that is thrown in the call-back function is not caught by
the componentDidCatch method of the ErrorBoundary. Therefore, instead of exposing the
component with the withErrorBoundary HOC, which throws an error, you can update the state
of the component. You can then retrieve the error state from the WDA hook and handle it as
you need. The failure branch sets the error value that is returned by the API call as shown in the
following example.

 export const SampleApplicationComponent = props => {

 const { data, isFetching, error } = SampleModuleHooks.useFetchOnlineCategories();

console.log(`state -> ${error}`);
 if (isFetching) {
 return <AppSpinner />;
 }
 if (error) {
 throw new Error('An error occurred when calling API ');
 }
....

export default withRouter(SampleApplicationComponent);

The render method should print the following error in the console:

state -> Error: cannot GET http://localhost:3080/`v1/ua/online_categories1` (404)

Throwing an error

Now that you have control of the failure, throw an error with an appropriate value for the
ErrorBoundary component to catch. You can place the throw in the render function, which
executes when the state updates.

The error object that you throw can be anything that you choose so that the error is useful to the
citizen. In this instance, you can throw the string object that is returned by the response because it
describes the issue.

© Merative US L.P. 2012, 2025

Cúram 8.2.0 154

Implementing a loading mask

Building on the previous scenarios, use a loading mask to indicate that the application is working
on rendering a page.

About this task

Response times vary for REST APIs over a network. In a many cases, the time it takes to receive
the response is longer than the time it takes for React to render for the first time. This delay leads
to a poor user experience when the page draws the components, but the data is missing.

To avoid poor user experience, use a loading mask to tell users that the application is working on
rendering their page.

This scenario uses the AppSpinner component from the universal-access-ui package to
include a loading mask for the My Details page to demonstrate how your components can handle
slow response times.

API response delay

During development, you must often replicate real world response times for APIs. You can
configure the RestService to set a delay by using the env.development file in your
environment. By default this value is set to 2 seconds. Note this delay in the application when
you are in development mode, where you see spinners while components wait for the data to
be returned from the mock server by way of the RestService module. You can increase or
decrease this value to meet your application's needs.

The AppSpinner component

The universal-access-ui package includes the AppSpinner component, which you can
reuse in your project. The AppSpinner component wraps the Spinner component from the
govhhs-design-system-react package and includes a label for accessibility purposes.
You can also create your own loading mask in the same manner. You can view the source code for
AppSpinner in the universal-access-ui package.

Procedure

1. Waiting for the API.
The AppSpinner is displayed while the application waits for the API to respond, so you need
a mechanism to notify you when the data is, and is not loaded. Use the state to indicate when
data is loaded and when it is not. Take the following steps:
a) Open the PersonComponent.js file.

© Merative US L.P. 2012, 2025

5 Developing with the Cúram Universal Access Responsive Web Application 155

b) In the constructor, add an attribute called loading to the state, with a value of true.

 ...
 constructor(props) {
 super(props);
 this.state = {
 user: {
 firstName: "",
 surname: "",
 dob: "",
 gender: "",
 address: {
 addr1: "",
 addr2: "",
 addr3: "",
 addr4: ""
 }
 },
 loading: true,
 };
 }
 ...

2. Display the loading mask.

Now you have a value that indicates whether the data is loading, take the following steps to
display the loading mask based on the value:

a) Import the AppSpinner loading mask from universal-access-ui:

import {AppSpinner} from '@spm/universal-access-ui';

b) In the render function, add a check that renders the AppSpinner if the loading value is true:

render() {
 if (this.state.loading){
 return <AppSpinner/>
 }
 return (
 <Grid className="wds-u-p--medium">
 <Column width="1/2">

 ...

)

 }

When you save and reload the application, you see the spinner in the main section area.
However, the spinner continues to display after the data is returned.

3. Remove the loading mask.

When the data is returned from the API, remove the mask by updating the state to indicate that
loading is finished. Take the following steps:

© Merative US L.P. 2012, 2025

Cúram 8.2.0 156

a) In the componentDidMount function, update the state to set the loading value to false
when a successful response is returned as shown in the following example:

componentDidMount() {
 const url = ${process.env.REACT_APP_REST_URL}/v1/user1;
 RESTService.get(url, (success, response) => {
 this.setState({loading: false})
 if (success) {
 this.setState({user: response});
 } else {
 this.setState({apiCallFailed: response})
 }
 });
 }

b) Save and reload the application. Now, when the API response is received, the loading
mask is removed and the user's data is displayed.

Reusing existing features

The reference application that is available when you install Merative ™ Cúram Universal Access
satisfies a number of general business scenarios such as creating an account, logging in, and
applying for benefits. The scenarios are provided both as working software and as examples of
how to construct the product. You can clone and modify existing features in the application.

Before you begin

The universal-access-ui package is structured by feature. Typically, each feature is
mapped to a single route. For example, when the /profile route is loaded, the Profile feature
is displayed. The feature folder is a collection of files that work together to present that feature.
An example from the Profile feature is shown.

/universal-access-ui

--/src

----/Feature

------/Profile

--------/components

----------/ContactInformationComponent.js

----------/PersonalInformationComponent.js

----------/ProfileComponent.js

----------/ProfileComponentMessages.js

--------/index.js

--------/ProfileContainer.js

The feature uses a commonly used pattern to move the data retrieval and management into a
container component, and the rendering logic into stateless presentation components. This pattern
is widely documented and used extensively when you work with React and Redux. The pattern is
not covered in detail here, but you can see how features are structured.

© Merative US L.P. 2012, 2025

5 Developing with the Cúram Universal Access Responsive Web Application 157

About this task
You can copy the entire code base for a feature into your custom project and replace the route
that served that feature with your version. You can then modify the code base to create your own
custom feature.

Note: After you reuse a feature, you now have full ownership of the custom feature. On
upgrade of the universal-access-ui package, you do not receive any changes to the
product version of the feature and must manually apply any updates that you need.

Note: Most features in the universal-access-ui package depend on the modules in
the universal-access package for their data. On upgrade, you must validate that your
feature was not affected by any changes to modules that the feature depends on. See Universal
Access Redux modules on page 94.

Procedure

1. Find the feature that you want to replace in the universal-access-ui package.
a) Inspect the URL end point that you want to change and note the path.

For example, the path to the faqs feature is /myapp/faqs so the path is faqs.
b) Open the /node_modules/@spm/universal-access-ui/src/router/

Path.js file. Search for the path string literal, in this case '/faqs' is assigned to the
Paths.FAQS variable.

const Paths = {
 HOME: '/',
 ...
 FAQS: '/faqs',
 ...
 SIGNUP: '/signup',
 ...
};
export default Paths;

c) Open the /node_modules/@spm/universal-access-ui/src/router/
Routes.js file. Search for Paths.FAQS to find the route that the variable is being used
in. Use the component value of the route to find the associated feature.
For example, the FAQ route component is imported from '../features/FAQ'.

...
import FAQ from '../features/FAQ';
...
export default () => (
 <Switch>
 ...
 <Route component={FAQ} exact path={PATHS.FAQS} />
 ...
 </Switch>
);

2. Copy the entire feature folder into your custom application.
For example, copy the /node_modules/@spm/universal-access-ui/src/
features/FAQ directory to <myapp>/src/features/FAQ.

3. Replace the route with your custom version.

a) In your project, open the src/routes.js file.

© Merative US L.P. 2012, 2025

Cúram 8.2.0 158

b) Add a route at any point before the UARoutes entry to ensure that your path supersedes
the same path in UARoutes.

import React from 'react';
import { Switch, Route } from 'react-router-dom';
import { Routes as UARoutes } from '@spm/universal-access-ui';
import FAQ from './features/FAQ';

export default (
 <Switch>
 <Route component={FAQ} exact path='/faqs' />
 <UARoutes />
 </Switch>
);

4. You can now verify whether your custom version of the feature is being used. Make an
obvious change to the feature and reload the application to see whether the change is picked
up and displayed.

5. Change the code to customize the feature.

5.16 Implementing page view analytics

You can implement page view analytics in your application to collect citizen page views for
analysis. Using the included page view JavaScript functions, you can start tracking page views
by implementing a callback to send tracking data to a library of your choice for analysis. In this
example, the data is sent to the Google global site tag (gtag.js) JavaScript tagging framework.

Before you begin

The registerPageViewCallback and pageView functions are available for you to implement
tracking in your custom application.

• registerPageViewCallback
This function takes a callback, which you must define, as an argument. You must call the
registerPageViewCallback function before the application is rendered.

• pageView
This function calls the registered page view callback where present. If the page view callback
is not registered, it is not called.

For IEG pages, pageView passes an object with the following properties as a parameter to the
callback:

• pageType ('IEG')
• pageID (the current IEG page ID)
• scriptID (the IEG script ID)

For non-IEG pages, pageView passes an object with the following properties as a parameter
to the callback:

• title

• location

• path

© Merative US L.P. 2012, 2025

5 Developing with the Cúram Universal Access Responsive Web Application 159

About this task
To track page views, you must initialize the tracking library, register the callback, and implement
the callback to send tracking data to a library for analysis.

When you define your own custom routes, you must use the TitledRoute component so that the
pages can be tracked. If the route corresponds to an IEG script, you must set the isIEG property
for the TitledRoute component.

Procedure

1. The index.html file is a good place to initialize the library. Insert this snippet, which is as
provided by Google except for the tracking call.

<!-- Global site tag (gtag.js) - Google Analytics -->
<script async src="https://www.googletagmanager.com/gtag/js?id=UA-TRACKINGID"></
script>
<script>
 window.dataLayer = window.dataLayer || [];
 function gtag(){dataLayer.push(arguments);}
 gtag('js', new Date());
</script>

2. Also in the index.html file, you must update the Content Security Policy to allow the
Google script to run:

<meta http-equiv="Content-Security-Policy" content="script-src 'self' 'unsafe-
eval' 'unsafe-inline' https://www.googletagmanager.com/ http://www.google-
analytics.com/" />

3. Implement the callback function.

The callback handles both IEG and non-IEG pages based on the pageType prop.

export default function customCallback(props) {
 const gtagProps = {};
 if (props.pageType && props.pageType === 'IEG') {
 // IEG pages
 gtagProps.page_title = `${props.scriptID} ${props.pageID}`;
 gtagProps.page_path = `/apply/${props.pageID}`;
 } else {
 // Non-IEG pages
 gtagProps.page_title = props.title;
 gtagProps.page_location = props.location;
 gtagProps.page_path = props.path;
 }
 window.gtag('config', 'UA-TRACKINGID', gtagProps);
}

4. In index.js, register the callback before the application renders.

registerPageViewCallback(customCallback);
ReactDOM.render(<App />, document.getElementById('root'));

5. For your own custom routes, you must use the TitledRoute component so that the pages
can be tracked. If the route corresponds to an IEG script, you must set the isIEG property for
the TitledRoute component. For more information, see Advanced routing on page 109.

5.17 Implementing a test environment

Use the test-framework package to set up your Merative ™ Cúram Universal Access
Responsive Web Application test environment for testing with Test Cafe, Jest, and Enzyme.

© Merative US L.P. 2012, 2025

Cúram 8.2.0 160

Then, use this guidance and the provided helper files to write end-to-end tests, unit tests, or
snapshot tests for your project. You can configure the default test environment to suit your project
requirements as needed.

End-to-end test environment

The test-framework package contains reusable files to help you set up a test environment with
TestCafe, and to help you to develop end-to-end test scripts.

End-to-end test helper files
The end-to-end test helper files in test-framework are designed to operate best within a page
object framework structure for your end-to-end automation suite.

Browser.js

The Browser.js module simulates interactions a user can have with their browser during an
automated test, such as:

• Retrieving the current URL for the current page displayed in the remote browser.
• Clicking the browsers back button to navigate to the previous page.
• Clicking the browsers forward button to advance to the next page.

Page.js

The Page.js module simulates common interactions that a user can have with a web page in
an application. A large variety of prebuilt methods are provided in this file, which help you to
execute many user interactions, such as:

• Clearing text and typing new text into an input field.
• Clicking an element.
• Clicking an element only if it is displayed.
• Retrieving the value of an input field.
• Retrieving the text content of an element.
• Waiting for an element to be displayed.
• Plus many more as described in the JS documentation for this package.

In addition, the Page module contains two methods to help you with developing and debugging
your end-to-end test scripts:

• The wait method pauses a test for a specified time (in milliseconds).
• The debug method physically stops the currently executing test script. You can then interact

with the page that is displayed in the remote browser in its current state. You can resume the
test script again at any time.

PageObject.js

The PageObject.js file acts as a base class from which you can build your own custom
page objects for use with end-to-end tests for any application. This class provides a lot of built-in
functionality to help you with your page object development tasks. For more information, see the
JS documentation for this package and the PageObject class documentation.

© Merative US L.P. 2012, 2025

5 Developing with the Cúram Universal Access Responsive Web Application 161

Verify.js

The Verify.js module provides a number of assertion methods for verifying the results from
your automated test scripts. This module allows you to execute verifications such as:

• Verifying whether an element is displayed in the UI.
• Verifying whether two values are equal (or not).
• Verifying whether a specified value is true or false.

End-to-end test initial setup and configuration
Create your directory structure and index.js file.

Project directory structure

Using the suggested directory structure for your end-to-end test framework helps you to get the
best out of the test-framework package during test development. It also helps you to keep
things clean and maintainable as your test framework scales in size.

.
├── tests
| └── e2e
| | └── config
| | └── data
| | └── page-objects
| | └── scripts

• The config directory contains a single index.js file that serves as the configuration file for
all of the modules and page objects that are going to be used by your test scripts.

• The data directory contains any additional data that is used by the test scripts such as user
data or routes data for your application.

• The page-objects directory is where you build the page objects that are required to test
each individual page of your application.

• The scripts directory is where you place the test scripts to be ran by testcafe.

Initial config directory setup

The first step in building your end to end framework is to create an index.js file in the config
directory as shown:

.
├── tests
| └── e2e
| | └── config
| | | └── index.js

This file is where you are import all of the modules from the test-framework package that
you want to reuse in your test scripts. You also configure and export your page objects from
this configuration file. This approach improves your framework's long-term maintainability as
everything that is used by your test scripts is located in and exported from this single file. If
something does change, the configuration file is all that needs to be updated and your scripts
automatically inherit all of the changes without the need to refactor them.

© Merative US L.P. 2012, 2025

Cúram 8.2.0 162

Import the test-framework helper files and export them for use in your test scripts. Initially
your index.js file contains the following code:

import { Browser, Page, Verify } from'@spm/test-framework';

export { Browser, Page, Verify };

If you set up your test directory structure as suggested, then importing each of these modules into
your test scripts follows this pattern:

import { Browser, Page, Verify } from'../config';

Page object development and best practices
The page object model design pattern for building UI automation frameworks is our
recommended practice. A page object is an object-oriented class that is built to represent the
individual pages in the application under test. These representations offer an interface from which
your test scripts can interact with any UI element that is associated with that page similarly to
how a user would interact with them.

For example, the page object for the LoginPage in your application might include a login()
method where you specify the user name and password credentials as parameters. This method
then provides the automated steps that are required for logging a user in to your application. This
page object can then be reused by any test script that requires a logged in user, with each test suite
calling that login() method without needing to copy and paste the individual steps each time.

The benefits to the page object model extend far beyond simply reducing code duplication.
Further benefits include:

• The API of your chosen automation framework is completely abstracted away from your test
scripts. This makes tests easier to read, write and review.

• Element selectors are isolated in the page object that requires them.
• Since you are referencing page objects in your test scripts, the scenarios executed by the

scripts document themselves as you write them. Managers and new team members alike
will find these test scripts much clearer and easier to understand. For example: it is much
easier to read and instantly know the meaning of loginPage.goto(); followed by
loginPage.login(); as opposed to trying to make sense of a group of API calls.

• Suppose that an update completely changes the behavior for something that previously exists
in one of your page objects. You need to update only the affected individual page object
function to work with the new behavior and all of your test scripts automatically inherit the
changes. You won't need to go back and change anything in any of your scripts.

Best practices

Best practices for the development of page objects in your automation framework.

• Use CSS selectors to locate your UI elements

Use CSS selectors when trying to locate your UI elements. While you can use XPaths for this
purpose, CSS selectors are the highly recommended practice due to their sheer simplicity,
not to mention the overall speed and performance advantages they have over their XPath
equivalents. To get the best out of CSS selectors, assign some attribute to your UI elements

© Merative US L.P. 2012, 2025

5 Developing with the Cúram Universal Access Responsive Web Application 163

to make them unique from all other elements. For example, set the id, name, or perhaps a
custom data-testid attribute with some unique identifier for that element.

• Keep assertions out of page objects

One of the golden rules for building end-to-end test scripts is that you should aim to include
just one main assertion or set of assertions per test script. It is therefore equally important
that you do not place assertions in any of the functions provided by your page objects. It can
be very tempting to add assertions to a page object function because it always provides an
assertion for you every time that method is invoked.

For example, suppose that a message is briefly displayed to the user to confirm that they have
successfully logged in. You also have a scenario to automate that verifies that this message is
displayed after a user has logged in. You might add the assertions for this as the final steps of
the login() method in your LoginPage page object so that this verification is always made
every time any page object invokes that login() function.

While it can look like a good idea to do this and also promotes the idea that you are getting
something of a free verification for your login behavior in all of your other scripts, this is not a
recommended practice because:

• First, you are losing a lot of clarity in your test scripts by adding verifications to your page
object functions. Seeing loginPage.login() in your script does not clearly imply that
this method also includes a verification therefore the intention of the test script will also be
unclear as a result.

• Adding assertions to page objects adds too much ambiguity to your test suites. Your scripts
will automatically inherit multiple assertions, any of which can fail, which may result in
the conclusion of your scripts never being reached and their intended main verification(s)
never taking place. Going back to our login() example, suppose a bug is introduced
whereby the login message is not displayed to the user after successful login. Now all
of your test scripts which invoke that login() method will fail since you added the
verifications to confirm the presence of the message even though only one test in your
entire suite should realistically be verifying this.

• Developers that may have to debug a failing test will be forced to dig deep into your page
object framework in order to find what verifications have actually taken place during the
test execution. This will be even more complex a task if you are importing and reusing
page objects that have been developed in a separate framework.

• Verifications aren't as free as you might think. In fact, they can be very expensive for time.
Having multiple verifications taking place throughout your page object functions can slow
your test script execution times down by a significant amount.

The pageObject class
The PageObject.js file in the test-framework package provides an interface from which
you can easily create page objects for use in your end-to-end framework. When you create page

© Merative US L.P. 2012, 2025

Cúram 8.2.0 164

objects, you can use PageObject constructor parameters to automatically generate methods
that are commonly used by page objects during automation.

Import this class into your page object file directly and extend from it to inherit all of its behavior,
for example:

import { PageObject } from'@spm/test-framework';

export default class MyPageObject extends PageObject {
 // ...
}

You can use the PageObject class to set a URL for the web page that is represented by your
page object. It also has a number of parameters to automatically generate methods that are
commonly used by page objects during automation. Alternatively, you can call the super method
in the constructor to extend from this class without setting any of the parameters.

The PageObject constructor parameters

The PageObject class provides a number of constructor parameters that you can use to build
your page objects. The sample code shows how to invoke the PageObject constructor and
lists all of the parameters that are accepted:

export default class MyPageObject extends PageObject {
 /* Invokes the PageObject constructor - the following is the complete list of
 parameters supported in their correct order */
 constructor() {
 super(
 url,
 clickList,
 clickIfDisplayedList,
 clearAndTypeTextList,
 typeTextList,
 selectList,
 getValueList,
 getIsSelectedList,
 getDropdownSelectionList,
 getTextContentList
 getIsReadOnlyList
);
 }
 }

@param {JSON} clickList parameter

The clickList parameter specifies a list of CSS selectors in JSON, all of which correspond to
elements in the UI to be clicked during your test execution. For example, these two CSS selectors
correspond to two different buttons in your UI:

const submitButton ='input[id="submit"]';
const exitButton ='button[id="exit"]';

© Merative US L.P. 2012, 2025

5 Developing with the Cúram Universal Access Responsive Web Application 165

Instead of declaring them as the individual variables as shown, declare them as the clickList
parameter as follows:

const clickList= {
 exitButton: 'button[id="exit"]',
 submitButton: 'input[id="submit"]'
};

export default class MyPageObject extends PageObject {
 /* For this example we are only setting the URL and clickList parameters - all other
 parameters are left undefined */
 constructor() {
 super('http://www.ibm.com', clickList);
 }
 }

By specifying your UI elements that are to be clicked in this way, you now have access to click
methods for each of the selectors in the clickList after you create an instance of your page
object. These click methods are automatically generated when your page object is created. So
for the previous example, the following code sample demonstrates exactly what methods become
available when you create an instance of the MyPageObject class:

/* First create an instance of your page object */
const myPageObject = newMyPageObject();

/* After creating the page object instance, you will have access to both of these click
 methods */
await myPageObject.clickExitButton();
await myPageObject.clickSubmitButton();

The click method name is derived from the word click followed by the title of the key
that you assigned to your selector. Therefore, if you declared a myCustomSelector key in
the JSON that provided to the clickList parameter, the click method for that selector is
clickMyCustomSelector().

Note: As all of these method names are derived from keys, be careful with your spelling. Any
spelling mistakes in keys are reproduced in the subsequent click method name.

@param {JSON} clickIfDisplayedList parameter

Specifying CSS selectors in the clickIfDisplayedList parameter automatically generates a
method for each selector when the page object instance is created.

Each of the generated methods attempts to click the UI element corresponding to your specified
selector only if that selector is displayed in the UI. If the UI element is not displayed, the method
exits cleanly and allows your test script to continue running.

The naming convention for this method follows the format click_XXX_IfDisplayed where
XXX is the title that you assigned to each of your keys.

© Merative US L.P. 2012, 2025

Cúram 8.2.0 166

The methods that are generated in this instance are as follows:

const clickIfDisplayedList= {
 exitButton: 'button[id="exit"]',
 submitButton: 'input[id="submit"]'
};

class MyPageObject extends PageObject {
 /* For this example we are only setting the URL and clickIfDisplayedList parameters -
 all other parameters are left undefined */
 constructor() {
 super('http://www.ibm.com', undefined, clickIfDisplayed);
 }
 }

/* Now create an instance of your page object */
const myPageObject = newMyPageObject();

/* After creating the page object instance, you will have access to both of these
 clickIfDisplayed methods */
await myPageObject.clickExitButtonIfDisplayed();
await myPageObject.clickSubmitButtonIfDisplayed();

@param {JSON} clearAndTypeTextList parameter and @param {JSON}
typeTextList parameter

Both of these parameters automatically generate type methods. However, the functionality of
the methods that are generated for each of the element selectors that are specified in either list is
slightly different:

• If you add selectors to the clearAndTypeTextList parameter, then the methods clear all
previous text that was entered into the corresponding UI element before you type new text into
that element.

• Any selectors added to the typeTextList parameter generate methods that type text into the
UI element. No previous text is cleared, so the text is appended to the existing text.

While the functionality varies depending on which list that you add your selectors to, the actual
method names that are generated follow the very same naming convention. In both cases the
method name follows the format type_XXX, where _XXX is the title that you assigned to each of
your keys. This type_XXX method also accepts a string parameter where you can specify the
exact text that you want to type into that element.

© Merative US L.P. 2012, 2025

5 Developing with the Cúram Universal Access Responsive Web Application 167

The methods that are generated in this instance are as follows:

const clearAndTypeTextList = {
 firstName: 'input[id="first_name"]',
 lastName: 'input[id="last_name"]'
};
const typeTextList = {
 addressLine1: 'input[id="address_line_1"]',
 addressLine2: 'input[id="address_line_2"]'
};

class MyPageObject extends PageObject {
 /* For this example we are only setting the URL and both type text parameters - all
 other parameters are left undefined */
 constructor() {
 super(
 'http://www.ibm.com',
 undefined,
 undefined,
 clearAndTypeTextList,
 typeTextList
);
 }
 }

/* Now create an instance of your page object */
const myPageObject = newMyPageObject();

/* After creating the page object instance, you will have access to all of these type
 methods */
await myPageObject.typeFirstName('Michael');
await myPageObject.typeLastName('Myers');
await myPageObject.typeAddressLine1('Haddonfield');
await myPageObject.typeAddressLine2('Illinois');

@param {JSON} selectList parameter

You can use the selectList parameter to specify a list of element selectors that correspond
to <select> elements in your UI. Any element selector that specified in this parameter has
a method automatically generated for it when the page object instance is created. The naming
convention for the generated methods follows the format select_XXX, where _XXX is the
title that you assigned to each of your keys. This select_XXX method also accepts a string
parameter where you can specify the exact option that is to be chosen from the list of options in
that <select> element.

© Merative US L.P. 2012, 2025

Cúram 8.2.0 168

The following example shows the methods that are generated for element selectors that are
specified in the selectList parameter:

const selectList= {
 company: 'select[id="company"]',
 county: 'select[id="county"]'
};

class MyPageObject extends PageObject {
 /* For this example we are only setting the URL and the selectList parameter - all
 other parameters are left undefined */
 constructor() {
 super(
 'http://www.ibm.com',
 undefined,
 undefined,
 undefined,
 undefined,
 selectList
);
 }
 }

/* Now create an instance of your page object */
const myPageObject = newMyPageObject();

/* After creating the page object instance, you will have access to these select
 methods */
await myPageObject.selectCompany('IBM');
await myPageObject.selectCounty('Dublin');

@param {JSON} getValueList parameter

For verification purposes in your test scripts, you can retrieve the text value of an <input> field
by adding element selectors to the getValueList parameter.

The naming convention for the methods follows the format get_XXX_Value, where _XXX_ is
the title that you assigned to each of your keys. When you invoke this method in your test script,
it retrieves the current string value of the <input> element corresponding to the CSS selector
you specified.

© Merative US L.P. 2012, 2025

5 Developing with the Cúram Universal Access Responsive Web Application 169

The following example shows how you might combine a type_XXX method action with a
get_XXX_Value method action to enter text into an <input> field and then retrieve its value
again:

const clearAndTypeTextList = {
 firstName: 'input[id="first_name"]',
 lastName: 'input[id="last_name"]'
};
/* We can re-use both of the existing selectors for the purpose of this list - there's
 no need to declare them again */
const getValueList= {
 firstName: clearAndTypeTextList.firstName,
 lastName: clearAndTypeTextList.lastName
};

class MyPageObject extends PageObject {
 /* For this example we are only setting the URL, the clearAndTypeTextList parameter
 and the getValueList parameter - all other parameters are left undefined */
 constructor() {
 super(
 'http://www.ibm.com',
 undefined,
 undefined,
 clearAndTypeTextList,
 undefined,
 undefined,
 getValueList
);
 }
 }

/* Now create an instance of your page object */
const myPageObject = newMyPageObject();

/* After creating the page object instance, you will have access to all of these
 methods */
await myPageObject.typeFirstName('Jack');
await myPageObject.typeLastName('Bauer');
const firstName = awaitmyPageObject.getFirstNameValue();
const lastName = awaitmyPageObject.getLastNameValue();

@param {JSON} getIsSelectedList parameter

During test execution, you can verify whether a specific checkbox or set of checkboxes were
selected or cleared with the getIsSelectedList parameter. The naming convention for the
generated methods follows the format is_XXX_Selected, where _XXX_ is the title that you
assigned to each of your keys. When you invoke this method in your test script, it returns a
Boolean true or false value that depends on whether the checkbox element corresponding to
the CSS selector that you specified is checked or not.

© Merative US L.P. 2012, 2025

Cúram 8.2.0 170

The following example shows how you might combine a click_XXX method action with an
is_XXX_Selected method action to select a checkbox and then determine whether it was
checked:

const clickList= {
 agreeTermsAndConditions: 'input[type="checkbox"][id="terms_and_conditions"]'
};
/* We can re-use this existing selector for the purpose of this list - there's no need
 to declare it again */
const isSelectedList= {
 agreeTermsAndConditions: clickList.agreeTermsAndConditions
};

class MyPageObject extends PageObject {
 /* For this example we are only setting the URL, the clickList parameter and the
 isSelectedList parameter - all other parameters are left undefined */
 constructor() {
 super(
 'http://www.ibm.com',
 clickList,
 undefined,
 clearAndTypeTextList,
 undefined,
 undefined,
 undefined,
 isSelectedList
);
 }
 }

/* Now create an instance of your page object */
const myPageObject = newMyPageObject();

/* The first check for whether the checkbox is selected or not will return false */
let isChecked = awaitmyPageObject.isAgreeTermsAndConditionsSelected();

/* Now lets click on the checkbox and re-run our previous method - this time it will
 return true */
await myPageObject.clickAgreeTermsAndConditions();
isChecked = await myPageObject.isAgreeTermsAndConditionsSelected();

@param {JSON} getDropdownSelectionList parameter

You can retrieve the selected option from a <select> element during test execution by adding
selectors to the getDropdownSelectionList parameter. For example, if your test script
already has a value for a <select> element in your UI and you want to verify whether the value
is correct and retained after some other actions are executed.

The naming convention for the generated methods follows the format get_XXX_Selection,
where _XXX_ is the title that you assigned to each of your keys. When you invoke this method in
your test script, it retrieves the string value of the currently selected option in the <select>
element corresponding to the CSS selector you specified.

© Merative US L.P. 2012, 2025

5 Developing with the Cúram Universal Access Responsive Web Application 171

The following example shows how you might combine a select_XXX method action with
an get_XXX_Selection method action to select an option in a <select> element and then
retrieve the currently selected option from that <select> element again:

const selectList= {
 company: 'select[id="company"]',
 county: 'select[id="county"]'
};
/* We can re-use these existing selectors for the purpose of this list - there's no
 need to declare them again */
const getDropdownSelectionList= {
 company: selectList.company,
 county: selectList.county
};

class MyPageObject extends PageObject {
 /* For this example we are only setting the URL, the selectList parameter and the
 getDropdownSelectionList parameter - all other parameters are left undefined */
 constructor() {
 super(
 'http://www.ibm.com',
 undefined,
 undefined,
 undefined,
 undefined,
 selectList,
 undefined,
 undefined,
 getDropdownSelectionList
);
 }
 }

/* Now create an instance of your page object */
const myPageObject = newMyPageObject();

/* After creating the page object instance, you will have access to these all of these
 methods */
await myPageObject.selectCompany('IBM');
await myPageObject.selectCounty('Dublin');
const companySelection = awaitmyPageObject.getCompanySelection();
const countySelection = awaitmyPageObject.getCountySelection();

@param {JSON} getTextContentList parameter

You can use the getTextContentList parameter to specify a list of selectors from which you
want to retrieve text content.

The naming convention for the generated methods follows the format get_XXX_TextContent
where _XXX_ is the title that you assigned to each of your keys. When you invoke this method in
your test script, it retrieves the string value of the text content for the UI element corresponding
to the CSS selector that you specified.

© Merative US L.P. 2012, 2025

Cúram 8.2.0 172

The following example shows the methods that are generated for element selectors that are
specified in the getTextContentList parameter:

const getTextContentList= {
 title: 'h1[id="main_heading"]'
};

class MyPageObject extends PageObject {
 /* For this example we are only setting the URL and the getTextContentList parameter
 - all other parameters are left undefined */
 constructor() {
 super(
 'http://www.ibm.com',
 undefined,
 undefined,
 undefined,
 undefined,
 undefined,
 undefined,
 undefined,
 undefined,
 getTextContentList
);
 }
 }

/* Now create an instance of your page object */
const myPageObject = newMyPageObject();

/* After creating the page object instance, you will have access to these methods */
const titleText = await myPageObject.getTitleTextContent();

@param {JSON} getIsReadOnlyList parameter

During test execution, you can verify whether a specific input field or set of input elements are
marked as read only with the getIsReadOnlyList parameter.

The naming convention for the generated methods follows the format is_XXX_ReadOnly, where
XXX is the title that you assigned to each of your keys. When you invoke this method in your
test script, it returns a Boolean true or false value that depends on whether the input element
corresponding to the CSS selector you specified is a read-only input field or not.

© Merative US L.P. 2012, 2025

5 Developing with the Cúram Universal Access Responsive Web Application 173

The following example shows the methods that are generated for the element selectors that are
specified in the getIsReadOnlyList parameter:

const getIsReadOnlyList = {
 firstName: input[id="first-name"]
};

class MyPageObject extends PageObject {
 /* For this example we are only setting the URL and the getIsReadOnlyList parameter -
 all other parameters are left undefined */
 constructor() {
 super(
 'http://www.ibm.com',
 undefined,
 undefined,
 undefined,
 undefined,
 undefined,
 undefined,
 undefined,
 undefined,
 undefined,
 getIsReadOnlyList
);
 }
}

/* Now create an instance of your page object */
const myPageObject = new MyPageObject();

/* After creating the page object instance, you will have access to these methods */
const isReadOnly = await myPageObject.isFirstNameReadOnly();

Adding custom behavior to your page objects
You can add custom behavior to your page objects. For example, a specific click action, or a
specific series of instructions to run for an automated task in your end-to-end test scripts.

As a further example, a web page might render some dynamic content and you need to wait for a
specific element to be visible in the UI before you continue.

The test-framework package provides a PageObject class from which you can take
advantage of the automatically generated methods that are provided. You can add your own
custom behavior to your page objects too.

© Merative US L.P. 2012, 2025

Cúram 8.2.0 174

Sample page object with custom behavior

In this example, you add a simple waitForPageLoad() method to your page object. It is
assumed that your application is rendering some dynamic content, such as a timeline, and that a
See More button is rendered at the foot of the dynamic content.

import { Page, PageObject } from'@spm/test-framework';

consturl='http://www.ibm.com';

/* Now lets define some other selectors that we are going to use to define our custom
 behaviour */constseeMoreButton='input[type="button"][id="see_more"]';

exportdefaultclassMyPageObjectextendsPageObject {
 constructor() {
 /* For this example we will only define the URL - we don't need to define the other
 lists */super(url);
 }

 /* Now lets add our custom behaviour to our page object */asyncwaitForPageLoad() {
 awaitPage.waitForElementToBeDisplayed(seeMoreButton);
 }
}

/* Now create an instance of your page object */constmyPageObject=newMyPageObject();

/* Lets navigate to the URL defined in our page object and then wait for the page to
 load */awaitmyPageObject.goto();
awaitmyPageObject.waitForPageLoad();

Building, exporting and configuring your page objects
Build, export, and configure your page objects so you can import and use them in your end-to-end
test scripts.

Building your page objects

It is best to build each of your page objects by extending from the PageObject class in the
test-framework package. Then, save each of your page object files in the page-objects
folder in your test framework directory structure. The naming convention for page objects
is to use the title of the application web page that the page object represents, for example
HomePage.js or LoginPage.js.

.
├── tests
| └── e2e
| | └── page-objects
| | | └── HomePage.js
| | | └── LoginPage.js

Exporting your page objects from page-objects/index.js

After you create your page objects, you must export them from the page-objects directory
to import them into your test scripts. Create an index.js file in the page-objects folder to

© Merative US L.P. 2012, 2025

5 Developing with the Cúram Universal Access Responsive Web Application 175

enable all of your page object files to be exported from this single location. As you scale your
page object framework, you can have many page objects to export from this folder.

.
├── tests
| └── e2e
| | └── page-objects
| | | └── HomePage.js
| | | └── LoginPage.js
| | | └── index.js

With the index.js file in place, export your page objects by using this file as shown in the
example:

export { defaultasHomePage } from'./HomePage';
export { defaultasLoginPage } from'./LoginPage';

Configuring your page objects

You can now import page objects into your project's config/index.js file for reuse with your
end-to-end test scripts. Before you continue, ensure that your test directory structure looks like
this structure:

.
├── tests
| └── e2e
| | └── config
| | | └── index.js
| | └── page-objects
| | | └── HomePage.js
| | | └── LoginPage.js
| | | └── index.js

The following sample code shows your config/index.js file after you add your page object
configuration to the file. In the sample code, you are importing each of your custom page
objects from your page-objects folder, instantiating each page object and then exporting each
instantiated page object from the file:

import { Browser, Page, Verify } from'@spm/test-framework';
import {
 HomePage,
 LoginPage// ... also import any other page objects that you require ...
} from'../page-objects';

/* Instantiate all of the page objects to be used during the e2e tests */
consthomePage=newHomePage();
constloginPage=newLoginPage();
// ... also instantiate any other page objects that you imported ...export {
 Browser,
 Page,
 Verify,
 homePage,
 loginPage// ... export all other instantiated page objects ...
};

With your page objects configured, you can now easily import and use your page objects in your
end-to-end test scripts.

© Merative US L.P. 2012, 2025

Cúram 8.2.0 176

Writing end-to-end scripts
Now that your page objects are developed and your end-to-end framework is configured to use
the test-framework package, you are ready to start writing test scripts that bring everything
together. The code samples are developed with testcafe as the leading framework.

The sample code assumes that your framework directory structure is as shown.

.
├── tests
| └── e2e
| | └── config
| | | └── index.js
| | └── page-objects
| | | └── HomePage.js
| | | └── LoginPage.js
| | | └── index.js
| | └── scripts
| | | └── *.e2e.test.js

Scenario 1: Logging in redirects the user to the home page

You can write a test script for the following sample scenario based on the provided directory
structure:

1. Open the application and go to the log-in page.
2. Enter the credentials of a valid user into the username and password fields and click Log in.
3. After you log in, verify that you were redirected to the user's account page.

Now to look at a test script for this scenario that incorporates your page objects and is driven by
testcafe. Comments with each line of code further describe exactly what's happening at each
step.

/* Firstly import all relevant page objects and test helper files by importing them
 from the config/index.js file */
import { Browser, homePage, loginPage, Verify } from '../config';

fixture('Login e2e').page(loginPage.getUrl()); // Set the initial page to be opened as
 the login page

test('Verify that the user is redirected to the home page on successful login', async
 () => {
 /* Log in as a valid user by re-using the page objects login method */
 await loginPage.login();

 // Re-use the Browser test helper file to get the current URL from the remote browser
 */
 const currentUrl = await Browser.getCurrentUrl();

 // Finally verify that the current URL in the remote browser matches the expected URL
 for the home page
 // It should be noted that every page object has a `getUrl()` method which allows you
 to easily retrieve the expected URL for the page it represents
 // Also note that this test is re-using the Verify test helper file to do its
 verifications
 await Verify.equal(
 currentUrl,
 homePage.getUrl(),
 'User was not redirected to the home page after successfully logging in'
);
});

Save this test into your scripts directory as LoginPage.e2e.test.js. Ensure that you save
all other test scripts for your end-to-end framework in this directory.

© Merative US L.P. 2012, 2025

5 Developing with the Cúram Universal Access Responsive Web Application 177

Running end-to-end tests
It is straightforward to run your tests with testcafe by using a single npm script and a number
of custom-set options.

For example, this npm script runs the specified test scripts by using testcafe. The tests run in
Google Chrome with headless mode enabled and in incognito mode:

"testcafe": "testcafe \"chrome:headless -incognito\" tests/e2e/scripts/*.e2e.test.js",

To add this script to your project, copy and paste the npm script into the package.json file of
the project that contains your end-to-end test framework. From the root of the project, run the
script from the command line as follows:

npm run testcafe

You can watch your test suites run in headless mode from your command line.

You can disable headless mode by removing the :headless section of the script:

"testcafe": "testcafe \"chrome -incognito\" tests/e2e/scripts/*.e2e.test.js",

Now, when you run your test suites, you can see a physical remote browser open on the desktop
of your local computer and you can watch the test execution as it happens.

For more information about the full list of supported browsers and all of the command line
switches available for running scripts, see the TestCafe documentation.

Jest and Enzyme test environment

The test-framework package contains reusable files to help you set up a test environment with
Jest and Enzyme, and to help you to develop unit and snapshot test scripts.

Unit and snapshot test initial setup and configuration
Use the provided files to easily configure a default Jest and Enzyme test environment that you can
use to start writing your unit and snapshot tests.

Project directory structure

By default, the Jest files expect a certain folder structure for your unit and snapshot test
framework. Create the following folder structure in your environment.

.
├── tests
| └── config
| | └── setup-tests.js
| | └── snapshot.config.js
| | └── test-mapper.js
| | └── unit.config.js
| └── snapshots
| | └── *.snap.test.js
| └── unit
| | └── *.unit.test.js

© Merative US L.P. 2012, 2025

https://devexpress.github.io/testcafe/documentation/using-testcafe/command-line-interface.html#browser-list

Cúram 8.2.0 178

Configuring the setup-tests.js file

Add the following code to the setup-tests.js file to configure Jest to work with enzyme-
adapter-react-16 and to configure the snapshot serializer for use with the snapshot tests:

import Enzyme from 'enzyme';
import { createSerializer } from 'enzyme-to-json';
import Adapter from 'enzyme-adapter-react-16';

Enzyme.configure({ adapter: newAdapter() });

/* Setup snapshot serializer */
expect.addSnapshotSerializer(createSerializer({ noKey:true, mode:'deep' }));

• Mocking the Redux store

Some Jest tests mount components that access a Redux store by using the getState method.
You can configure a mock store with the relevant Redux methods by adding this code to the
setup-tests.js file.

global.mockStore = {
 getState: jest.fn(),
 dispatch: jest.fn(),
 subscribe: jest.fn()
};

You can then call the mock store from any component in a Jest test script with the following
code:

const myComponent = IntlEnzymeTestHelper.mountWithIntlWithStore(
 <MyComponent />,
 global.mockStore
);

• Mocking the Redux store with custom mock state

Some unit tests might need access to a mock Redux store with a specific mock state and with
custom data.

• Add the mock state to the setup-tests.js file as follows:

const mockState = {
 // Add all of your mock data keys and values here
};

• Set the mock getState function to return the mock state when it is called during unit
tests:

global.mockStore = {
 getState: jest.fn(() => mockState)
};

Configuring the test-mapper.js file

Jest cannot process data from CSS or image files and throws an error to the console if these files
are referenced by any React component. Jest is designed to test the behavior of the component
code and distances itself from any styling or images that are applied to that component.

© Merative US L.P. 2012, 2025

5 Developing with the Cúram Universal Access Responsive Web Application 179

To cleanly bypass any of these imports, add the following code to the test-mapper.js file.

module.exports= {};

Configuring the unit.config.js and snap.config.js files

These files are designed to configure the unit tests and snapshot tests for a project. You can use
the default Jest configuration by adding the following content to both files:

// unit.config.js
const { getUnitTestConfig } = require('@spm/test-framework');

module.exports = getUnitTestConfig();

// snapshot.config.js
const { getSnapshotTestConfig } = require('@spm/test-framework');

module.exports = getSnapshotTestConfig();

• Setting custom jest configurations

You can customize the default Jest configuration.

For example, you can set more project-specific folders to be ignored by the Jest coverage
collection statistics as follows:

const { getUnitTestConfig } = require('@spm/test-framework');

const unitTestConfig = getUnitTestConfig();
unitTestConfig.coveragePathIgnorePatterns.push('<rootDir>/path/to/my/folder1');
unitTestConfig.coveragePathIgnorePatterns.push('<rootDir>/path/to/my/folder2');

module.exports = unitTestConfig;

Unit and snapshot test helper files
The test-framework provides the IntlEnzymeTestHelper.js and TestUtils.js helper
files to help you to write unit and snapshot tests.

IntlEnzymeTestHelper.js

React components that use the react-intl module need access to the intl context,
which is not available when you mount single components with Enzyme. You can use the
IntlEnzymeTestHelper.js class to wrap a valid English-locale intl context around a
component under test.

TestUtils.js

The TestUtils.js class is a utility class for testing React components with Redux modules.

To use the helper files in your Jest tests

Import any of the Jest helper files directly from the test-framework package as follows:

import { IntlEnzymeTestHelper, TestUtils } from '@spm/test-framework';

© Merative US L.P. 2012, 2025

Cúram 8.2.0 180

You can then call any of the class functions from your Jest test scripts as shown in the following
examples:

describe('Test suite', () => {
 it('verifies something', () => {
 // ...
 const wrapper = IntlEnzymeTestHelper.mountWithIntl(
 <MyComponentUnderTest />
);
 // ...
 });

 it('verifies something else', () => {
 const mockData = {
 // mock JSON data
 };
 const mockUtilFunction = TestUtils.mockActionsCallbackFxn([true, mockData]);
 // ...
 });
});

Guidelines for writing unit test scripts
The following guidance might be useful when you write Jest tests for both unit and snapshot
testing.

To unit test or to snapshot test?

The first question that you must answer is whether to write a unit test or snapshot test.

• Unit tests
Unit tests act as documentation for the project code or React component that you are testing.
They include individual verifications for every piece of behavior in the code. Anyone must
be able to read the verifications in the unit test suite and fully understand which behavior is
being triggered and under which circumstances. Unit tests must be clear and concise and are a
perfect indicator of code coverage within the overall project. These tests are the primary form
of testing for the project code so you must write unit tests for all code in the project.

• Snapshot tests
Snapshot tests can verify only that the DOM output for a React component in the provided
state is correct. Don't use snapshot tests to test React component functionality, but use them
as a complement to your unit tests to verify that the DOM output for a React component is
correct. After unit tests verify the code behavior, snapshot tests can verify that everything is
correct from an HTML markup perspective when the component is output to the DOM.
Snapshot test verifications are far too vague to offer any form of clear documentation for a
component that is being tested. Because of the vague nature of their verifications, snapshot
tests are also a poor indicator of code coverage so don't use them to collect code coverage
statistics. It is much more beneficial for the project to collect code coverage statistics solely
for behavioral based verifications, such as unit tests.

Collecting code coverage statistics for snapshot tests can provide a number of false
positives. Code coverage might increase due to the presence of snapshot tests. However, the
functionality of the code is not tested and verified as correct. You might read a high code
coverage percentage in the coverage report and incorrectly assume that all of the component
behavior is tested.

It can be beneficial to write both unit test and snapshot test suites for a project. However, unit
tests must always be your priority given that they directly test the functionality of all of the code.

© Merative US L.P. 2012, 2025

5 Developing with the Cúram Universal Access Responsive Web Application 181

A project can manage without snapshot tests. However, it can never survive without a thorough
suite of unit tests.

Decide what must be tested

For each a new function or React component, you must decide what to test. Read through the
code for the function or component and highlight the key behaviors and when they occur.

Create the unit test suite to test all of the identified functionality. After all of the behaviors are
captured and tested in the unit test suite, then you can write snapshot tests to capture the DOM
output for any new React components.

Your goal is to test all of the available functionality and cover 100% of the code. If there is
code that is unreachable for any reason, then that code must be highlighted by the unit tests and
refactored.

Ensure that all tests can be ran independently

All tests must be able to run independently of one another. A test that depends on the completion
of another test is difficult to maintain and can be a direct cause of many avoidable consistency
and reliability problems with your test suites.

• If the first test fails, the dependency can trigger a false negative by causing a dependent test to
fail. Jest tests run concurrently by default so avoid creating tests that depend on each other.

• If a test is finishing work that started in another test, the dependency can significantly reduce
the clarity of what each test is doing.

• If a test fails, the dependency significantly hinders debugging. You need to be able to isolate
failing tests so you can rerun the failing test only. Test preconditions must be automatically
included when you run the failed test independently on your local computer. If a failing test
depends on another test, you must find and run the other test before you can run the failing
test. If several tests are chained in a sequence, you must find and run all preceding tests.

If you need reusable piece of test code for use in multiple test scripts, put the code inside one of
the Jest test hooks, such as beforeAll, beforeEach, afterAll, or afterEach.

Use clear test descriptions

Each unit test in a project verifies some behavior of the code. Therefore, the description of the
unit test must clearly indicate exactly what is being tested and under what circumstances.

There are essentially two ways to declare a unit test description:

• You can use a behavior-driven development (BDD) style description. For example:

it('given MyComponent, when the submit button is clicked, then the dialog is
 rendered', () => {
 // ...
});

• You can use a plain English sentence beginning with verifies that... to state exactly
what is being verified. For example:

it('verifies that the dialog is rendered when the submit button is clicked', () => {
 // ...
});

© Merative US L.P. 2012, 2025

Cúram 8.2.0 182

Minimize the number of assertions for each test

Ideally each test script has one main assertion or expect statement that verifies the behavior that
is being tested. It can be tempting to place multiple expect statements into a single test script,
but avoid this practice. If any of the preceding expect statements in the script fail, then none of
the subsequent expect statements will run.

If multiple expect statements are required, you can create a test suite that triggers the behavior
to be tested in a beforeAll or beforeEach test hook. You can then write multiple test scripts
that capture and verify each expected behavior individually. For example:

describe('MyComponent onClick() method behaviour', () => {
 let myComponent;
 let onClick;

 beforeAll(() => {
 onClick = jest.fn();
 myComponent =mount(<MyComponent onClick={onClick} />);
 /* Click the submit button to fire the onClick behaviour */
 myComponent.find('button').prop('onClick')();
 });

 it('verifies that the wds-u-hidden class of the dialog has been removed', () => {
 expect(myComponent.find('Dialog').hasClass('wds-u-hidden')).toBeFalsy();
 });

 it('verifies that the onClick functionality was invoked', () => {
 expect(onClick.mock.calls).toHaveLength(1);
 });
});

Running Jest and Enzyme tests
If you are using the default Jest configuration, you can run the Jest and Enzyme tests by adding
scripts to the package.json file.

Procedure

• Add the following scripts to the package.json file.

"test-snapshots": "jest --config ./tests/config/snapshot.config.js",
"test-snapshots-update": "npm run test-snapshots -- -u",
"test-unit": "jest --config ./tests/config/unit.config.js",
"test-unit-coverage": "npm run test-unit -- --collectCoverage",

5.18 React environment variable reference

A full list of Universal Access React environment variables categorized by function. You can
set environmental variables in .env files in the root directory of your application. If you omit
environment variables, either they are not set or the default values apply.

The starter pack provides the .env and the .env.development files to get you started.
For more information about using .env files, see Adding Development Environment Variables
In .env in the Create React App documentation.

• REST API on page 183
• User session on page 184
• Security on page 185

© Merative US L.P. 2012, 2025

https://facebook.github.io/create-react-app/docs/adding-custom-environment-variables#adding-development-environment-variables-in-env

5 Developing with the Cúram Universal Access Responsive Web Application 183

• Locale on page 185
• Unauthorized redirect on page 186
• Feature toggles on page 186
• Connectivity handler on page 187
• User account status polling on page 187
• Application-specific verification polling on page 188
• Document uploads on page 188
• Cúram Web Development Accelerator on page 189
• Application authentication on page 190
• Simple authentication for development on page 190
• Single sign-on (SSO) authentication on page 191
• Intelligent Evidence Gathering (IEG) on page 192

REST API

• REACT_APP_REST_URL

Specifies the path to REST services. You must set this variable as it is needed by the
Authentication service. When you specify a path, it can be a URL to a server, or a relative path
in the local deployment server if you are using a proxy. For the Universal Access application,
it is http{s}://<ServerHostName>:<Port>/Rest. For example:

REACT_APP_REST_URL=https://192.0.2.4:9044/Rest

Where <ServerHostName> and <Port> are the hostname and port number of the server
where the REST services are deployed.

This variable is also used by the default Redux modules and modules that are generated by
Web Development Accelerator to call REST APIs. For example:

RestService.get(${REACT_APP_REST_URL}/v1/users)

For development with the mock server, you can use local host without /Rest. For example:

REACT_APP_REST_URL=http://localhost:3080

For more information, see The mock server API service on page 112.

• MOCK_SERVER_PORT

Specifies the port to serve mock APIs. For example:

MOCK_SERVER_PORT=3080

For more information, see The mock server API service on page 112.

• REACT_APP_RESPONSE_TIMEOUT

Specifies the maximum time in seconds to wait for the first byte to arrive from the server, by
default 10, but does not limit how long the entire download can take. Set the response timeout

© Merative US L.P. 2012, 2025

Cúram 8.2.0 184

to be a few seconds longer than the actual time it takes the server to respond. The lengthened
response allows for time to make DNS lookups, TCP/IP, and TLS connections. For example:

REACT_APP_RESPONSE_TIMEOUT=10

For more information, see The RESTService utility on page 113.

• REACT_APP_RESPONSE_DEADLINE

Specifies the maximum time in seconds for the entire request, including
all redirects, to complete. If the response is not fully downloaded within
REACT_APP_RESPONSE_DEADLINE, the request is canceled. The default value is 60. For
example:

REACT_APP_RESPONSE_DEADLINE=60

For more information, see The RESTService utility on page 113.

• REACT_APP_DELAY_REST_API

(Development only) Specifies a time in seconds to simulate a delay in the response from the
API. For example:

REACT_APP_DELAY_REST_API=2

The value can be set to any positive integer to adjust the delay. For more information, see The
RESTService utility on page 113.

User session

• REACT_APP_LOGOUT_END_POINT

Specifies the logout endpoint for the application. By default, /logout.

The strategy for user session logout changed to align with using the Cúram REST
infrastructure APIs. Now when logging out, the /logout endpoint is called instead of the old
logout.jsp endpoint.

REACT_APP_LOGOUT_END_POINT=/logout

If your version of Cúram does not support the new /logout endpoint, you must set the old
logout.jsp endpoint. The /logout endpoint is supported in 7.0.10.0 iFix 4 and 7.0.11.0
iFix 1 or later.

REACT_APP_LOGOUT_END_POINT=logout.jsp

• REACT_APP_SESSION_INACTIVITY_TIMEOUT

Specifies the time in seconds before a user session expires. The value must match the session
timeout that is configured on the server, by default, 30 minutes, or 1800 seconds.

REACT_APP_SESSION_INACTIVITY_TIMEOUT=1800

For more information, see Configuring user session timeout on page 250.

© Merative US L.P. 2012, 2025

5 Developing with the Cúram Universal Access Responsive Web Application 185

• REACT_APP_SESSION_PING_INTERVAL

Specifies the time in seconds between each time that the user’s current session is checked for
security purposes to see whether they are actively using the application or not. By default, the
value is 60. For example:

REACT_APP_SESSION_PING_INTERVAL=60

• REACT_APP_SESSION_TIMEOUT_REDIRECT_URL

Specifies the URL that the application redirects to when a user session times out. By default, /
login. For example:

REACT_APP_SESSION_TIMEOUT_REDIRECT_URL=/login

Security

You can specify Cross-Site Request Forgery (CSRF) protection settings and the logout endpoint
for your application. For more information, see Enabling Cross-Site Request Forgery (CSRF)
protection for Universal Access on page 200.

• REACT_APP_REQUIRE_CSRF_TOKEN
Specifies whether a CSRF token is needed before the application can make API requests. If
enabled, and if no CSRF token is stored, the application attempts to get a CSRF token before
making a request. It takes a Boolean value, and defaults to false if not present. For example, to
enable CSRF protection:

REACT_APP_REQUIRE_CSRF_TOKEN=true

• REACT_APP_CSRF_ALLOWLIST
Specifies a comma-separated list of URL suffixes to allow, typically where enabling CSRF
protection might cause an infinite loop. The default value is empty. For example:

REACT_APP_CSRF_ALLOWLIST=/logon.jsp,/logout.jsp,/j_security_check

Locale

• REACT_APP_INTL_LOCALE
Specifies a locale to set the correct regional format for dates and numbers in the application.
The value must align with the curam.environment.default.locale value that is set
in your regional settings on the server, see The Application.prx file.

The format of the locale is xx-XX, for example. en-US, rather than en_US, which is the
format on the server. For example, to set the US locale:

REACT_APP_INTL_LOCALE=en-US

© Merative US L.P. 2012, 2025

../Regionalization/c_REG_Settings1Applicationprx1.html

Cúram 8.2.0 186

Unauthorized redirect

• REACT_APP_UNAUTHORIZED_REDIRECT_URL

Specifies the URL that the application redirects to when an unauthorized redirect occurs. By
default, /login.

REACT_APP_UNAUTHORIZED_REDIRECT_URL=/login

Feature toggles

You can enable the display of specific features in the application.

• REACT_APP_FEATURE_LIFE_EVENTS_ENABLED

Specifies whether to display the Life Events feature in the application with a Boolean value. It
is enabled by default. For example, to enable Life Events:

REACT_APP_FEATURE_LIFE_EVENTS_ENABLED=true

For more information, see Enabling and disabling life events on page 267.

• REACT_APP_FEATURE_APPEALS_ENABLED

Specifies whether to display the Appeals feature in the application with a Boolean value. It is
disabled by default. For example:

REACT_APP_FEATURE_APPEALS_ENABLED=false

For more information, see Enabling and disabling appeals on page 312.

• REACT_APP_FEATURE_VERIFICATIONS_ENABLED

Specifies whether to display the Citizen Verifications feature in the application with a Boolean
value. It is disabled by default. For example, to enable Citizen Verifications:

REACT_APP_FEATURE_VERIFICATIONS_ENABLED=true

For more information, see Enabling or disabling verifications on page 287.

• REACT_APP_FEATURE_PAYMENT_DETAILS_ENABLED

Specifies whether to display additional payment information in the application with a Boolean
value. It is disabled by default. For example, to enable the enhanced display of benefit and
payment information:

REACT_APP_FEATURE_PAYMENT_DETAILS_ENABLED=true

For more information, see Configuring payments on page 252.

© Merative US L.P. 2012, 2025

5 Developing with the Cúram Universal Access Responsive Web Application 187

• REACT_APP_CITIZEN_DASHBOARD_PAYMENT_COUNT_MAX

Specifies the maximum number of payments for the expected payments list and previous
payments list on the dashboard, by default 3. This setting applies only when the enhanced
display of benefit and payment information is enabled.

 REACT_APP_CITIZEN_DASHBOARD_PAYMENT_COUNT_MAX=3

Connectivity handler

• REACT_APP_CONNECTIVITY_INTERVAL

Specifies the interval in milliseconds between polling calls to check internet connectivity. By
default, the system_configuration API is pinged every 5 seconds.

REACT_APP_CONNECTIVITY_INTERVAL=5000

• REACT_APP_CONNECTIVITY_POLLING_ENABLED

(Development only) Specifies whether to poll to check internet connectivity. For development
purposes, you can disable polling by setting the value to false.

REACT_APP_CONNECTIVITY_POLLING_ENABLED=true

You can customizing connectivity handling, for more information, see Implementing a
connectivity handler on page 102.

User account status polling

To check whether a user has a standard or linked account when they submit an application, you
can poll the user's account type to check for updates to their account status. This feature can be
useful when an application is set up to automatically create linked accounts, such as in test or
demonstration environments.

• REACT_APP_USER_ACCOUNT_POLLING

For example:

REACT_APP_USER_ACCOUNT_POLLING={“api”: “/v1/ua/user_account_login”, “timeout”: “0",
 “interval”: “1000"}

Where:

• api

Specifies a URL to call to check the user account type. By default, /v1/ua/
user_account_login.

• timeout

Specifies the timeout in milliseconds for the user account type polling to stop. By default,
the timeout is set to 0, which disables user account type polling. Five seconds is a sensible
period to allow for asynchronous processing to finish while not polling indefinitely.

• interval

© Merative US L.P. 2012, 2025

Cúram 8.2.0 188

Specifies the interval in milliseconds between polling calls to check the user account type.
By default, 1 second.

Application-specific verification polling

When a citizen submits an application, there is a delay while verifications are generated for that
application. You can enable verification polling to handle this delay, allowing the page to wait
and present the verifications when they become available. You can set the polling on (default) or
off, and adjust the interval and duration. You can also specify the URL to query to check for the
application verifications. For more information about verification settings, see 8.4 Customizing
verifications on page 287.

• REACT_APP_VERIFICATION_POLLING

For example:

REACT_APP_VERIFICATION_POLLING={"api": "/v1/ua/submitted_applications", "timeout":
 "10000", "interval": "1000"}

Where:

• api

Specifies a URL to call to check the submitted applications for verifications. By default, /
v1/ua/submitted_applications.

• timeout

Specifies the timeout in milliseconds for the polling calls to stop. By default, 10 second.
• interval

Specifies the interval in milliseconds between polling calls. By default, 1 second.

• REACT_APP_VERIFICATION_URL

Specifies the URL to query to check for the application verifications. For example:

REACT_APP_VERIFICATION_URL=<REACT_APP_REST_URL>/v1/ua/verifications

Document uploads

You can specify the allowed file formats and maximum size for the documents that users can
upload.

• REACT_APP_DOC_UPLOAD_FILE_FORMATS

Specifies the file name extension, including the dot separator, of the allowed file types for
document uploads in a comma-separated list. By default, if you do not set this environment
variable, the allowed file types are JPG, JPEG, PNG, TIFF, and PDF. To change the default
file types, set this environment variable. For example:

REACT_APP_DOC_UPLOAD_FILE_FORMATS=".png,.jpg,.pdf"

If you specify an invalid file extension string, all file types are denied.

© Merative US L.P. 2012, 2025

5 Developing with the Cúram Universal Access Responsive Web Application 189

For more information, see Customizing file formats and size limits for file uploads on page
288.

• REACT_APP_DOC_UPLOAD_SIZE_LIMIT

Specifies the maximum size limit for uploaded documents. By default, the maximum file size
is 5 MB. To change the default file size, set this environment variable. For example:

REACT_APP_DOC_UPLOAD_SIZE_LIMIT=6

For more information, see Customizing file formats and size limits for file uploads on page
288.

• REACT_APP_DOC_UPLOAD_LEAD_DAYS

Specifies a lead time in days to subtract from due dates to give caseworkers time to process
applications before the actual due dates. This earlier date is then displayed to citizens in the
application.

The default value of REACT_APP_DOC_UPLOAD_LEAD_DAYS is 0 days. The value that you set
is converted to its absolute value and subtracted from the verification due date. For example,
-1 and 1 have the same effect.

For example:

REACT_APP_DOC_UPLOAD_LEAD_DAYS=-7

For more information, see Customizing a file upload lead time for verifications on page
289.

Cúram Web Development Accelerator

For more information, see Generating Universal Access Redux modules on page 99.

• WDA_MODULES_OUTPUT

(Development only) Specifies the directory to place module files generated by the Web
Development Accelerator, by default src/modules/generated. For example:

WDA_MODULES_OUTPUT=src/modules/generated

• WDA_MODULES_CONFIG

(Development only) Specifies a JSON file in which to save the module configuration that you
define, by default modules_config.json. This file contains the metadata that is used to
generate the code. For example:

WDA_MODULES_CONFIG=src/modules/modules_config.json

It is recommended that you add only this file to source control.

© Merative US L.P. 2012, 2025

Cúram 8.2.0 190

• WDA_SPM_SWAGGER

(Development only) Specifies the location of a copy of the Cúram Swagger specification that
defines which REST APIs are available to the Web Development Accelerator. For example:

WDA_SPM_SWAGGER=spm_swagger.json

You can copy this file from a running Cúram instance at http://hostname:port/
Rest/api/definitions/v1.

Application authentication

The default implementation for authentication is a Java™ Authentication and Authorization
Service (JAAS) authentication method. If the JAAS authentication method does not suit, you can
change to another authentication method, such as Single sign-on (SSO). Ensure that you set any
related environmental variables where needed. For more information, see 6.3 Universal Access
authentication on page 200.

The following authentication methods are provided:

• REACT_APP_AUTH_METHOD

• JAASAuthentication

(Default) No further environmental variables needed.
• DevAuthentication

(Development only) Specifies simple authentication during development that bypasses
proper authentication (JAAS or SSO) and accepts the username dev without any
password. The login process can run and allows access to the 'user account' password
protected pages. If you specify simple authentication, you can set the optional user type
environmental variable in Simple authentication for development on page 190.

• SSOSPAuthentication or SSOIDPAuthentication

Specifies service-provider (SP)-initiated or identity provider (IdP)-initiated SAML 2.0 web
SSO. If you set SSO authentication, you must set the related SSO environmental variables
in Single sign-on (SSO) authentication on page 191.

For example:

REACT_APP_AUTH_METHOD=SSOIDPAuthentication

Simple authentication for development

(Development only) If you are using simple authentication for development, you can set the
following environmental variable. For more information, see Customizing the authentication
method on page 202.

• REACT_APP_SIMPLE_AUTH_USER_TYPE

(Development only) Specifies a user type during development so you can test functionality for
those users.

• PUBLIC, a public citizen account user.

© Merative US L.P. 2012, 2025

5 Developing with the Cúram Universal Access Responsive Web Application 191

• GENERATED, an anonymous generated account user.
• STANDARD, a standard registered account user.
• LINKED, a linked account user.
• null, no user type.

For more information about user types, see 6.5 User account types on page 210.

For example, to test the application for a linked user:

REACT_APP_SIMPLE_AUTH_USER_TYPE=LINKED

Single sign-on (SSO) authentication

If you use SSO authentication, you must set the following environmental variables. For more
information, see the Security Guide.

• The <IdP_URL> consists of three parts: the HTTPS protocol, the IdP hostname or IP address,
and the listener port number. For example, https://192.168.0.1:12443.

• The <ACS_URL> consists of three parts: the HTTPS protocol, the Assertion Consumer
Service (ACS) hostname or IP address, and the listener port number. For example,
https://192.168.0.2:443.

• REACT_APP_SAMLSSO_ENABLED

Specifies whether SSO authentication is used in the application. By default, the IdP-initiated
flow of the SAML SSO browser profile is used. A Boolean value is accepted. For example, to
handle the SAML SSO browser profile in the application:

REACT_APP_SAMLSSO_ENABLED=true

• REACT_APP_SAMLSSO_SP_MODE

(SP-initiated flow only) Specifies whether to use the SP-initiated flow of the SAML SSO
Browser profile. By default, the default IdP-initiated flow of the SAML SSO Browser profile
and this setting overrides it. A Boolean value is accepted. For example:

REACT_APP_SAMLSSO_SP_MODE=true

• REACT_APP_SAMLSSO_USERLOGIN_URL

Specifies the IdP login page URL, that is, the URL where the application sends the user login
credentials. For example:

REACT_APP_SAMLSSO_USERLOGIN_URL=<IdP_URL>/pkmslogin.form

• REACT_APP_SAMLSSO_SP_ACS_URL

Specifies the ACS application server URL, that is, the service provider URL where the
application sends the SAML response. For example:

REACT_APP_SAMLSSO_SP_ACS_URL=<ACS_URL>/samlsps/acs

© Merative US L.P. 2012, 2025

Cúram 8.2.0 192

• REACT_APP_SAMLSSO_USERLOGOUT_URL

Specifies the IdP logout page URL, that is, the URL where the application sends the user
logout request. For example:

REACT_APP_SAMLSSO_USERLOGOUT_URL=<IdP_URL>/pkmslogout

• REACT_APP_SAMLSSO_IDP_LOGININITIAL_URL

(IdP-initiated flow only) Specifies the initial URL to which the application sends the initial
login request to the identity provider. Refer to the identity provider documentation for the
correct URL and values. For example:

REACT_APP_SAMLSSO_IDP_LOGININITIAL_URL=<IdP_URL>/isam/sps/saml20idp/saml20/
logininitial?RequestBinding=
HTTPPost&PartnerId=<ACS_URL>/samlsps/acs&NameIdFormat=Email

• REACT_APP_SAMLSSO_IDP_SSOLOGIN_URL

(SP-initiated flow only) Specifies the identity provider URL where the application sends the
SAML request. Refer to the identity provider documentation for the URL. For example

REACT_APP_SAMLSSO_IDP_SSOLOGIN_URL=<IdP_URL>/isam/sps/saml20idp/saml20/login

Intelligent Evidence Gathering (IEG)

For more information, see the Authoring Scripts using Intelligent Evidence Gathering Guide.

• REACT_APP_DISPLAY_REQUIRED_LABEL

Specifies whether to indicate the required form fields or the optional form fields. As most
questions in a typical form are required, indicating the optional questions rather than the
required questions typically results in a less cluttered form. By default, optional fields are
highlighted in IEG forms. For example, to display labels for required fields only:

REACT_APP_DISPLAY_REQUIRED_LABEL=true

• REACT_APP_DATE_FORMAT

Specifies the date format for form fields, by default, MM/DD/YYYY. The valid values are dd-
mm-yyyy and mm-dd-yyyy. If you omit the environment variable or set an invalid value, the
default date format is used. For example, to change the date format to DD/MM/YYYY:

REACT_APP_DATE_FORMAT=dd-mm-yyyy

Note: Specific globalization considerations apply to the date format when it is
used in hint text and messages. Ensure that you have the same date format in the
REACT_APP_DATE_FORMAT environment variable, and in theDateAdapter_DateFormat
and Errors_date messages in the intelligent-evidence-gathering-locales
package.

© Merative US L.P. 2012, 2025

5 Developing with the Cúram Universal Access Responsive Web Application 193

• REACT_APP_PHONE_MASK_FORMAT

Specifies a phone number mask for a form field in a question. The value must be in ISO
3166-1 alpha-2 code format, for example, US | CA | GB | DE. In your IEG script, you
must add the wds-js-input-mask-phone class name to the question.

REACT_APP_PHONE_MASK_FORMAT=US

Where country is the locale that you want to use.

• REACT_APP_PHONE_MASK_DELIMITER

Specifies a custom delimiter for phone numbers. For example, to convert 1 636 5600 5600 to
1-636-5600-5600:

REACT_APP_PHONE_MASK_DELIMITER=-

• REACT_APP_PHONE_MASK_LEFT_ADDON

Specifies a fixed country code for phone number fields. For example, to convert
1-636-5600-5600 to +1-636-5600-5600:

REACT_APP_PHONE_MASK_LEFT_ADDON=+

• REACT_APP_CURRENCY_MASK_ADDON

Specifies a currency symbol to display before or after the amount, where the alignment of the
currency symbol is based on the locale. For more information, see the developer.mozilla.org
documentation. For example, to specify Canadian Dollars, where in a French locale the dollar
is aligned on the right, and in an English locale the dollar is aligned on the left:

REACT_APP_CURRENCY_MASK_ADDON=$

© Merative US L.P. 2012, 2025

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Intl/NumberFormat
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Intl/NumberFormat

Cúram 8.2.0 194

© Merative US L.P. 2012, 2025

6 Security for the Cúram Universal Access Responsive Web Application 195

6 Security for the Cúram Universal Access Responsive
Web Application

Merative ™ Cúram Universal Access gives citizens access to their most sensitive personal data
over the internet. Security must be a primary concern in the development of citizen account
customizations. All projects that are built on the Cúram Universal Access Responsive Web
Application must focus on delivering security from beginning to end.

It is recommended that all projects take at least the following steps to ensure the security of the
project delivery:

• Ensure that the project team are familiar with the principles of secure application
development, and common vulnerabilities such as the OWASP Top Ten.

• Develop and apply a threat model.
• Employ security experts to test everything from requirements to the finished deployment.
• Plan for how the application is used in public spaces like libraries and kiosks.

Customers must contact Merative™ support to discuss any unusual customization that might have
specific security issues.

6.1 Build secure web apps with the Social Program
Management Design System

When you develop with the Cúram Design System and npm, you must consider your security
attack plane, and take the appropriate steps to prevent or reduce the threat to your runtime
application from malicious actors. npm is an impressive resource of open source software, but
you must understand the threats that exist with this software stack and act responsibly to mitigate
risk.

Merative ™ Cúram Universal Access goes through rigorous security threat monitoring during
development and before release. However, after the software is released there is an ongoing threat
to your business:

• From your customization of the software.
• From new vulnerabilities that are discovered after release.

npm, which is the backbone of the Social Program Management Design System software
development lifecycle strategy, promotes the reuse of third-party packages. Each of your
packages uses other packages, which in turn use other packages, and so on. This generates a large
tree of dependencies on software packages, many of which you might have little or no knowledge
of. It is important to understand the NPM threat vectors and take the appropriate steps.

© Merative US L.P. 2012, 2025

https://owasp.org/www-project-top-ten/

Cúram 8.2.0 196

Protect yourself during development

You can use a number of strategies to reduce the possibility that you might release vulnerable
software.

• Review Dependencies

If you introduce new third-party dependencies in your custom code, try to choose packages
that are established, well-maintained, and used widely. This strategy increases the chances that
vulnerabilities are discovered quickly and resolved immediately by the package owners.

• Audit Packages

Monitor the results of the npm audit command that is run after each installation. To reduce
possible vulnerabilities, fix issues in your direct dependencies as they arise to ensure that your
development environment is using the latest versions of packages in your dependency tree.
While not all packages that are used during development get deployed in production, it is still
good practice to minimize warnings as much as possible.

• Lint in development

Use linting tools in your development environment to highlight security issues in your custom
code and resolve or mitigate any reported issues before your release the code. For more
information about configuring linting, see 5.4 Enforce good code style with ESLint and
EditorConfig on page 84.

• Lint in the continuous integration pipeline

Introduce linting to your integration pipeline to ensure that failures for security rules block the
integration of new code.

• Review code

Include security as a critical aspect of a code review, and educate your developers on how to
spot scenarios where security is a concern, and how to identify coding errors.

• Consider your authentication strategy

The reference application provides basic sign-up and log-in pages to demonstrate how the
Merative ™ Cúram Universal Access Responsive Web Application can be integrated with
a Cúram deployment. These features are provided as references, but are not intended to be
directly deployed into production.

You must consider your authentication strategy and ensure it meets your organization's
requirements. For example, you might need to integrate with an Identity Provider in your
authentication flow, or use a captcha for your sign-up or log-in pages.

• Secure your REST APIs
Ensure that you secure your REST APIs before deployment, see 6.2 Securing access to
Universal Access REST APIs on page 199.

© Merative US L.P. 2012, 2025

6 Security for the Cúram Universal Access Responsive Web Application 197

Protect your production environment

You must understand how your production code is created, and use npm audit to identify
security issues.

How is your deployed code created?

• npm install

When you run npm install for your development environment, it typically installs packages
that:

• Are used at run time and need to be included in the build for deployment.
• Are only required for development purposes or to create the deployment.

By convention, runtime or development-only packages are separated by the dependencies
and devDependencies lists in the package.json file. However, you can have the packages
in either list or mixed any way that you want. After an installation runs successfully you have
all the code that is required to go to the next stage, which is to build your deployment and run
your app. Adding packages to the devDependencies list does not ensure that they are not in
your deployed code.

• npm run build

When you run npm run build, the dependencies list in the package.json file is
ignored as it is only relevant to the development environment. Instead, the src/index.js
file that represents the root of the App is used to initiate a process of including only the files
that are required to create a working deployment. It is possible that code from packages that
are listed in your devDependencies ends up in your deployment bundle, if code from those
packages is called from code in your runtime application.

Use npm audit to identify security issues

When you run npm audit, all packages that are listed in package-lock.json are analyzed
for vulnerabilities. The audit is not sophisticated enough to know what is part of the deployment.
That is, the contents of the build folder, and the packages from which they were included.
For this reason, an npm audit is an indicative security check that helps to identify potential
vulnerabilities with the packages that you are using. However, it is not an accurate picture of how
vulnerable your running application is because:

• Code from packages with known vulnerabilities might not be included in your deployed code.
Either because it is only used for development, or because the bundling algorithm calculates
that the code is not required and doesn't add it to the deployment bundle.

• Vulnerabilities might not be discovered yet. So the code that you successfully audited
yesterday might not pass an audit check today. No code did not change, but a new
vulnerability was discovered and reported to NPM https://www.npmjs.com/advisories.

Therefore, npm audit is a good smoke test for vulnerabilities, but needs further analysis before
action is taken.

© Merative US L.P. 2012, 2025

https://www.npmjs.com/advisories

Cúram 8.2.0 198

When to run npm audit?

npm audit runs on each installation. In a development environment, it is obvious to the
team when vulnerabilities arise as each time a developer installs the app, they are notified of
vulnerabilities.

For a deployed environment, you can run npm audit daily against your deployed code to
highlight any new vulnerabilities that were discovered since you deployed your application. You
might be tempted to run it against your development codebase, but this code is not the same as
your deployed code. The packages that are in a deployment might have been removed from your
development repository since you last deployed and therefore not show up in an audit on your
development codebase.

To monitor the code that is running in your deployed environment, you must run npm audit
against the packages that were used to build that deployment. You need the package.json and
package-lock.json from the codebase from which the deployment was built. You can create
a simple automated job to run npm audit against a folder that contains these files and to report
any failures. For example, you can run npm audit --audit-level=high from a folder
that contains these files:

/my-current-deployment-packages
 + package.json
 + package-lock.json

Review content security policy settings

"The HTTP Content-Security-Policy response header allows website administrators to control
resources the user agent is allowed to load for a given page. With a few exceptions, policies
mostly involve specifying server origins and script endpoints. This helps guard against cross-site
scripting attacks." (From mdn web docs https://developer.mozilla.org/en-US/docs/Web/HTTP/
Reference/Headers/Content-Security-Policy)

The CSP can be defined in the root index.html file from which your site is deployed.
Alternatively, where the meta tag does not support the CSP policy-directive, e.g. "frame-
ancestors", you can add headers using a reverse proxy such as Nginx or Apache HTTP Server.
E.g. The code below could be used to add the frame-ancestors policy to any response from the /
universal endpoint

location ~ ^/universal {
 add_header Content-Security-Policy "frame-ancestors 'none'";
}

It is recommended that your security team reviews the content security policy to ensure it meets
your internal security policies.

Review your build files for secrets

When you deploy your application, you publish the contents of the /build folder to the public
via the browser. This set of files should be reviewed to ensure it does not contain any sensitive
information that malicious actors could extract. For example, environment variables used by the
React application are written into the JavaScript files as part of the build process. It is possible
through misconfiguration that environment variables that are not required and include sensitive
information are included.

© Merative US L.P. 2012, 2025

https://developer.mozilla.org/en-US/docs/Web/HTTP/Reference/Headers/Content-Security-Policy
https://developer.mozilla.org/en-US/docs/Web/HTTP/Reference/Headers/Content-Security-Policy

6 Security for the Cúram Universal Access Responsive Web Application 199

The build files can be reviewed manually by searching for a value from your .env file. E.g.
REACT_APP_REST_URL. Adjacent to this reference you will see the list of other environment
variables. Ensure the list only includes environment variables required by the application, and do
not include sensitive information.

Consider using security scanning tools to automate the review process.

Consider penetration testing

Penetration testing is an activity that is carried out on running software to find security holes.
Penetration testing can be done with automated tools, such as IBM Security AppScan. To
add a further strength test to your development process, you can hire third-party services that
specialize in the penetration testing of apps, which includes both automated and manual testing.
Typically, penetration testing is carried out periodically to provide an external health check on
your applications security.

How to address security vulnerabilities

If you find that you are using a vulnerable package, you must analyze the threat to decide how to
mitigate the risk.

Sometimes, an npm audit scan might report packages that are used in development but are not
in your deployed application bundle and therefore not in your runtime application. The urgency of
fixing issues with these packages is reduced.

For vulnerabilities that you discover through npm audit that are High or Critical, you must
address them as soon as possible. For most, the fix is already available or to be provided within
hours or days of registration of the vulnerability. You must redeploy your production code from
a repository that was updated to the patched version of the vulnerable package. Typically, npm
audit advises you what you need to do.

In some cases, the fix might require upgrading a package to a major version, which requires a
manual upgrade as it might be a breaking change for your code. Where the package was included
through your own custom code, you can do this upgrade yourself. In other cases, the fix is outside
your control. For example, where the vulnerable package is a dependency of a package that you
depend on, you need the owner of that package to fix their code. If Merative™ owns the package,
you can open a support case for the issue.

For more information about how deal with security audits, see this npm article.

6.2 Securing access to Universal Access REST APIs

You must ensure that you secure access to REST APIs that are used by Universal Access.

If you are enabling verifications, you must ensure that you have implemented the appropriate file
security and validations for document uploads, and enabled the Files API so you can upload files
to Cúram.

For more information, see the Cúram™ REST API Guide.

© Merative US L.P. 2012, 2025

https://docs.npmjs.com/auditing-package-dependencies-for-security-vulnerabilities#update-dependent-packages-if-a-fix-exists

Cúram 8.2.0 200

Cúram delivers many REST APIs that are not all used by client applications like Merative ™
Cúram Universal Access. Ensure that you remove Security IDentifiers (SIDs) from the database
for any unused REST API functions to greater secure what is available to be accessed by users,
see 6.6 User account authorization on page 211.

Enabling Cross-Site Request Forgery (CSRF) protection for Universal
Access

You can enable token-based Cross-Site Request Forgery (CSRF) protection in Universal Access
to secure the Cúram REST APIs from CSRF attacks.

About this task

For more information about CSRF protection in Cúram, see the Cúram™ REST API Guide.

For more information about how the REST APIs integrate token-based CSRF protection, see the
Cúram™ REST API Guide.

Procedure

1. Enable CSRF protection on the Cúram server, see the Cúram™ REST API Guide.
2. Ensure that any subdomains are included in the curam.rest.refererDomains Cúram

system property.
3. Set the Universal Access security environment variables for CSRF in Universal Access

application. See 5.18 React environment variable reference on page 182.
4. Ensure that any images in the application that are stored in Cúram and requested from the

Cúram server use the UAImage component from the core-ui package. The UAImage
component is a wrapper for the Image component that adds the CSRF token to image requests
from the Cúram server.

Note: If you are upgrading, you must ensure that you replace the Image component with
the UAImage component for all images that are stored in Cúram. Otherwise, images that are
stored in Cúram cannot be retrieved and displayed.

6.3 Universal Access authentication

The universal-access package exports the Authentication module, which can be used to
log in and out of the application and to inspect the details of the current user. The login service
is passed a username and password, and optionally a callback function that is called when the
authentication request is completed.

Authentication services

The Authentication API supports the following modes:

• JAAS Authentication (Default)
• Simple Authentication (Development mode)

© Merative US L.P. 2012, 2025

6 Security for the Cúram Universal Access Responsive Web Application 201

• Single Sign-on (SSO) Authentication
• Custom authentication

JAAS authentication

By default, the login process uses the standard JAAS login module.

The JAAS login module is exposed through the Cúram Universal Access API at the /
j_security_check end point, and authenticates the user against the Cúram database of users.
For more information about JAAS login in Cúram, see the Security Guide.

Simple authentication (Development Mode)

During development, you can use a simple authentication that does not require an Cúram server.
This simple authentication bypasses proper authentication (JAAS or SSO) and instead accepts
the username dev without any password. The login process runs and allows access to the 'user
account' password protected pages.

This simple authentication is sufficient to do most client development work and avoids the need
to configure your client application to communicate with an Cúram server.

SSO authentication

The application supports single sign-on (SSO), which is a typical use case for many enterprises
that serve multiple applications with a single username and password for their clients.

For more information about configuring your application to use SSO, see the Security Guide.

• Automatically logging in to your SSO

The default SSOVerifier component wraps the whole application and checks for SSO
status when the application is loaded for the first time. The SSOVerifier component verifies
whether the user is already logged in with SSO and can be logged directly into the application.
If the user is not yet authenticated, then they must authenticate as a public citizen so that they
can access the system configuration.

The SSOVerifier does the entire precheck within the component, by making all the required
calls to determine with the IdP whether the current user is authenticated. SSOVerifier is
helped to make these calls by using functions exposed by SSOAuthentication.

If you need custom verification, you must create your own verifier component to replace the
current SSOVerifier component. Then, add your custom verifier component to the call stack
in your entry JavaScript file, for example App.js.

Custom authentication

You can implement your own custom authentication to suit your specific environment.

User account types

The Universal Access client supports three different user account types, Public, Generated, and
Citizen. For more on user accounts and security, see 6.5 User account types on page 210. If
you want to customize the log in and sign up process that is provided with the Universal Access

© Merative US L.P. 2012, 2025

Cúram 8.2.0 202

starter pack, the Authentication module provides log-in functions to support each of these
three user account types.

Authentication.loginAsPublicCitizen

Authentication.loginWithGeneratedUser

Authentication.login

Tracking the logged in user

The Cúram Universal Access Responsive Web Application uses 'session storage' in the browser
to store some basic details of the currently logged-in user after they are authenticated with
the server. This session storage is typically used to inform the client application what views
to present. For example, if no user is logged in, then the login and sign-up page buttons are
displayed on the home page.

The Authentication module provides functions that query the current logged-in user and their
account details, according to the session storage in the browser.

Authentication.getLoggedInUser

Authentication.getUserAccount

Logged in on the client or the server

Citizens can seem to be logged in on the client when they are not logged in on the server. This
situation does not compromise the security of the application. The Cúram server APIs use session
tokens that are stored in cookies to determine whether the current user is authenticated. The
cookies are transmitted with each API call, and only a valid token results in a successful response.

For example, if a user's session times out on the server, the next API request to the server results
in a 401 unauthorized response, even if the user seems to be logged in to the client application.
This behavior ensures that no matter what the client application says about the currently logged-in
user, the server responds only to valid session tokens.

For more information, see Configuring user session timeout on page 250.

Related concepts
The RESTService utility on page 113
The @spm/core package provides the RESTService utility, which you can use to connect your
application to a REST API. The RESTService utility provides important functions for securing
and connecting to Cúram REST APIs, such as CSRF protection and SSO support. You can fetch
resources with alternatives such as Fetch API, SuperAgent, or Axis, but you must consider
implementing functionality that is handled by the RESTService utility, like CSRF protection and
SSO support.

Customizing the authentication method

The default implementation for authentication is a Java™ Authentication and Authorization
Service (JAAS) authentication method. If the JAAS authentication method does not suit, you

© Merative US L.P. 2012, 2025

6 Security for the Cúram Universal Access Responsive Web Application 203

can change to one of the other provided authentication methods, or implement your own custom
authentication method.

About this task

The following authentication methods are available in the application. For more information, see
6.3 Universal Access authentication on page 200. To use any of the provided authentication
methods, set the REACT_APP_AUTH_METHOD environmental variable in the appropriate
.env file to one of the following options and set any related environmental variables. For
example:

REACT_APP_AUTH_METHOD=SSOIDPAuthentication

• JAASAuthentication

(Default for production environments. That is, npm start with .env.development.)

No further environmental variables needed.
• DevAuthentication

(Default for development environments.)

Set the Simple authentication for development on page 190 environmental variables.
• SSOSPAuthentication

Service-provider (SP)-initiated SAML 2.0 web SSO.
• SSOIDPAuthentication

Identity provider (IdP)-initiated SAML 2.0 web SSO.

If you set SSO authentication, you must set the Single sign-on (SSO) authentication on page 191
environmental variables.

For more information about environmental variables, see the 5.18 React environment variable
reference on page 182.

If you want to use custom authentication, you must create a custom authentication method and
register the new authentication method as follows:

Procedure

1. Create a custom authentication method, which consists of a normal class file that contains two
static methods as follows:

• static login = input => {}

Where input is an object that contains one or more of these authentication properties:
username, password, callback, ssoPreCheck, ssoLogin.

Implement the logic to authenticate the user in this method.
• static logout = (callback, reportLogoutError) => {}

Where:

• callback is a function that is called when logout completes.
• reportLogoutError can be used to define whether a message is shown.

© Merative US L.P. 2012, 2025

Cúram 8.2.0 204

Implement the logic to log out the user in this method.
2. Register your new authentication method in an entry point file such as App.js by using the

AuthenticationRegistry component as shown in the following example:
a) Import the AuthenticationRegistry component and the authentication class:

import { AuthenticationRegistry } from '@spm/core';
import CustomAuthentication from '<path_to_custom_method>';

b) Use AuthenticationRegistry.registerAuthenticationType to register the functions
from the authentication class:

AuthenticationRegistry.registerAuthenticationType(CustomAuthentication);

6.4 Authenticating with external security systems

By default, Merative ™ Cúram Universal Access uses its own authentication system that is
backed up by a database of registered users. However, Universal Access can also be configured to
authenticate with external security systems.

Configuring SAML SSO for Universal Access

You can configure SAML Single Sign-On (SSO) for Universal Access. For more information, see
the Security Guide.

Identity Only authentication

You can deploy Universal Access in Identity Only mode for registered users so that creating
accounts occurs externally and user accounts are authenticated externally. For more information,
see the Security Guide.

Integrating with IdPs for multifactor authentication

To integrate multifactor authentication into your application, use single sign-on through SAML
with an identity provider (IdP) that supports multifactor authentication.

In the associated single sign-on flow, the entire authentication process, including the login screen,
is delegated to the IdP. You can customize the application to support the flow.

For more information, see the example in the Github open source repository.

External security authentication example for Universal Access

You can ensure that citizens can be authenticated for any of your services by using a single set of
credentials. This approach provides the benefits of a streamlined authorization process for both
governments and citizens. The example outlines the implementation of a set of customization
requirements for a team that is deploying Universal Access.

Any analysis of requirements for external security integration must consider the following
questions:

© Merative US L.P. 2012, 2025

https://github.com/Merative/spm-citizen-engagement/tree/main/custom-sso-mfa

6 Security for the Cúram Universal Access Responsive Web Application 205

• Does your deployment support anonymous screening, anonymous intake, or both?
• Is account management supported in Merative ™ Cúram Universal Access or in the external

security system?
• Is single sign-on (SSO) needed?

Example customization requirements

The external security authentication example describes the configuration and development tasks
to implement the following set of customization requirements, and refers to these requirements
where appropriate.

1. Users can access Universal Access and do anonymous screening or intake.
2. Users who want to access their saved screening or intake information must first create an

account on a system called CentralID.
3. Users who log in to Universal Access can use their CentralID username and password to

authenticate.
4. Users do all of their account management with an external system called Central ID. For

example, resetting a password, creating a new account, or changing account details.
5. CentralID stores all user records in a secure LDAP server.
6. Because all account management is now done in CentralID, the account creation screens and

password reset screens are to be removed from Universal Access.
7. Users can log in as soon as they register with CentralID, and experience no delay while an ID

propagates to Universal Access.

Configuring an alternative login ID
By default, you cannot change user names after they are created. However, you can configure an
alternative login ID that can be updated.

If you configure an alternative login ID for a user name that is case-sensitive, then the alternative
login ID is also case-sensitive.

For information about configuring alternative login IDs, see the Security Guide.

Deploying in identity-only mode for registered users
You must configure the application server to use LDAP for authentication if a user is in
Identity–Only mode. Also, configure the necessary properties to deploy in identity-only mode
for registered users.

Configuring the application server to use LDAP for authentication in Identity–
Only mode

If a user is in Identity–Only mode, it is necessary to match the login IDs that are stored in
LDAP with the login IDs that are stored in the ExtendedUsersInfo table.

For information about how to configure your application server to use LDAP for authentication,
see the relevant application server documentation.

© Merative US L.P. 2012, 2025

Cúram 8.2.0 206

Configuring properties to deploy in identity-only mode for registered users

Add the following properties to the AppServer.properties file:

curam.security.check.identity.only=true
curam.security.user.registry.disabled.types=EXT_AUTO,EXT_GEN
curam.citizenworkspace.enable.usertypes.for.temporary.users=true
public.user.type=EXT_AUTO

To reconfigure the application server, run the following command:

appbuild configure

The curam.security.check.identity.only property ensures that application security
is set to work in Identity Only mode. For more information about Identity Only authentication
mode, see either Deployment Guide for WebSphere® or Deployment Guide for WLS. In Identity
Only mode, authentication uses only the internal user table to check for the existence of the user.
The validation of the password is left to a subsequent module, either a JAAS module (Oracle®

WebLogic) or the User Registry (IBM® WebSphere®).

Take the example of a user, "johnsmith", who has been registered with the CentralID LDAP
server. For John Smith to be able to use Universal Access, there must also be a "johnsmith" entry
in the ExternalUser table. When John Smith logs in, his authentication request is passed to the
Cúram JAAS Login Module. The Cúram JAAS Login Module checks that the user johnsmith
exists in the Cúram ExternalUser table but does not check the password. The authentication then
proceeds to the User Registry (WebSphere®) or LDAP JAAS Module (WebLogic) where the
user name and password are checked against the contents of the CentralID LDAP server. For
the authentication to work correctly, it is necessary to configure the application server with the
connection details for the secure LDAP server.

The Identity Only configuration allows the application to defer to an external security system
such as an LDAP-based directory service for the authentication of user credentials. However,
when an anonymous user accesses the organization Home page for the first time, the user is
automatically logged in as a publiccitizen user. Subsequently, if the user chooses to screen
themselves or to perform an intake, Universal Access creates a new "generated" anonymous
user. Each generated user is unique, which ensures that the data that belongs to that user is kept
confidential. Public citizen users and generated users are not inserted into the LDAP directory, so
they cannot be authenticated by using the Identity Only mechanism. The following line ensures
that users with the user type EXT_AUTO (public citizen users) and EXT_GEN (generated users)
are authenticated against the External User table:

curam.security.user.registry.disabled.types=EXT_AUTO,EXT_GEN

After the previous configuration has been applied to the server and the server has been started,
perform the following configuration steps:

1. Log in as sysadmin.
2. Select Application Data > Property Administration.
3. Select category Citizen Account - Configuration.
4. Set the property curam.citizenaccount.public.included.user to EXT_AUTO.

© Merative US L.P. 2012, 2025

6 Security for the Cúram Universal Access Responsive Web Application 207

5. Set the property curam.citizenaccount.anonymous.included.user to EXT_GEN.
6. Set the property curam.citizenworkspace.enable.usertypes.for.temporary.users to TRUE.
7. Publish the property changes.

You need another configuration entry so that Universal Access operates correctly with
respect to authentication as shown in the following steps:

8. Select Select Application Data > Property Administration.
9. Select category Infrastructure – Security parameters.
10. Set curam.custom.externalaccess.implementation to

curam.citizenworkspace.security.impl.CitizenWorkspacePublicAccessSecurity.
11. Publish the property changes.
12. Log out and restart the server.

Disabling the Create Account screens
Configure the necessary properties to disable the screens for creating an account that Universal
Access provides by default. Requirement 4 in the example requirements indicates that all account
management functions are handled by the external system, CentralID, including the creation of a
new account and performing a password reset.

Configure Universal Access to disable the screens that are related to account management:

1. Log in as sysadmin.
2. Select Application Data > Property Administration.
3. Select Category Citizen Portal - Configuration.
4. Set the property curam.citizenworkspace.enable.account.creation to NO.
5. Publish the property changes.

The previous steps remove references to Account Creation pages from Universal Access.
The Login screen still contains a link to a page for changing passwords. In this example, the
implementation team can use the following steps to retain the link but change it to open a new
browser window on the CentralID password reset page:

1. Log in as sysadmin.
2. Select Application Data > Property Administration.
3. Select Category Citizen Portal - Configuration.
4. Set the property curam.citizenworkspace.forgot.password.url to , for example http://

www.centralid.gov/resetpassword
5. Publish the property changes.

To completely remove the reset password link, use the following steps:

1. Log in as sysadmin.
2. Select Application Data > Property Administration.
3. Select Category Citizen Portal - Configuration.
4. Set the property curam.citizenworkspace.display.forgot.password.link to NO.
5. Publish the property changes.

© Merative US L.P. 2012, 2025

Cúram 8.2.0 208

Redirecting users to register with an external system
Replace the message that is displayed in the log in page so that non-registered users are directed
to the CentralID page for registration.

Universal Access invites users to log in with a log in message. You can replace the message so
that the log in page displays a message that is similar to the following example:

"<p>If you are registered with CentralID enter your user name
 and password to log in. To register, go to
 The CentralID
 registration page.</p>"

The properties for controlling the login page message are in the <CURAM_DIR>/EJBServer/
components/Data_Manager/Initial_Data/blob/prop/Logon.properties
file.

Enabling users to log on immediately after registration with CentralID
Users should be able to log in as soon as they have registered with CentralID. Some configuration
is required to prevent a delay in the propagation of a user's ID to other systems.

To function correctly, each user must have an entry in the ExternalUser table. The customer
could build a batch process to import users from the LDAP directory into the ExternalUser
table. However, requirement 7 in the example requirements would not be satisfied, which states
that users must be able to register with CentralID, and then immediately use Universal Access.
Another option would be to build a web service or similar mechanism that would be launched
when a new user registers with CentralID. The implementation of the web service would create
the appropriate entry in the ExternalUser table.

A simpler option is to override the default log-in behavior to create new accounts as
needed, after the completion of checks to ensure that the relevant entry exists in the LDAP
server. You can override the default log-in behavior in Universal Access by extending the
curam.citizenworkspace.security.impl.AuthenticateWithPasswordStrategy

class and overriding the authenticate() method. The following code outlines how to use

© Merative US L.P. 2012, 2025

6 Security for the Cúram Universal Access Responsive Web Application 209

the AuthenticateWithPasswordStrategy and other security APIs to meet the previous
requirements:

public class CustomSecurityStrategy extends AuthenticateWithPasswordStrategy {
 @Inject
 private CitizenWorkspaceAccountManager cwAccountManager;
 ...
 @Override
 public String authenticate(final String username,
 final String password)
 throws AppException, InformationalException {
 final String retval = null;
 if (username.equals(PUBLIC_CITIZEN)) {
 return super.authenticate(username, password);
 }
 // Authenticate generated accounts as normal
 if (cwAccountManager.isGeneratedAccount(username)) {
 return super.authenticate(username, password);
 }
 // Check that the user exists in LDAP
 // This prevents hackers from registering many bogus
 // accounts that exist in Curam but not in LDAP
 if (!isUserInLDAP(username)) {
 return SECURITYSTATUS.BADUSER;
 }
 // If there's no account for this user
 if (!cwAccountManager.hasAccount(username)) {
 createUserAccount(username);
 }
 return SECURITYSTATUS.LOGIN;
 }
 private void createUserAccount(final String username)
 throws AppException, InformationalException {
 final CreateAccountDetails newAcctDetails;
 ...
 cwAccountManager.createStandardAccount(newAcctDetails);
 }
}

This code checks to see whether the user is logging in is a public citizen user or a
generated account. In both cases, authentication logic is delegated to the default
AuthenticateWithPasswordStrategy API. In the case of a registered user, the Strategy
checks the LDAP directory to ensure that the user exists in the LDAP directory. If the user exists
in the LDAP directory and does not exist yet in Universal Access, then a new user account is
created. Note, the custom code does not need to authenticate the user against LDAP since the
authentication is handled by the User Registry in WebSphere® or the LDAP JAAS Module
in WebSphere®. It is important to note that the password parameter of the authenticate()
method is passed in clear text.

To install the CustomSecurityStrategy class, it must be bound in place of the Default
Security Strategy class. Use a Guice Module to bind the implementation:

public class CustomModule extends AbstractModule {
 @Override
 protected void configure() {
 binder().bind(SecurityStrategy.class).to(
 CustomSecurityStrategy.class);
 }
}

© Merative US L.P. 2012, 2025

Cúram 8.2.0 210

You must configure the CustomModule at startup by adding a DMX file to the custom component
as shown in the following example:

<CURAM_DIR>/EJBServer/custom/data/initial/MODULECLASSNAME.dmx

<?xml version="1.0" encoding="UTF-8"?>
<table name="MODULECLASSNAME">
 <column name="moduleClassName" type="text" />
 <row>
 <attribute name="moduleClassName">
 <value>gov.myorg.CustomModule</value>
 </attribute>
 </row>
</table>

6.5 User account types

Merative ™ Cúram Universal Access has different account types to support both anonymous and
registered citizens. As citizens use Universal Access, their account type can change.

Merative ™ Cúram Universal Access has the following user types:

Public citizen account

When citizens view the organization Home page, they are automatically logged in under the
publiccitizen account. This account has access only to the home page and the pages that allow
citizens to enter or reset passwords.

Anonymous account

When the user clicks a link to start screening or applying for benefits, they are logged out as
publiccitizen and logged back as an anonymous account with a random username. A principle of
Universal Access is that users cannot access the data of other users. If all intakes and screenings
used the same publiccitizen user account, a citizen might see data that was entered by another
citizen.

Registered accounts

Registered accounts are standard accounts that are created by citizens. Citizens can create
accounts when they first use the application, or during processes like applying for benefits. These
accounts are different from anonymous accounts in that they allow citizens to continue previously
saved applications, restart applications that were previously unfinished, and review or withdraw
previously submitted applications.

Linked accounts

Linked accounts are accounts that are linked to a Concern Role ID for a Person entity.
Organizations must implement their own linking functions. Universal Access APIs that allow a
username to be linked to a Concern Role ID are available to support linking.

Citizens with linked accounts have access to detailed information about their benefits and cases
by using their citizen account. Citizens with a linked account can submit life events such as
getting married or losing their job. They also have access to information about benefit payments.

© Merative US L.P. 2012, 2025

6 Security for the Cúram Universal Access Responsive Web Application 211

Because of the sensitivity of this information, customers must ensure that they have a robust
process for creating linked user accounts.

The following scenarios are examples. The actual processes for linking are unique to each
organization.

• A citizen creates a user account in Universal Access and submits an intake application:

• An organization can implement an online mechanism to link a registered account. Citizens
can be asked in the online application if they want to upgrade their account for access to
more services. If they consent, their registered account is automatically linked.

• Citizens are contacted by their caseworker who asks them if they want access to more
services. The citizen agrees and presents themselves at their local office with personal
identification, such as a passport. The caseworker can then link the registered account that
they used to submit their intake application.

• A citizen requests a citizen account and is asked to present themselves at their local Social
Welfare office with personal identification, such as drivers license. After they verify the
citizen’s identity, the caseworker uses custom functions to enter details for the new linked
account.

In none of these scenarios does a caseworker have access to a citizen's password. The linking
process can automatically upgrade their account, or can trigger a batch job that sends the
password by letter to the citizen's home address.

6.6 User account authorization

Whenever a request is made to a Universal Access API authorization controls are applied to
ensure the citizen's data is secure. The authorization checks are invoked at 2 levels.

1. Role-based access control (RBAC)
2. API authorization checks

Role-based access control

RBAC as discussed in the section Authorization Overview in the Cúram Security Guide, ensures
that users only call APIs that their role permits. When an RBAC check fails the API code is never
executed.

Note: Due to the public availability of Universal Access web applications attempts to breach
security will be more common. Before deploying to production a full review of all external users
and user roles should be carried out to ensure that the roles assigned and the permissions they
grant are correct. Redundant users and user roles should be removed and the remaining users,
roles, and security groups should be tightly regulated.

API authorization checks

After the RBAC check for the API has been completed successfully the user request will be
processed by the API. APIs must enforce a second-level authorization check. At this level, the
individual user’s permissions are checked (as opposed to their role permissions). By default, all
product Web APIs have an authorization check. The typical check will ensure the data requested

© Merative US L.P. 2012, 2025

Cúram 8.2.0 212

is associated with the currently logged-in user. Without this check a malicious user with the same
security role could manipulate API parameters to return another user's data.

Customizing Web API authorization checks

The product APIs can be customized to change the authorization checks performed. If custom
checks are introduced, responsibility for the security of the API passes from the product to the
customizer.

Authorization for the citizen account

The product provides a Service Provider Interface that can be used to customize the product
authorization checks. The interface is simple, allowing the implementor to provide an
authorization check of any complexity.

The code is listed below (with Javadoc removed for brevity).

public interface AuthorisationStrategy {
 public void doAuthorisationCheck()
 throws AppException, InformationalException;
 public void doAuthorisationCheck(Object paramObj)
 throws AppException, InformationalException;
 public boolean disableDefaultAuthorisationChecks();
}

The authorization strategy interface allows the developer to define 3 actions:

1. Apply an authorization check to an API that received no parameters
2. Apply an authorization check to an API that received parameters
3. Disable the default product authorization checks. This is required if your custom authorization

checks conflict with the default product checks

The custom strategy class is configured using Guice. For more information on working
with Guice modules see the Creating a Guice module in the Developing with Persistence
Infrastructure Guice guide.

Two configuration options are available.

1. Application level, where all APIs will implement the authorization check based on the
application code. All external users are assigned an application code when their account is
created. For example, a citizen is assigned the code CITWSAPP (citizen workspace app).

2. API level, where authorization checks are specific to an API. The configuration uses
the fully qualified API class.method as the identifier. This value can be retrieved via the
TransactionInfo.getProgramName API.

The configuration options described above give the developer full control over the authorization
strategy. For example, where an authorized representative is logged in and representing another
user, the authorization check can use the application code for the current user (representative)
to look up a strategy that will check if they are assigned to the user (being represented) whose
resources they are trying to access. If the doAuthorisationCheck call completes without
throwing an exception, then the check has passed.

If parameters are passed to an API and are part of the authorization check, the parameterized
version of doAuthorisationCheck(Object paramObj)must be used. The implementation

© Merative US L.P. 2012, 2025

6 Security for the Cúram Universal Access Responsive Web Application 213

can cast the object back to the correct type for the API that is being invoked. When this situation
arises you must use the API level configuration described above.

Finally, custom checks will likely conflict with the default product checks. If this is the case
implementing disableDefaultAuthorisationChecks to return true will turn off the default
product checks. Depending on the configuration, this will turn off the check for a specific API or
all APIs for users with the configured application code.

Warning: When API authorization is customized, particularly when the default authorization
checks are disabled, it is strongly advised that penetration testing is performed on the
application to ensure no vulnerabilities have been introduced. Customization of the
authorization process transfers responsibility for the API security from the product to the
customizer.

Example configuration of authorization strategy

The code listing below shows the configuration of the custom checks via the conventional
“Module.java” file. Note the use of AuthorisationStrategyByApplication and
AuthorisationStrategyByFID. Your service provider implementations must extend these
interfaces.

class Module {
 @Override
 protected void configure() {
 ...
 bindAuthorisationImplementation();
 ...
 }
 /**
 * Bind custom authorization implementations
 */
 private void bindAuthorisationImplementation() {
 // Define a strategy that works based on the current users
 // application code.
 final MapBinder<String, AuthorisationStrategyByApplication>
 authorizationStrategyByApplicationBinder =
 MapBinder.newMapBinder(binder(), String.class,
 AuthorisationStrategyByApplication.class);

 authorizationStrategyByApplicationBinder
 .addBinding(APPLICATION_CODE.CITWSAPP)
 .to(MyCustomApplicationLevelAuthorisationCheckImpl.class);

 // Define a strategy that works based on the API that is curently
 // being invoked. FID refers to Function Identifier, which is the fully
 // qualified class.method string.
 final MapBinder<String, AuthorisationStrategyByFID>
 authorizationStrategyByFIDBinder =
 MapBinder.newMapBinder(binder(), String.class,
 AuthorisationStrategyByFID.class);

 authorizationStrategyByFIDBinder.addBinding(
 "curam.citizenworkspace.rest.facade.intf.PaymentMessageAPI.readPaymentMessages")
 .to(MyCustomAPILevelAuthorisationCheckImpl.class);
 }

© Merative US L.P. 2012, 2025

Cúram 8.2.0 214

The code listing below shows an example implementation of an API-level authorization check

package curam.citizenworkspace.security.impl;
public class MyCustomAPILevelAuthorisationCheckImpl
 implements AuthorisationStrategyByFID {
 @Override
 public void doAuthorisationCheck(Object paramObj)
 throws AppException, InformationalException {

 UAPaymentMessageType pmtMsgType = (UAPaymentMessageType)paramObj;
 ExternalUserDetails externalUserDetails = null;

 try {
 final ExternalUserKey externalUserKey = new ExternalUserKey();
 externalUserKey.userKey.userName = TransactionInfo.getProgramUser();
 final ExternalUser externalUser =
 curam.core.sl.fact.ExternalUserFactory.newInstance();
 externalUserDetails = externalUser.read(externalUserKey);
 } catch (final Exception e) {
 // Handle exception
 }

 if (doCheck(externalUserDetails, pmtMsgType)) {
 // Authorised
 return;
 }

 throw RESTAPIERRORMESSAGESExceptionCreator.HTTP_403_FORBIDDEN();
 }

 @Override
 public boolean disableDefaultAuthorisationChecks() {
 return true;
 }

 private doCheck(ExternalUserDetails eud, UAPaymentMessageType pmtMsgType){
 // add whatever checks you need here.
 }
}

The code listing below shows an example of how the strategy is called from a product API.

public UAPaymentMessageList
 readPaymentMessages(final UAPaymentMessageType messageType)
 throws AppException, InformationalException {

 // Call to your custom strategy, if implemented.
 // Here the API has passed a param that will be relayed
 // to the custom check.
 authorisationController.doAuthorisation(messageType);

 // Disables the default checks if requested.
 if (!authorisationController.disableDefaultAuthorizationChecks()) {
 // perform security checks
 citizenAccountSecurity.performDefaultSecurityChecks();
 }

 // complete the API request.
 ...
}

Related concepts
Customizing the citizen account on page 312
Users can use the citizen account to log in to a secure area where users can screen and apply for
programs.

© Merative US L.P. 2012, 2025

6 Security for the Cúram Universal Access Responsive Web Application 215

6.7 Customizing account creation and management

You can customize account creation and management.

Account management configurations

Use the following configuration properties to define the behavior of password validations for
citizen accounts. For the Cúram Universal Access Responsive Web Application, you must
implement these validations in the application before you enable them.

Table 3: Account configurations

Property Description

curam.citizenworkspace.username.min.length Minimum number of characters in the username.

curam.citizenworkspace.username.max.length Maximum number of characters in the username.

curam.citizenworkspace.password.min.length Minimum number of characters in the password.

curam.citizenworkspace.password.max.length Maximum number of characters in the password.

curam.citizenworkspace.password.min.special.charsMinimum number of special characters and/or numbers in the
password.

To update these properties, log in as a System Administrator (sysadmin), select Application Data
> Property Administration, and search for the property.

Account management events

Events are raised at key points during account processing. You can use these events to add custom
validations to the account management process.

For more information about adding custom validations to the account management process, see
the Server Developer's Guide.

The table shows the events in the
curam.citizenworkspace.security.impl.CitizenWorkspaceAccountEvents

class. For more information about the events, see the related Javadoc™ information in the
WorkspaceServices component.

Table 4: Account events

Event Interface Description

CitizenWorkspaceCreateAccountEvents Events raised around account creation.

CitizenWorkspacePasswordChangedEvent Event raised when a user is changing their password.

CitizenWorkspaceAccountAssociations Events raised when a user is linked or unlinked from an
associated Person Participant.

CitizenWorkspaceAccountManager API

Use the
curam.citizenworkspace.security.impl.CitizenWorkspaceAccountManager API

© Merative US L.P. 2012, 2025

Cúram 8.2.0 216

to create and link citizen accounts. You can use the API to build custom functionality to support
caseworkers who want to create and link accounts on behalf of citizens.

The API offers the following methods:

• Creating standard accounts.
• Creating linked accounts.
• Removing links between participants and accounts.
• Retrieving account information.

For more information, see the API Javadoc™.

6.8 Data caching

Minimize the risk of citizens accessing each others' data from browser and server data caches.
Cached data can be accessed when citizens use the browser back button or browser history to
retrieve data entered by other users, or when PDF files are cached locally on the computer that
was used to make the application.

Server caching

HTTP servers like Apache can set cache-control response headers to not store a cache. Use this
approach to prevent access to data using the browser back button or history.

Browser caching

Browsers can be configured not to cache content. If citizens can access the web portal in a
"kiosk", then the browser should be configured never to cache content.

Advise citizens to clear their cache and close all browser windows they have used when they are
finished using the web portal. Also tell citizens to remove PDF documents that they download
from the browser's temporary internet files.

© Merative US L.P. 2012, 2025

7 Configuring the Cúram Universal Access Responsive Web Application 217

7 Configuring the Cúram Universal Access Responsive
Web Application

System administrators can use the following configuration options to configure and maintain
Universal Access with the Cúram Universal Access Responsive Web Application features such as
screening, applications, updates with life events, appeals, and verifications.

7.1 Configuring the browser

Users are notified when cookies or JavaScript™ are disabled in their browser. To use the
application, they must enable both cookies and JavaScript™ in their browser by configuring the
appropriate browser preferences.

Cookies and JavaScript

The following information messages are displayed if cookies or JavaScript™ are disabled:

• Cookies are disabled in your browser
To use this service, you must enable cookies in your browser settings and try again. For
instructions to enable cookies, check your browser support website.

• JavaScript™ is disabled in your browser
To use this service, you must enable cookies in your browser settings and try again. For
instructions to enable JavaScript™, check your browser support website.

Because JavaScript™ is not available, the JavaScript™ messages are implemented in a static file,
instead of the standard message implementation. Updating the text or styling of these messages is
different than the standard process.

• For more information about translating these messages, see Translating the multilingual
messages for when JavaScript is disabled on page 130.

• For more information about styling these messages, see Customizing the color and typography
of the application on page 134.

7.2 Configuring service areas

You can define a service area by configuring the counties or ZIP codes that are associated with
the service area.

Configuring service areas

You define service areas in the Service Areas section of the administration application. You must
specify a name for a service area. You can associate counties and ZIP codes of the areas that are
covered with the service area. Service areas can be associated with a local office, which identifies
where citizens can apply in person for a program or where they can send an application. For more

© Merative US L.P. 2012, 2025

Cúram 8.2.0 218

information about associating service areas with local offices, see Defining local offices for a
program on page 225.

Enabling citizens to search for a local office

A search page allows citizens to search for a local office. Citizens can either search by county or
by ZIP code. The curam.citizenworkspace.page.location.search.type system property determines
how the search works.

• If you set the property to Zip, citizens can search for a local office using a ZIP code.
• If you set the property to County, citizens can select from a list of counties to get a list of

local offices.

7.3 Configuring PDFs

PDF format is supported for three use cases in the Merative ™ Cúram Universal Access
Responsive Web Application. Citizens can download PDF application forms for offline
applications, a PDF summary of information that a citizen enters is automatically generated when
citizens submit an application, and a PDF can be created to capture an appeal request.

PDF forms for offline applications

Citizens can download PDF application forms to view or apply offline. You can configure a PDF
application form to be available from specific program applications. You can also configure
application forms to be available from the screening results page when citizens are found to be
eligible for a program. To configure a PDF application form, you must:

• Define a PDF application form, see Defining PDF forms on page 219.
• To specify a PDF application form for program application, see Specifying a PDF application

form for program applications on page 219.
• To specify a PDF application form to be available for programs from screening results, see

Specifying a PDF application form for screening results on page 220.

PDF summary

By default, a generic PDF summary is generated for all Cúram intake applications. Citizens can
download the PDF to see a summary of the information that they entered in their application. The
PDF summary is generated from a generic XSL template by using the Cúram XML infrastructure.

Customizing the generic XSL template for the PDF summary

You can configure your system to use an improved XSL template that is based on the summary
page in IEG scripts. If needed, you can customize the XSL template for the PDF summary.
For more information about customizing the generic PDF summary form, see Customizing the
generic PDF summary form for processed applications on page 262.

Configuring a PDF application form template for the PDF summary

You can configure a PDF application form to be used as a template for the summary PDF form
instead of the generic XSL template. The application form is populated with information that

© Merative US L.P. 2012, 2025

7 Configuring the Cúram Universal Access Responsive Web Application 219

is entered by the citizen. That is, the citizen's information is copied from the data store to the
PDF application form according to the data mapping. To configure the PDF application form as a
template, you must:

• Define a PDF application form, see Defining PDF forms on page 219.
• Specify a PDF application form for an application, see Specifying a PDF application form for

program applications on page 219.
• Define PDF summary mappings for a program, Defining PDF summary mappings for a

program on page 220.

PDF forms for appeal requests

Typically, the details that citizens provide in an appeal request are added to a PDF, both the
citizen and the caseworker receive a copy. For more information about configuring a PDF for
appeal requests, see Configuring appeal requests on page 251.

Related concepts
Defining local offices for a program on page 225
Citizens might be able to apply for a program in person at a local office. You can configure local
offices where an application for a program can be sent.

Defining PDF forms

You can define PDF application forms that you can then associate with applications or programs.

Define a PDF form by selecting Administration Workspace > Shortcuts > Universal Access >
PDF Forms.

You must specify a name and language for each PDF form. You can also add a version of the
form for each language that is configured in your application.

You can associate a local office with a PDF form, which enables administrators to define the local
office and associated service areas where citizens can send their completed application.

Specifying a PDF application form for program applications

You can specify a PDF application form that citizens can download to view or apply for a
program offline.

You must define PDF application forms before you can associate them with a program
application, see Defining PDF forms on page 219.

Specify a PDF form for an online application by selecting the PDF form from the list at
Administration Workspace > Shortcuts > Universal Access > Applications > Online
Application > Edit > PDF Application Form

Citizens can then see a Download application link for the application, see Start an application on
page 30.

© Merative US L.P. 2012, 2025

Cúram 8.2.0 220

Specifying a PDF application form for screening results

You can configure PDF application forms to be available for citizens to download from their
screening results to view or apply offline. They can post it to the agency or bring it to a local
office.

You must define PDF forms before you can associate them with a program, see Defining PDF
forms on page 219.

When PDF Application Form is specified for a program, a Download application link is
displayed for eligible programs on the Here's what you might get page when citizens complete a
screening, see The Here's what you might get screening results page on page 27.

Defining PDF summary mappings for a program

Information that citizens enter during all online intake applications is mapped to a PDF summary
form that citizens can print. By default, this PDF summary is based on an XSL template, but you
can configure a PDF application form to be used as a template for the PDF summary instead.

To generate the PDF summary based on the PDF application form, you must configure a
mapping configuration of type PDF Form Creation for that program. The data is mapped to the
application form that is specified for the online application that the program is associated with.

If a PDF mapping configuration is not associated with a program, the default generic XSL
template is used.

Complete the following steps as an administrator:

1. Select Administration Workspace > Shortcuts > Universal Access > Programs.
2. Select a program then select Mappings > New Mapping.
3. Add the configuration XML and a mapping configuration of type PDF Form Creation.
4. Define a PDF form, see Defining PDF forms on page 219.
5. Specify a PDF form for an online application, see Specifying a PDF application form for

program applications on page 219.

© Merative US L.P. 2012, 2025

7 Configuring the Cúram Universal Access Responsive Web Application 221

7.4 Configuring programs

You can configure different types of programs, with settings for display and system processing
information, local offices, mappings to PDFs, and evidence types. You can associate programs
with screenings and benefit applications.

Configuring a program

You can configure program details and associated display and system processing information on
the New Program page in the administration application.

Defining a name and reference
The name that you define is displayed in the administration application.

Define a name and reference when creating a new program. The name that is defined is displayed
both to the citizen and in the internal application. The reference is used to reference the program
in code.

Defining an intake processing system
Define an intake processing system for each program.

Two options are available:

• Cúram
• Select from the list of preconfigured remote systems.

If intake is managed by Cúram, select Cúram. If intake is managed by an external system, the
program application is sent to the remote system by using the ProcessApplicationService
web service, select a remote system.

If Cúram is specified as the intake system, an application case type must be selected. An
application case of the specified type is created in response to a submission of an application for
the program. An indicator is provided which dictates whether a Reopen action is enabled on the
programs list on an application case for denied and withdrawn programs of a particular type. A
workflow can be specified that is initiated when the program is reopened.

For more information about configuring application cases, see the Intake Guide.

When an application case type is selected, the program can be added manually to that type
of application case by a worker in the internal application as part of intake processing. A
configuration setting specifies whether the program is a coverage type. Coverage types are
automatically evaluated by program group rules in the context of healthcare reform applications,
such as insurance affordability. Coverage types cannot be applied for directly by a citizen or
manually added to an application case by a worker and authorized. If the program is a coverage
type, select Yes. The program is filtered out of the list of programs available to be added to online
and internal applications in administration and the list of programs available to be manually
added to an application case by a worker. If the program is not a coverage type, select No.
The program will be available to be manually added to online and internal applications in
administration and to an application case by a worker.

© Merative US L.P. 2012, 2025

Cúram 8.2.0 222

A remote system must be configured in the administration application before it can be selected as
the case processing system.

For more information about remote systems, see Configuring Remote Systems.

Defining case processing details
Define a case processing system for each program.

Two options are available:

• Cúram
• Select from remote systems.

If the program eligibility is determined and managed by using a Cúram-based system, select
Cúram. If eligibility is determined and managed by an external system, select a remote system.

If you select Cúram as the case processing system, more options are available to allow you to
configure program level authorization. Program level authorization means that if an application
case contains multiple programs, each program can be authorized individually, and a separate
case is used to manage the citizens on an ongoing basis.

Defining the integrated case strategy
Define the integrated case strategy so that the system can identify whether a new or existing
integrated case is used when program authorization is successful.

The integrated case strategy identifies whether a new or existing integrated case is used when
program authorization is successful. The integrated case hosts any product deliveries created as
a result of the authorization. If a new integrated case is created, all of the application case clients
are added as case participants to the integrated case. If an existing integrated case is used, any
additional clients on the application case are added as case participants to the integrated case. Any
evidence captured on the application case that is also required on the integrated case is copied to
the integrated case upon successful authorization. The configuration options for the integrated
case strategy are as follows:

• New
A new integrated case of the specified type is always created when authorization of the
program is successful.

• Existing (Exact Client Match)
If an integrated case of the specified type exists with the same citizens as those cases present
on the application case, the existing case is used automatically. If multiple integrated cases that
meet these criteria exist, the caseworker is presented with a list of the cases and must select
one to proceed with the authorization. If no existing cases match the criteria, a new integrated
case is created.

• Existing (Exact Client Match) or New
If one or more integrated cases of the specified type exist with the same citizens as those
cases present on the application case, the caseworker is presented with the option to select an
existing case to use as the ongoing case, or to create a new integrated case. If no existing cases
match the criteria, a new integrated case is created.

• Existing (Any Client Match) or New
If one or more integrated cases of the specified type exist, where any of the clients of the
application case are case participants, the caseworker is presented with the option to select

© Merative US L.P. 2012, 2025

7 Configuring the Cúram Universal Access Responsive Web Application 223

one of the existing cases to use as the ongoing case, or to create a new integrated case. If no
existing cases match the criteria, a new integrated case is created.

• Specifying the Integrated Case Type
The administrator must specify the type of integrated case to be created or used upon
successful program authorization as defined by the Integrated Case strategy listed.

Specifying a client selection strategy
Specify a client selection strategy to define how clients are added from the application case to the
product delivery.

The client selection strategy defines how clients are added from the application case to the
product delivery created as a result of authorization of a program. If a product delivery type is
specified, a client selection strategy must be selected. The configuration options are as follows:

• All Clients
All of the application clients are added to the product delivery case. The application case
primary client is set as the product delivery primary client. All other clients are added to the
product delivery as members of the case members group.

• Rules
A rule set determines the clients to be added to the product delivery if a product delivery is
configured. At least one client must be determined by the rules for authorization to proceed.

• User Selection
The user selects the clients who are added to the product delivery. The caseworker must select
both the primary client and any other clients to be added to the case member group on the
product delivery.

• Specifying a Client Selection Ruleset
A Client Selection Ruleset must be selected when the Client Selection Strategy is Rules.

Specifying a product delivery type
Specify a product delivery type.

The Product Delivery Type drop-down specifies the product delivery that is used to make a
payment to citizens in respect of a program. Product Delivery Type displays all active products
configured on the system.

Note: This field applies to both program and application authorization processing. That is,
program and application authorization can result in the creation of the product delivery type
that is specified.

Submitting a product delivery automatically

The Submit Product Delivery indicator specifies if the product delivery created as a result of
program authorization should be submitted automatically for approval. If selected, the product
delivery created as a result of authorization of this program is submitted automatically to a
supervisor for approval.

© Merative US L.P. 2012, 2025

Cúram 8.2.0 224

Note: This field applies to both program and application authorization processing. That is,
program and application authorization can result in the automatic submission of a product
delivery.

Configuring timers
Agencies can impose time limits within which an application for a program must be processed.
You can configure application timers for each of these programs.

For example, an agency might want to specify that food assistance applications are authorized
within 30 business days of the date of application.

The following configuration options are available, including the duration of the timer, whether the
timer is based on business or calendar days, a warning period, and timer extension and approval.

• Duration
The length of the timer in days. This value, along with the fields Start Date and Use Business
Days (and the configured business hours for the organization) calculate the expiry date for
the timer. This value is used as a number of business days if Use Business Days is set. If Use
Business Days is not set, this value is used as calendar days.

• Start Date
Specifies whether the timer starts on the application date or the program addition date. The
options available are Application Date and Program Addition Date.

Note: In most cases, these dates are the same. That is, the programs are added at the same
time as the application is made. However, when a program is added later to the application,
after initial submission, the dates differ.

• Warning Days
Specifies a number of warning days to warn citizens that the timer deadline is approaching. If
configured, the Warning Reached workflow is enabled when the warning date is reached and
the timer is still running (for example, the program is not completed).

• End Date Extension Allowed
Specifies whether citizens can extend the timer by a number of days.

• Extension Approval Required
Specifies whether a timer extension requires approval from a supervisor. If approval is
required, the supervisor either approves or rejects the extension. After the extension is
approved, or if approval is not required, the timer expiry date is updated to reflect the
extension.

• Use Business Days
Specifies if the timer should not decrement on non-working days. If this indicator is set, the
system uses the Working Pattern Hours for the organization to determine the non-working
days when it is calculating the expiry date for the timer.

• Resume Timer
Specifies whether the program timer must be resumed when the program is reopened.

• Resume From
If a timer is resumed, the Resume From field specifies the dates from which a program can be
resumed. The values include the date that the program was completed, denied, or withdrawn,
and the date that the program was reopened.

© Merative US L.P. 2012, 2025

7 Configuring the Cúram Universal Access Responsive Web Application 225

• Timer Start
Specifies a workflow that is started when the timer starts.

• Warning Reached
Specifies a workflow that is started when the warning period is reached.

• Deadline Not Achieved
Specifies a workflow that is enacted if the timer deadline is not achieved; that is, the program
is not being withdrawn, denied, or approved by the timer expiry date.

Configuring multiple applications
Configure multiple applications so that citizens can apply for a program while they have a
previous application pending.

The Multiple Applications indicator dictates if citizens can apply for a program while they have
a previous application pending. If set to true, citizens can have multiple pending applications for
the given program. That is, citizens can submit an application for this program while they already
have a pending application in the system. If it is set to false, this program is not offered if logged
in citizens have pending applications for this program.

This configuration is not applicable to Health Care Reform Applications.

Defining a URL
If a URL is defined, a More Info link is displayed with the program name so that citizens can
find out more information about the selected program.

Defining description and summary information
When a program is displayed on the Select Programs page, a description can be displayed
which gives a description of the program. The Online Program Description field defines this
description.

A description summary of the program can also be defined using the Online Program Summary
field. The field is a high-level description of the program displayed on the Here's what you
might get page that is displayed when citizens complete a screening.

Defining local office application details
Citizens can apply for programs at a local office. If this is the case, the Citizen Can Apply At
Local Office indicator indicates that local office information is displayed for a program.

Additional information can also be defined, for example, citizens might need to bring proof of
identity if they want to apply at the local office. An administrator can define this information in
the Local Office Application Information field.

Defining local offices for a program

Citizens might be able to apply for a program in person at a local office. You can configure local
offices where an application for a program can be sent.

Associating a local office with a program allows an administrator to define the local offices
and their associated service areas where a particular program can be applied for in person. This
information is displayed on the Here's what you might get page that is displayed to citizens
when they complete a screening.

© Merative US L.P. 2012, 2025

Cúram 8.2.0 226

A local office must be first be defined in the LocalOffice code table in system administration.
Service areas must be defined before they can be associated with a local office.

Defining program evidence types

You can configure selected evidence types to allow the expedited authorization of programs
before other programs in a multi-program application. You can then associate these evidence
types with a program.

Evidence types can support applications for multiple programs. You might need a program to be
authorized more quickly than other programs for which a citizen applied. You can specify that
the evidence that is needed for a specific program to be authorized only is used and copied to
the ongoing cases. Benefits for the authorized program can be delivered to citizens, while the
caseworker continues to gather the evidence that is needed for the other programs.

7.5 Configuring screenings

Define the different types of screenings that citizens can complete to identify programs that they
might be eligible to receive.

For each screening, you can configure the available programs and eligibility requirements. You
can then configure the script, rules, and data schema to collect and process citizen information,
and define what information is displayed to citizens.

Once defined, citizens can self screen to identify programs that they may be eligible to receive.
There are four main aspects to configuring a screening:

• Configuring the information about a screening to be displayed to citizens.
• Configuring the script, rules and schema used to collect and process the information specified

by citizens to identify their eligibility.
• Configuring the programs for which citizens can screen themselves for eligibility.
• Configuring additional screening system properties.

Related concepts
Screen on page 23
Citizens can self-check their eligibility for benefits and services before they submit an
application. Checking for eligibility is implemented by using the Screening feature.

Customizing screenings on page 255
Use the supported classes and APIs to customize the events that are started for screenings and the
screening results page.

Configuring a new screening

Screenings are configured on the New Screening page.

The screening configurations are as follows.

© Merative US L.P. 2012, 2025

7 Configuring the Cúram Universal Access Responsive Web Application 227

Defining a name

You must define a name must be defined when creating a screening. The name defined is the
name of the screening displayed to citizens in the Merative ™ Cúram Universal Access portal.

Defining program selection

The Program Selection indicator defines whether citizens can select specific programs that they
want to screen for, or whether they are brought directly into a screening script. If citizens are
brought to a script, they are screened for all programs associated with the screening.

Defining a More Info URL

If a More Info URL is defined, a More Info link is displayed.

Allowing re-screening

The Allow Rescreening indicator defines whether citizens can re-screen when they have
completed a screening.

Defining an icon for a screening

If you want an icon displayed with a screening, select an icon from the Icon selection box.

Note: Alternatively, you could modify the img src attribute of the icon directly on the
screening HTML page, for example

Configuring eligibility and screening details

Configure details for eligibility screening or filtered screening

Two types of screening are supported - filtered screening and eligibility screening. Eligibility
screening collects answers to a set of questions, stores this information and processes it to identify
eligibility. Filtered screening reduces the number of programs that a citizen might screen for by
asking a short set of questions and using the answers to filter out the programs that they would
not be eligible for.

Configuring eligibility screening details

Specify an IEG script for the screening to collect the answers to a set of questions. You must also
specify a data store schema to store the data entered in the script. On saving the screening, the
system creates an empty template for both the script and schema based on the Question Script and
schema that you specified. You can update these templates from the Screening tab by selecting
hyperlinks provided on the page. Clicking the Question Script link starts the IEG editor that
allows you to edit the question script. Click the schema link to start the Datastore Editor, you can
then edit the schema.

You must specify a CER rule set to process the data in the data store and to produce an eligibility
result. When specified on creation of the screening, the system creates an empty rules template.

© Merative US L.P. 2012, 2025

Cúram 8.2.0 228

You can then update the ruleset from the Screenings tab by selecting the hyperlink provided
on the page. Clicking the link starts the CER Editor, which allows you to edit the ruleset. For
more information about writing screening rule sets, see Writing Rule Sets For Screening on page
230

Configuring filtered screening details

Specify filtered screening details for a screening so that filtered screening is available before
citizens perform eligibility screening. As with eligibility screening, you must define a Filter Script
(IEG) and associated data store schema to collect and store the answers to questions. You must
also specify a Filter Rules (CER rule set) to process the data and produce a filtered screening
result. When specified on the New Online Screening page, the system automatically creates
an empty template for the scripts and ruleset that can be subsequently updated by selecting the
associated hyperlinks on the Screening page.

Reusing rule sets across screenings

Use the system property curam.citizenworkspace.screening.ruleset.reuse.enabled to specify:

• Whether CER rule sets can be reused across different screenings.
• Whether the same rule set can be used for eligibility and filtered screening.

If curam.citizenworkspace.screening.ruleset.reuse.enabled is enabled,
you cannot reuse rule sets, if it is disabled you can reuse rule sets. You
cannot use the ScreeningRulesLinkDAO.readActiveByRuleSet method when
curam.citizenworkspace.screening.ruleset.reuse.enabled property is enabled.

Configuring screening display information

You can configure the screening information display fields for each screening.

Summary information

Define a high-level description of the screening.

Here's what you might get text

Define the text to be displayed on the Here's what you might get page, which is displayed to
show citizens the results of a completed screening.

Description

Define a description of the screening to be displayed.

How to apply text

Allows an administrator to define the text displayed on the Here's what you might get page.

© Merative US L.P. 2012, 2025

7 Configuring the Cúram Universal Access Responsive Web Application 229

Defining programs for a screening

You must associate programs with a screening so that citizens can screen for those programs.

You can associate any program that is described in Configuring Programs with a screening. When
associating programs with a screening, you can assign an order that sets the display order of the
selected program relative to other programs associated with the screening.

Related concepts
Configuring programs on page 221
You can configure different types of programs, with settings for display and system processing
information, local offices, mappings to PDFs, and evidence types. You can associate programs
with screenings and benefit applications.

The screening auto-save property

Use the screening curam.citizenworkspace.auto.save.screening property to set whether screenings
are automatically saved for authenticated citizens.

By default, curam.citizenworkspace.auto.save.screening is set to true. All screenings,
irrespective of type, are automatically saved for authenticated citizens. Each screening
is automatically saved when citizens click Next to progress through an IEG script. If
curam.citizenworkspace.auto.save.screening is set to false, screenings are not automatically
saved.

Configuring rescreening

Configure whether citizens can change and resubmit their screenings.

About this task

In the administration application, you can configure whether to allow citizens to change and re-
submit their screening. If so, citizens can rescreen from the Check what you might get page or
from the Here's what you might get page. If not, citizens who want to rescreen must delete their
screenings and start again.

Procedure

1. Log in to Cúram as an administrator.
2. Select Administration Workspace > Shortcuts.
3. Select Universal Access > Screenings.
4. Select the screening that you want to change.
5. Select ... > Edit.
6. Select the Allow Rescreening checkbox to enable rescreening and click Save.

© Merative US L.P. 2012, 2025

Cúram 8.2.0 230

Prepopulating the screening script

When citizens screen from a citizen account, you can prepopulate information that is already
known about the citizen who is screening.

You must configure prepopulation for screening. For more information, see how this
configuration is done for life events, Pre-populating a life event on page 271 and Driving
updates from life events on page 277.

Use the system property curam.citizenaccount.prepopulate.screening to set whether the IEG
script is prepopulated. The default value of this property is true, which means that the script is
prepopulated with information that is already known about the citizen.

Related concepts
Authenticated screening on page 25
Citizens who are logged in to Universal Access can complete an authenticated screening.

Resetting data captured from a previous screening

Determine whether starting an intake application resets data captured by a previously completed
screening.

Determines whether starting an intake application resets datastore data captured by a previously
completed screening

Use the system property curam.citizenworkspace.intake.resets.screening.results to determine
whether starting an intake application resets datastore data that was captured by a previously
completed screening.

Setting curam.citizenworkspace.intake.resets.screening.results to true means that starting an
intake application resets datastore data captured by a previously completed screening.

Setting curam.citizenworkspace.intake.resets.screening.results to false means that starting an
intake application does not reset datastore data captured by a previously completed screening.

Writing Rule Sets For Screening

Develop screening rule sets.

Addin a data store schema
Create a new data store schema for use with screening and intake intelligent evidence gathering
(IEG) scripts. However, some constraints exist on the format of these schemas. In some cases,
requirements dictate that citizens can screen for a program and then follow that screening by
applying for benefits.

In many cases, applications are processed by Cúram and are mapped to Cúram cases and
evidence by using the Cúram Data Mapping Engine (CDME). In these circumstances, use
CitizenPortal.xsd as a basis for the schema for screening. This process is used because the
same data store schema also needs to be used for intake. In particular, the CDME features do not
work correctly if a schema is used that removes or changes the data type of any of the attributes
or entities in the CitizenPortal.xsd schema.

© Merative US L.P. 2012, 2025

7 Configuring the Cúram Universal Access Responsive Web Application 231

All schema that follows the pattern of the CitizenPortal.xsd schema are safe for later
releases. This assurance means that upgrades do not add any new mandatory attributes or entities.
Upgrades do not change any existing attributes or entities that currently are required to support
existing Cúram data mapping engine functions.

The screening rules interface
All screening rule sets must use the screening rules interface so that they can be executed within
Merative ™ Cúram Universal Access.

The ruleset interface is detailed in the following XML example:

<?xml version="1.0" encoding="UTF-8"?>

<RuleSet xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="http://www.curamsoftware.com/
 CreoleRulesSchema.xsd"
 name="ScreeningInterfaceRuleSet">

 <!-- This class must be extended by all rule sets invoked by
 the Citizen Portal screening results processing. -->
 <Class name="AbstractScreeningResult" abstract="true">

 <Initialization>
 <Attribute name="calculationDate">
 <type>
 <javaclass name="curam.util.type.Date"/>
 </type>
 </Attribute>
 </Initialization>

 <!-- The programs supported by this Screening Ruleset. -->
 <Attribute name="programs">
 <type>
 <javaclass name="List">
 <ruleclass name="AbstractProgram"/>
 </javaclass>
 </type>

 <derivation>
 <!-- Subclasses of AbstractScreeningResult must override
 this attribute to create a list of the Programs
 supported by the rule set. -->
 <abstract/>
 </derivation>
 </Attribute>

 </Class>

 <!-- This class must be extended by all programs supported
 in the rule set. -->
 <Class name="AbstractProgram" abstract="true">

 <!-- Identifies the program as configured in the Citizen
 Portal administration application. -->
 <Attribute name="programTypeReference">
 <type>
 <javaclass name="String"/>

© Merative US L.P. 2012, 2025

Cúram 8.2.0 232

 </type>
 <derivation>
 <abstract/>
 </derivation>
 </Attribute>

 <!-- Whether the claimant is eligible for this program. -->
 <Attribute name="eligible">
 <type>
 <javaclass name="Boolean"/>
 </type>
 <derivation>
 <abstract/>
 </derivation>
 </Attribute>

 <!-- The localizable explanation as to why the claimant is
 or is not eligible for this program. May contain HTML
 formatting/hyperlinks/etc. -->
 <Attribute name="explanation">
 <type>
 <javaclass name="curam.creole.value.Message"/>
 </type>
 <derivation>
 <abstract/>
 </derivation>
 </Attribute>
 </Class>

</RuleSet>

Screening rule sets must include a class that extends the AbstractScreeningResult rule
class outlined .

Using the AbstractScreeningResult rule class guarantees that the required attributes are
available when the rules are executed.

7.6 Configuring applications

Use Cúram administration and system administration applications to define the applications that
are available for citizens. For each application, you can configure the available programs and an
application script and data schema. You must also configure the remaining applications details,
such as application withdrawal reasons.
Related concepts
Apply on page 29
Citizens can apply for benefits online by submitting an application form that includes personal
details like income, expenses, employment, and education. This information becomes evidence on
the citizen's case that agencies can use to determine their eligibility for benefits. Citizens can also
apply offline by downloading the application form to send to the agency or to bring to their local
agency office.

Customizing applications on page 256
You can customize the application flow to link directly to an application script, or to provide
separate overview pages or submission confirmation pages for each application type. You

© Merative US L.P. 2012, 2025

7 Configuring the Cúram Universal Access Responsive Web Application 233

can also use customization points, for example, customizing the generic PDF for processed
applications, to customize the application intake process when an intake application is submitted.

Configuring applications in the administration application

Use the Cúram administration application to configure an online application.

Procedure

1. Log in to Cúram as an administrator.
2. Select Administration Workspace > Shortcuts > Universal Access > Applications.
3. Click New. The New Online Application page opens.
4. Enter the required information. For more information, see Configuring application

information and display information on page 233, Configuring scripts on page 234, , and
Defining PDF forms on page 219.

Configuring application information and display information
Configure the following information on the New Online Application page.

• Name
The name of the application that is displayed in the online portal.

• Program selection
Indicates whether citizens can select specific programs to apply for or whether they are
brought directly into an application script. That is, citizens can apply for all programs
associated with the application.

• More Info URL
If a URL is defined, a More Info link is displayed with the application name so that citizens
can find out more information about the selected application.

• Client registration
Determines whether citizens are registered as prospect persons or persons.

To determine whether to register citizens as prospect persons or persons, the system checks the
client registration configuration in the following two scenarios:

• If Person Search and Match is configured, and no match can be found for the citizen.
• If Person Search and Match is not configured, that is, citizens on an application are

always registered without the system automatically searching and matching them.

If Client Registration is not set, the system checks the system property
curam.intake.registerAsProspect to identify whether citizens are registered as a prospect
person or a person.

• Submit on Completion Only

Determines whether citizens can submit the application to the agency before completing the
intake script.

• Defining an icon for an application
If you want an icon displayed with an application, select an icon from the Icon selection box.

© Merative US L.P. 2012, 2025

Cúram 8.2.0 234

Note: Alternatively, you could modify the img src attribute of the icon directly on the
application HTML page, for example

• Summary
A high-level description of the application.

• Description
An overview description of the application.

• Submission Confirmation Page Details
A more detailed description of the application. Use the Title and Text fields to define a title
and text to be displayed on the Submission Confirmation page.

Configuring scripts
Configure an IEG application script to collect the answers to the application questions and
configure a submission script for an application so that citizens can submit applications.

• Application scripts
Specify a script name in the Question Script field. Specify a data store schema in the Schema
field to store the data entered in the script. On saving the application, an empty template
for both the script and schema is created by the system based on the question script and
schema specified. You can update these templates from the Application tab by selecting the
hyperlinks provided on the page. Click the Question Script link to start the IEG editor so you
can edit the question script. Click the Schema link to start the Datastore Editor and edit the
schema.

• Submission scripts
Configure an IEG submission script in the Submission Script. The script defines additional
information that does not form part of the application script to be captured, for example, a
TANF typically requires information regarding the citizen's ability to attend an interview.

On saving the application, an empty template for the submission script is created by the
system based on the Submission Script that you specify. You can update this from the
Application tab by selecting the hyperlink on the page. Clicking the link starts the IEG editor
that you use to edit the question script.

Configuring application properties

Use the system administration application to configure Cúram application properties for online
applications.

About this task

You can configure the following properties for your organization.

• Mandate citizen authentication before they can apply.

If you set the curam.citizenworkspace.authenticated.intake property to YES, citizens must
create an account or log in before they start an application. Citizens are brought to the
following components:

© Merative US L.P. 2012, 2025

7 Configuring the Cúram Universal Access Responsive Web Application 235

• The Apply for benefits page.
• The login page when citizens select Apply.

If set to NO, citizens go directly to the application selection page.
• Set optional authenticated application.

If you set the curam.citizenworkspace.intake.allow.login property, citizens can choose to log
in before they submit an application. If not, citizens go directly to the application submission
script.

• Display a confirmation page to citizens when they quit the application.

If you set the curam.citizenworkspace.display.confirm.quit.intake property to YES, a
confirmation page is displayed when citizens quit during the application process. If set to NO,
a confirmation page is not displayed.

Use this property only when the curam.citizenworkspace.intake.allow.login property is set to
NO.

• Allow citizens to start an application from the organization Home page.

If you set the curam.citizenworkspace.intake.enabled property to YES, the Apply For
Benefits link is displayed on the organization Home page. If set to NO, the link is not
displayed.

• Preepopulate scripts with known information about authenticated citizens. You must configure
prepopulation for intake. For more information, see how this configuration is done for life
events, Pre-populating a life event on page 271 and Driving updates from life events on
page 277.

If you set the curam.citizenaccount.prepopulate.intake property property to TRUE, the
application is prepopulated with information that is already known about authenticated
citizens. By default, this property is set to true so scripts are prepopulated. If not, the script is
not prepopulated.

• Automatically save applications in the citizen account.

If you set the Auto-save intake property to true, applications are automatically saved in
the citizen account. Each application is auto-saved when citizens click Next as they progress
through the IEG script. By default, this property is set to true. If set to false, applications are
not automatically saved.

Procedure

1. Log in to Cúram as a system administrator.
2. Select System Configurations > Shortcuts > Application Data.
3. Enter the name of the application property that you want to configure in the Name field and

select Search.
4. Select ... > Edit Value.
5. Change the property setting, for example change YES to NO and Save your changes.

© Merative US L.P. 2012, 2025

Cúram 8.2.0 236

Configuring other application settings

You can associate programs with an application, define mappings for an application, and
configure withdrawal reasons.

• Associating programs with applications
Programs can be associated with an application. You can set the display order of the selected
program relative to other programs that are associated with the application. For more
information, see 7.4 Configuring programs on page 221.

• Defining evidence mappings for an application
Applications can be processed by Cúram or a remote system.

If the application is processed by Cúram, the entered information is mapped to the evidence
tables that are associated with the application case that is defined for the programs that are
associated with the application. The mappings are configured for an application by creating a
mapping with the Data Mapping Editor. A mapping configuration must be specified in order
for the appropriate evidence entities to be created and populated in response to an online
application submission.

For more information about the Data Mapping Editor, see the Data Mapping Editor Guide.
• Configuring withdrawal reasons

Citizens can withdraw the application for all or any one of the programs for which they
applied.

When they withdraw an application, citizens must specify a withdrawal reason. You can define
withdrawal reasons for an application in the Intake Application section of the administration
application. Before you associate a withdrawal reason with an application, you must define
withdrawal reasons in the WithdrawalRequestReason code table.

For more information, see the Intake Configuration Guide.

Related concepts
Configuring programs on page 221
You can configure different types of programs, with settings for display and system processing
information, local offices, mappings to PDFs, and evidence types. You can associate programs
with screenings and benefit applications.

7.7 Configuring online categories

Online categories group different types of applications or screenings together to make it easier
for citizens to find the ones that they need. You must define online categories for screenings
and applications to be displayed. After you define online categories, you must associate each
screening and application to a category.

Defining online categories

When defining an online category a name and URL must be defined. If a URL is defined a More
Info link is displayed with the name of the online category allowing citizens to find out more
information about the selected category. An order can be assigned to a category which dictates the
display order of the selected category relative to other categories.

© Merative US L.P. 2012, 2025

7 Configuring the Cúram Universal Access Responsive Web Application 237

Associating screenings and applications

Applications and screenings must be associated with an online category so they can be displayed
in the application. When associating a screening with an online category, an order can be applied
which dictates the display order of the screening relative to other screenings within the same
category. When associating an application with an online category an order can be applied
which dictates the display order of the application relative to other applications within the same
category.

7.8 Configuring life events

For each life event, you must define how information is collected, stored, and displayed. You
can configure life event information categories, mappings to dynamic evidence, and information
sharing with internal and external sources.

Life events are displayed in the citizen account to allow citizens to submit information to the
agency. Life events can also provide citizens with useful information and resources. Life events
can be made available in other channels. For example, they can be submitted online by an agency
worker in the internal application. Configuration settings allow different information to be
displayed depending on where the life event is initiated from. For example, the Having a Baby
life event question script that is displayed to citizens can be different from the Having a Baby life
event question script that is displayed to an agency worker.

Related concepts
Update on page 48
Citizens can update their details by submitting a change in their circumstances to the agency,
which is implemented by using the Life Events feature. Examples of changes in circumstances
include a change of address, a birth, or marriage. These significant events in citizens' lives might
affect the benefits or services that they are receiving or are due to receive.

Customizing life events on page 267
A description of the high-level architecture of life events and how to perform the analysis and
development tasks in building a life event.

Configuring a life event

You can configure a life event in the administration application on the New Life Event page.

Defining a name

Specify a name that uniquely identifies the life event. This name is only displayed in the
administration application. You must specify a schema if the life event enables citizens to submit
information to the agency. The schema defines where the information submitted by a citizen or
user in the life event script is stored.

For more information, see the Working with Intelligent Evidence Gathering (IEG) Guide.

Defining a channel type

The channel type defines the channel in which a life event is used, for example, 'Online' or
'Internal'.

© Merative US L.P. 2012, 2025

Cúram 8.2.0 238

Defining a display name

The display name represents the name of the life event that appears citizens or agency workers.
For example, a change of job life event might be displayed as Lost My Job to citizens but Client
Loses Job to caseworkers.

Displaying question and answer scripts

Question script is the name of the life event script. Answer script gathers answers to life event
questions.

Defining a schema

The name of the data store schema used by the life event script to capture data. Select a schema
from the Schema menu.

Defining the display ruleset

Define the ruleset that determines which recommendations are displayed to citizens when a life
event is submitted.

Enabling citizen consent

For certain life events, a citizen's consent might be needed before information is sent to a remote
system or agency. The Citizen Consent Enabled selection box allows an administrator to specify
whether a citizen's consent is needed. This provision means that citizens can select the agencies
that they would like to send their life event information to.

If this indicator is specified, a list of remote systems is displayed on completion of the life event
script. If this indicator is not specified, the citizen is not presented with the list. If only one
remote system is associated with the life event, the Citizen Consent If One Choice Only field is
provided to determine whether the citizen is presented with the remote systems list. The citizen
must specify their consent to send information to this remote system by selecting it on completion
of the question script.

Defining the channel

The channel that this life event applies to, either online or internal.

Defining a display description

A description of the life event. This description is displayed on the cards on the citizen's profile
page. Rich text is supported.

Defining additional information

Additional information related to the life event can be specified. For example, you can display
links to useful websites or information that the agency deems relevant to a particular life event.

Defining the submission text

Configure the text to be displayed to a citizen after they submit a life event. If a rule set was
defined, the following default text is displayed:

© Merative US L.P. 2012, 2025

7 Configuring the Cúram Universal Access Responsive Web Application 239

Your information has been submitted. Based on the information you have given us, we have
identified services and programs that may be of use to you. View your results.

Defining an icon

You cannot define an icon when first configuring a life event. Instead, you must save the life
event and then take the following steps:

1. Select the ellipsis ... icon for the new life event and then select New Image.
2. Select Browse, and select an image file from your local drive.

Note: Only .png or .gif images are supported. Image files must not be animated.

3. Specify an image name and alt text and select Save.

Mapping life event information to evidence entities

Information that is gathered in the life event script is stored in the data store schema that is
defined for the life event.

To pass information gathered in the life event script into Cúram, it must be mapped to dynamic
evidence entities. Dynamic evidence entities must first be defined in the Rules and Evidence
section of the administration application. When defined, you must specify these entities as Social
Record Evidence Types in the administration application. An indicator is also provided to set
if a particular evidence type is visible to citizens. When the social record evidence entities are
defined, use the Data Mapping Editor to map the data from the data store to the appropriate
evidence entities. You can access the Data Mapping Editor from the Mappings tab on the life
event.

When citizens submit a life event, the information that is gathered is mapped to evidence entities
that are associated with a new case type called a social record case. The evidence broker can then
be used to pass the information from this case to the appropriate ongoing cases.

For more information about data mapping, see the Data Mapping Editor Guide.

For more information about sharing evidence, see the Evidence Broker Guide.

Defining a question script, answer script, and schema

You must define an IEG script for the life event if the life event allows citizens or users to submit
information to the agency.

The IEG script that you define collects the answers to a set of questions related to the life event.
Specify a script name in the Question Script field. You must also specify a schema if the life
event allows citizens or users to submit information to the agency. The schema defines where the
information submitted in the life event script is stored. Specify a schema in the Schema field.
You must specify an answer script to allow citizens to review the answers they have provided to
the questions during submission of the life event. Specify an answer script in the Answer Script
field.

© Merative US L.P. 2012, 2025

Cúram 8.2.0 240

When you save the life event, empty template scripts and a schema are created by the system
based on the Question Script, Answer Script and Schema specified. You can then update these
from the Life Event tab by selecting the hyperlinks provided on the page. Clicking on the
Question Script and Answer Script links launch the IEG Editor. Clicking on the Schema link
starts the Datastore Editor. Existing schema, question scripts and answer scripts can be used by
selecting them on the Edit Life Event page.

Note: If a life event has been configured to send information to remote systems, set the Finish
Page field in the script properties (accessed by selecting Edit > Configure Script Properties
in the IEG Editor) to cw/DisplayRemoteSystems.jspx.

For more information on defining IEG scripts and schema, see Working with Intelligent Evidence
Gathering.

Categorizing life events

Life event administration allows you to categorize or group together similar life events, for
example, changing jobs, changing address and changing income life events could be categorized
within an employment category.

Categorizing life events makes it easier for citizens or users to find the life event they need. You
define categories in life event administration and then associate them with a life event. When
defining a category, you must specify a name and description . Life events can then be associated
with that category.

Defining Remote Systems

Life event information can be submitted to remote or external systems. You must associate a
remote system with a life event so that life event information can be sent to that system.

The remote system must have the Life Event Service web service associated with it.
This is used to transmit life event information to the remote system. Remote Systems can be
configured in the Remote Systems section of the administration application.

7.9 Configuring the citizen account

Although customization is required to modify some citizen account information, you can
configure information on the citizen account and the Contact Information tab.

Messages can originate as a result of transactions in Cúram or a remote system. Most of the
configuration options apply to all messages but there are a some configuration options that do not
apply to messages originating from a remote system.

Related concepts
Track on page 40
When citizens create a secure citizen account, they can access a range of relevant information.
Citizens can also use the citizen account to track and manage their interactions with the agency.

© Merative US L.P. 2012, 2025

7 Configuring the Cúram Universal Access Responsive Web Application 241

Configuring messages

The Messages pane on the organization Home page displays messages to logged-in citizens. For
example, a message that informs citizens when their next benefit payment is due or the amount of
the last payment. You can configure a number of items in the Messages plane.

Messages can be displayed which relate to meetings, activities, and application
acknowledgments. Messages can be displayed as a result of transactions in Cúram or they can
originate from remote systems through a web service.

Account messages
Adding an account message or changing a dynamic element of an account message requires
customization. You can update the text in the default account messages by using a set of
properties for each type of message.

The following properties are available:

• CitizenMessageMyPayments - messages about payments.
• CitizenMessageApplicationAcknowledgement - messages about application

acknowledgments.
• CitizenMessageVerificationMessages - messages about verification messages.
• CitizenMessageMeetingMessages - messages about meetings.
• CitizenMessagesReferral.properties - messages about referrals.
• CitizenMessagesServiceDelivery - messages about service deliveries.
• OnlineAppealRequestMessage - messages about appeal requests.

The properties are in the Application Resources section of the administration application.
To update the message, each file needs to be downloaded, updated, and uploaded again. The
icons that are displayed in the citizen account for each type of message can be configured in the
Account Messages section of the administration application.

Adding a message that originates from a remote system requires that a code table entry
is added to the ParticipantMessageType code table and an associated entry in the
Account Messages listing in the administration application. Messages can then be sent by the
ExternalCitizenMessageWS web service.

Creating appeal request acknowledgment or appeal rejection messages
Create messages to acknowledge an appeal request or to reject an appeal request.

Table 5: Appeal request acknowledgment

Message Area Description

Title Appeal Request Acknowledgment

Message We have received your [Appeal Request
- hyperlink to the appeal request
on the My Appeals page] and it is
currently under review. We will
contact you shortly to confirm the
next steps.

Effective Date Current Date.

© Merative US L.P. 2012, 2025

Cúram 8.2.0 242

Message Area Description

Duration This value is defined in the Num.Days.To.Expiry=7
property in the OnlineAppealRequestMessage
properties file and used in the implementation to set
the attribute expiry date time. The default value is 7.

Notes None.

Table 6: Appeal rejection

Message Area Description

Title Appeal Request Disallowed

Message We have reviewed your appeal request
and determined it to be an invalid
appeal. We will send you written
notice of this, including further
details.

Effective Date Current Date.

Duration This value is defined in the Num.Days.To.Expiry=7
property in the OnlineAppealRequestMessage
properties file and used in the implementation to set
the attribute expiry date time. The default value is 7.

Notes None.

Creating application acknowledgments
Create messages to acknowledge an application.

Table 7: Application acknowledgment

Message Area Description

Title <Icon> TANF Application Acknowledgment

Message We have received your TANF Application
form. The status of this application
is pending. We will contact you when
the application has been processed.

Effective Date Current® date

Duration An administrator can use a configuration setting to
define the number of days (from the effective date)
that the message is displayed.

Notes None.

Creating meeting messages
Create messages for a meeting invitation, a meeting cancellation, and a meeting update. An
administrator can use a configuration setting to set the number of days (from the effective date)
that the meeting messages are displayed.

Table 8: Meeting invite

Message Area Description

Title <Icon> Meeting Invitation - Meeting with Case
Worker

© Merative US L.P. 2012, 2025

7 Configuring the Cúram Universal Access Responsive Web Application 243

Message Area Description

Message 1 (Not an all day meeting and the meeting
start and end date are on the same day)

You are invited to attend a meeting
from 9.00AM until 5.00PM on 12/04/2010
in Meeting Room 1, Block C. Please
contact Joe Bloggs at 014567832 or
joe@SemAgency.com if you need more
information or cannot attend.

Message 2 (All day meeting for one day only) You are invited to attend an all day
meeting on 12/04/2010 in Meeting Room
1, Block C. Please contact Joe Bloggs
at 014567832 or joe@SemAgency.com if
you need more information or cannot
attend.

Message 3 (All day meeting for multiple days) You are invited to attend an all day
meeting each day from 12/04/2010 until
15/04/2010 in Meeting Room 1, Block C.
Please contact Joe Bloggs at 014567832
or joe@SemAgency.com if you need more
information or cannot attend.

Message 4 (Non-all day meeting for multiple days) You are invited to attend a meeting
from 9.00AM until 5.00PM from
12/04/2010 to the 13/04/2010 in
Meeting Room 1, Block C. Please
contact Joe Bloggs at 014567832 or
joe@SemAgency.com if you need more
information or cannot attend.

Notes When the case worker is setting
up a meeting, the location is an
optional field. Therefore, if a
meeting location is not specified,
the preceding messages are displayed
without a location. Also, the meeting
organizer's contact details are
optional. Therefore, if no contact
details are found, the preceding
message is displayed without the
organizer's contact details.

Table 9: Meeting cancellation

Message Area Description

Title <Icon> Cancellation - Meeting with Case Worker

Message 1 (Not an all day meeting and the meeting
start and end date are on the same day)

The meeting that you were scheduled
to attend from 2.00PM until 6.00 PM
on 12/04/2010 is canceled. Please
contact Joe Bloggs at 014567832 or
joe@SemAgency.com if you need more
information.

Message 2 (All day meeting for one day only) The all day meeting that you were
scheduled to attend on 12/04/2010 is
canceled. Please contact Joe Bloggs at
014567832 or joe@SemAgency.com if you
need more information.

© Merative US L.P. 2012, 2025

Cúram 8.2.0 244

Message Area Description

Message 3 (All day meeting for multiple days) The all day meeting that you were
scheduled to attend from 12/04/2010
until 15/04/2010 is canceled. Please
contact Joe Bloggs at 014567832 or
joe@SemAgency.com if you need more
information.

Effective Date Current Date.

Notes The meeting organizer's contact details link opens a
page that shows the organizer's contact details.

Table 10: Meeting update

Message Area Description

Title <Icon> Cancellation - Meeting with Case Worker

Message 1 (Date and Time change of a non-all-day
meeting)

The meeting that you were scheduled
to attend from 2.00PM until 6.00
PM on 12/04/2010 is rescheduled to
3.00PM until 7.00 PM on 13/04/2010
in Meeting Room 1, Block C. Please
contact Joe Bloggs at 014567832 or
joe@SemAgency.com if you need more
information or cannot attend.

Message 2 (Location change of a non-all-day
meeting)

The location of the meeting you are
scheduled to attend from 2.00PM until
6.00 PM on 12/04/2010 is changed.
This meeting is now scheduled for
Meeting Room 1, Block D. Please
contact Joe Bloggs at 014567832 or
joe@SemAgency.com if you need more
information or cannot attend.

Message 3 (Date, time, and location change of non-
all-day meeting)

The meeting that you were scheduled
to attend from 2.00PM until 6.00
PM on 12/04/2010 is rescheduled to
3.00PM until 7.00 PM on 13/04/2010.
It is rescheduled for Meeting Room
2, Block C. Please contact Joe Bloggs
at 014567832 or joe@SemAgency.com if
you need more information or cannot
attend.

Message 4 (Date change of all day meetings for
multiple days)

The all day meeting that you are
scheduled to attend from 12/04/2010
until 15/04/2010 is rescheduled.
This meeting will now take place from
13/04/2010 until 16/04/2010. Please
contact Joe Bloggs at 014567832 or
joe@SemAgency.com if you need more
information or cannot attend.

Message 5 (Location change for all day meeting for
multiple days)

The location of the all day meeting
you are scheduled to attend from
12/04/2010 until 15/04/2010 is
changed. This meeting is rescheduled
for Meeting Room 1, Block D. Please
contact Joe Bloggs at 014567832 or
joe@SemAgency.com if you need more
information or cannot attend.

© Merative US L.P. 2012, 2025

7 Configuring the Cúram Universal Access Responsive Web Application 245

Message Area Description

Message 6 (Date and location change for all-day
meeting for multiple days)

The all day meeting that you are
scheduled to attend from 12/04/2010
until 15/04/2010 is rescheduled.
This meeting will now take place
from 13/04/2010 until 16/04/2010
in Meeting Room 1, Block D. Please
contact Joe Bloggs at 014567832 or
joe@SemAgency.com if you need more
information or cannot attend.

Message 7 (Date change for an all-day meeting) The all day meeting that you are
scheduled to attend on 12/04/2010
is rescheduled. This meeting will
now take place on 13/04/2010. Please
contact Joe Bloggs at 014567832 or
joe@SemAgency.com if you need more
information or cannot attend.

Message 8 (Location change for an all-day meeting) The location of the all day meeting
you are scheduled to attend on
12/04/2010 is changed. This meeting
is rescheduled for Meeting Room 1,
Block D. Please contact Joe Bloggs
at 014567832 or joe@SemAgency.com if
you need more information or cannot
attend.

Message 9 (Date and location change for an all-day
meeting)

The all day meeting that you are
scheduled to attend on 12/04/2010
is rescheduled. This meeting is
rescheduled for 13/04/2010 in
Meeting Room 1, Block D. Please
contact Joe Bloggs at 014567832 or
joe@SemAgency.com if you need more
information or cannot attend.

Message 10 (Date and time change of a non-all-day
meeting for multiple days)

The meeting that you are scheduled
to attend from 2.00PM until 6.00
PM on 12/04/2010 until 15/04/2010
is rescheduled. This meeting is
rescheduled for 2.00PM until 6.00 PM
on 13/04/2010 until 16/04/2010. Please
contact Joe Bloggs at 014567832 or
joe@SemAgency.com if you need more
information or cannot attend.

Message 11 (Location change of a non-all-day
meeting for multiple days)

The location of the meeting you
are scheduled to attend from 2.00PM
until 6.00 PM on 12/04/2010 until
15/04/2010 is changed. This meeting
is rescheduled for Meeting Room 1,
Block D. Please contact Joe Bloggs
at 014567832 or joe@SemAgency.com if
you need more information or cannot
attend.

© Merative US L.P. 2012, 2025

Cúram 8.2.0 246

Message Area Description

Message 12 (Date, time, and, location change of
non-all-day meeting for multiple days)

The meeting that you are scheduled
to attend from 2.00PM until 6.00
PM on 12/04/2010 until 15/04/2010
is rescheduled. This meeting is
rescheduled for 2.00PM until 6.00
PM on 13/04/2010 until 16/04/2010
in Meeting Room 1, Block D. Please
contact Joe Bloggs at 014567832 or
joe@SemAgency.com if you need more
information or cannot attend.

Notes When the case worker is setting up a meeting, the
location is an optional field. Therefore, if a meeting
location is not specified, the preceding messages
are displayed without a location. Also, the meeting
organizer's contact details are optional. Therefore, if
no contact details are found, the preceding message
is displayed without the organizer's contact details.

Creating payment messages
Create messages for an issued payment, a canceled payment, a due payment, a stopped payment,
an unsuspended payment, an issued overpayment, and an issued underpayment. An administrator
can use a configuration setting to set the number of days (from the effective date) that the
payment messages are displayed.

Table 11: Payment issued

Message Area Description

Title <Icon> Latest Payment

Message 1 Your latest payment of $22.00 was due
on 22/07/2009. Click here to view the
payment details. Your next payment is
due on 29/07/2009. Click My Payments
to view your payment history.

Message 2 (Payment previously canceled) Your latest payment of $22.00 was due
on 22/07/2009. Click here to view
the payment details. This payment was
originally canceled on 23/07/2009.
Click here to view details of the
canceled payment. Your next payment is
due on 29/07/2009. Click My Payments
to view your payment history.

Effective Date Current Date.

Notes A payment can be issued, then canceled, and
then reissued. The here hyper link opens a page
that shows payment details. The My Payments
link opens the My Payments page in the Citizen
Account.

Note: If no more payments are due, the Your
next payment is due on 29/07/2009 part
of the messages is not displayed.

© Merative US L.P. 2012, 2025

7 Configuring the Cúram Universal Access Responsive Web Application 247

Table 12: Payment canceled

Message Area Description

Title <Icon> Payment Canceled

Message Your payment of $22.00, due on
22/07/2009, has been canceled.
Click here to view the details.
Click Contact Information to contact
your caseworker if you need more
information. Your next payment is due
on 29/07/2009. Click My Payments to
view your payment history.

Effective Date Current Date.

Notes If no more payments are due, the Your next
payment is due on 29/07/2009 part of
the message is not displayed. The Contact
Information link opens the Contact Information
tab in the citizen account. The My Payments
link opens the My Payments page in the Citizen
Account.

Table 13: Payment due

Message Area Description

Title <Icon> Next Payment Due

Message Your next Cash Assistance payment is
due on 29/07/2011.

Effective Date Current Date.

Notes This message is appropriate when it is the first
payment that a citizen receives.

Table 14: Case suspended

Message Area Description

Title <Icon> Payments Stopped

Message Your Cash Assistance payments have
been stopped from 29/07/2009. Click
Contact Information to contact
your caseworker if you need more
information.

Effective Date Current Date.

Notes The Contact Information link opens the Contact
Information tab in the Citizen Account.

Table 15: Case unsuspended

Message Area Description

Title <Icon> Payments Unsuspended

Message Your Cash Assistance payment
suspension has been lifted from
29/07/2009. Your next payment is due
on 31/07/2009.

© Merative US L.P. 2012, 2025

Cúram 8.2.0 248

Message Area Description

Effective Date Current Date.

Notes None.

System messages
Agencies use system messages to send messages to either all public citizens, or specifically to
clients who have a citizen account. For example, an agency might want to provide information
and helpline numbers to citizens who are affected by a natural disaster. You can configure system
messages in the administration application on the New System Message page.

Use the Title and Message fields to define the title of the message and the message body that is
displayed in the citizen application.

The Visibility field defines the user group that a message is visible to, for example, either
Logged-in users, Public users, or Public and logged-in users.

Use the Effective Date and Time to define an effective date for the message, such as when the
message is displayed in the citizen account. Use the Expiry Date and Time field to define an
expiry date for the message, for example, when to remove the message from the Citizen Account.

The message is saved with a status of In-Edit. Before the message is displayed in the Citizen
Account, it must be published. After it is published, the message is active and is displayed either
to public citizens or in the Citizen Account, based on the visibility, effective date and expiry dates
that you have defined.

Configuring message duration
System properties set the length of time a type of message is displayed in the citizen account. For
example, a payment message can be configured to be displayed for 10 days. These configuration
options apply only to messages that originate as a result of transactions on Cúram.

The following system properties are provided:

• curam.citizenaccount.payment.message.expiry.days - sets the number of days
from the effective date that a payment message is displayed in the citizen account. A payment
message is displayed for this duration unless another payment message is created which
replaces it. The default value is 10.

• curam.citizenaccount.intake.application.acknowledgement.message.expiry.days

- sets the number of days from the effective date that an application acknowledgment message
is displayed in the citizen account. An acknowledgment message is displayed for this duration
unless another acknowledgment message is created which replaces it. The default value is 10.

• curam.citizenaccount.meeting.message.effective.days -sets the number of days
from the effective date that a meeting message is displayed. A meeting message is displayed
for this duration unless another meeting message is created which replaces it. The default
value is 10.

Switching off messages
An agency might not want to display messages in the Citizen Account. To cater for this choice,
the system property curam.citizenaccount.generate.messages enables an agency
to switch all messages on or off. The default value is true, which means that messages are
generated and displayed in the Citizen Account.

© Merative US L.P. 2012, 2025

7 Configuring the Cúram Universal Access Responsive Web Application 249

Configuring last logged in information

The text displayed in the welcome message and last logged on information can be updated
using the properties that are stored in the CitizenAccountHome properties file stored in the
Application Resource section of the Administration Application.

The following properties are provided:

• citizenaccount.welcome.caption - updates the welcome message.
• citizenaccount.lastloggedon.caption - updates the last logged on message.
• citizenaccount.lastloggedon.date.time.text - updates the date and time message.

Configuring contact information

Configure contact information for citizens and caseworkers.

Contact information displayed in the citizen account displays contact details (phone numbers,
addresses and email addresses) stored for the logged in citizen and also caseworker contact details
(business phone number, mobile phone number, pager, fax and email) of the case owners of cases
associated with the logged in citizen in Cúram and on remote systems.

Citizen contact information

The following system property is provided that sets whether contact information is displayed to a
citizen.

• curam.citizenaccount.contactinformation.show.client.details
If the property is set to true, citizens' address, phone number, and email address are
displayed. If this property is set to false, contact information is not displayed. The default
value for this property is true.

Caseworker

The following system properties are provided to set whether agency worker contact information
is displayed to a citizen, and if displayed, additional system properties are provided to dictate the
type of contact information displayed:

• curam.citizenaccount.contactinformation.show.caseworker.details
Sets whether worker contact details are displayed in the citizen account. If this property is set
to true, worker contact details of cases associated with the logged in citizen are displayed. If
this property is set to false, worker contact information is not displayed. The default value for
this property is true.

• curam.citizenaccount.contactinformation.show.businessphone
Sets whether the worker's business phone number is displayed. The default value of this
property is true.

• curam.citizenaccount.contactinformation.show.mobilephone
Sets whether the worker's mobile number is displayed. The default value of this property is
true.

• curam.citizenaccount.contactinformation.show.emailaddress
Sets whether the worker's email address is displayed. The default value of this property is true.

© Merative US L.P. 2012, 2025

Cúram 8.2.0 250

• curam.citizenaccount.contactinformation.show.faxnumber
Sets whether the worker's fax number is displayed. The default value of this property is true.

• curam.citizenaccount.contactinformation.show.pagernumber
Sets whether the worker's pager is displayed. The default value of this property is true.

• curam.citizenaccount.contactinformation.show.casemember.cases
Sets whether the worker's contact information is displayed for cases where the citizen is
a case member. If this property is set to true, cases where the citizen is a case member are
displayed. If this property is set to false, then only cases where the citizen is the primary client
are displayed. Note: this property only applies to cases originating from Cúram. The types
of product deliveries and integrated cases to be displayed can be configured in the Product
section of the Administration Application. For more information on administering this see the
Cúram Integrated Case Management Configuration Guide.

Configuring user session timeout

Configure the user session timeout modal in the System Administration application and the
Cúram Universal Access Responsive Web Application so that citizens know when their session is
about to expire.

If a user session is inactive for a while, citizens can continue their current session by clicking
Stay logged in so that they don't lose information that they entered on the current page. Citizens
can also continue the current session by navigating away from the Stay logged in button.

If citizens do not continue their session, they are logged out automatically after a configurable
period of time to secure their personal information.

Note:

The Social Program Management Design System is a React application that communicates
through REST APIs that are hosted by the Cúram application. The Cúram application and the
application server on which it is deployed on manage a user's session, including the session
timeout value that is used to terminate the user's session after a period of inactivity.

You can deploy the REST APIs as a separate enterprise application to the caseworker
application which allows the session timeout value to differ between the two applications. For
example, a caseworker session timeout value of 30 minutes might be too long for a citizen
whose timeout value might be more appropriately set to less than 10 minutes.

For more information about how to deploy the REST application, see the Cúram Clustered
IBM WebSphere Application Server Deployment Guide.

Use the following properties to configure the session timeout:

• curam.environment.enable.timeout.warning.modal
You can enable or disable the session timeout feature. For more information, see the Web
Client Reference Manual.

• curam.environment.timeout.warning.modal.time
You can configure the maximum time that the Stay logged in dialog is displayed to citizens.
For more information, see the Web Client Reference Manual.

© Merative US L.P. 2012, 2025

https://www.merative.com/content/dam/merative/support/spm/254553/CuramSocialProgramManagementClusteredIBMWebSphereApplicationServerDeploymentGuide.pdf.coredownload.inline.pdf
https://www.merative.com/content/dam/merative/support/spm/254553/CuramSocialProgramManagementClusteredIBMWebSphereApplicationServerDeploymentGuide.pdf.coredownload.inline.pdf

7 Configuring the Cúram Universal Access Responsive Web Application 251

• REACT_APP_SESSION_INACTIVITY_TIMEOUT

In the Cúram Universal Access Responsive Web Application, use the
REACT_APP_SESSION_INACTIVITY_TIMEOUT environment variable to configure the
time in seconds before a user session expires. You can set the environment variable in the
.env or .env.development files in the root of your application. The value must match
the session timeout that is configured on the server, by default, 30 minutes or 1800 seconds.

• Configuring the dialog box text
To configure the dialog box title, informational text, or button text for
the Cúram Universal Access Responsive Web Application, use the
SessionTimeoutDialogComponentMessages.js file that accompanies the source
files. For more information about customizing, see 5.15 Customizing the application on page
131.

• Configuring the login page to notify citizens when their session times out

Use the sessionCountdownTimerEnd property on the router location state to update a
customized login page with a message to notify citizens when their session times out. For
more information about routing, see 5.11 Developing with routes on page 106.

An example of the sessionCountdownTimerEnd is shown:

if (location.state.sessionCountdownTimerEnd) {
<Alert .../>

}

This notification message is configured by default when a citizen's session times out.

Related tasks
Customizing the Cúram Universal Access Responsive Web Application on page 255
Use this information to customize Universal Access for your organization.

Configuring appeal requests

Complete the following steps to enable a citizen to request an appeal from their citizen account.

Procedure

1. Create a custom IEG script and data store schema to capture the appeal information.
2. Set the values of the curam.citizenworkspace.appeals.datastore.schema and the

curam.citizenworkspace.appeals.datastore.script.id properties to the values of
the script and data store schema that you created.

3. Create an XSL template to generate a PDF of the appeal information.

Related tasks
Customizing appeals on page 311
You can customize appeals to suit your organization. You can integrate with an appeals system of
your choice. If you are licensed for the Cúram Appeals application module, the Cúram appeals
functionality is available on installation.

© Merative US L.P. 2012, 2025

Cúram 8.2.0 252

Configuring communications on the Notices page

You can configure the maximum number of communications that are displayed on the Notices
page. By default, up to 20 communications are displayed.

Procedure

Edit the curam.citizenaccount.max.communication system property and specify the
maximum number of communications to display.

What to do next

You can further customize the underlying communications implementation if needed. For more
information, see Customizing the Notices page on page 320.

Related concepts
The Notices page on page 47
When a citizen is logged in, they can see all communications that are relevant to them on the
Notices page, with sent, received, or normal status indicated. Notices are typically formal written
communications that are issued to meet legal, regulatory, or state requirements, which are created
by using letterhead templates.

Configuring payments

You can enable the display of enhanced benefit and payment information in the application. The
enhanced payment information is shown everywhere that payment information is displayed, such
as the dashboard and all payments pages. Messages about expected benefits are displayed on the
benefits page. By default, REACT_APP_FEATURE_PAYMENT_DETAILS_ENABLED is set to
false and the additional benefit and payment information is not displayed.

Before you begin
To avail of the enhanced benefit and payments information display feature, ensure that your
version of Cúram includes the "/ua/payments/{payment_id}", "/ua/payments_summaries", "/
ua/next_payments_summaries", "/ua/submitted_applications/next_payments_summaries", "/ua/
payments/simulate_payments" REST APIs.

About this task

When the additional benefit and payment information is displayed, expected and previous
payments, a detailed payment breakdown, and information about any adjustments that were made
since the last payment, become available in the citizen account. The information is displayed in
the dashboard, the all payments page, and the payment detail page.

You can configure how the maximum number of payments that are displayed on the dashboard,
by default 3 rows are displayed.

Procedure

1. To enable the display of enhanced benefit and payment information, set the value of the
REACT_APP_FEATURE_PAYMENT_DETAILS_ENABLED environment variable to true.

© Merative US L.P. 2012, 2025

7 Configuring the Cúram Universal Access Responsive Web Application 253

2. To specify the maximum number of payments for the expected payments
list and previous payments list on the dashboard, you can modify the
REACT_APP_CITIZEN_DASHBOARD_PAYMENT_COUNT_MAX=3 environmental
variable.

© Merative US L.P. 2012, 2025

Cúram 8.2.0 254

© Merative US L.P. 2012, 2025

8 Customizing the Cúram Universal Access Responsive Web Application 255

8 Customizing the Cúram Universal Access Responsive
Web Application

Use this information to customize Universal Access for your organization.

8.1 Customizing screenings

Use the supported classes and APIs to customize the events that are started for screenings and the
screening results page.
Related concepts
Configuring screenings on page 226
Define the different types of screenings that citizens can complete to identify programs that they
might be eligible to receive.

Track the volume, quality, and results of screenings

Use the curam.citizenworkspace.impl.CWScreeningEvents class to access the events that are
started for screening events.

You can use curam.citizenworkspace.impl.CWScreeningEvents to track the volume
or results of screening for reporting purposes. For more information, see to the API
Javadoc™ for CWScreeningEvents in <CURAM_DIR>/EJBServer/components/
CitizenWorkspace/doc

Populating a custom screening results page

Use the performScreening that is contained in the
curam.citizenworkspace.security.impl.UserSession API to populate a custom
Screening Results page.

The Screening Results page is displayed when an IEG screening script is run. The operation runs
the configured rule set for the selected screening type. The results of the screening, that is, the list
of eligible and undecided programs, are stored against the user's session.

The screeningResultsForDisplay return type of the operation allows access to three objects. These
objects contain the information that is required to populate either the default or custom Screening
Results page:

• ScreeningType
The screening type that the user selected.

• List<Program>
A list of the programs that the user was screened for. The ScreeningResultsOrderingStrategy
sets the order of the programs listed.

• Map<String, ProgramType>
A join.util.map that contains a mapping of strings to ProgramTypes where the string contains
the unique reference for that ProgramType.

© Merative US L.P. 2012, 2025

Cúram 8.2.0 256

The following is a sample usage:

UserSession userSession = userSessionDAO.get(sessionID);
ScreeningResultsForDisplay screeningResultsForDisplay =
 userSession.performScreening();

The following is a sample interface definition:

/**
 * Executes the Screening rule set associated with the current screening IEG
 * script data. The return object, {@link ScreeningResultsForDisplay},
 * contains all of the information required to be displayed on the
 * Screening Results page.
 *
 * @return object containing the ordered screening results, the selected
 * {@link ScreeningType} and a map of {@link ProgramType} records.
 *
 * @throws InformationalException
 * Generic exception signature.
 * @throws AppException
 * Generic exception signature.
 */
 ScreeningResultsForDisplay performScreening() throws InformationalException,
 AppException;

For more information, see the API Javadoc for the
curam.citizenworkspace.security.impl.UserSession in <CURAM_DIR>/
EJBServer/components/CitizenWorkspace/doc.

8.2 Customizing applications

You can customize the application flow to link directly to an application script, or to provide
separate overview pages or submission confirmation pages for each application type. You
can also use customization points, for example, customizing the generic PDF for processed
applications, to customize the application intake process when an intake application is submitted.
Related concepts
Configuring applications on page 232
Use Cúram administration and system administration applications to define the applications that
are available for citizens. For each application, you can configure the available programs and an
application script and data schema. You must also configure the remaining applications details,
such as application withdrawal reasons.

Linking directly to an application

You can link directly to the overview page of an application from a custom URL. For example,
you can customize the application flow to skip the Apply For Benefits page and the Benefit
Selection page if you prefer.

You can do this by using the IDs from the INTAKEAPPLICATIONTYPE and PROGRAMTYPE
database tables.

Creating a direct link by using a custom URL

For example, you might want to create a URL, such as /food-stamps, that links directly to your
food stamps application.

© Merative US L.P. 2012, 2025

8 Customizing the Cúram Universal Access Responsive Web Application 257

1. Create a wrapper component to pass in the data about the application. For example, create a
FoodStampsComponent as shown.

 const FoodStampsComponent = () => (
 <ApplicationOverviewContainer
 intakeApplicationTypeId=“91001”
 programIds=“1010,1015”
 >
 <FoodStampsDescriptionComponent />
 </ApplicationOverviewContainer>
);

2. Add a new /food-stamps route that loads the FoodStampsComponent component.

Creating a direct link by using a generic URL

Rather than hardcoded values, you can pass in the data for an application by using a generic URL
of the form /application-overview/:intakeApplicationTypeId/:programIds, where
:intakeApplicationTypeId is the intake application type ID and :programIds is a comma-
separated list of program IDs. For example:

/application-overview/91001/1010,1015

Customizing application overview pages

You can create separate application overview pages for each application type so you can display
specific information about the type of benefit that a citizen is applying for.

These examples use the ApplicationOverviewContainer and the
StartApplicationButton components, and demonstrate how to customize the page while
using the existing application functionality.

Customizing an application overview page accessed by a custom URL

When you access an application by using a custom URL, such as /food-stamps, you can use a
wrapper component to pass in a child component, in which you can display information about a
specific application type.

For example, for a food stamps application, you can create a
FoodStampsDescriptionComponent component as a child of your FoodStampsComponent.

 const FoodStampsComponent = () => (
 <ApplicationOverviewContainer
 intakeApplicationTypeId=“91001”
 programIds=“2010,2015”
 >
 <FoodStampsDescriptionComponent />
 </ApplicationOverviewContainer>
);

Customizing an application overview page accessed by a generic URL

When accessing an application by using generic URLs, such as /application-
overview/91001/1010,1015, complete the following steps to customize the overview page
for an application.

© Merative US L.P. 2012, 2025

Cúram 8.2.0 258

1. Write a component that checks the IDs, for example, NewOverviewComponent.

 const NewOverviewComponent = props => {
 let child = null;
 const id = props.match.params.intakeApplicationTypeId;
 if (id === '91001') {
 child = <FoodStampsDetailsComponent />;
 } else if (id === '50000') {
 child = <ChildWelfareDetailsComponent />;
 } else {
 // throw error
 }
 return (
 <ApplicationOverviewContainer
 intakeApplicationTypeId={props.match.params.intakeApplicationTypeId}
 programIds={props.match.params.programIds}
 >
 {child}
 </ApplicationOverviewContainer>
);
 };

2. Overwrite the existing route. For example:

 <TitledRoute
 component={NewOverviewComponent}
 exact
 path={`${PATHS.APPLICATION_OVERVIEW}/:intakeApplicationTypeId/:programIds`}
 title={applicationOverviewTranslations.overviewTitle}
 />

© Merative US L.P. 2012, 2025

8 Customizing the Cúram Universal Access Responsive Web Application 259

Customizing the intake application workflow

Review a summary of the intake application workflow in a flowchart.

© Merative US L.P. 2012, 2025

Cúram 8.2.0 260

Figure 5: Intake application workflow

© Merative US L.P. 2012, 2025

8 Customizing the Cúram Universal Access Responsive Web Application 261

• Create intake PDF
This automatic activity creates a PDF document based on the content of the application. For
more information, see Customizing the generic PDF summary form for processed applications
on page 262.

• InvokeLegacySystemProcessing
This automatic activity sends applications to legacy systems by using web services. This path
is taken only if there are legacy systems that are associated with at least one of the programs
on the application.

• CreateParticipantsAndCasesDeferAES
This automatic activity creates participants for the submitted application and then creates
one or more cases for the programs that are associated with the application. In most cases,
application cases are created.
This path is taken only if the configuration property curam.intake.use.resilience
is set to true. For compatibility with previous versions, this property is false by default.
However, it is recommended that all production systems set this value to true. For more
information about the implications of setting this value to true, see Using events to extend
intake application processing on page 265.

This activity also defers the evidence sharing that occurs when case members are added to an
application case to a later point in the workflow.

Note: For customizations to this workflow or for custom intake
workflows, evidence sharing can be deferred by using the
curam.aes.sl.observe.impl.AESShareSetPullManualEnactment.process()

API. For more information, see the associated Javadoc.

• Mapping
This automatic activity uses the Cúram Data Mapping Engine (CDME) to map data
collected in the application script into Case Evidence. If a validation issue occurs
with the mapped evidence, this activity is automatically retried. During the retry,
if there is a single Application Case, the validations are disabled and a WDO flag
IntakeCaseDetails.mappingValidInd set to false.

• EvidenceCorrections
This manual task is called if the Mapping activity fails due to a validation error. That is, the
IntakeCaseDetails.mappingValidInd set to false. The assignment of this task is
configurable.

For more information about the ownership strategy, see the Intake Developer's Guide.
The caseworker or operator must resolve the evidence validation issues and resubmit the
application.

• Subflow: Evidence Sharing Pull Workflow
If there is evidence to share, the evidence sharing pull workflow is enacted to trigger any
sharing activities that were deferred in CreateParticipantsAndCasesDeferAES.
If there is no evidence to share, the workflow bypasses this step.

• PostMapping
This automatic activity starts the next stage of application processing by calling the
IntakeApplication.IntakeApplicationEvents.postMapDataToCuram() event.

© Merative US L.P. 2012, 2025

Cúram 8.2.0 262

• CreateParticipantsCasesAndMapEvidence
This path is followed when the configuration property
curam.intake.use.resilience is set to false. This automatic activity behaves
identically to the older non-resilient workflow. It creates cases and participants and completes
all evidence mapping in a single transaction, which results in a less resilient process if a failure
occurs.

Customers can customize the workflow compliantly as described in the Universal Access
Responsive Web Application Guide and the Web Client Reference Manual. Customers must not
change the enactment structs that are used by these workflows.

Related concepts
Customizing the generic PDF summary form for processed applications on page 262
By default, the PDF summary is automatically generated from an XSL template for all intake
applications.

Using events to extend intake application processing on page 265
The interface IntakeApplication.IntakeApplicationEvents contains events that are
invoked when citizens submit an intake application for processing.

Customizing the generic PDF summary form for processed applications
By default, the PDF summary is automatically generated from an XSL template for all intake
applications.

The PDFs are rendered by the XML server. For more information about XSL templates, see the
Communications Overview Guide.

Configuring the generic PDF summary template
Complete the following steps to change or update the generic PDF summary template for intake
applications. If needed you can upload your own custom template. Customers can choose
between an improved template or the default earlier template.

About this task

• WSXSLTEMPLATEINST001.xsl

The /EJBServer/components/WorkspaceServices/data/initial/
blob/WSXSLTEMPLATEINST001.xsl template is configured by default and provides
compatibility for existing scripts.

• IntakeApplicationPDFTemplate.xsl

Customers can use the more recent /EJBServer/components/
WorkspaceServices/data/initial/blob/
IntakeApplicationPDFTemplate.xsl template to generate an improved summary
that is based on the final summary page of the IEG application script.

The PDF summary template does not support some IEG scripts. To define a list of scripts to be
excluded from summary PDF template generation, if a summary PDF template is configured,
use the curam.intake.pdftemplate.iegsummarypagelayout.scriptexcludelist
environment variable. For the excluded IEG scripts, the default data store PDF template is
used instead to generate PDF documents.

The PDF summary template does not support the following IEG scripts:

© Merative US L.P. 2012, 2025

8 Customizing the Cúram Universal Access Responsive Web Application 263

• Scripts with no summary pages.
• Scripts with one or more summary pages, but where a summary page isn't at the end of the

script.
• Scripts with a summary page that is nested in a condition.
• Scripts where the last summary page contains no cluster.

For a summary PDF to be generated from an IEG script by using the
IntakeApplicationPDFTemplate.xsl template, a summary page must be at the end of
the script. If your IEG scripts don't have a summary page, you must either add a summary
page or use the default WSXSLTEMPLATEINST001.xsl template, which doesn't need a
summary page in the IEG script.

You can configure the text and logo in the header, and further customize the template to define
the information that you want to include in the PDF summary form.

Procedure

1. Log in as a system administrator, go to Communications > XSL Templates.
2. Search for the Intake Application template with the following details:

• Description: Intake Application
• Relates To: Intake Application
• Category: Intake Application
• Subcategory: Intake Application
• Template Type: Letter
• Template ID: Intake Application

3. Select the template and check it out.
The existing template version is saved in case you need it later.

4. Locate the template that you want to upload.
This can be your own custom template, or the improved template. For example, to use
the improved IntakeApplicationPDFTemplate.xsl template, download it from
/EJBServer/components/WorkspaceServices/data/initial/blob/
IntakeApplicationPDFTemplate.xsl so you can upload it here.

5. Click Check in template, and upload the new or updated template.

Customizing generic PDF summary forms based on the
IntakeApplicationPDFTemplate.xsl template
You can customize the generic PDF summary form of an online application that is based on the
most recent IntakeApplicationPDFTemplate.xsl template. You can customize the text
and logo in the header, and customize the XSL template to define the information that you want
to include in the generic PDF summary form.

Before you begin

The IntakeApplicationPDFTemplate.xsl template uses information from the summary
page in IEG scripts to generate the PDF summary form, see the Universal Access Configuration
Guide.

© Merative US L.P. 2012, 2025

Cúram 8.2.0 264

Where an IEG script contains multiple conditional summary pages, the last visible summary page
is used to generate the PDF. If your IEG scripts don't have a summary page, you must either add
a summary page, or use the earlier WSXSLTEMPLATEINST001.xsl template, which doesn't
need a summary page.

Procedure

1. To customize the PDF header, edit the intake-application-pdf-props app resource,
which is located in the EJBServer/components/WorkspaceServices/data/initial/
blob/prop/IntakeApplicationPDFProps.properties file.
You can customize the following information:

START NON-TRANSLATABLE
 pdf.logo=logo-pdf
 # END NON-TRANSLATABLE
 pdf.logo.altText=logo
 pdf.application.reference=Application number:
 pdf.submitted.date=Submitted on

a) Update the text as needed.
b) To customize the PDF logo, add an image resource that matches the name on the

pdf.logo property and locale. The default name of the image resource is logo-pdf.
2. To update the template, search for an XSL resource that is called Intake Application,

which is located at:

EJBServer/components/WorkspaceServices/data/initial/blob/
IntakeApplicationPDFTemplate.xsl

This XSL uses XSL-FO 1.0 technology to generate the PDF. For more information about
XSL, see https://www.w3.org/TR/xsl11.

3. Update the system to use your custom template, see Configuring the generic PDF summary
template on page 262.

Customizing generic PDF summary forms based on the WSXSLTEMPLATEINST001.xsl
template
Complete the following step to customize a PDF summary form that is based on the default
WSXSLTEMPLATEINST001.xsl template. You can customize the XSL template to define the
information that you want to include in the generic PDF summary form.

About this task

The data passed to the XSL template reads from the data store. For more information, see the
Communications Overview Guide.

Procedure

1. Instead of displaying the data store labels in the PDF, you can define a property file to specify
alternative names for entities and attributes and to hide entities and attributes that you do not
want to display in the PDF.

Define a property file with the naming convention <application schema
name>PDFProps, and edit the contents of the property file as follows:

© Merative US L.P. 2012, 2025

https://www.w3.org/TR/xsl11

8 Customizing the Cúram Universal Access Responsive Web Application 265

• Name an entity
<Entity Name=<Name To Be Displayed in the PDF>, for example,
Application=Intake Application

• Hide an entity
<Entity Name.hidden=true, for example, ScreeningType.hidden=true

• Hide an attribute
<Entity Name.Attribute Name.hidden=true, for example, Application.user
Name.hidden=true

• Specify a label for an attribute
<Entity Name.Attribute Name=PDF Label, for example, Submission.dig
FirstName=First Name

Upload the property file to Application Resources in the Intelligent Evidence Gathering
section of the administration application. For more information about IEG, see the Working
with Intelligent Evidence Gathering (IEG) Guide.

2. To update the template, search for an XSL resource that is called Intake Application,
which is located at:

/EJBServer/components/WorkspaceServices/data/initial/blob/WSXSLTEMPLATEINST001.xsl

Update the template as needed. This XSL uses XSL-FO 1.0 technology to generate the PDF.
For more information about XSL, see https://www.w3.org/TR/xsl11.

Using events to extend intake application processing

The interface IntakeApplication.IntakeApplicationEvents contains events that are
invoked when citizens submit an intake application for processing.

Use these events to change the way that intake applications are handled, for example supplement
or replace the standard CDME mapping or perform an action after an application has been sent
to a remote system using web services. For more information, see the API Javadoc information
for IntakeApplication.IntakeApplicationEvents in <CURAM_DIR>/EJBServer/
components/WorkspaceServices/doc.

The interface IntakeProgramApplication.IntakeProgramApplicationEvents
contains events that are invoked at key stages during the processing of an application
for a particular program. For information, see the API Javadoc information for
IntakeProgramApplication.IntakeProgramApplicationEvents in <CURAM_DIR>/
EJBServer/components/WorkspaceServices/doc.

Customizing the concern role mapping process

The curam.workspaceservices.applicationprocessing.impl package
contains a ConcernRoleMappingStrategy API that provides a customization point into the online
application process.

Use the ConcernRoleMappingStrategy API to implement custom behavior following the creation
of each new concern role that is added to an application. For example, customers who have

© Merative US L.P. 2012, 2025

https://www.w3.org/TR/xsl11

Cúram 8.2.0 266

customized the prospect person entity might want to store information on that entity that cannot
be mapped using the default CDME processing.

Enable the ConcernRoleMappingStrategy API
In the Cúram system administration application, enable the ConcernRoleMappingStrategy API by
setting the Enable Custom Concern Role Mapping property to true.

Procedure

1. Log in to the Cúram application as system administrator.
2. Click System Configurations > Application Data > Property Administration.
3. In the Application - Intake Settings category, search for the property

curam.intake.enableCustomConcernRoleMapping.
4. Edit the property to set its value to true.
5. Save the property.
6. Select Publish.

Use the ConcernRoleMappingStrategy API
Use the enabled ConcernRoleMappingStrategy API to implement a strategy for mapping
information to a custom concern role.

About this task
The curam.workspaceservices.applicationprocessing.impl package contains
the ConcernRoleMappingStrategy API.

Procedure

1. Provide an implementation of the customization point.
2. Bind your custom implementation by creating or extending your custom mapping module as

follows:

package com.myorg.custom;
class MyModule extends AbstractModule {
 @Override
 protected void configure() {

 bind(ConcernRoleMappingStrategy.class).to(
 MyCustomConcernRoleMapping.class);

3. If you did not already add your MyModule class to the ModuleClassName table by using an
appropriate DMX file, add your MyModule class.

How to send applications to remote systems for processing

Use the Citizen Workspace to send applications to remote systems that use web services for
processing.

An event ReceiveApplicationEvents.receiveApplication is raised before the
application is sent to the remote system. The event can be used to edit the contents of the data
store that is used to gather application data before transmission. For more information, refer to the

© Merative US L.P. 2012, 2025

8 Customizing the Cúram Universal Access Responsive Web Application 267

API Javadoc for ReceiveApplicationEvents, which is in <CURAM_DIR>/EJBServer/
components/WorkspaceServices/doc.

8.3 Customizing life events

A description of the high-level architecture of life events and how to perform the analysis and
development tasks in building a life event.

Many types of life events can be built by analysts, some require input from developers. This
information will help analysts to understand how to perform the analysis for a new life event and
how to determine whether input is needed from developers.

Related concepts
Configuring life events on page 237
For each life event, you must define how information is collected, stored, and displayed. You
can configure life event information categories, mappings to dynamic evidence, and information
sharing with internal and external sources.

Enabling and disabling life events

The life events feature is enabled by default. When it is enabled, the life event feature is available
for linked users only. You can use the REACT_APP_FEATURE_LIFE_EVENTS_ENABLED
environment variable to enable or disable life events.

About this task

For more information about linked users, see 6.5 User account types on page 210.

The following life events functionality can be enabled or disabled:

• The View your account card on the Home page is updated to say See your next payment,
tell us of any changes in your circumstances, and more.

• Review your profile card on the Dashboard page.
• Tell us if any anything has changed pane on the Profile page.
• Live event-related URLs, for example /life-events/history.

Procedure

1. Edit the .env file in the root of your application.
2. Set REACT_APP_FEATURE_LIFE_EVENTS_ENABLED to true or false. If you don't

define the environment variable, the life event feature defaults to enabled.

How to build a life event

To design a life event for Merative ™ Cúram Universal Access, you must undertake an analysis.

You can build life events for caseworkers, or use the life event infrastructure to drive other
processes like certification, but that is outside the scope of this information. Java coding skills
are not a prerequisite for developing all life events. Depending on requirements, many and

© Merative US L.P. 2012, 2025

Cúram 8.2.0 268

in some cases all of the artifacts required can be developed by a Business Analyst. Business
Analysts can use this information to determine whether Java developers are needed to complete
the implementation of a life event.

Generally, there are two types of life events for citizens:

• Standard life events
• Round tripping life events

Standard life events allow citizens to enter new life event information and submit it to the
agency. For example, a citizen logs in and submits a "Having a Baby" life event, which is
new information on the system. If they submit incorrect information, such as the name of the
obstetrician, they can start a new life event, reenter the information, and submit.

Round-tripping life events are more complex. The distinction between round-tripping or standard
life events is whether the data that is pre-populated in the life event can be changed by the user. If
a citizen is expected to update pre-populated information in addition to adding new information,
the life event is considered a round-tripping life event. It’s considerably harder to design scripts
for this type of life event.

The primary artifacts that constitute a simple life event are:

• An IEG script and its associated data store schema
• An IEG script to review answers in a previously submitted life event (optional)
• A Cúram Data Mapping Engine specification that describes how to map data from the IEG

script into evidence on the citizen's cases

All of these artifacts can be configured in the administrator application. For more information
about configuring Simple life events, see 7.8 Configuring life events on page 237.

Information that is entered is processed by the life events system as follows:

1. If the user is linked to the local Cúram case processing system, then the life events system can
update related evidence in their cases.

2. If the user is linked to remote systems, then the life events system can send updates to the
remote system by using web services.

If the life event is a round-tripping life event, or it is required to update the person's evidence
in Cúram, then some development work is needed. See the life events APIs needed to meet
these requirements or indeed to supplement the standard life event behavior with more custom
functionality.

Customizing advanced life events

To develop advanced life events, you must understand the difference between a simple life event
and advanced life event.

When to use advanced life events

Advanced life events enable fully automated round-tripping of data. This means that evidence
is read into the datastore for an IEG script. It is then updated by the citizen. When the life event
is submitted, the original evidence that was read into the IEG script is updated. Advanced life

© Merative US L.P. 2012, 2025

8 Customizing the Cúram Universal Access Responsive Web Application 269

events are only required when this level of automated round tripping of data is required. Under all
other circumstances Simple life events are the recommended approach. Project Architects should
consider carefully whether round tripping is required or whether the data entered can be treated as
new evidence to be integrated into the citizen's cases.

Advanced life events cannot be configured through the administration user interface, they must be
created by developers.

How to build a life event

Analysis
The distinction between standard life events and round-tripping life events is whether citizens
can change the data that is prepopulated in the life event. If citizens can update prepopulated
information, rather than just adding new information, then use a round-tripping life event. It's
more difficult to develop this type of life event. The advanced life events subsystem is designed
to cater for round-tripping life events.

The following information describes how to develop an advanced life event that supports round-
tripping.

The following primary artifacts constitute an advanced life event:

• An IEG script and its associated data store schema.
• An IEG script to review answers in a previously submitted life event (optional).
• A Recommendations Ruleset that produces the set of recommendations based on the

information that is entered in the IEG script (optional).

The life events system can take information that is entered by the user and update related
evidence in any cases they have.

The life events system can do one of the following processes:

1. If the user is linked to the local Cúram case processing system, then the life events system can
update related evidence in any of their cases.

2. If the user is linked to remote systems, then the life events system can send updates to related
remote systems through web services.

You can configure the life events system to ask a citizen's permission before life event
information is sent to remote systems. A standard life event that just sends information to remote
systems can be configured through the administration application. For more information, see
Defining Remote Systems on page 240.

If the life event is a round-tripping life event or is needed to update evidence in the local case
processing system, then some development work is needed to configure the life event. Round-
tripping life events must be pre-populated. Pre-population of life events is only supported for
users that are linked to the local Cúram case processing system by using a concern role. To read
information from cases and update those cases, the life events system relies on the Citizen Data
Hub subsystem. The following work is needed to configure the Citizen Data Hub.

The life event broker uses the Data Hub to get the data it needs to populate the life event, so you
must configure the Data Hub to extract this data. The life event broker also sends the updated

© Merative US L.P. 2012, 2025

Cúram 8.2.0 270

data back through the Data Hub. The Data Hub must be configured to tell it what to do with this
updated data.

You can use some of these artifacts to configure the Citizen Data Hub for reading information:

• Transform - converts data from the Holding Case into data store XML.
• Filter Evidence Links - When you read Citizen Data, these links filter out only the evidence

entities of interest that are read from the Holding Case.
• View processors - Java™ classes for extracting non-evidence data into the data store XML.

You can use these artifacts, among others, to configure the Citizen Data Hub for updating
information:

• Transforms - Convert a data store XML Difference Description back into Holding Case
Evidence.

• Update processors - Do other update tasks or update non-evidence data that relates to citizens.

Considerations for life events analysis
The considerations that affect the complexity of developing a particular life event that must read
from, or write to, an evidence or participant-related data store in Cúram. These considerations
inform any analysis of life events development and any resulting estimates.

1. Is the life event a standard life event or a round tripping life event
2. What information needs to be pre-populated into the IEG script?
3. What evidence data is read by the life event?
4. What evidence data is updated by the life event?
5. What non-evidence data is read/updated by the life event
6. How many programs or case types are affected by the life event
7. If a life event shares to multiple cases, will those case types also share evidence with each

other using Evidence Broker?
8. Does a life event have associated recommendations? If so, do they relate to Community

Services, Government Programs or both?

Of these items that deal with Non-Evidence Entities presents the greatest challenge. Any life
event that updates non-evidence entities require developers with Java skills.

Building the components of a life event
How you build the component parts of a life event that uses the Citizen Data Hub. This
information does not require any knowledge of Java™.
Writing life event IEG Scripts
Writing a life event IEG script is similar to writing any other IEG script, but with some special
considerations. These considerations depend on whether the life event is a round-tripping life
event or a standard life event.

For a round-tripping life event, citizen data is read into the data store that is used by the IEG
script. This data can be modified by citizens as they progress from page to page in the life event
script. For example, a citizen can modify income data that is read into the life event script before
submission. The life event broker ensures that when the citizen changes the income data the
changes are detected and propagated correctly back to the income entity from which the data was
read. The life event broker needs a way to track data from its origin in the income entity, through

© Merative US L.P. 2012, 2025

8 Customizing the Cúram Universal Access Responsive Web Application 271

the life event script, and back to the same income entity. To facilitate this process, the IEG script
designer needs to place a marker into the data store schema.

The following code block is an example of the definition of an income data store:

 1 <xsd:element name="Income">
 <xsd:complexType>
 <xsd:attribute name="incomeType" type="INCOME_TYPE"
 default=""/>
 5 <xsd:attribute name="cgissIncomeType"
 type="CGISS_INCOME_TYPE"/>
 <xsd:attribute name="incomeFrequency"
 type="INCOME_FREQUENCY" default=""/>
 <xsd:attribute name="incomeAmount" type="IEG_MONEY"
 10 default="0"/>
 <xsd:attribute name="localID" type="IEG_STRING"/>
 <xsd:complexType>
 </xsd:element>

The life event broker uses the localID attribute to track the unique identity of the entity from
which the income data was drawn. When this entity is changed and submitted, the life event
broker can use the value of localID to locate the correct entity to update with the changes in
the life event. Other special markers exist that can be placed in the schema to aid with providing
automatic updates to evidence entities.

When you design a script for a round-tripping life event, you must account for the effects
that pre-population of data can have on the flow of the script. One example of this situation is
conditional clusters. Life event scripts need to avoid conditional clusters that are associated with
pre-populated data. These clusters are common in intake scripts but don’t work well when the
data store was pre-populated. For example, for a life event that involves a job loss, a Boolean flag
on the Person entity, hasJob is used to indicate that person has a job. The IEG script presents
the user with a question: Does anyone in your household have a job?. This
question is used to drive the display of a conditional cluster that identifies which household
members who have jobs.

However, if the data in the data store is repopulated, it’s likely one or more Person entities with
hasJob already be set to true. In the current implementation of IEG, it isn’t possible to get the
Does anyone in your household have a job? control question to default to true
even when hasJob is true for one or more household members. For this reason, the rule needs to
be to avoid control questions for conditional clusters such as when the fields they control are pre-
populated.

Pre-populating a life event
A description of the artifacts that you must develop to pre-populate a life event script:

How the Data Hub works for reading

You can use the Data Hub to collect data about Citizens from different locations and return the
data as an XML document in a datastore. You can use the Data Hub to hide the complexities
of where data comes from and how it is represented in its original locations. For example, to
drive a "Lost my Job" life event, you might need to gather information about a person's Income,
Address, and Employment. These three pieces of information might be represented differently
on the underlying system, they might be on one or more different systems. The caller doesn't
need to know this detail. The Citizen Data Hub can get these pieces of information in one single
operation. Operations of this type are named uniquely, each is called a "Data Hub Context". To

© Merative US L.P. 2012, 2025

Cúram 8.2.0 272

animate the "Lost my Job" example, define a Data Hub Read Context called "CitizenLostJob"
that enables the collection of Income, Address and Employment information in a single query.

One of the sources that the Data Hub can draw on is Evidence on Cases. In particular, Evidence
on the Citizen's Holding Case. The Holding Case can use the Evidence Broker to gather data from
many disparate Integrated Cases or even from other systems through web services. The Holding
Case is a little different from other Cases. There is only one Holding Case per Citizen on a given
Cúram system. The Holding Case has an interface that allows all of the Evidence it contains
to be extracted in XML format. This XML format is optimized for the description of Evidence
in particular. Because it is optimized for the description of Evidence, it isn't necessarily in a
format that is suitable for insertion into a data store. Fortunately it is relatively easy to translate
data in one XML format into another format with XSLT. For more information about XSLT, see
www.w3.org/TR/xslt.

Authoring Read Transforms

You can write XSLT Transforms for use in the Data Hub. To write Citizen Data Hub Transforms,
you must understand the structure of the Holding Evidence XML that is the source data and the
Data Store schema that is the target.

For example, a simple life event for Citizens who have bought a new car is associated with the
Data Hub Context "CitizenBoughtCar". Look at the following fragment of Holding Evidence
XML that is used to describe a Vehicle:

<?xml version="1.0" encoding="UTF-8"?>
 <client-data
 xmlns="http://www.curamsoftware.com/schemas/ClientEvidence">
 <client localID="101" isPrimaryParticipant="true">
 <evidence>
 <entity localID="-416020015578349568" type="ET10081">
 <attribute name="vehicleMake">VM2</attribute>
 <attribute name="versionNo">2</attribute>
 <attribute name="startDate">20110301</attribute>
 <attribute name="usageCode">VU1</attribute>
 <attribute name="amountOwed">3,200.00</attribute>
 <attribute name="numberOfDoors">0</attribute>
 <attribute name="evidenceID">
 -5315936410157449216
 </attribute>
 <attribute name="monthlyPayment">0.00</attribute>
 <attribute name="vehicleModel">159</attribute>
 <attribute name="year">2008</attribute>
 <attribute name="equityValue">0.00</attribute>
 <attribute name="endDate">10101</attribute>
 <attribute name="fairMarketValue">17,000.00</attribute>
 <attribute name="curamEffectiveDate">20110301
 </attribute>
 </entity>
 </evidence>
 </client>
 </client-data>

The client element represents data that belongs to the participant with concern role id 101.
In Cúram demo data this is James Smith. The client contains a single evidence entity of type
ET10081. In the Cúram Common Evidence layer, ET10081 is the Evidence Type identifier
for Vehicle Evidence. The localID attribute plus the evidence type uniquely identifies the
underlying evidence object for the Vehicle. This data must be mapped to data store XML so that it

© Merative US L.P. 2012, 2025

http://www.w3.org/TR/xslt

8 Customizing the Cúram Universal Access Responsive Web Application 273

can be used to populate an IEG Script. Consider how the previous data is represented in data store
XML:

<?xml version="1.0" encoding="UTF-8"?>
<Application>
 <Person localID="101" isPrimaryParticipant="true"
 hasVehicle="true">
 <Resource resourcePageCategory="RPC4001"
 localID="-416020015578349568" vehicleMake="VM2"
 versionNo="2" amountOwed="3,200.00" vehicleModel="159"
 year="2008" fairMarketValue="17,000.00"
 curamEffectiveDate="20110301">
 <Descriptor/>
 </Resource>
 </Person>
</Application>

This XML data must conform to the schema that is used to build the IEG script. Notice that the
data store XML conforms to a schema that is a superset of the CitizenPortal.xsd schema.
You can use the CitizenPortal.xsd schema as a starting point for the schemas used in
Customer life events and add "marker" attributes that are needed for life events. These marker
attributes include the use of localID. Datastore schemata for entities can also include the
following special markers that are specialized for representing Evidence in the Holding Case:

• curamEffectiveDate - This maps to the effective date of a piece of Cúram Evidence

© Merative US L.P. 2012, 2025

Cúram 8.2.0 274

The following XSLT fragment shows how to transform Vehicle Holding Evidence into a
corresponding Data Store Entity:

<?xml version="1.0" encoding="UTF-8"?>
<!-- This script plucks out and copies all resource-related entities from output built
 by the XMLApplicationBuilder -->
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:x="http://www.curamsoftware.com/schemas/DifferenceCommand"
 xmlns:fn="http://www.w3.org/2006/xpath-functions" version="2.0">
 <xsl:output indent="yes"/>
 <xsl:strip-space elements="*"/>
 <xsl:template match="update">
 <xsl:for-each select="./diff[@entityType='Application']">
 <xsl:element name="client-data">
 <xsl:apply-templates/>
 </xsl:element>
 </xsl:for-each>
 </xsl:template>
 <xsl:template match="diff[@entityType='Person']">
 <xsl:element name="client">
 <xsl:attribute name="localID">
 <xsl:value-of select="./@identifier"/>
 </xsl:attribute>
 <xsl:element name="evidence">
 <xsl:apply-templates/>
 </xsl:element>
 </xsl:element>
 </xsl:template>
 <xsl:template match="diff[@entityType='Resource']">
 <xsl:element name="entity">
 <xsl:attribute name="type">ET10081</xsl:attribute>
 <xsl:attribute name="action">
 <xsl:value-of select="./@diffType"/>
 </xsl:attribute>
 <xsl:attribute name="localID">
 <xsl:value-of select="./@identifier"/>
 </xsl:attribute>
 <xsl:for-each select="./attribute">
 <xsl:choose>
 <xsl:when test="./@name='vehicleUsage'">
 <attribute name="usageCode"><xsl:value-of select="."/></attribute>
 </xsl:when>
 <xsl:otherwise>
 <xsl:copy-of select="."/>
 </xsl:otherwise>
 </xsl:choose>
 </xsl:for-each>
 <xsl:apply-templates/>
 </xsl:element>
 </xsl:template>
 <xsl:template match="diff[@entityType='Ownership']">
 <xsl:element name="entity">
 <xsl:attribute name="type">ET10073</xsl:attribute>
 <xsl:attribute name="action">
 <xsl:value-of select="./@diffType"/>
 </xsl:attribute>
 <xsl:attribute name="localID">
 <xsl:value-of select="./@identifier"/>
 </xsl:attribute>
 <xsl:for-each select="./attribute">
 <xsl:copy-of select="."/>
 </xsl:for-each>
 <xsl:element name="entity-data">
 <xsl:attribute name="entity-data-type">role</xsl:attribute>
 <xsl:element name="attribute">
 <xsl:attribute name="type">PRI</xsl:attribute>
 </xsl:element>
 <xsl:element name="attribute">
 <xsl:attribute name="roleParticipantID">
 <xsl:value-of select="./@identifier"/>
 </xsl:attribute>
 </xsl:element>
 <xsl:element name="attribute">
 <xsl:attribute name="entityRoleIDFieldName">caseParticipantRoleID</
xsl:attribute>
 </xsl:element>
 </xsl:element>
 </xsl:element>
 </xsl:template>
 <xsl:template match="*">
 <!-- do nothing -->
 </xsl:template>
</xsl:stylesheet>

© Merative US L.P. 2012, 2025

8 Customizing the Cúram Universal Access Responsive Web Application 275

Adding this transform to your life event can turn Vehicle Evidence recorded on any Integrated
Case into a Data Store format that can be displayed in an IEG script with all the information pre-
populated from the Evidence Record.

Defining Filters for Evidence

When the Holding Case is called to return an XML representation of its evidence, by default it
returns all evidence for the citizen concerned. This can be a very large query that returns more
information than is required. For each Data Hub Context, use a Filter Evidence Link to define,
which Evidence Types you need. Define a Filter Evidence Link by adding entries to a Filter
Evidence Link dmx file. The following example shows a Filter Evidence Link dmx file that
defines the information that to be returned for the "CitizenBoughtCar" life event:

<?xml version="1.0" encoding="UTF-8"?>
<table name="FILTEREVIDENCELINK">
 <column name="FILTEREVLINKID" type="id" />
 <column name="FILTERNAME" type="text" />
 <column name="EVIDENCETYPECODE" type="text" />
 <row>
 <attribute name="FILTEREVLINKID">
 <value>175</value>
 </attribute>
 <attribute name="FILTERNAME">
 <value>CitizenBoughtCar</value>
 </attribute>
 <attribute name="EVIDENCETYPECODE">
 <value>ET10081</value>
 </attribute>
 </row>
</table>

Using Pre-Packaged View Processors

You now know how Transforms can be used to turn Evidence data into Data store XML for use
in a life event Script. However, other important pieces of information are not represented as
Evidence. In general, you must develop custom Java code to populate any information that is
not represented as evidence. With Java, you can develop View Processors that can be used to
extract non-evidence data and translate this data into data store XML. By associating these View
Processors with the right Data Hub Context, they can add their information into the data store
in addition to the data put there by the transforms. The Life Events Broker ships with some pre-
packaged View Processors that are capable of inserting certain frequently used non-evidence
Data.

• Household View Processor
• The Person Address View Processor

The Household View Processor finds all Persons that are related to the currently logged-in user
and pulls them into the data store with information on how they are related to the logged-in
Citizen. This information is based on the Cúram Platform ConcernRoleRelationship
entity.

The Person Address View Processor populates the most important details of the logged-in
Citizen, such as name and Social Security Number. It also pulls in the Residential and Mailing
addresses of the logged-in Citizen. Both the Household View processor and the Person Address
View Processor can be used together in the same life event Context but the Person Address View

© Merative US L.P. 2012, 2025

Cúram 8.2.0 276

Processor must be run after the Household View Processor. The following example shows how to
configure these two View Processors to execute for the "CitizenBoughtCar" life event.

<?xml version="1.0" encoding="UTF-8"?>
 <table name="VIEWPROCESSOR">
 <column name="VIEWPROCESSORID" type="id"/>
 <column name="LOGICALNAME" type="text" />
 <column name="CONTEXT" type="text" />
 <column name="VIEWPROCESSORFACTORY" type="text" />
 <column name="RECORDSTATUS" type="text"/>
 <column name="VERSIONNO" type="number"/>
 <row>
 <attribute name="VIEWPROCESSORID">
 <value>4</value>
 </attribute>
 <attribute name="LOGICALNAME">
 <value>CitizenLostJob0</value>
 </attribute>
 <attribute name="CONTEXT">
 <value>CitizenBoughtCar</value>
 </attribute>
 <attribute name="VIEWPROCESSORFACTORY">
 <value>
 curam.citizen.datahub.internal.impl.
 +HouseholdCustomViewProcessorFactory
 </value>
 </attribute>
 <attribute name="RECORDSTATUS">
 <value>RST1</value>
 </attribute>
 <attribute name="VERSIONNO">
 <value>1</value>
 </attribute>
 </row>
 <row>
 <attribute name="VIEWPROCESSORID">
 <value>5</value>
 </attribute>
 <attribute name="LOGICALNAME">
 <value>CitizenLostJob1</value>
 </attribute>
 <attribute name="CONTEXT">
 <value>CitizenBoughtCar</value>
 </attribute>
 <attribute name="VIEWPROCESSORFACTORY">
 <value>
 curam.citizen.datahub.internal.impl.
 +CustomPersonAddressViewProcessorFactory
 </value>
 </attribute>
 <attribute name="RECORDSTATUS">
 <value>RST1</value>
 </attribute>
 <attribute name="VERSIONNO">
 <value>1</value>
 </attribute>
 </row>
 </table>

The CONTEXT field links the ViewProcessor to the "CitizenBoughtCar" life event Context.
This ensures that this ViewProcessor is called whenever the "CitizenBoughtCar" Data Hub
Context is called. The use of a logicalName uniquely distinguishes each View Processor.
View Processors for a Data Hub Context are executed in lexical order. A View Processor name
with a logicalName of "AAA" for the Data Hub Context "CitizenBoughtCar" is executed
before one with a logicalName of "AAB".

© Merative US L.P. 2012, 2025

8 Customizing the Cúram Universal Access Responsive Web Application 277

Driving updates from life events
A description of the artifacts that you must develop to process data that is submitted from a life
event script.

How the Data Hub works for updating

The citizen Data Hub also has Data Hub contexts for updating. Life events typically use the
same Data Hub context name for the read and updates that are associated with the same life
event. The example CitizenBoughtCar context describes a set of artifacts for prepopulating
a CitizenBoughtCar life event script and also a set of artifacts for handling updates to the
Citizen's data when the CitizenBoughtCar life event script is complete.

An update operation for a Citizen Data Hub context can update multiple individual entities
in a single transaction. The following artifacts are provided to a Data Hub following a script
submission:

• A Data Store root entity, which is the root of the data store that was updated by the life events
IEG script.

• A Difference command, which is an entity that describes how this data store is different from
the one that was passed to the IEG script before it was started. In other words, it describes how
the user changed the data by running the life event script. These differences are broken down
into three basic types:

• Creations - The user creates a data store entity as a result of running the IEG script.
• Updates - The user updates an entity as a result of running the IEG script.
• Removals - The user removes an entity as a result of running the IEG script.

Creations and Updates are the most common. Allowing users to remove items in life events
scripts is generally considered bad practice. Standard life events tend to be characterized by a
number of Creations whereas Round Tripping life events tend to be a mixture of Creations and
Updates. The Difference Command is generated automatically by the life event broker after a
life event is submitted.

• A Data Hub Context Name.

To turn a Data Hub Update Operation into automatic updates to evidence entities on the
Holding Case, specify a Data Hub Update Transform. For requirements to update non-evidence
entities, you must develop an Update Processor. These Update Processors involve Java™ code
development.

Writing transforms for updating

Update Transforms, like Read Transforms are specified by using a simple XSLT syntax. To write
Update Transforms, the author must understand both the input XML, and the output Evidence
XML format. The following examples are built around a CitizenHavingABaby life event. This
life event allows the user to report that they are due to have a baby. They can enter a number of
unborn children to indicate, for example, that they are expecting twins. The user can also enter
a due date and they can nominate a father for the unborn child. The father can be an existing
case participant or someone else entirely. In the latter case, they must enter information like their
name, address, or Social Security Number. This life event is not a round-tripping life event, as
it creates evidence rather than updates evidence. The input to an Update Transform is an XML-

© Merative US L.P. 2012, 2025

Cúram 8.2.0 278

based description of the Data Store Difference Command. An example difference command XML
for the CitizenHavingABaby is shown:

<update>
 <diff diffType="NONE" entityType="Application">
 <diff diffType="NONE" entityType="Person" identifier="102">
 <diff diffType="CREATE" entityType="Pregnancy">
 <attribute name="numChildren">1</attribute>
 <attribute name="dueDate">20110528</attribute>
 <attribute name="curamDataStoreUniqueID">385</attribute>
 </diff>
 </diff>
 <diff diffType="UPDATE" entityType="Person" identifier="101">
 <attribute name="isFatherToUnbornChild">true</attribute>
 <attribute name="curamDataStoreUniqueID">399</attribute>
 </diff>
 </diff>
</update>

The difference command XML corresponds node-for-node with the data store XML. Each
diff node describes how the corresponding data store entity was modified by running the IEG
script. The curamDataStoreUniqueID attribute identifies the changed data store entity.
The diffType attribute identifies the nature of the change, for example CREATE, UPDATE,
NONE, or REMOVE. Attributes that changed or were added to each data store entity are listed.
In the previous example, the user registered a pregnancy for Linda Smith (concern role ID 102)
with one unborn child, due on 28 May 2011. The father is listed as being James Smith (concern
role ID 101). For more information about the difference command XML, see the schema in the
Difference Command XML schema. You can use some other attributes and elements when you
update the XML, as shown:

<?xml version="1.0" encoding="UTF-8"?>
 <client-data>
 <client localID="102">
 <evidence>
 <entity type="ET10074" action="CREATE" localID="">
 <attribute name="numChildren">1</attribute>
 <attribute name="dueDate">20110528</attribute>
 <entity-data entity-data-type="role">
 <attribute type="LG"/>
 <attribute roleParticipantID="102"/>
 <attribute
 entityRoleIDFieldName="caseParticipantRoleID"/>
 </entity-data>
 <entity-data entity-data-type="role">
 <attribute type="FAT"/>
 <attribute roleParticipantID="101"/>
 <attribute participantType="RL7"/>
 <attribute
 entityRoleIDFieldName="fahCaseParticipantRoleID"/>
 </entity-data>
 <entity type="ET10125" action="CREATE">
 <attribute name="comments"> Unborn child 1</attribute>
 <entity-data entity-data-type="role">
 <attribute type="UNB"/>
 <attribute roleParticipantID="102"/>
 <attribute
 entityRoleIDFieldName="caseParticipantRoleID"/>
 </entity-data>
 </entity>
 </entity>
 </evidence>
 </client>
 </client-data>

Note the use of the action attribute, which describes the action to be taken on the underlying
evidence. For example, to create the evidence or to update existing evidence.

© Merative US L.P. 2012, 2025

8 Customizing the Cúram Universal Access Responsive Web Application 279

The next section discusses the meaning of the <entity-data> element. The following
example shows the XSLT used to transform the previous difference XML into the previous
evidence XML:

<?xml version="1.0" encoding="UTF-8"?>
<!-- This script plucks out and copies all resource-related -->
<!-- entities from output built by the XMLApplicationBuilder -->
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:x="http://www.curamsoftware.com/
 schemas/DifferenceCommand"
 xmlns:fn="http://www.w3.org/2006/xpath-functions"
 version="2.0">
 <xsl:output indent="yes"/>
 <xsl:strip-space elements="*"/>
 <xsl:template match="update">
 <xsl:for-each select="./diff[@entityType='Application']">
 <xsl:element name="client-data">
 <xsl:apply-templates/>
 </xsl:element>
 </xsl:for-each>
 </xsl:template>
 <xsl:template match="diff[@entityType='Person']">
 <xsl:element name="client">
 <xsl:attribute name="localID">
 <xsl:value-of select="./@identifier"/>
 </xsl:attribute>
 <xsl:element name="evidence">
 <xsl:apply-templates/>
 </xsl:element>
 </xsl:element>
 </xsl:template>
 <xsl:template match="diff[@entityType='Pregnancy']">
 <xsl:element name="entity">
 <xsl:attribute name="type">ET10074</xsl:attribute>
 <xsl:attribute name="action">
 <xsl:value-of select="./@diffType"/>
 </xsl:attribute>
 <xsl:attribute name="localID">
 <xsl:value-of select="./@identifier"/>
 </xsl:attribute>
 <xsl:for-each select="./attribute">
 <xsl:copy-of select="."/>
 </xsl:for-each>
 <xsl:element name="entity-data">
 <xsl:attribute name="entity-data-type">
 role
 </xsl:attribute>
 <xsl:element name="attribute">
 <xsl:attribute name="type">LG</xsl:attribute>
 </xsl:element>
 <xsl:element name="attribute">
 <xsl:attribute name="roleParticipantID">
 <xsl:value-of select="../@identifier"/>
 </xsl:attribute>
 </xsl:element>
 <xsl:element name="attribute">
 <xsl:attribute name="entityRoleIDFieldName">
 caseParticipantRoleID
 </xsl:attribute>
 </xsl:element>
 </xsl:element>
 <xsl:element name="entity-data">
 <xsl:attribute name="entity-data-type">
 role
 </xsl:attribute>
 <xsl:element name="attribute">
 <xsl:attribute name="type">FAT</xsl:attribute>
 </xsl:element>
 <xsl:for-each select=
 "../../diff[@entityType='Person']/attribute[
 @name='isFatherToUnbornChild'
 and ./text()='true']">
 <!-- Copy the participant id if a family -->
 <!-- member is the father -->
 <xsl:element name="attribute">
 <xsl:attribute name="roleParticipantID">
 <xsl:value-of select="
 ../@identifier"/>
 </xsl:attribute>
 </xsl:element>
 </xsl:for-each>
 <!-- Copy details of absent parent -->
 <xsl:call-template name="absentFather"/>
 <xsl:element name="attribute">
 <xsl:attribute name="entityRoleIDFieldName">
 fahCaseParticipantRoleID
 </xsl:attribute>
 </xsl:element>
 </xsl:element>
 <xsl:variable name="numBabies">
 <xsl:value-of select="attribute[
 @name='numChildren'
]/text()"/>
 </xsl:variable>
 <xsl:call-template name="unbornChildren">
 <xsl:with-param name="count" select="$numBabies"/>
 </xsl:call-template>
 </xsl:element>
 </xsl:template>

 <xsl:template name="unbornChildren">
 <xsl:param name="count" select="1"/>
 <xsl:if test="$count > 0">
 <xsl:element name="entity">
 <xsl:attribute name="type">ET10125</xsl:attribute>
 <xsl:attribute name="action">
 <xsl:value-of select="./@diffType"/>
 </xsl:attribute>
 <xsl:element name="attribute">
 <xsl:attribute name="name">
 comments
 </xsl:attribute>
 Unborn child <xsl:value-of select="$count"/>
 </xsl:element>
 <xsl:element name="entity-data">
 <xsl:attribute name="entity-data-type">
 role
 </xsl:attribute>
 <xsl:element name="attribute">
 <xsl:attribute name="type">
 UNB
 </xsl:attribute>
 </xsl:element>
 <xsl:element name="attribute">
 <xsl:attribute name=
 "roleParticipantID">
 <xsl:value-of select="
 ../@identifier"/>
 </xsl:attribute>
 </xsl:element>
 <xsl:element name="attribute">
 <xsl:attribute name=
 "entityRoleIDFieldName">
 caseParticipantRoleID
 </xsl:attribute>
 </xsl:element>
 </xsl:element>
 </xsl:element>
 <xsl:call-template name="unbornChildren">
 <xsl:with-param name="count" select="$count - 1"/>
 </xsl:call-template>
 </xsl:if>
 </xsl:template>

 <xsl:template name="absentFather">
 <xsl:element name="attribute">
 <xsl:attribute name="participantType">
 <xsl:text>RL7</xsl:text>
 </xsl:attribute>
 </xsl:element>

 <xsl:if test="attribute[@name='fahFirstName']">
 <xsl:element name="attribute">
 <xsl:attribute name="firstName">
 <xsl:value-of select="attribute[
 @name='fahFirstName'
]/text()"/>
 </xsl:attribute>
 </xsl:element>
 </xsl:if>

 <!-- etc. map other personal details such as -->
 <!-- SSN, date of birth -->

 <xsl:if test="diff[@entityType='ResidentialAddress']">
 <xsl:if test="diff[
 @entityType='ResidentialAddress']/attribute[
 @name='street1']">
 <xsl:element name="attribute">
 <xsl:attribute name="street1">
 <xsl:value-of select=
 "diff[
 @entityType='ResidentialAddress']
 /attribute[
 @name='street1']/text()"/>
 </xsl:attribute>
 </xsl:element>
 </xsl:if>
 <!-- etc. map other parts of residential address -->
 </xsl:if>
 </xsl:template>

 <xsl:template match="*">
 <!-- do nothing -->
 </xsl:template>
</xsl:stylesheet>

© Merative US L.P. 2012, 2025

Cúram 8.2.0 280

Writing transforms that create new case participants

Evidence Entities frequently refer to third parties. For example, Pregnancy evidence refers to
the father through a Case Participant Role. The associated father can be a Person or a Prospect
Person. Other evidence types, such as Student, can refer to a School that is entered as a
Representative Case Participant Role.

The Evidence XML schema provides a generic element that is called <entity-data>, which
can be used to provide special handling instructions to the Citizen Data Hub. The type of handling
depends on the <entity-data-type> specified. Cúram provides a special processor for the
entity-data-type role. This role entity data processor can be used to create new Case Participant
Roles or to reference existing Case Participant Roles for existing Case Participants. In the
Evidence XML output listed previously, the attribute that is denoted by type is used to denote
the Case Participant Role Type. For example, FAT for Father or UNB for Unborn Child. This
value must be a code-table value from the CaseParticipantRoleType code table. The
roleParticipantID denotes the ConcernRoleID of an existing participant on the system.
If the roleParticipantID is supplied, the system does not attempt to create a new Case
Participant, but reuses a case participant with this ID. The entityRoleIDFieldName is the
field name in the corresponding Evidence Entity. For example, for the Pregnancy evidence
entity, it is fahCaseParticipantRoleID. Where a new participant needs to be created, the
following fields are supported by the Role Entity Data Processor.

• participantType - A code table entry from the ConcernRoleType code table. For
example, use RL7 to create a new Prospect Person.

• firstName

• middleInitial

• lastName

• SSN

• dateOfBirth

• lastName

• lastName

• street1

• city

• state

• zipCode

Updating Non-Evidence entities

You can configure life events to automatically map updates through to Evidence Entities on
multiple integrated cases. Sometimes life events must update non-Evidence entities such as a
Residential Address, Employment, or other customer-specific non-evidence entities. Typically,
these entities are shared across multiple cases. It is also typical that these entities do not follow
the same controlled Life Cycle as evidence entities. Evidence has many advantages:

• It is temporal.
• It is case-specific, with sharing of updates between cases controlled through the Evidence

Broker.

© Merative US L.P. 2012, 2025

8 Customizing the Cúram Universal Access Responsive Web Application 281

• Caseworkers can veto acceptance of updates that come from external sources like Merative ™
Cúram Universal Access.

• It has an in-edit and approval cycle.
• It has support for verifications.

Non-evidence entities have none of these advantages and safeguards. A decision to update non-
evidence entities based on life events must be made with due care, especially if the changes can
be applied simultaneously across multiple cases. You can update non-evidence entities but this
approach always involves custom code. These approaches must include safeguards to ensure that
at least one agency worker manually approves changes before they are applied to the system.

Configuring the evidence broker for use with the holding case
The Holding Case is only a holding area for Evidence before it is sent somewhere else. Typically,
after data is updated on the Holding Case, the goal is to broker these updates to Integrated Cases
so that caseworkers can evaluate the changes and apply them to the relevant cases.

For example, after the data is accepted on Integrated Cases, a user can see the positive impact
of submitting a life event because the updated data has an impact on the user's benefits. The
bridge between the Holding Case and the Integrated Cases is crossed only if the appropriate
configuration is defined. For more information, see the Evidence Broker guide.

© Merative US L.P. 2012, 2025

Cúram 8.2.0 282

Configuring sharing from the Holding Case

An evidence configuration for sharing of Pregnancy evidence from the Holding Case to an
Integrated Case is shown in the following example:

<?xml version="1.0" encoding="UTF-8"?>
 <table name="EVIDENCEBROKERCONFIG">
 <column name="EVIDENCEBROKERCONFIGID" type="id"/>
 <column name="SOURCETYPE" type="text" />
 <column name="SOURCEID" type="id" />
 <column name="TARGETTYPE" type="text" />
 <column name="TARGETID" type="id"/>
 <column name="SOURCEEVIDENCETYPE" type="text"/>
 <column name="TARGETEVIDENCETYPE" type="text"/>
 <column name="AUTOACCEPTIND" type="bool"/>
 <column name="WEBSERVICESIND" type="bool"/>
 <column name="SHAREDTYPE" type="text"/>
 <column name="RECORDSTATUS" type="text"/>
 <column name="VERSIONNO" type="number"/>
 <row>
 <attribute name="EVIDENCEBROKERCONFIGID">
 <value>10003</value>
 </attribute>
 <attribute name="SOURCETYPE">
 <value>CT10301</value>
 </attribute>
 <attribute name="SOURCEID">
 <value>10330</value>
 </attribute>
 <attribute name="TARGETTYPE">
 <value>CT5</value>
 </attribute>
 <attribute name="TARGETID">
 <value>4</value>
 </attribute>
 <attribute name="SOURCEEVIDENCETYPE">
 <value>ET10000</value>
 </attribute>
 <attribute name="TARGETEVIDENCETYPE">
 <value>ET10074</value>
 </attribute>
 <attribute name="AUTOACCEPTIND">
 <value>0</value>
 </attribute>
 <attribute name="WEBSERVICESIND">
 <value>0</value>
 </attribute>
 <attribute name="SHAREDTYPE">
 <value>SET2004</value>
 </attribute>
 <attribute name="RECORDSTATUS">
 <value>RST1</value>
 </attribute>
 <attribute name="VERSIONNO">
 <value>1</value>
 </attribute>
 </row>
 </table>

When evidence is shared from the Holding Case to another Integrated Case, the source type needs
to be CT10301 and the source ID needs to be set to 10330. The source evidence type needs to
be set to ET10000, which is the code for all Evidence that is stored in Holding Cases. Evidence
of this type is known as Holding Evidence. The target evidence type in this case is ET10074.
In Cúram Common Evidence, this particular designation identifies Pregnancy Evidence. The
evidence sharing type needs to be set to SET2004, which is the code for Non-Identical Sharing.

Note: The AUTOACCEPTIND is set to 0. Always set this value to 0 when it is shared from a
Holding Case to an Integrated Case. This setting means that a caseworker always sees any
changes that come from the citizen's Holding Case.

© Merative US L.P. 2012, 2025

8 Customizing the Cúram Universal Access Responsive Web Application 283

If the caseworker agrees with the changes, the Incoming Evidence link of the Integrated Case
Evidence page can be used to synchronize the data from the Holding Case in the normal way.

To establish an Evidence Broker Configuration for a custom component, a DMX file must
be created that contains the configuration that follows the previous example, for example,
%SERVER_DIR%\components\Custom\data\initial\EBROKER_CONFIG.dmx

In sharing Holding Evidence to a Standard Evidence Entity like a Pregnancy, the Evidence
Broker copies the Holding Evidence that contains the Pregnancy data into a new Pregnancy
Evidence Record in the target Integrated Case. Holding Evidence is not standard Evidence.
Holding Evidence is stored in an XML representation, so while the Holding Evidence is copied
to the Target Evidence type, the Evidence Broker converts the XML data into standard Evidence
data. To assist with this conversion process, it is necessary to supply metadata. See the following
example of this metadata:

<?xml version="1.0" encoding="UTF-8"?>
<data-hub-config>
 <evidence-config package="curam.holdingcase.evidence">
 <entity name="HoldingEvidence" ev-type-code="ET10000">
 <attribute name="entityStruct">
 curam.citizen.datahub.holdingcase.holdingevidence.struct.
 +HoldingEvidenceDtls
 </attribute>
 </entity>
 <entity name="Pregnancy" ev-type-code="ET10074">
 <attribute name="entityStruct">
 curam.evidence.entity.struct.PregnancyDtls
 </attribute>
 <related-entity>
 <case-participant-role>
 <attribute name="linkAttribute">
 fahCaseParticipantRoleID
 </attribute>
 </case-participant-role>
 <case-participant-role>
 <attribute name="linkAttribute">
 caseParticipantRoleID
 </attribute>
 </case-participant-role>
 </related-entity>
 </entity>
 </evidence-config>
</data-hub-config>

The metadata describes each of the entities that can be copied to and from the Holding Case
and an Integrated Case. The metadata describes the dtls structs that are used to build the target
evidence. It also describes which of the attributes in Case Evidence refer to case participant roles.
This information ensures that when the Holding Evidence is copied, it does not blindly copy
case participant role identifiers from Holding Evidence. Instead, it looks for the equivalent case
participant role ID on the target case and, if it does not exist, creates one.

This metadata is stored in an AppResource resource store key.
The resource store key is identified by the Environment Property
curam.workspaceservices.datahub.metadata. The initially configured value for
this variable defaults to the value curam.workspaceservices.datahub.metadata.
This variable points to default Holding Evidence Data Hub metadata. You can use the following
steps to replace the default Holding Evidence Data Hub metadata with a custom version to
support all Evidence Types that need to be brokered from the Holding Case to all Integrated
Cases:

© Merative US L.P. 2012, 2025

Cúram 8.2.0 284

• Copy the contents of %SERVER_DIR%\components\WorkspaceServices\data
\initial\clob\DataHubMetaData.xml to %SERVER_DIR%\components
\Custom\data\initial\clob\CustomDataHubMetaData.xml

• Edit the contents of CustomDataHubMetaData.xml to describe all the Evidence Entities
that need to be updated by the Data Hub.

• Create a file %SERVER_DIR%\components\Custom\data\initial
\APP_RESOURCES.dmx. Add an entry to this file as shown:

<?xml version="1.0" encoding="UTF-8"?>
<table name="APPRESOURCE">
<column name="resourceid" type="id" />
<column name="localeIdentifier" type="text"/>
<column name="name" type="text"/>
<column name="contentType" type="text"/>
<column name="contentDisposition" type="text"/>
<column name="content" type="blob"/>
<column name="internal" type="bool"/>
<column name="lastWritten" type="timestamp"/>
<column name="versionNo" type="number"/>
<row>
 <attribute name="resourceID">
 <value>10700</value>
 </attribute>
 <attribute name="localeIdentifier"> <value/>
 </attribute>
 <attribute name="name">
 <value>custom.datahub.metadata</value>
 </attribute>
 <attribute name="contentType">
 <value>text/plain</value>
 </attribute>
 <attribute name="contentDisposition"> <value>inline</value>
 </attribute> <
 attribute name="content"> <value> ./Custom/data/initial/clob/
CustomDataHubMetaData.xml </value>
 </attribute> <attribute name="internal"> <value>0</value> </attribute>
 <attribute name="lastWritten"> <value>SYSTIME</value>
 </attribute> <attribute name="versionNo"> <value>1</value>
 </attribute>
</row>
</table>

• Create or append to the file %SERVER_DIR%\components\Custom\properties
\Environment.xml adding an entry along the following lines:

<environment>
 <type name="dynamic_properties">
 <section code="WSSVCS"
 name="Workspace Services - Configuration">
 <variable name="curam.workspaceservices.datahub.metadata"
 value="custom.datahub.metadata" onlyin="all"
 type="STRING">
 <comment>
 Identifies an AppResource used to configure DataHub
 meta-data.
 </comment>
 </variable>
 </section>
 </type>
 </environment>

Round-tripping and configuring sharing to the Holding Case

Analysts also might want to consider whether evidence needs to be transferred in the opposite
direction. That is, from the Integrated Cases to the Holding Case. When sharing is configured
from the Integrated Case to the Holding Case, changes made by the caseworker to selected
evidence can be propagated back to the Holding Case. This process is essential for life events that

© Merative US L.P. 2012, 2025

8 Customizing the Cúram Universal Access Responsive Web Application 285

need to prepopulate data from Evidence Entities in existing Integrated Cases. This example shows
how to configure Pregnancy Evidence for Sharing to the Holding Case.

<?xml version="1.0" encoding="UTF-8"?>
<table name="EVIDENCEBROKERCONFIG">
 <column name="EVIDENCEBROKERCONFIGID" type="id"/>
 <column name="SOURCETYPE" type="text" />
 <column name="SOURCEID" type="id" />
 <column name="TARGETTYPE" type="text" />
 <column name="TARGETID" type="id"/>
 <column name="SOURCEEVIDENCETYPE" type="text"/>
 <column name="TARGETEVIDENCETYPE" type="text"/>
 <column name="AUTOACCEPTIND" type="bool"/>
 <column name="WEBSERVICESIND" type="bool"/>
 <column name="SHAREDTYPE" type="text"/>
 <column name="RECORDSTATUS" type="text"/>
 <column name="VERSIONNO" type="number"/>
 <row>
 <attribute name="EVIDENCEBROKERCONFIGID">
 <value>2</value>
 </attribute>
 <attribute name="SOURCETYPE">
 <value>CT5</value>
 </attribute>
 <attribute name="SOURCEID">
 <value>4</value>
 </attribute>
 <attribute name="TARGETTYPE">
 <value>CT10301</value>
 </attribute>
 <attribute name="TARGETID">
 <value>10330</value>
 </attribute>
 <attribute name="SOURCEEVIDENCETYPE">
 <value>ET10074</value>
 </attribute>
 <attribute name="TARGETEVIDENCETYPE">
 <value>ET10000</value>
 </attribute>
 <attribute name="AUTOACCEPTIND">
 <value>1</value>
 </attribute>
 <attribute name="WEBSERVICESIND">
 <value>0</value>
 </attribute>
 <attribute name="SHAREDTYPE">
 <value>SET2004</value>
 </attribute>
 <attribute name="RECORDSTATUS">
 <value>RST1</value>
 </attribute>
 <attribute name="VERSIONNO">
 <value>1</value>
 </attribute>
 </row>
</table>

Note: Unlike Sharing from Holding Case to Integrated Case, the AUTOACCEPTIND is set to 1.
This designation is because the target case is a Holding Case and Holding Cases are designed
to operate unattended. It is not expected that caseworkers need to review items that are being
shared onto the Holding Case as they come from an authoritative source, for instance, the
Integrated Case.

Issues for consideration

With suitable configuration, you can share data from the Holding Case to multiple Integrated
Cases. For example, Integrated Cases A and B are configured to share information with a citizen's
Holding Case. A and B both separately recorded an Income Evidence record for the citizen.

© Merative US L.P. 2012, 2025

Cúram 8.2.0 286

In the citizen's Holding Case, this evidence record shows up as two separate Income Records.
For cases A and B, the income records are two separate records that hold a view of the citizen's
income. However, to the citizen, this breakdown might not make much sense. The citizen has
only one Income and is using one portal to communicate with the agency or agencies concerned.
Why does the citizen see two records for the same Income? In cases where there is sharing to
multiple Integrated Cases from a single Holding Case, consider creating another set of sharing
relationships to be established from A to B and B to A. This issue requires proper consideration
early on in the project lifecycle.

Putting it all together
You saw how to create the parts of a life event, now join all these pieces together to make a
complete life event.

New life events can be configured in the administration application. You can create new life
event types and life event channels, add rich text descriptions, and associate life events with IEG
scripts and recommendation rule sets. When all of the needed entities are created, the data can be
extracted into a set of DMX files that can be used as a basis for ongoing development. Use the
following set of commands to extract the relevant DMX files:

build extractdata -Dtablename=LifeEventType
build extractdata -Dtablename=LifeEventContext
build extractdata -Dtablename=LifeEventCategory
build extractdata -Dtablename=LifeEventCategoryLink
build extractdata -Dtablename=LocalizableText
build extractdata -Dtablename=TextTranslation

The LocalizableText and TextTranslation tables contain all of the life event descriptions,
but they also contain text translations that don't relate to life events. Developers must audit these
DMX files and remove any entries that don't correspond to the relevant life event descriptions
before they copy the DMX files to %SERVER_DIR%\components\Custom\data
\initial\.

Event APIs for life events

The life event broker is instrumented with guice events. Developers can write listeners that can be
bound to these events. The available events are:

• PreCreateLifeEvent - Invoked before launching a life event
• PostCreateLifeEvent - Invoked after the life event has been initialized. That is after the

Data Hub Transform and View Processors have been executed.
• PreSubmitLifeEvent - Invoked after the life event has been submitted but before the

Update Processors have been run.
• PostSubmitLifeEvent - Invoked after the life event has been submitted.

Note that both the Pre and Post SubmitLifeEvent events are executed from within a Deferred
Process so the current user is expected to be SYSTEM. Life events should never attempt to
change the contents of the life event. The code extract below shows how a Listener class,
MyPreCreateListener can be bound to one of these life events:

Multibinder<LifeEventEvents.PreCreateLifeEvent>
 preCreateBinder =
 Multibinder.newSetBinder(binder(),

© Merative US L.P. 2012, 2025

8 Customizing the Cúram Universal Access Responsive Web Application 287

 new TypeLiteral<LifeEventEvents.PreCreateLifeEvent>() { /
**/
 });

 preCreateBinder.addBinding().to(MyPreCreateListener.class);

8.4 Customizing verifications

If your organization includes the online submission of documents in their business process,
citizens can upload and submit documents from the Merative ™ Cúram Universal Access
Responsive Web Application to prove information that they provided in their benefit applications.
You can customize a number of aspects of the verifications functionality in the application.

Your organization can integrate a verifications system of your choice. If you use the Cúram
Verification Engine application module, the verifications functionality is available in the Cúram
Universal Access Responsive Web Application after you set up your Cúram verifications.
Related concepts
Verify on page 36
If your organization includes the online submission of documents in their business process,
citizens are notified in the Cúram Universal Access Responsive Web Application when some of
their information needs to be verified with supporting documentation. They can then provide that
supporting documentation online. Both citizens and caseworkers receive notifications, alerting
them to any steps to take. Case workers control the verification of evidence, ensuring adherence
to agency standards.

Enabling or disabling verifications

The verifications feature is disabled by default. Set the
REACT_APP_FEATURE_VERIFICATIONS_ENABLED environment variable to
enable or disable the Your documents page and options in your application. Set the
curam.rest.docservice.fileupload.enabled property to enable the files API so you can upload files
to your system. Verifications are available only to linked users.

About this task

For more information about linked users, see 6.5 User account types on page 210.

The following verifications functions are enabled or disabled:

• The verifications-related URLs, the Your documents page at /verifications and the
verification details page at /verifications/details.

• The verification Alert on the Dashboard page.
• Verifications messages in the To-dos pane on the dashboard.

For more information about environment variables, see the 5.18 React environment variable
reference on page 182.

© Merative US L.P. 2012, 2025

Cúram 8.2.0 288

Procedure

1.
Note: Before you enable the files API, ensure that you implement the appropriate file
security and validations for document uploads.

Set the curam.rest.docservice.fileupload.enabled property to enable the files API so you can
upload files to your system. For more information, see the Cúram™ REST API Guide.

2. Edit the .env file in the root of your application and set
REACT_APP_FEATURE_VERIFICATIONS_ENABLED to true. If you don't define the
environment variable, the verifications feature defaults to disabled.

Enabling the submitted document review feature for citizen verifications
If you use the Cúram Verification Engine application module and you want to enable caseworkers
to see submitted documents in Cúram, you must enable the submitted document review feature
for citizen verifications.

About this task

For more information about the submitted document review feature, see the Verification Guide.

Procedure

To enable caseworker to see the submitted documents, set the
curam.verification.submittedDocuments.display.enabled property to display documents that are
submitted to verify evidence with the associated verification.

Customizing file formats and size limits for file uploads

You can specify which file formats to allow users to upload and a size limit for uploaded files by
setting environment variables. By default, the allowed file formats are JPG, JPEG, PNG, TIFF,
and PDF and the file size limit is 5 MB.

Before you begin

You must ensure that you have implemented the appropriate file security and validations for
document uploads and enabled the file upload API.

If you do not set the REACT_APP_DOC_UPLOAD_FILE_FORMATS environment variable, the
default file formats are allowed. If you specify an invalid file extension string, all file types are
denied.

If you do not set the REACT_APP_DOC_UPLOAD_SIZE_LIMIT, the default value applies.

Procedure

1. To change the allowed file formats for file uploads, set the
REACT_APP_DOC_UPLOAD_FILE_FORMATS environment variable in your .env file.
Specify the file name extension, including the dot separator, for each allowed file type in a
comma-separated list.

© Merative US L.P. 2012, 2025

8 Customizing the Cúram Universal Access Responsive Web Application 289

For example:

REACT_APP_DOC_UPLOAD_FILE_FORMATS=".png,.jpg,.pdf"

2. To change the allowed file sizes for file uploads, set the
REACT_APP_DOC_UPLOAD_SIZE_LIMIT environment variable in your .env file. Enter the
maximum size in megabytes (MB).

For example:

REACT_APP_DOC_UPLOAD_SIZE_LIMIT=6

Customizing a file upload lead time for verifications

If needed, your organization can configure a lead time to the due date so that document
are submitted earlier to give caseworkers enough time to verify the evidence. Use the
REACT_APP_DOC_UPLOAD_LEAD_DAYS environment variable to set how many days you want to
subtract from the actual date. This earlier date is then displayed to citizens in the application.

About this task

By default, the due date is the date when the information needs to be verified by the caseworker.
The default value of REACT_APP_DOC_UPLOAD_LEAD_DAYS is 0 days. The value you set is
converted to its absolute value and subtracted from the verification due date. For example, -1 and
1 have the same affect.

Procedure

To set a lead time, set the REACT_APP_DOC_UPLOAD_LEAD_DAYS environment variable in your
.env file.

For example:

REACT_APP_DOC_UPLOAD_LEAD_DAYS=-7

If the actual due date is 31 August, then 24 August is displayed in the application.

Customizing how verification information is presented

The information for the majority of verifications that are presented to the citizen is processed
and grouped by evidence records to present meaningful and consumable information in the
UI. However, you might have a number of evidence types that contain disparate information
that would be more meaningfully displayed in separate verifications. You can customize how
information from evidence records is grouped and displayed in the application.

To understand how information is grouped by default, take an evidence record called Medical
Expenses, which is an instance of a Medical expenses evidence type. An evidence record can
consist of one or more verifiable data items. For example, the amount entered for a medical
expense and it's frequency. If a citizen had multiple expenses, it might look like this:

© Merative US L.P. 2012, 2025

Cúram 8.2.0 290

• Medical Expense:

• For Diabetes

• Amount: $100
• Frequency: Weekly

• For Asthma

• Amount: $125
• Frequency: Monthly

To show related expenses that need documentation, verifiable data items are grouped into
bigger verifications. By default, information is grouped by the following five criteria in order of
importance:

• Evidence type
• Evidence record
• Case
• Person
• Due date

Anything different in the list results in a separate verification.

The text that is displayed on the verification is taken from the evidence descriptor of the evidence
record for which the verification was raised, for example Paid $100 for Diabetes.

Customizing verifiable data item grouping
You can customize how verifiable data items on an evidence record are grouped for display in
verifications. For example, to separate out disparate items that are on the same evidence record
but that are not suitable to show on the same verification.

About this task

To customize the grouping, you must override the method with your own custom implementation
and import your custom implementation. You can use the following example as a reference.

Procedure

1. Create a custom module that implements your custom grouping.
For example:

src/features/Verification/CustomVerificationsConfig.js

2. Create a config function that adds a custom mapping verification.

import { CustomVerificationsSelectors } from '@spm/universal-access';

function config() {

 // Custom function to group by evidence type and due date
 const customGroupFunction = verification => {
 return `${verification.relatedEvidence.value}-${dueDate}`;
 };

 CustomVerificationsSelectors.addCustomGroupId(customGroupFunction);
}
export default { config };

© Merative US L.P. 2012, 2025

8 Customizing the Cúram Universal Access Responsive Web Application 291

3. Update your App.js file or equivalent as follows:

import CustomVerificationsConfig from './features/Verification/
CustomVerificationsConfig';
CustomVerificationsConfig.config();

Customizing verification names

You can customize the name of a verification if the name from the evidence type is not suitable.

Procedure

1. Create a custom module that implements your custom naming.
For example:

src/features/Verification/CustomVerificationsConfig.js

2. Create a config function that adds a custom mapping verification.

import { CustomVerificationsSelectors } from '@spm/universal-access';

function config() {

 // Custom function to change the description to "Health Custom"
 const customNameCallback = (group) => {
 const { relatedEvidenceType } = group;
 // if the code of the name is "DET106" change the description to "Health
 expenses"
 if (relatedEvidenceType && relatedEvidenceType.value === 'DET106') {
 // add description to "Health expenses"
 const newRelatedEvidenceType = { ...relatedEvidenceType, description:
 'Health Custom' };
 // return a group with the name modified
 return { ...group, relatedEvidenceType: newRelatedEvidenceType };
 }
 return group;
 })
 CustomVerificationsSelectors.addMapVerificationGroup(groupByVerificationId);
}
export default { config };

3. Update your App.js file or equivalent as follows:

import CustomVerificationsConfig from './features/Verification/
CustomVerificationsConfig';
CustomVerificationsConfig.config();

Customizing caseworker tasks

When a citizen submits a document for a verification, a task is generated for the caseworker.
Tasks are displayed to the caseworker that is assigned to the citizen's case when they log in to the
caseworker application. System administrators can configure the system to display a task each
time a citizen provides all documents for an individual evidence record on a case, or to display
the task only when a citizen has provided all documents for every evidence record on a case.

About this task

By default, the task is displayed only when all documents are uploaded for all evidence records
on the case.

© Merative US L.P. 2012, 2025

Cúram 8.2.0 292

Procedure

1. Log on to the Cúram application as a system administrator, and click System Configurations.
2. In the Shortcuts pane, click Application Data > Property Administration.
3. Configure the curam.citizenworkspace.task.notifications.on.all.evidence.uploads property.

Related concepts
Caseworker tasks on page 39
When documents are submitted for verification by a citizen, a task is generated for the
caseworker that is assigned to the citizen’s case.

Customizing application-specific verification polling

When a citizen submits an application, there is a delay while verifications are generated for that
application. You can enable verification polling to handle this delay, allowing the page to wait and
present the verifications when they become available. You can set the polling on (default) or off,
and adjust the interval and duration.

About this task

For more information about environment variables, see the 5.18 React environment variable
reference on page 182.

Procedure

Edit the .env file in the root of your application and update values for
REACT_APP_VERIFICATION_POLLING.

For example:

REACT_APP_VERIFICATION_POLLING={"api": "/v1/ua/submitted_applications", "timeout":
 "10000", "interval": "1000"}

Where:

• api

Specifies a URL to call to check the submitted applications for verifications. By default, /v1/
ua/submitted_applications.

• timeout

Specifies the timeout in milliseconds before the polling stops. By default, 10 second.
• interval

Specifies the interval in milliseconds between polling calls. By default, 1 second.

© Merative US L.P. 2012, 2025

8 Customizing the Cúram Universal Access Responsive Web Application 293

8.5 Customizing with web services

In some scenarios, agencies handle interactions with citizens over the internet, but use an
existing legacy system for case processing. To cater for these scenarios, Universal Access can be
configured to communicate with various remote systems using web services.

Inbound and outbound web services

Universal Access supports specific outbound and inbound web services.

The following outbound web services are supported:

• Submit an application for benefits.
• Withdraw an application for benefits.
• Send a life event.

The following inbound web services are supported:

• Create a citizen account on Universal Access.
• Link a user to a remote system (gives them the right to send information to those systems and

receive information from them in turn).
• Unlink a user from a remote system.
• Receive an update to the status of a submitted application.
• Receive an update to the status of a request to withdraw an application.
• Receive a citizen message (for display on a citizen account).
• Receive payment information.
• Receive case contact information.

Web services security

Connections to remote systems can be configured through the remote systems configuration page
in the administrator application.

Remote systems can invoke web services on Universal Access and must supply user name and
password credentials as part of the SOAP header, details of how to do this are described using
sample web service requests. It is strongly recommended that a different username and password
be assigned to each remote system. The username associated with a remote system is set in the
Source User Name field of the remote system configuration page. Having a different user name
for each remote system allows Universal Access to perform proper data-based security checks on
the incoming service requests. This prevents one remote system sending requests to update data
that is properly the concern of a different remote system.

© Merative US L.P. 2012, 2025

Cúram 8.2.0 294

Process application service

The process application web services consists of receive application and receive withdrawal
request.

Receive application
When the Receive application outbound web service is started on remote systems,
it communicates an application for benefits for one or more social programs. The
Web Service Description Language (WSDL) describing this service can be found in
<CURAM_DIR>\EJBServer\components\WorkspaceServices\axis
\ProcessApplicationService\ProcessApplicationService.wsdl.

A web service request of this type contains the following information:

• intakeApplicationType - An ID that uniquely identifies an Intake Application Type.
• applicationReference – A unique reference for a particular application. This reference

is a human-readable ID that is displayed to citizens after they complete an application; for
example, 512 or 756. The application reference is used as an argument to other web services
and needs to be stored by the receiver.

• applicationLocale – Denotes the preferred locale of the user who entered the application,
for example en_US. This information needs to be stored by the receiver. Remote systems
can send various information back to the citizen's account. Some of this information must be
localized by the sender to the preferred locale of the citizen.

• submittedDateTime – The date and time at which the application was
submitted. This information is in XML schema dateTime format, for example,
2012-05-29T15:34:49.000+01:00.

• programsAppliedFor – This field contains a list of the programs that were applied for as
part of this application. Each program is referred to by a unique reference. This information
corresponds to the value of the Reference field configured in the Programs section of
Universal Access configuration. For example:

<ns1:programsAppliedFor>
 <ns1:programTypeReference>CashAssistance</ns1:programTypeReference>
 <ns1:programTypeReference>SNAP</ns1:programTypeReference>
</ns1:programsAppliedFor>

• applicationData – Contains a base64 encoded representation of the intake data. This
intake data is the XML representation of the XML data store associated with an application.

• applicationSchemaName – The name of the schema that is used to create the data store for
the application.

• senderIdentification – Identifies the sender of the request. The sender identification
contains two parts, 1) the identifier of the system from which the request originates, 2)
The Citizen Workspace Account ID of the user that created the request. The second part is
optional, applications submitted anonymously do not contain part two but applications that are
submitted by a logged in user do.

• supplementaryInformation – optional, reserved for future use.

The receiver of this information is expected to record the details of the application keyed against
sender identification and intake application reference.

© Merative US L.P. 2012, 2025

8 Customizing the Cúram Universal Access Responsive Web Application 295

On success, the implementation of this web service must return the Boolean value true
to indicate that the request was processed successfully. In the case that a problem occurs in
processing the request, a fault must be returned containing a string to indicate the nature of the
problem. The String needs to be localized to the locale of Universal Access server since it appears
in the server log files.

Note: The receiver can receive multiple applications with the same Intake Application
reference but the intake application reference is always unique for a particular sender. For
example, Systems A and B send a receiveApplication() request to system X. Both
requests have the applicationReference 256.

Note: The receiver never should receive two applications from A with an application
reference of 256.

Receive withdrawal request
Merative ™ Cúram Universal Access invokes this outbound web service on remote systems.
It is used by citizens to withdraw an application that they have previously submitted
using the Receive Application Service. WSDL describing this service can be found
in <CURAM_DIR>\EJBServer\components\WorkspaceServices\axis
\ProcessApplicationService\ProcessApplicationService.wsdl.

A web service request of this type contains the following information:

• applicationReference – A unique reference for the application to be withdrawn. This refers to
the id transmitted with the Receive Application service request.

• programTypeReference – A reference that identifies the program being withdrawn. Each
program type is referred to by a unique reference. This corresponds to the value of the
Reference field configured in the Programs section of Merative ™ Cúram Universal Access
configuration. For example "CashAssistance".

• requestSubmittedDateTime – A timestamp indicating when the request was submitted in XML
Schema dateTime format. For example, 2012-05-29T15:34:49.000+01:00

• withdrawalRequestReason – The value is taken from the code table
WithdrawalRequestReason. Values for this code table are

• WRES1001 – Attained employment
• WRES1002 – Change of circumstances
• WRES1003 – Filed in error

• withdrawalRequestID – An id that uniquely identifies this withdrawal request from the
sending instance of Universal Access.

• senderIdentification – Identifies the sender of the request. The sender identification contains
two parts, 1) the identifier of the system from which the request originates, 2) The Citizen
Workspace Account ID of the user that created the request.

• supplementaryInformation – optional, reserved for future use.

The expected result following successful processing is a receiveWithdrawalRequestResponse as
follows:

<receiveWithdrawalRequestResponse>

© Merative US L.P. 2012, 2025

Cúram 8.2.0 296

 <result>true</result>
</receiveWithdrawalRequestResponse>

The service implementation should return a fault if there is an error processing the request. The
fault string should be globalized to the locale of the Merative ™ Cúram Universal Access server
since it will appear in the server log files. Some problems that may arise include:

• A withdrawal request with the given ID has already been sent by the given instance of
Universal Access.

• The application reference referred to is not recognized as an application previously transmitted
in a Receive Application service invocation from the same Universal Access instance.

The withdrawal request application is processed by the receiving agency after which a response
should be sent in the form of a withdrawal request update. See the sample SOAP request for this
web service.

Update Application Service

The Update Application web services consists of the Intake Program Application Update and the
Withdrawal Request Update.

Intake Program Application Update
The Intake Program Application Update is an inbound web service invoked by remote systems on
Merative ™ Cúram Universal Access.

The Intake Program Application Update is used to inform Universal Access of changes to the
status of an application for benefits that was previously received via the Receive Application web
service. The status of an application can transition to Approved, Denied or Withdrawn. Where
an application is denied a reason can be included in the web service message. The schema for
the payload of web service requests of this type can be found in <CURAM_DIR>\EJBServer
\components\WorkspaceServices\webservices\UpdateApplication.xsd. See the sample SOAP
request for this web service.

A web service request of this type contains the following information:

• curamReferenceID – This must match the applicationReference element for the corresponding
Receive Application request.

• programApplicationStatus – This can take the following values:

• IPAS1002 – Withdrawn
• IPAS1003 – Approved
• IPAS1004 – Denied

• programApplicationDisposedDateTime – This is a formatted date time string in the standard
Cúram ISO8601 format – "YYYYMMDD HH:MM:SS".

• programApplicationDenialReason – Optional, if the status sent is IPAS1004, this contains free
text describing the reason for denial. The denial reason should be taken from the code table
IntakeProgApplDenyReason.

The web service request needs to be sent with a Cúram security credential (see a sample SOAP
message for details). The user name placed within the credential must match the Source User

© Merative US L.P. 2012, 2025

8 Customizing the Cúram Universal Access Responsive Web Application 297

Name entered into the Remote System entry corresponding to the peer system sending the
request.

Withdrawal Request Update
The Withdrawal Request Update is an inbound web service invoked by remote systems on
Merative ™ Cúram Universal Access.

The Withdrawal Request Update is used to inform Universal Access of changes to the status
of a Withdrawal Request that was previously submitted using the Receive Withdrawal Request
web service. You can find the schema for the payload of web service requests of this type in
<CURAM_DIR>\EJBServer\components\WorkspaceServices\webservices
\UpdateApplication.xsd. See the sample SOAP request for this web service.

A web service request of this type contains the following information:

• curamReferenceID – This must match the withdrawalRequestID in the corresponding Receive
Withdrawal Request message.

• withdrawalRequestStatus – This an enumeration taking the following values:

• WREQ1002 – Approved
• WREQ1003 – Denied

• resolvedDateTime – A time stamp in the standard Social Program Management ISO8601
format – "YYYYMMDD HH:MM:SS".

• withdrawalRequestDenialReason – Optional. In the case there the withdrawal request was
denied, a textual explanation for the denial. The sender must localize this to the locale of the
citizen who originally submitted the application.

See the sample SOAP request for the Withdrawal Request Update operation.

On success this operation returns a document indicating that the request has succeeded. On
failure, a fault is raised. Reasons for failure include:

• The withdrawal request id does not match a known withdrawal request id.
• The withdrawal request state transition is invalid.

life event service

The life event service is an outbound web service is invoked by Merative ™ Cúram Universal
Access on remote systems. WSDL describing this service can be found in <CURAM_DIR>
\EJBServer\components\WorkspaceServices\axis\LifeEventService\LifeEvent.wsdl.

A request for this web service contains the following fields:

• lifeEventReference – Describes the type of the life event, for example "Change of Address"
• senderIdentification – Identifies the sender of the request. The sender identification contains

two parts, 1) the identifier of the system from which the request originates, 2) The Citizen
Workspace Account ID of the user that created the request.

• lifeEventData - Contains a base64 encoded representation of the life event data. This life event
data is the XML representation of the XML datastore associated with an life event.

• lifeEventSchemaName – The name of the schema used to create the data store for the life
event.

© Merative US L.P. 2012, 2025

Cúram 8.2.0 298

• submittedDateTime – The date and time when the life event was submitted. An XML Schema
dateTime. For example, 2012-05-29T15:34:49.000+01:00

• supplementaryInformation – optional, reserved for future use.

The implementation should return a response of type lifeEventResponse with the content "true"
when the life event is successfully processed. If there is an error processing the life event then the
system should return a fault in accordance with the WSDL specification.

Create account service

The create account service is an inbound web service invoked by remote systems on Merative
™ Cúram Universal Access. The service creates a Citizen Workspace Account for users who
previously submitted an Intake Application anonymously.

The create account service performs two functions:

• Create an account for a previously anonymous user.
• Link that account to the remote system that is invoking the Create Account Web Service.

If a Citizen Workspace user is "linked" to a remote system, it means that user is registered on
the remote system and the remote system will recognize requests from that Citizen Workspace
user as relating to a particular case, cases or an individual on the remote system. This has serious
security implications on the remote system – The remote system sending a request to link a user
or create an account for a user must be convinced of the identity of the individual who owns
the account. The schema for the payload of web service requests of this type can be found in
<CURAM_DIR>\EJBServer\components\WorkspaceServices\webservices
\ExternalAccountCreate.xsd. See the sample SOAP request for this web service.

A create account request contains the following information:

• firstName – The first name.
• middleName – The middle name. Optional.
• surname – The last name.
• username – The username for the newly created account.
• password – The password for the newly created account.
• confirmPassword – Confirmation of the password. Must match password.
• secretQuestionType – The type of secret question selected to unlock the user's account. Values

should correspond to entries from the SecretQuestionType code table. For example, SQT1 –
Mother's maiden name.

• answer – An answer to the secret question. Non empty.
• termsAndConditionsAccepted – Boolean indication that the citizen has accepted the terms and

conditions on which the account is created.
• intakeApplicationReference – Refers to the unique applicationReference passed in as part

of the receive application request. If this is specified, a link will be created between the
application and the newly created account.

• clientIDOnRemoteSystem – This is a unique identifier that can be used to identify the user of
this account on the remote system. There is no prescribed form for this id, it could be a Social
Security Number for example. It must be capable of uniquely identifying the citizen on the
remote system.

© Merative US L.P. 2012, 2025

8 Customizing the Cúram Universal Access Responsive Web Application 299

• sourceSystem – Identifies the remote system that sent this request. This must match the name
of a remote system configured in the administration application. For more information about
configuring remote systems, see Configuring life events.

If successful this returns the id of the created citizen workspace account. Problems that occur
during the processing of the request are flagged by a fault response. Possible issues include:

• An account has already been associated with the intake application reference.
• The username already exists.
• The user name or password do not meet minimum mandatory criteria such as password

strength, user name length.

Link service

The link service is an inbound web service invoked by remote systems on Merative ™ Cúram
Universal Access. The link service is used to link a Citizen Workspace account to a remote
system.

See the section on Create Account Service for a general discussion of the implications of
linking a user. The schema for the payload of web service requests of this type can be found in
<CURAM_DIR>\EJBServer\components\WorkspaceServices\webservices
\ExternalAccountLink.xsd. See the sample SOAP request for this web service.

This web service request contains the following information:

• sourceSystem – The name of the remote system sending the request. Must match the name of
a remote system configured in the system.

• citizenWorkspaceAccountID – The unique citizen workspace account id.
• clientIDOnRemoteSystem - This is a unique identifier that can be used to identify the user of

this account on the remote system. There is no prescribed form for this id, it could be a Social
Security Number for example. It must be capable of uniquely identifying the client on the
remote system.

• createdByUsername – The username on the remote system responsible for this request.

On success this operation returns a document indicating that the request has succeeded. On
failure, a fault is raised. Reasons for failure include:

• The citizen workspace account id is invalid, does not exist or is associated with a de-activated
account.

• The citizen workspace account in question is already linked to this remote system.

Unlink service

The unlink service is an inbound web service invoked by remote systems on Merative ™ Cúram
Universal Access. The unlink service is used to unlink a Citizen Workspace Account from a
remote system.

After executing this service it will not be possible for the user of the unlinked account to
submit life events to this remote system, for example. The schema for the payload of web
service requests of this type can be found in <CURAM_DIR>\EJBServer\components

© Merative US L.P. 2012, 2025

../common/t_ctr_install.html

Cúram 8.2.0 300

\WorkspaceServices\webservices\ExternalAccountUnlink.xsd. See the
sample SOAP request for this web service.

This web service request contains the following information:

• sourceSystem – The name of the remote system sending the request.
• citizenWorkspaceAccountID – The unique ID of the Citizen Workspace Account being

unlinked.

On success this operation returns a document indicating that the request has succeeded. On
failure, a fault is raised. Reasons for failure include:

• The indicated account does not exist or is not active.
• The indicated account is not linked to the remote system sending the request.

Citizen message

The citizen message is an inbound web service invoked by remote systems on Merative ™ Cúram
Universal Access. The citizen message is used to send Citizen Messages that are displayed on a
user's Home Page when they log in to the Citizen Account.

The schema for the payload of web service requests of this type can be found in
<CURAM_DIR>\EJBServer\components\WorkspaceServices\webservices
\ExternalCitizenMessage.xsd. See the sample SOAP request for this web service.

This web service request contains the following information:

• sourceSystem – The name of the remote system sending the request.
• citizenWorkspaceAccountID – The unique citizen workspace account id.
• cityIndustryType – Denotes the type of industry associated with the message. The values for

this element must match codes from the CityIndustry code table.
• relatedID – Refers to the id of an underlying entity in the remote system to which the message

refers. For example, if the message concerns a payment then the related ID identifies the ID of
the payment within the remote system.

• externalCitizenMessageType – The external citizen message type, taken from the
ExternalCitizenMessageType codetable.

• messageTitle – The title of the message. It is the responsibility of the remote system to localize
this to the locale of the end user.

• messageBody – The body of the message. It is the responsibility of the remote system to
localize this to the locale of the end user.

• effectiveDate – Optional. The date from which the message is effective. It will only be
displayed from this date onwards. The date must be in the format – "YYYY-MM-DD". If an
effective date is not provided then the current date is taken as the effective date.

• expiryDate – The date that the message is set to expire. Following this date, the message will
not be displayed to the user. The date must be in the format – "YYYY-MM-DD".

• priority – A boolean value to indicate whether this message is a high priority.

Some messages are designed such that a newer message can replace an older one. For example,
a message is sent concerning a meeting. The time of the meeting changes and a new message is
sent with the updated time for the meeting. The citizen does not see both messages, rather the

© Merative US L.P. 2012, 2025

8 Customizing the Cúram Universal Access Responsive Web Application 301

second message replaces the first and only the second message is seen. One external message will
automatically replace another external message if the following fields match those of an existing
message: sourceSystem, externalCitizenMessageType and relatedID.

Payment service

The payment service is an inbound web service invoked by remote systems on Merative ™
Cúram Universal Access. The payment service is used to transmit information about one or more
payments.

The schema for the payload of web service requests of this type can be found in
<CURAM_DIR>\EJBServer\components\WorkspaceServices\webservices
\ExternalPayment.xsd. See the sample SOAP request for this web service.

This web service request can contain one or more Payments. This allows the remote system to
batch up payments and send them as a single request for performance reasons. Each payment
can relate to an entirely separate citizen account. A single payment may contain a payment
breakdown. A payment breakdown may contain one or more payment line items.

A single payment contains the following information:

• paymentID – Together with the source system, this uniquely identifies a payment.
• sourceSystem – The name of the remote system sending the request. Must match the name of

a remote system configured in the system.
• citizenWorkspaceAccountID – The unique citizen workspace account id.
• cityIndustryType – Denotes the type of industry associated with the payment. The values for

this element must match codes from the CityIndustry code table. Optional.
• paymentAmount – The headline value for the payment as a whole. This payment may

optionally be further broken into a number of line items.
• currency – The currency in which the payment was made, contains values from the Currency

code table. Optional.
• paymentMethod – The method by which the payment was made, contains values from the

MethodOfDelivery code table.
• paymentStatus – The status of the payment, for example cancelled, processed, suspended etc.

Contains values from PmtReconciliationStatus code table.
• effectiveDate – The effective date of the payment in the format "YYYY-MM-DD".
• coverPeriodFrom – The start date of the period covered by this payment. In the format

"YYYY-MM-DD".
• coverPeriodTo – The end date of the period covered by this payment. In the format "YYYY-

MM-DD".
• dueDate – The date that the payment was due to be paid. In the format "YYYY-MM-DD".
• payeeName – The name of the payee for this payment.
• payeeAddress – The address that the payment was sent to (in the case of a cheque). Optional.
• paymentReferenceNo – Uniquely identifies a payment within a given remote system.
• bankSortCode - The sort code of the bank account to which this payment is delivered.
• bankAccountNo – The bank account number to which payment is made.
• A payment may contain a Payment Breakdown (optional).

© Merative US L.P. 2012, 2025

Cúram 8.2.0 302

A Payment Breakdown contains one or more Payment Line Items. A Payment Line Item contains
the following information:

• caseName – The human readable name of the case on the remote system with which this
payment is associated.

• The case name must be localised to the locale of the citizen. This case name must match the
case name displayed on the Contact Information page.

• caseReference – This uniquely identifies the case on a given remote system.
• componentType – This contains a code from the FinComponentType code table.
• debitAmount – The amount debited if this payment was a debit.
• creditAmount – The amount credited if this payment was a credit.
• coverPeriodFrom - The start date of the period covered by this payment. In the format

"YYYY-MM-DD".
• coverPeriodTo – The end date of the period covered by this payment. In the format "YYYY-

MM-DD".

It is important to note that payments can supersede previously submitted payments. For example,
a payment is submitted from TestSystem with paymentID 1234. Subsequently another payment
arrives from TestSystem with the same paymentID, 1234. This payment replaces the previous
payment. The previous payment is physically removed along with all its related payment line
items. A typical example of where this might occur is when a previously issued payment is
cancelled.

Contact service

The contact service is an inbound web service invoked by remote systems on Merative ™ Cúram
Universal Access. The contact service is used to update a register of caseworker contact details
relating to a remote system.

The schema for the payload of web service requests of this type can be found in
<CURAM_DIR>\EJBServer\components\WorkspaceServices\webservices
\ExternalContact.xsd. See the sample SOAP request for this web service.

A contact web service request contains the following information:

• sourceSystem – The name of the remote system sending the request. Must match the name of
a remote system configured in the system.

• contactReference – A reference for the contact, unique within the source remote system.
• fullName – The full name of the caseworker.
• phoneNumber – The phone number of the caseworker. Optional.
• mobilePhoneNumber – The mobile/cell phone number of the caseworker. Optional.
• faxNumber – The fax number for the caseworker. Optional.
• email – The email address of the caseworker. Optional.

If a request is received with the same source system and contact reference as a preexisting entry
then the information in the newer request supersedes the preexisting information.

© Merative US L.P. 2012, 2025

8 Customizing the Cúram Universal Access Responsive Web Application 303

Case service

The case service is an inbound web service invoked by remote systems on Merative ™ Cúram
Universal Access. The case service is used to update details of cases associated with a particular
Citizen Account.

The schema for the payload of web service requests of this type can be found in
<CURAM_DIR>\EJBServer\components\WorkspaceServices\webservices
\ExternalCase.xsd. See the sample SOAP request for this web service.

A web service request of this type contains the following information:

• sourceSystem – The name of the remote system sending the request. Must match the name of
a remote system configured in the system.

• contactReference – A reference for the contact, unique within the source remote system, this
must match a contact reference previously transmitted via a Contact Service request.

• caseReference – This is a case reference and must be unique within the remote system that is
the source of this request.

• caseName - The human readable name of the case on the remote system. The case name must
be localized to the locale of the client. Case names used in the Payment web service should
match case names provided in this request.

• citizenWorkspaceAccountID – The unique citizen workspace account id.

If a request is received with the same source system and case reference as a preexisting entry then
the information in the newer request supersedes the preexisting information.

Sample SOAP requests

Use the sample SOAP requests to help you develop real SOAP requests.

Intake program application update
Sample intake program application update SOAP request.

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/
envelope/" xmlns:rem="http://
remote.externalservices.workspaceservices
.curam" xmlns:xsd="http://dom.w3c.org/xsd">
 <soapenv:Header>
 <curam:Credentials xmlns:curam="http://
www.curamsoftware.com">
 <Username>userforpeersystem</Username>
 <Password>password</Password>
 </curam:Credentials>
 </soapenv:Header>
 <soapenv:Body>
 <rem:updateIntakeProgramApplication>
 <rem:xmlMessage>
 <intakeProgramApplicationUpdate>
 <applicationReference>256</applicationReference>
 <applicationProgramReference>joannesprogram
</applicationProgramReference>
 <programApplicationStatus>IPAS1004</
programApplicationStatus>

© Merative US L.P. 2012, 2025

Cúram 8.2.0 304

 <programApplicationDisposedDateTime>
 20120528 17:19:47
 </programApplicationDisposedDateTime>
 <programApplicationDenialReason>IPADR1001
</programApplicationDenialReason>
 </intakeProgramApplicationUpdate>
 </rem:xmlMessage>
 </rem:updateIntakeProgramApplication>
 </soapenv:Body>
</soapenv:Envelope>

Withdrawal request update
Sample withdrawal request update SOAP request.

 <?xml version="1.0" encoding="UTF-8"?>
<table name="SEARCHSERVICEFIELD">

 <column name="
 searchServiceFieldId
 " type="text" />
 <column name="
 searchServiceId
 " type="text" />
 <column name="
 name
 " type="text" />
 <column name="
 indexed
 " type="bool" />
 <column name="
 type
 " type="text" />
 <column name="
 stored
 " type="bool" />
 <column name="
 entityName
 " type="text" />
 <column name="
 analyzerName
 " type="text" />
 <column name="
 untokenized
 " type="bool" />

 <row>
 <attribute name="searchServiceFieldId">
 <value>
 field0
 </value>
 </attribute>
 <attribute name="searchServiceId">
 <value>
 PersonSearch
 </value>
 </attribute><attribute name="name">
 <value>

© Merative US L.P. 2012, 2025

8 Customizing the Cúram Universal Access Responsive Web Application 305

 primaryAlternateID
 </value>
 </attribute><attribute name="indexed"> <soapenv:Envelope
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:rem="http://
remote.externalservices.workspaceservices.curam"
xmlns:xsd="http://dom.w3c.org/xsd">
 <soapenv:Header>
 <curam:Credentials xmlns:curam="http://
www.curamsoftware.com">
 <Username>userforpeersystem</Username>
 <Password>password</Password>
 </curam:Credentials>
 </soapenv:Header>
 <soapenv:Body>
 <rem:updateWithdrawalRequest>
 <rem:xmlMessage>
 <withdrawalRequestUpdate>
 <curamReferenceID>-6897262829317914624</curamReferenceID>

 <withdrawalRequestStatus>WREQ1002</withdrawalRequestStatus>
 <resolvedDateTime>20120525 11:30:50</resolvedDateTime>
 </withdrawalRequestUpdate>
 </rem:xmlMessage>
 </rem:updateWithdrawalRequest>
 </soapenv:Body>
</soapenv:Envelope>

Create account
Sample create account SOAP request.

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/
envelope/" xmlns:rem="http://
remote.externalservices.workspaceservices.
curam" xmlns:xsd="http://dom.w3c.org/xsd">
 <soapenv:Header>
 <curam:Credentials xmlns:curam="http://
www.curamsoftware.com">
 <Username>admin</Username>
 <Password>password</Password>
 </curam:Credentials>
 </soapenv:Header>
 <soapenv:Body>
 <rem:createAccount>
 <!--Optional:-->
 <rem:xmlMessage>
 <!--Optional:-->
 <cre:AccountCreate xmlns:cre="http://www.curamsoftware.com/
WorkspaceServices/ExternalAccountCreate">
 <firstName>John</firstName>
 <middleName>M</middleName>
 <surname>Doe</surname>
 <username>johnmdoe</username>
 <password>password1</password>
 <confirmPassword>password1</confirmPassword>
 <secretQuestionType>SQT1</secretQuestionType>
 <answer>mypassword1</answer>

© Merative US L.P. 2012, 2025

Cúram 8.2.0 306

 <termsAndConditionsAccepted>true</
termsAndConditionsAccepted>
 <intakeApplicationReference>256</
intakeApplicationReference>
 <clientIDOnRemoteSystem>112233445566</
clientIDOnRemoteSystem>
 <sourceSystem>TestSystem</sourceSystem>
 </cre:AccountCreate>
 </rem:xmlMessage>
 </rem:createAccount>
 </soapenv:Body>
</soapenv:Envelope>

Account link
Sample account link SOAP request.

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/
envelope/" xmlns:rem="http://
remote.externalservices.workspaceservices.
curam" xmlns:xsd="http://dom.w3c.org/xsd">
 <soapenv:Header>
 <curam:Credentials xmlns:curam="http://
www.curamsoftware.com">
 <Username>admin</Username>
 <Password>password</Password>
 </curam:Credentials>
 </soapenv:Header>
 <soapenv:Body>
 <rem:linkTargetSystemToAccount>
 <rem:xmlMessage>
 <lnk:AccountLink xmlns:lnk="http://
www.curamsoftware.com/
WorkspaceServices/ExternalAccountLink">
 <sourceSystem>TestSystem</sourceSystem>
 <citizenWorkspaceAccountID>7081910414040104960
</citizenWorkspaceAccountID>
 <clientIDOnRemoteSystem>112233445566</
clientIDOnRemoteSystem>
 <createdByUsername>testuser</createdByUsername>
 </lnk:AccountLink>
 </rem:xmlMessage>
 </rem:linkTargetSystemToAccount>
 </soapenv:Body>
</soapenv:Envelope>

Account unlink
Sample account unlink SOAP request.

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/
envelope/" xmlns:rem="http://
remote.externalservices.workspaceservices.
curam" xmlns:xsd="http://dom.w3c.org/xsd">
 <soapenv:Header>
 <curam:Credentials xmlns:curam="http://
www.curamsoftware.com">
 <Username>admin</Username>
 <Password>password</Password>
 </curam:Credentials>

© Merative US L.P. 2012, 2025

8 Customizing the Cúram Universal Access Responsive Web Application 307

 </soapenv:Header>
 <soapenv:Body>
 <rem:unlinkTargetSystemFromAccount>
 <!--Optional:-->
 <rem:xmlMessage>
 <unl:AccountUnlink xmlns:unl="http://
www.curamsoftware.com/
WorkspaceServices/ExternalAccountUnlink">
 <sourceSystem>TestSystem</sourceSystem>
 <citizenWorkspaceAccountID>7081910414040104960
</citizenWorkspaceAccountID>
 </unl:AccountUnlink>
 </rem:xmlMessage>
 </rem:unlinkTargetSystemFromAccount>
 </soapenv:Body>
</soapenv:Envelope>

Citizen message
Sample citizen message SOAP request.

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/
envelope/" xmlns:rem="http://
remote.externalservices.workspaceservices.
curam" xmlns:xsd="http://dom.w3c.org/xsd">
 <soapenv:Header>
 <curam:Credentials xmlns:curam="http://www.curamsoftware.com">
 <Username>admin</Username>
 <Password>password</Password>
 </curam:Credentials>
 </soapenv:Header>
 <soapenv:Body>
 <rem:createMessage>
 <rem:xmlMessage>
<cm:CitizenMessage xmlns:cm="http://www.curamsoftware.com/
WorkspaceServices/ExternalCitizenMessage">
 <sourceSystem>TestSystem</sourceSystem>
 <cityIndustryType>CMI9001</cityIndustryType>
 <citizenWorkspaceAccountID>7081910414040104960
</citizenWorkspaceAccountID>
 <relatedID>6060</relatedID>
 <externalCitizenMessageType>PMT2004</
externalCitizenMessageType>
 <messageTitle>Hello, World!</messageTitle>
 <messageBody>This is the body of the message.</messageBody>
 <effectiveDate>2000-01-01</effectiveDate>
 <expiryDate>2020-01-01</expiryDate>
 <priority>false</priority>

</cm:CitizenMessage>
 </rem:xmlMessage>
 </rem:createMessage>
 </soapenv:Body>
</soapenv:Envelope>

Payment (simple)
Sample payment (simple) SOAP request.

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/

© Merative US L.P. 2012, 2025

Cúram 8.2.0 308

envelope/" xmlns:rem="http://
remote.externalservices.workspaceservices.
curam" xmlns:xsd="http://dom.w3c.org/xsd">
 <soapenv:Header>
 <curam:Credentials xmlns:curam="http://
www.curamsoftware.com">
 <Username>admin</Username>
 <Password>password</Password>
 </curam:Credentials>
 </soapenv:Header>
 <soapenv:Body>
 <rem:create>
 <rem:xmlMessage>
 <tns:Payment xmlns:tns="http://www.curamsoftware.com/
WorkspaceServices/ExternalPayment">
 <paymentID>1554</paymentID>
 <sourceSystem>TestSystem</sourceSystem>
 <cityIndustryType>CMI9001</cityIndustryType>
 <citizenWorkspaceAccountID>7081910414040104960
</citizenWorkspaceAccountID>
 <paymentAmount>50.00</paymentAmount>
 <currency>EUR</currency>
 <paymentMethod>CHQ</paymentMethod>
 <paymentStatus>PRO</paymentStatus>
 <effectiveDate>2012-01-01</effectiveDate>
 <coverPeriodFrom>2012-01-01</coverPeriodFrom>
 <coverPeriodTo>2012-01-01</coverPeriodTo>
 <dueDate>2012-01-01</dueDate>
 <payeeName>Dorothy</payeeName>
 <payeeAddress>12 Gloster St., WA 6008</payeeAddress>
 <paymentReferenceNo>F</paymentReferenceNo>
 <bankSortCode>933384</bankSortCode>
 <bankAccountNo>88776655</bankAccountNo>
 <PaymentBreakdown>
 <PaymentLineItem>
 <caseName>I</caseName>
 <caseReferenceNo>J</caseReferenceNo>
 <componentType>C10</componentType>
 <debitAmount>22.45</debitAmount>
 <creditAmount>50.76</creditAmount>
 <coverPeriodFrom>2012-01-01</coverPeriodFrom>
 <coverPeriodTo>2012-01-01</coverPeriodTo>

 </PaymentLineItem>
 </PaymentBreakdown>
 </tns:Payment>
 </rem:xmlMessage>
</rem:create>
</soapenv:Body>
</soapenv:Envelope>

Payment (batched)
Sample payment (batched) SOAP request.

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/
envelope/" xmlns:rem="http://
remote.externalservices.workspaceservices.
curam" xmlns:xsd="http://dom.w3c.org/xsd">

© Merative US L.P. 2012, 2025

8 Customizing the Cúram Universal Access Responsive Web Application 309

 <soapenv:Header>
 <curam:Credentials xmlns:curam="http://
www.curamsoftware.com">
 <Username>admin</Username>
 <Password>password</Password>
 </curam:Credentials>
 </soapenv:Header>
 <soapenv:Body>
 <rem:create>
 <rem:xmlMessage>
 <tns:Payments xmlns:tns="http://www.curamsoftware.com/
WorkspaceServices/ExternalPayment">
 <Payment>
 <paymentID>2346</paymentID>
 <sourceSystem>TestSystem</sourceSystem>
 <cityIndustryType>CMI9001</cityIndustryType>
 <citizenWorkspaceAccountID>8306889512684879872
</citizenWorkspaceAccountID>
 <paymentAmount>48.00</paymentAmount>
 <currency>EUR</currency>
 <paymentMethod>CHQ</paymentMethod>
 <paymentStatus>PRO</paymentStatus>
 <effectiveDate>2012-01-01</effectiveDate>
 <coverPeriodFrom>2012-01-01</coverPeriodFrom>
 <coverPeriodTo>2012-01-01</coverPeriodTo>
 <dueDate>2012-01-01</dueDate>
 <payeeName>D</payeeName>
 <payeeAddress>E</payeeAddress>
 <paymentReferenceNo>F</paymentReferenceNo>
 <bankSortCode>G</bankSortCode>
 <bankAccountNo>H</bankAccountNo>
 <PaymentBreakdown>
 <PaymentLineItem>
 <caseName>I</caseName>
 <caseReferenceNo>J</caseReferenceNo>
 <componentType>C24000</componentType>
 <debitAmount>22.45</debitAmount>
 <creditAmount>49.76</creditAmount>
 <coverPeriodFrom>2012-01-01</coverPeriodFrom>
 <coverPeriodTo>2012-01-01</coverPeriodTo>
 </PaymentLineItem>
 <PaymentLineItem>
 <caseName>I</caseName>
 <caseReferenceNo>J</caseReferenceNo>
 <componentType>C24000</componentType>
 <debitAmount>22.45</debitAmount>
 <creditAmount>49.76</creditAmount>
 <coverPeriodFrom>2012-01-01</coverPeriodFrom>
 <coverPeriodTo>2012-01-01</coverPeriodTo>
 </PaymentLineItem>
 </PaymentBreakdown>
 </Payment>
 </tns:Payments>
 </rem:xmlMessage>
 </rem:create>
 </soapenv:Body>
</soapenv:Envelope>

© Merative US L.P. 2012, 2025

Cúram 8.2.0 310

Contact
Sample contact SOAP request.

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/
envelope/" xmlns:rem="http://
remote.externalservices.workspaceservices.
curam" xmlns:xsd="http://dom.w3c.org/xsd">
 <soapenv:Header>
 <curam:Credentials xmlns:curam="http://www.curamsoftware.com">
 <Username>admin</Username>
 <Password>password</Password>
 </curam:Credentials>
 </soapenv:Header>
 <soapenv:Body>
 <rem:updateExternalContact>
 <rem:xmlMessage>
 <con:ContactInfo xmlns:con="http://www.curamsoftware.com/
WorkspaceServices/ExternalContact">
 <sourceSystem>TestSystem</sourceSystem>
 <contactReference>CON_100</contactReference>
 <fullName>Harry Neilan</fullName>
 <phoneNumber>1-800-CALL-ME</phoneNumber>
 <mobilePhoneNumber>1-800-CALL-MOB</mobilePhoneNumber>
 <faxNumber>1-800-CALL-FAX</faxNumber>
 <email>harry@x.org</email>
 </con:ContactInfo>
 </rem:xmlMessage>
 </rem:updateExternalContact>
 </soapenv:Body>
</soapenv:Envelope>

Cases
Sample cases SOAP request.

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/
envelope/" xmlns:rem="http://
remote.externalservices.workspaceservices.
curam" xmlns:xsd="http://dom.w3c.org/xsd">
<soapenv:Header>
 <curam:Credentials xmlns:curam="http://
www.curamsoftware.com">
 <Username>admin</Username>
 <Password>password</Password>
 </curam:Credentials>
 </soapenv:Header>
 <soapenv:Body>
 <rem:updateExternalCase>
 <rem:xmlMessage>
 <cas:CaseInfo xmlns:cas="http://www.curamsoftware.com/
WorkspaceServices/ExternalCase">
 <sourceSystem>TestSystem</sourceSystem>
 <contactReference>CON_100</contactReference>
 <caseReference>CAS_109</caseReference>
 <caseName>My Benefit Case - 103</caseName>
 <citizenWorkspaceAccountID>8306889512684879872
</citizenWorkspaceAccountID>
 </cas:CaseInfo>
 </rem:xmlMessage>

© Merative US L.P. 2012, 2025

8 Customizing the Cúram Universal Access Responsive Web Application 311

 </rem:updateExternalCase>
 </soapenv:Body>
</soapenv:Envelope>

8.6 Customizing appeals

You can customize appeals to suit your organization. You can integrate with an appeals system of
your choice. If you are licensed for the Cúram Appeals application module, the Cúram appeals
functionality is available on installation.

About this task

You can customize the following aspect of appeals:

• The Your rights to appeal content text on the dashboard.
• The Your appeals page. The Appeals page is shown only when a citizen has a case to appeal,

otherwise it is not displayed.
• The Request an Appeal Overview page, from which you can start the Request an Appeal

form.
• The Request an Appeal IEG script, in which you specify the contents of the form.
• The Confirmation and next steps page.
• The Appeal cards on the Appeals home page, which contain information about each appeal

request that a user creates. Each card shows the status of the appeal request in a colored
badge, with text such as Appeal Request Submitted or Appeal Request Pending. The color
depends on the status. For example, Appeal Request Submitted is blue. You can customize
the label text.

Procedure

1. The Appeals feature is unavailable by default. Enable Appeals in the application, see Enabling
and disabling appeals on page 312.

2. Review the text on application pages. For more information about modifying text on pages,
see Changing text in the application on page 131.

3. Review the Request an Appeal form. For more information, see Configuring appeal requests
on page 251.

4. Review the Appeal Request cards on the Your appeals page, which show the appeals status.
For more information about customizing the appeals statuses, see Customizing appeal request
statuses on page 321.

Related concepts
Appeal on page 50
If your organization includes appeals in their business process, citizens can appeal decisions on
their benefits online from their citizen accounts on their own devices. If your organization uses
the Cúram Appeals application module, your organization can process appeals through the full
appeals life cycle that is provided by that solution.

© Merative US L.P. 2012, 2025

Cúram 8.2.0 312

Enabling and disabling appeals

The Appeals feature is disabled by default. Use the
REACT_APP_FEATURE_APPEALS_ENABLED environment variable to enable or disable the
Appeals pages and options in your application. When you enable Appeals, it is available only to
linked users with an existing case that they can appeal.

About this task

For more information about linked users, see 6.5 User account types on page 210.

The following Appeals functionality can be enabled or disabled:

• The Appeals tab on the home page.
• The Appeals Request page.
• Your rights of appeal message on the home page.
• Appeals-related URLs, for example /appeals.

Procedure

1. Edit the .env file in the root of your application.
2. Set REACT_APP_FEATURE_APPEALS_ENABLED to true or false. If you don't

define the environment variable, the appeals feature defaults to enabled.

8.7 Customizing the citizen account

Users can use the citizen account to log in to a secure area where users can screen and apply for
programs.

Users also use the citizen account to view information relevant to them, including individually
tailored messages, system-wide announcements, updates on their payments, contact information
for agency staff and outreach campaigns that might be relevant to them. The citizen account also
provides a framework for customers to build their own pages or override the existing pages.

Related concepts
Track on page 40
When citizens create a secure citizen account, they can access a range of relevant information.
Citizens can also use the citizen account to track and manage their interactions with the agency.

Messages

When a linked citizen logs in, messages are gathered from the system and from remote systems
for display.

The curam.citizenmessages.impl.CitizenMessageController API
gathers and displays messages. The API reads persisted messages by participant
from the ParticipantMessage database table. The API also raises the
CitizenMessagesEvent.userRequestsMessages event, inviting listeners to add messages
to a list that is passed as part of the event parameter. The messages that are gathered from each
source are sorted, turned into XML, and returned to the citizen for display.

© Merative US L.P. 2012, 2025

8 Customizing the Cúram Universal Access Responsive Web Application 313

Configuring citizen messages
Global configurations are included that can be specified for Citizen Messages, such as enabling
certain types and configuring their display order. The different types of messages also include
their own configuration points. Specific information about how to customize the various message
types is provided later.

The textual content of a message type also can be configured. Each message type has a related
properties file that includes the localizable text entries for the various messages displayed for that
type. These properties also include placeholders that are substituted for real values related to the
citizen at run time.

The wording of this text can be customized, by inserting a different version of the properties file
into the resource store. The following table defines which properties file need to be changed for
each type of message:

Table 16: Message properties files

Message type Property file name

Payments CitizenMessageMyPayments.properties

Application Acknowledgment CitizenMessageApplicationAcknowledgement.properties

Verifications CitizenMessageVerificationMessages.properties

Meetings CitizenMessageMeetingMessages.properties

Referral CitizenMessagesReferral.properties

Service Delivery CitizenMessagesServiceDelivery.properties

You can also remove placeholders (which are populated with live data at run time) from the
properties. However, there is currently no means to add further placeholders to existing messages.
A custom type of message must be implemented in this situation.

Adding a new type of citizen message
Messages are gathered by the controller in two ways: the controller
reads messages that were persisted to the database by using the
curam.citizenmessages.persistence.impl.ParticipantMessage API, and
also gathers them by raising the
curam.participantmessages.events.impl.CitizenMessagesEvent

A decision needs to be made regarding whether to 'push' the messages to the database, or else
have them generated dynamically by a listener that listens for the event that is raised when the
citizen logs in. The specific requirements of the message type need to be considered, along with
the benefits and drawbacks of each option.

Persisted messages

In this scenario, when something takes place in the system that might be of interest to the
citizen, a message is persisted to the database. For example, when a meeting invitation is
created, an event is fired. The initially configured meeting messages function listens for this
event. If the meeting invitee is a participant with a linked account, a message is written to the
ParticipantMessage table that informs the citizen that they are invited to the meeting.

© Merative US L.P. 2012, 2025

Cúram 8.2.0 314

One benefit of this approach is that little processing is done when the citizen logs in to see
this message: the message is read from the database and displayed, as opposed to calculation
that takes place that would determine whether the message was required. However, the
implementation also needs to handle any changes to the underlying data that might invalidate or
change the message, and take appropriate action.

For example, the meeting message function also listens for changes to meetings to ensure the
meeting time, location, and similar, are up to date, and to send a new message to the citizen to
inform the citizen that the location or time was changed.

Dynamic messages

These messages are generated when the citizen logs in, by event listeners
that listen for the curam.participantmessages.events.impl.
CitizenMessagesEvent.userRequestsMessages event.

Because the message is generated at runtime, code is not required to manage change over time.
The message is generated based on the data within the system each time the citizen logs in. If
some underlying data changes, the next time the citizen logs in, they will get the correct message.

A drawback to this approach is that significant processing might be required at run time to
generate the message. Care must be taken to ensure that this processing does not adversely affect
the load time of the Citizen Account dashboard.

Performance considerations must be evaluated against the requirements of the specific message
type and the effort that is required to manage change to the data that the message is related to over
time. For example, the initially configured verification message is dynamic. When a citizen logs
in, it checks to see whether any outstanding verifications exist for that citizen. This process is a
relatively simple database read, whereas it would be complicated to listen for various events in
the Verification Engine and ensure that an up-to-date message was stored in the database related
to the participants' outstanding verifications. Alternatively, the meeting messages need to inform
the citizen of changes to their meetings, so functionality had to be written to manage changes to
the meeting record and its related message over time.

Implementing a new message type
Organizations can implement a dynamic message or a persisted message.

To implement a new message type, regardless of whether the message is persisted or is generated
dynamically, complete the following steps.

Common tasks

• In the administration system, add an entry to the CT_ParticipantMessageType code
table to represent the new message type.

• Add a DMX entry for the ParticipantMessageConfig database table. This entry stores the type
and sort order of the new message type and is used for administration. For example:

<row>
 <attribute name="PARTICIPANTMESSAGECONFIGID">
 <value>2110</value>
 </attribute>
 <attribute name="PARTICIPANTMESSAGETYPE">
 <value>PMT2001</value>

© Merative US L.P. 2012, 2025

8 Customizing the Cúram Universal Access Responsive Web Application 315

 </attribute>
 <attribute name="ENABLEDIND">
 <value>1</value>
 </attribute>
 <attribute name="SORTORDER">
 <value>5</value>
 </attribute>
 <attribute name="VERSIONNO">
 <value>1</value>
 </attribute>
 </row>

• Add a properties file to the App Resource store that contains the text properties and image
reference for the message.

• Add an image for this message type to the resource store.

Implementing a dynamic message

To implement a dynamic style message, an event listener must be implemented to listen
for the CitzenMessagesEvent.userRequestsMessages event. This event
argument contains a reference to the Participant and a list, to which the listener adds
curam.participantmessages.impl.ParticipantMessage Java™ objects.

For more information, see the Javadoc™ API for CitzenMessagesEvent
in the <CURAM_DIR>/EJBServer/components/core/
doc directory. For a full explanation, see the Javadoc™ API for
curam.participantmessages.impl.ParticipantMessage and
curam.participantmessages.impl.ParticipantMessages.

The message text is stored in a properties file in the resource store. A dynamic listener retrieves
the relevant properties from the resource store, and creates the ParticipantMessage object.
The message text for a message can include placeholders. Values for placeholders are added
to ParticipantMessage objects as parameters. The CitizenMessagesController resolves these
placeholders, replacing them with the real values for the participant.

For example, look at this entry from the CitizenMessageMyPayment.properties file:

Message.First.Payment=
 Your next payment is due on {Payment.Due.Date}

The actual payment due date of the payment is added to the ParticipantMessage object as a
parameter. The CitizenMessagesController then resolves the placeholders, populating the text
with real values, and then turns the message into XML that is rendered on the citizen account. A
public CitizenMessageController method also exists, which returns all messages for a citizen as a
list, see the Javadoc™.

From the curam.participantmessages.impl.ParticipantMessage API:

/**
 * Adds a parameter to the map. The paramReference
 * should be present in the message title or body so
 * it can be replaced by the paramValue before the message
 * is displayed.
 *
 * @param paramReference

© Merative US L.P. 2012, 2025

Cúram 8.2.0 316

 * a string place holder that is present in either the
 * message title or body. Used to indicate where the value
 * parameter should be positioned in a message.

 * @param paramValue
 * the value to be substituted in place of the place holder
 */
 public void addParameter(final String paramReference,
 final String paramValue) {

 parameters.put(paramReference, paramValue);
 }

The call to the method would look like this:

participantMessage.addParameter("Payment.Due.Date", "1/1/2011");

Messages can also include links, which are also resolved at run time. Links can use placeholder
values for the link text. A link is defined in a properties file as shown.

Click {link:here:paymentDetails} to view the payment details.

In this example, here is the text to display, and paymentDetails is the name of the link to be
inserted at that point in the text.

For more information, see the Advisor Configuration Guide.

For a dynamic listener to populate this link with a target, it creates a
curam.participantmessages.impl.ParticipantMessageLink object, specifying
a target and a name for the link. The code would look like this example:

ParicipantMessageLink participantMessageLink =
 new ParticipantMessageLink(false,
 "CitizenAccount_listPayments", "paymentDetails");

 participantMessage.addLink(participantMessageLink);

Before the dynamic listener composes the message, it must check to ensure that the message
type in question is enabled. The curam.participantmessages.configuration.
impl.ParticipantMessageConfiguration record for that message type is read, and the
isEnabled method is used to determine whether this message type is enabled. If not, processing
stops.

Note: You can separate the code that listens for the event and the code that composes a
specific message to adhere to the philosophy of “doing one thing and doing it well”.

Implementing a persisted message

To display a persisted message to the citizen, it must be written to the database with the
curam.citizenmessages.persistence.impl.ParticipantMessage API.
Message arguments are handled by persisting a curam.advisor.impl.Parameter
record and associating it with the ParticipantMessage record. Links are handled
by the curam.advisor.impl.Link API. Parameter names map to
placeholders in the message text. Link names relate to the names of links that
are specified in the message text. For more information, see the Javadoc™ for

© Merative US L.P. 2012, 2025

8 Customizing the Cúram Universal Access Responsive Web Application 317

curam.citizenmessages.persistence.impl.ParticipantMessage,
curam.advisor.impl.Parameter, and curam.advisor.impl.Link.

An expiry date time must be specified for each ParticipantMessage. After this date time, the
message is no longer be displayed.

Messages can be removed from the database. If a message needs to be
replaced with a modified version, or removed for another reason, use the
curam.citizenmessages.persistence. impl.ParticipantMessage API.

Each message has a related ID and type that is used to track the record that the message is related
to. For example, meeting messages store the Activity ID and a type of Meeting. Messages can be
read by participant, related ID, and type by the ParticipantMessageDAO.

Before it persists the message, the dynamic listener checks to ensure that the message
type in question is enabled. The curam.participantmessages.configuration.
impl.ParticipantMessageConfiguration record for that message type is read, and the
isEnabled method is used to determine whether this message type is enabled. If not, no further
processing occurs.

Customizing specific message types
Organizations can customize the default message to create a referral message or a service delivery
message.

Referral message

This message type creates messages related to referrals. This is a dynamic message. When
the citizen logs in, a message will be created for each referral that exists for the citizen in
the system, provided that referral has a referral date of today or in the future, and provided
that a related Service Offering has been specified for this referral. The properties file
EJBServer\components\CitizenWorkspace\data\initial\blob\prop
\CitizenMessageReferral.properties contains the properties for the referral
message text, message parameters, links and images. This properties file is stored in the resource
store. This resource is registered under the resource name CitizenMessageReferral. To
change the message text of the message, or to remove placeholders or change links, a new version
of this file must be uploaded into the resource store.

Service delivery message

This message type creates messages related to service deliveries. This is a dynamic message.
When the citizen logs in, a message will be created for each service delivery that exists for the
citizen in the system, provided that service delivery has a status of 'In Progress' or 'Not Started'.
The properties file EJBServer\components\CitizenWorkspace\data\initial
\blob\prop\CitizenMessageServiceDelivery.properties contains the
properties for the service delivery message text, message parameters, links and images. This
properties file is stored in the resource store. This resource is registered under the resource name
CitizenMessageServiceDelivery. To change the message text of the message, or to
remove placeholders or change links, a new version of this file must be uploaded into the resource
store.

© Merative US L.P. 2012, 2025

Cúram 8.2.0 318

Payment messages
The payment message type creates messages based on the payments that are issued or canceled
for a citizen.

The payment messages are persisted to the database. They replace each other, for example, if a
payment is issued and then canceled, the payment issued message is replaced with a payment
canceled message. The properties file EJBServer\components\CitizenWorkspace
\data\initial\blob\prop\CitizenMessageMyPayments.properties
contains the properties for financial message text, message parameters, links, and images. This
properties file is stored in the resource store. This resource is registered in the resource name
CitizenMessageMyPayments. To change the message text of financial messages, or to
remove placeholders or change links, upload a new version of this file to the resource store. The
following table lists the messages that are created when events that are related to payments occur
in the system, and the related property in CitizenMessageMyPayments.properties.

Table 17: Payment messages and related properties

Payment event Message Property

First payment issued on a case Message.First.Payment

Latest payment issued Message.Payment.Latest

Last payment issued Message.Last.Payment

Payment canceled Message.Cancelled.Payment

Payment reissued Message.Reissue.Payment

Payment stopped (case suspended) Message.Stopped.Payment

Payment / Case unsuspended Message.Unsuspended.Payment

Customization of the payment messages expiry date

You can set the number of days that the payment message is displayed to the citizen with a system
property. By default the property value is set to 10 days, but you can override this default from
property administration.

Table 18: Payment message expiry property

Name Description

curam.citizenaccount.payment.message.expiry.days The number of days that the payment message is displayed
to the participant.

Meeting messages
The meeting message type creates messages based on meetings that citizens are invited to,
provided that they are created by using the curam.meetings.sl.impl.Meeting API.

The API raises events that the meeting messages functionality consumes. There are other
ways of creating Activity records without this API, but meetings created in these ways do
not have related messages created as the events are not raised. These messages are persisted
to the database. They replace each other, for example, if a meeting is scheduled and then the
location is changed, the initial invitation message is replaced with one informing the citizen of
the location change. The properties file EJBServer\components\CitizenWorkspace
\data\initial\blob\prop\CitizenMessageMeetingMessages.properties
contains the properties for the meeting messages text, message parameters, links and

© Merative US L.P. 2012, 2025

8 Customizing the Cúram Universal Access Responsive Web Application 319

images. This properties file is stored in the resource store. This resource is registered in
the resource name CitizenMessageMeetingMessages. To change the message
text of meeting messages, or to remove placeholders or change links, a new version
of this file must be uploaded into the resource store. Table 1 describes the messages
created when various events related to meetings occur in the system, and the properties in
CitizenMessageMeetingMessages.properties that relates to each message created.
Different versions of the message text are displayed depending on whether the meeting is an
all day meeting, whether a location has been specified, and whether the meeting organizer
has contact details registered in the system. Accordingly, the property values in this table
are approximations that relate to a range of properties within the properties file. Refer to the
properties file for a full list of the message properties.

Table 19: Meeting messages

Meeting event Message Properties

Meeting invitation Non.Allday.Meeting.Invitation.*, Allday.Meeting.Invitation.*

Meeting update Non.Allday.Meeting.Update.*, Allday.Meeting.Update.*

Meeting canceled Allday.Meeting.Update.*, Allday.Meeting.Cancellation.*

Customization of the meeting messages display date

The number of days before the meeting start date that the message should be displayed to the
citizen can be configured using a system property. By default the property value is set to 10 days,
however, this can be overridden from property administration.

The meeting message expires (it is no longer displayed to the citizen) at the end of the meeting,
that is, the date time at which the meeting is scheduled to end.

Table 20: Meeting message display date property

Name Description

curam.citizenaccount.meeting.message.effective.days The number of days before the meeting start date that the
message should be displayed to the citizen.

Application acknowledgment message
The application acknowledgment message type creates a message when an application is
submitted by a citizen.

The message is persisted to the database. The properties file EJBServer
\components\CitizenWorkspace\data\initial\blob\prop
\CitizenMessageApplicationAcknowledgment.properties contains the
properties for the messages text, message parameters, links and images. This properties
file is stored in the resource store. This resource is registered under the resource name
CitizenMessageApplicationAcknowledgment. To change the message text of the
message, or to remove placeholders or change links, a new version of this file must be uploaded
into the resource store.

© Merative US L.P. 2012, 2025

Cúram 8.2.0 320

Customization of application acknowledgment message expiry date

The number of days the Application Acknowledgment message will be displayed to the citizen
can be configured using a system property. By default the property value is set to 10 days,
however, this can be overridden from property administration.

Table 21: Application acknowledgment message expiry property

Name Description

curam.citizenaccount.
intake.application.acknowledgement.message.expiry.days

The number of days the application
acknowledgment message will be displayed to
the participant.

Customizing the Notices page

By default, the notices relevant to the linked user are listed on the Notices page. You can
replace the default CitizenCommunicationsStrategy implementation with your own custom
implementation.

For example, you can create a custom implementation to retrieve the communications of all of the
household members of the logged-in citizen, instead of just the citizen.

Create an alternative implementation of the
curam.citizenaccount.impl.CitizenCommunicationsStrategy.listCitizenCommunications(ConcernRoleKey)

method for listing the citizen communication records.

In addition, a number of default hooks are available for custom implementations to customize the
behavior of the communication processing module.

Related concepts
The Notices page on page 47
When a citizen is logged in, they can see all communications that are relevant to them on the
Notices page, with sent, received, or normal status indicated. Notices are typically formal written
communications that are issued to meet legal, regulatory, or state requirements, which are created
by using letterhead templates.

Communication processing hooks and events
How electronic notices are managed and supported in the Citizen Portal affects the
communication processing module.

While the default implementation doesn’t address or implement any of the impacts, the following
default hooks are available for the custom implementation to customize the communication
processing module.

curam.core.hook.impl.PreCreateCommunicationHook - can be used in customized scenarios
for any kind of pre creation processing for communication records.

curam.core.hook.impl.PreModifyCommunicationHook - can be used in customized scenarios
for any kind of pre modify processing for communication records.

For e.g.; in situations where create or modify operation is not applicable, this hook points can
be used to redirect the user with customized messages before the creation or modification of
communication records using custom exception handling.

© Merative US L.P. 2012, 2025

8 Customizing the Cúram Universal Access Responsive Web Application 321

curam.core.hook.impl.CommunicationInvocationStrategyHook - can be used as a toggle the
above hooks i.e., PreModifyCommunicationHook and PreCreateCommunicationHook should be
invoked or not.

The following communication processing methods have been updated by the pre creation and pre
modification hooks that are mentioned above to enable further customization.

• curam.core.facade.impl.Communication.modifyWordDocument(ModifyWordDocumentDetails)
• curam.core.facade.impl.Communication.modifyEmail(ModifyEmailCommDetails,

ModifyEmailCommKey)
• curam.core.facade.impl.Communication.modifyRecordedCommunication1(ModifyRecordedCommKey,

ModifyRecordedCommDetails1)
• curam.core.facade.impl.Communication.modifyProForma1(ModifyProFormaCommDetails1)
• curam.core.facade.impl.Communication.createEmailCommunication(CreateEmailCommDetails)
• curam.core.facade.impl.Communication.createEmail(CreateEmailCommDetails)
• curam.core.facade.impl.Communication.createMSWordCommunication1(CreateMSWordCommunicationDetails1)
• curam.core.facade.impl.Communication.createCaseMSWordCommunication1(CreateMSWordCommunicationDetails1)
• curam.core.facade.impl.Communication.createRecordedCommunication1(RecordedCommDetails1)
• curam.core.facade.impl.Communication.createProForma1(CreateProFormaCommDetails1)
• curam.core.facade.impl.Communication.createProFormaCommunication1(CreateProFormaCommDetails1)

Communication events

curam.core.events.CONCERNROLEACOMMUNICATION.INSERT_CONCERN_ROLE_COMMUNICATION

curam.core.events.CONCERNROLEACOMMUNICATION.MODIFY_CONCERN_ROLE_COMMUNICATION

These are the events that are raised post-creation or post-modification of a communication record.
Custom implementations can listen to these events for any kind of post processing requirements.

Customizing appeal request statuses

You can create an implementation to enable the display of appeal request status from an external
appeals system in the citizen account by using the provided API.

About this task
The curam.core.onlineappealrequest.impl.OnlineAppealRequestStatus interface takes an appeal
request as an input and passes back a code-table value. You can modify code-table entries as
required.

• The appeal status text that you see in the application is hardcoded as <description> tags
in two CT_CitizenAppealRequestStatus.ctx files.

• The EJBServer\components\core\codetable
\CT_CitizenAppealRequestStatus.ctx file contains the code table value for
the Appeal Request Submitted status. This is so you can submit an appeal even if Cúram
Appeals is not installed and the Appeals.jar file is not present. You can modify the
description for the Appeal Request Submitted status in this file.

• When Cúram Appeals is installed and the Appeals.jar is present, more appeal
status values are available. You can modify the descriptions for the other code

© Merative US L.P. 2012, 2025

Cúram 8.2.0 322

table status values in the EJBServer\components\Appeal\codetable
\CT_CitizenAppealRequestStatus.ctx file.

For information about editing code tables, see the Server Developer's Guide.
• The color of each appeal status is set by the Badge component in the Social Program

Management Design System. The AppealRequestsComponent.js file contains a
getBadgeDataByCodetable function. The getBadgeDataByCodetable function is a
map of code tables to badge type. For example, the CARS1001 code table is mapped to the
warning badge type so it is displayed in red. In your Web app development environment,
you can see the badge colors by opening the design system Storybook documentation at
@govhhs/govhhs-design-system-react/doc/index.html and expanding to
Components > Badge.

Procedure

1. Identify the appeal request ID from the caseworker application.
2. Use the appeal request ID to associate the appeal request status from the external system with

the appeal request status in Merative ™ Cúram Universal Access.
3. Implement the curam.core.onlineappealrequest.impl.OnlineAppealRequestStatus interface to

return the appropriate code table value based on the OnlineAppealRequest.
For example, a custom implementation of this class might call a remote system and map the
return value to an appropriate code table value.

4. Customize an appeal status message to display in the Citizen Account.
5. If you create a new status, you must map it to a badge type to specify a color to display.

Related tasks
Customizing appeals on page 311
You can customize appeals to suit your organization. You can integrate with an appeals system of
your choice. If you are licensed for the Cúram Appeals application module, the Cúram appeals
functionality is available on installation.

Error logging in the citizen account

When a citizen submits an application, when a citizen clicks Submit a deferred process starts. If a
mapping failure occurs, an error is logged.

Application property

The application property curam.workspaceservices.application.processing.logging.on increases
the level of detail of error messages.

When curam.workspaceservices.application.processing.logging.on is set to true, detailed error
messages are written to the application log files if the submission process fails.

Error codes

Each error message is prepended with an error code. These error codes help to automatically scan
application logs so that unexpected failures can be identified. The error codes that are returned by
the application is defined in the code table file CT_ApplicationProcessingError.ctx.

© Merative US L.P. 2012, 2025

8 Customizing the Cúram Universal Access Responsive Web Application 323

The range of codes that are reserved for internal processing is APROCER001 – APROCER500.
Customers can use the range APROCER501 – APROCER999 to log errors in custom
processing, for example error codes for extension-mapping handler class.

The list of error codes that are returned by the application, and a brief description of the problem,
is listed in Table 1.

Table 22: Application error codes

Code Description

APROCER001 An error occurred creating a person.

APROCER002 An error occurred creating a prospect person.

APROCER003 A relationship error occurred creating a person.

APROCER004 An error occurred creating a case.

APROCER005 An error occurred while performing a "map-attribute" mapping.

APROCER006 An error occurred while performing a "set-attribute" mapping.

APROCER007 An error occurred while performing a "map-address" mapping.

APROCER008 General mapping failure.

APROCER009 Error creating evidence.

APROCER010 More than one PDF form is registered against the program type.

APROCER011 Error setting the alternate id type for a Prospect Person.

APROCER012 Invalid alternate ID value.

APROCER013 Error the Evidence Application Builder has not been correctly configured.

APROCER014 Evidence type not listed in the Mapping Configuration.

APROCER015 No parent evidence entity found.

APROCER016 An error occurred when trying to unmarshal the application XML.

APROCER017 An error occurred when trying to set a field value.

APROCER018 An error occurred when trying to create the PDF document.

APROCER019 An error occurred when trying to create the PDF document. A form code could
not be mapped to a codetable description.

APROCER020 An error occurred when trying a WorkspaceServices mapping extension
handler.

APROCER021 Missing source attribute in datastore entity.

APROCER022 An attribute in an expression is not valid.

APROCER023 Application builder configuration error.

APROCER024 Failed creating DataStoreMappingConfig, no name specified.

APROCER025 Failed creating DataStoreMappingConfig, the name is not unique.

APROCER026 The mapping to datastore had to be abandoned because the schema is not
registered.

APROCER027 There was a problem parsing the Mapping Specification.

APROCER028 General mapping error. Mapping XML included.

APROCER029 Cannot have multiple primary participants.

© Merative US L.P. 2012, 2025

Cúram 8.2.0 324

Code Description

APROCER030 No programs have been applied for.

APROCER031 An error occurred while attempting to map to Person data.

APROCER032 An error occurred while attempting to map to Relationship data.

APROCER033 An error occurred while creating Cases.

APROCER034 An error occurred while creating evidence.

APROCER035 No programs have been applied for.

APROCER036 An error occurred reading data from the datastore.

APROCER037 Specified integrated case type does not exist.

APROCER038 Specified case type does not exist

APROCER039 Duplicate SSN entered for prospect person.

APROCER040 Duplicate SSN entered.

APROCER041 There was a problem with the workflow process.

APROCER042 No primary participant has been identified as part of the intake process.

8.8 Artifacts with limited customization scope

A description of Merative ™ Cúram Universal Access artifacts that have restrictions on their
use. Customers that want to change these artifacts should consider alternatives or request an
enhancement to Universal Access.

Model

Customers are not supported in making changes to any part of the Universal Access model.
Changes in the model such as changing the data types of domains can cause failure of the
Universal Access system and upgrade issues. This applies to the model files in the following
packages:

• WorkspaceServices
• CitizenWorkspace
• CitizenWorkspaceAdmin

Code tables

For more information about a list of restricted code tables, see the Development Compliancy
Guide.

© Merative US L.P. 2012, 2025

9 IEG in the Universal Access Responsive Web Applications 325

9 IEG in the Universal Access Responsive Web
Applications

9.1 IEG in the Cúram Universal Access Responsive Web
Application

Universal Access uses forms to gather information about citizens, such as when they apply for
benefits. Merative ™ Cúram Universal Access Responsive Web Application forms that gather
data as evidence are implemented in IEG, as in the classic Universal Access citizen application.
However, forms are now rendered in the browser by the IEG React Player, rather than the IEG
Java™ player, and in some cases, the IEG behavior is different.

 Script designers can find information describing form design and user experience best practices
with proven patterns for forms in the IEG Form Design Guidance PDF located in the docs folder
of the Universal Access Responsive Web Application asset zip file.

Due to the technology and user interface changes, your existing IEG scripts must be tested before
use, and in most cases, at least some minor changes are needed for existing scripts to work in the
new application.

The default connectivity handling in the Cúram Universal Access Responsive Web Application
helps to prevent citizens losing data in IEG forms by preventing them from leaving pages with
unsaved changes. For more information about data loss prevention in IEG, see the Universal
Access Responsive Web Application Guide.

9.2 IEG elements and attributes specific to the design system
and Cúram Universal Access Responsive Web Application

The following IEG elements and attributes apply to the design system and Cúram Universal
Access Responsive Web Application only.

• Display elements and attributes

• The combo-box element, which is a child element of the question element.
• The explainer element, which is a child element of the cluster, question-page, and

relationship-page elements.
• The hint-text element, which is a child element of the container, list-question,

and question elements.
• The next-button-label element, which is a child element of the question-page,

relationship-page, and summary-page elements.
• The relationship-detail-header element, which is a child element of the

relationship-summary-list element.
• The quick-add-list element, which is a child element of the relationship-page

element.

© Merative US L.P. 2012, 2025

Cúram 8.2.0 326

• Display element attributes

• The grouping-id attribute of the cluster element.
• Flow-control element attribute

• The value 'hidden' for the loop-type attribute of the loop element.
• Meta-display elements

• The class-names element, which is a child element of the layout element.
• The date-picker value for the type child element of the layout element.

For more information about IEG elements, see the Authoring Scripts using Intelligent Evidence
Gathering Guide.

9.3 IEG configuration not currently supported for the Cúram
Universal Access Responsive Web Application

The following IEG configuration is not currently supported by the Cúram Design System or the
Universal Access Cúram Universal Access Responsive Web Application.

• Question matrices
Question matrices display a list of questions that are based on a code table and, for each of
the code table values and each entity, a check box is displayed for you to select the values that
apply to a particular entity.

• Three-field date picker
The three-field date picker is no longer supported. Dates either default to a single-field date
input field or can be configured with a date picker component by using the layout element.

• Grouping individual question help at cluster level
Cluster-level help is supported, however, the compile.cluster.help property, which
groups the help text for each of the questions in a cluster into the cluster help panel is not
supported.

• Display elements and attributes

• The custom-output element, which renders custom HTML on summary pages only.

• The show-page-elements attribute on the edit-link element for editing specific
clusters.

• The footer-field element, which displays values that are calculated from expressions in
the footer-row element of a list.

• The footer-row element, which adds an extra row at the end of a list to display total or
summary information.

• The help-text element, which displays help text, is not supported for pages.

• The icon element, which is used to add images to either the title area of a page or the
sections panel.

• The label-alignment element, which is used in the layout element for a cluster to
control the text alignment of the labels in the cluster.

© Merative US L.P. 2012, 2025

9 IEG in the Universal Access Responsive Web Applications 327

• The label-width element, which is used in the layout element for a cluster to control
the width of the labels in the cluster.

• The num-cols element, which is used in the layout element for a cluster to control the
number of columns in the cluster.

• The type element, which is used in the layout element for a cluster to control the layout
of labels in relation to input controls.

• The width element, which is used in the layout element for a cluster to control the width
of the cluster on the page.

• The legislation element, which creates legislation links at page and question level to
point to relevant legislative information.

• The policy element, which creates policy links at page and question level to point to
relevant policy information

• The skip-field element, which enables a more flexible layout of elements within
clusters or footer rows in lists where no visible display element is needed.

• The row-help element, which specifies help for rows in a list.

• The set-focus attribute of the question-page element, which sets focus for a page.
• Meta-display elements

• The codetable-hierarchy-layout element, which is used in questions with a code
table hierarchy type to control different aspects of the layout.

• Structural, administrative, and other elements and attributes

• The hide-for-control-question attribute on the ieg-script element, which hides
the label and value of control questions for loops when the loop is entered.

• The highlight-validation attribute on the ieg-script element. Validations are now
always displayed with the failing input field.

• The show-progress-bar attribute on the ieg-script element. Progress through
sections is now indicated by text and the section title. For example, STEP 2 OF 4 ·
HOUSEHOLD.

For more information about IEG elements, see the the Authoring Scripts using Intelligent
Evidence Gathering Guide.

9.4 Customizing the Back button in IEG forms

You can customize the behavior of the Back button in IEG forms to suit your applications.

For the best user experience, set the behavior of the Back button in IEG according to whether you
have a single form or multiple forms in your application. Where you have multiple forms, you
typically want to navigate back to the previous form.

• Where you have a single form, always disable the Back button on the first page of the IEG
form. The Back button goes back one page in the form, not in the application, so you don't

© Merative US L.P. 2012, 2025

Cúram 8.2.0 328

need one on the first page. For more information about the show-back-button element, see
the Authoring Scripts using Intelligent Evidence Gathering Guide.

• Typically, an application has multiple forms. By default, a feature with two forms,
Apply and Submit is provided in the universal-access-ui package. The default
feature has two instances of BaseFormContainer, ApplicationFormContainer and
SubmissionFormContainer.

By default, the Apply form has the Back button disabled on its first page.

In Cúram Universal Access Responsive Web Application 3.0.4 or later, the Back button of
the Submit form goes to the Apply form in the SubmissionFormContainer component by
default.

If you are customizing or overriding SubmissionFormContainer component, or using an
earlier version, you must add some code to the SubmissionFormContainer component to
ensure that the Back button goes to a previous form.

• Add a function to the component logic, for example:

 handleBackForFirstPage = () => {
 const { history, submissionFormDetails } = this.props;
 const { applicationFormId } = submissionFormDetails;
 history.push({
 pathname: `${PATHS.APPLY}/${applicationFormId}`,
 });
 };

• Then, inside the render function, pass the function to the BaseFormContainer component
by using the onBackForFirstPage prop, for example:

 render() {
 const { submissionFormDetails, match } = this.props;

 RESTService.handleAPIFailure(this.props.createApplicationUsingFormDetailsError);
 RESTService.handleAPIFailure(this.props.createSubmissionFormError);
 RESTService.handleAPIFailure(this.props.deleteApplicationFormError);
 RESTService.handleAPIFailure(this.props.getSubmissionFormDetailsError);

 if (match.params.submissionFormId && submissionFormDetails) {
 return (
 <BaseFormContainer
 iegFormId={match.params.submissionFormId}
 iegHookBindingKey={HookBindings.SUBMISSION}
 onBackForFirstPage={this.handleBackForFirstPage}
 onExit={this.handleExit}
 onFinish={this.handleFinishScript}
 onSaveAndExit={this.handleSaveAndExit}
 title={(submissionFormDetails &&
 submissionFormDetails.applicationTitle) || ''}
 />
);
 }

 return <AppSpinner />;
 }
}

For more information about the onBackForFirstPage property, see 9.16 Customizing script
behavior with BaseFormContainer on page 347.

© Merative US L.P. 2012, 2025

9 IEG in the Universal Access Responsive Web Applications 329

9.5 Configuring section navigation for forms

If you are developing scripts in IEG, you can enable section navigation to guide people through
forms.

About this task
You can use section navigation on any forms, but it is particularly useful for longer forms. If you
enable section navigation, it is a good idea to use section summary pages so that users can review
their changes regularly.

Procedure

In your IEG script, add the show-section element to the ieg-script element.

9.6 Configuring progress information for forms

If you are developing pages in IEG, you can show progress text and the section title so citizens
can see where they are in the script, for example, STEP 2 OF 4 · HOUSEHOLD.

Add the following IEG configuration property to the ieg-config.properties file to
configure the text. The section title is added automatically.

Text progress bar indicator
progress.bar.indicator.text=Step %1s of %2s

Where %1s is the current step number and the %2s is the total number of steps on the script. The
message is calculated based on the total number of sections and the current section.

The IEGPageMetadata(JSON); component contains all of the metadata for each IEG form. The
text progress indicator is displayed if IEGPageMetadata finds the metadata['ieg-config']
['progress-indicator'] element in the JSON.

9.7 Configuring dynamic titles on forms

If you are developing pages in IEG, you can configure the relationship pages with more relevant
titles that are based on the user's responses.

The relationship page title accepts an International Components for Unicode (ICU) message
template. Page titles and subtitles accept a specific formatting syntax based on ICU. It should be
used in loops and will give more context to the users.

These six keywords are defined:

• index

• innerIndex

• outerIndex

• ordinal

• innerOrdinal

© Merative US L.P. 2012, 2025

Cúram 8.2.0 330

• outerOrdinal

You can use index and ordinal in simple non-nested loops. If they are used in a nested loop, it
is synonymous to outerIndex and outerOrdinal.

Refer to these examples.

"Add {ordinal} member" displays Add first member, Add second member, ...

"Add the {innerOrdinal} income for the {outerOrdinal} member" displays Add
the first income for the first member ...

"{index, select, 0 {Add your {innerOrdinal} income} other {Add %1s's

{innerOrdinal} income}}" displays Add your first income or Add Jane's first income
depending on the value of index (this is equal to ordinal - 1).

"Ajouter la {ordinal}#feminine# personne" displays Ajouter la première personne.

"Ajouter la {innerOrdinal}#feminine# recette du {outerOrdinal}#

%spellout-ordinal-masculine# membre" displays Ajouter la première recette du
premier membre.

You can define the title as follows:

{index, select, 0 {Your relationships} other {{personName}'s relationships}}

The outcome of this message template on the first relationship question page is Your
relationships. On the following relationship question pages, it shows [personName]’s
relationships. The reserved word personName displays the person's first name on the title of the
page.

9.8 Configuring rich text on forms

You can configure rich text to display with a number of IEG display elements in IEG forms. You
can also configure external links in rich text to open in a new tab or window.

About this task

Rich text is supported in the following IEG display elements that support text:

• cluster title, help, and description
• container title, help, and description
• display-text

• divider

• list title, help, and description
• question label and help
• subtitle

For more information about IEG elements, see the Authoring Scripts using Intelligent Evidence
Gathering Guide.

© Merative US L.P. 2012, 2025

9 IEG in the Universal Access Responsive Web Applications 331

Configuring external links to open in a new tab or window

You can configure external links to open in a new tab or window in IEG forms. By default, links
open in the current tab.

About this task

For security reasons, HTML in rich text is sanitized to remove certain attributes before display,
including the HTML target attribute. You must configure the rich text to leave the target attribute
in the sanitized content so that the link opens in a new tab or window.

For example, the my link link in rich text opens in the current tab
as intended. The my link link is intended
to open in a separate tab or window. However, because the rich text is sanitized with DOMPurify
before display, the target attribute is removed and the link opens in the current tab by default.

To configure DOMPurify to leave specific attributes, you must add dompurify to the
dependencies and specify a DOMPurify persistent configuration in any JavaScript or JSX
code that runs when the app is loaded. For example, App.js. For more information about
DOMPurify, see https://github.com/cure53/DOMPurify#persistent-configuration.

Only one active configuration at a time is allowed. After you set the configuration, any
extra configuration parameters that are passed to DOMPurify.sanitize are ignored. The
DOMPurify configuration persists until the next call to DOMPurify.setConfig, or until
DOMPurify.clearConfig is called to reset it.

Procedure

1. Add dompurify to the dependencies in the package.json file.

npm install dompurify

2. To configure DOMPurify to leave the target attribute, specify the following DOMPurify
persistent configuration in any JavaScript or JSX code that runs when the app is loaded.

import DOMPurify from 'dompurify';
DOMPurify.setConfig({ ADD_ATTR: ['target'] });

9.9 Configuring hint text for forms

You can use short sentences of hint text to explain the expected input format or content in IEG
forms. For example, you can explain the expected format for a telephone number.

About this task

Hint text is suitable for short sentences and does not support HTML tags. If you want to add more
text or format text with HTML tags, use the help-text or explainer elements instead. For
more information, see the Authoring Scripts using Intelligent Evidence Gathering Guide.

© Merative US L.P. 2012, 2025

https://github.com/cure53/DOMPurify#persistent-configuration

Cúram 8.2.0 332

Note: Specific globalization considerations apply to the date format when it is
used in hint text and messages. Ensure that you have the same date format in the
REACT_APP_DATE_FORMAT environment variable, and in theDateAdapter_DateFormat and
Errors_date messages in the intelligent-evidence-gathering-locales package.

Procedure

In your IEG script, you can add the hint-text element to any container, question or
list-question element.

For example:

• Container

<container show-container-help="true">
 <title id="primaryPhoneNumber">primaryPhoneNumber</title>
 <hint-text id="PhoneNumber.Hint">PhoneNumber.Hint</hint-text>
 <help-text id="PhoneNumber.Help">Telephone number must only contain numbers,
 parentheses, or dashes and be 10 digits. For example, (212) 555-0010 or
 2125550010.</help-text>
 <question id="primaryPhoneType" mandatory="true">
 <help-text id="PhoneNumber.Help">Telephone number must only contain
 numbers, parentheses, or dashes and be 10 digits. For example, (212) 555-0010 or
 2125550010.</help-text>
 <label id="PrimaryPhoneType.Label">Primary Phone Type</label>
 </question>
</container>

• Question

<question id="firstName" mandatory="true">
 <hint-text id="FirstName.Hint">FirstName.Hint</hint-text>
 <label id="FirstName.Label">First Name</label>
</question>

• List question

<list-question entity="Person" id="currentlyWorking" mandatory="false">
 <label id="CurrentlyWorking.Label">Please select the people that have a job:</
label>
 <hint-text id="CurrentlyWorking.Hint">CurrentlyWorking.Hint</hint-text>
 <item-label>
 <label-element attribute-id="firstName" />
 </item-label>
</list-question>

9.10 Configuring explainer text for forms

You can use the explainer element to provide extra text in IEG forms that is initially hidden
and that can be expanded to show further explanation. For example, you can provide background
information that a user can choose to expand only if needed.

About this task

You can use the explainer element to provide a large amount of text without cluttering up
the form. For more information, see the Authoring Scripts using Intelligent Evidence Gathering
Guide.

© Merative US L.P. 2012, 2025

9 IEG in the Universal Access Responsive Web Applications 333

Procedure

In your IEG script, add the explainer element to any cluster, question-page, or
relationship-page element.

For example:

• cluster

<cluster>
 <explainer>
 <title id="ExplainerCluster.Title">Why do we ask for your Social Security
 Number?</title>
 <description id="Explainer.Description">Your Social Security Number
 ensures that your application is unique to you and reduces processing time.</
description>
 </explainer>
 <question control-question="false" id="isSSN" mandatory="true" multi-
select="false" show-field-help="false">
 <label id="IsSSN.Label">What is your Social Security Number?</label>
 </question>
 </cluster>

• question-page

<question-page>
<explainer>
 <title id="ExplainerSSN.Title">Why do we ask for your Social Security Number?</
title>
 <description id="ExplainerSSN.Description">Your Social Security Number ensures that
 your application is unique to you and reduces processing time.</description>
 </explainer>
</question-page>

• relationship-page

<relationship-page>
<explainer>
 <title id="ExplainerSSN.Title">Why do we ask for your Social Security Number?</
title>
 <description id="ExplainerSSN.Description">Your Social Security Number ensures that
 your application is unique to you and reduces processing time.</description>
 </explainer>
</relationship-page>

9.11 Configuring the 'Help' label for forms

You can change or remove the 'Help' label from the help icon for input controls in the application
by overriding the default text. To remove the label, override the default text with a single space
character in a custom messages file.

Procedure

1. Create a src/locale/messages_en.json messages file with a single space character as
the value for the help label message ID, WidgetHelp_helpToggleText.

{
 "WidgetHelp_helpToggleText": " "
}

© Merative US L.P. 2012, 2025

Cúram 8.2.0 334

2. Update the src/config/intl.config.js file in the English locale to point to the custom
messages file.

// [...] {
 locale: 'en',
 displayName: 'English',
 localeData: () => {
 require('@formatjs/intl-pluralrules/locale-data/en');
 require('@formatjs/intl-relativetimeformat/locale-data/en');
 },
 messages: require('../locale/messages_en'),
 },// [...]

3. Rebuild and deploy the application to see your changes.

Related tasks
Changing text in the application on page 131
You can change the default text, images, colors, or typography in the application. In this scenario,
an English language message is changed. Text is changed by providing custom text that overrides
the default text for any language.

9.12 Configuring required or optional labels for form fields

You can choose whether to indicate the required fields or the optional fields in IEG forms. As the
majority of questions in a typical form should be required, indicating the optional questions rather
than the required questions typically results in a less cluttered form. By default, optional fields are
highlighted in IEG forms.

About this task
By default, fields that are not configured as required in the IEG script are labeled as Optional
and required fields are not labeled. If you choose to indicate required fields instead, fields that are
configured as required in the script are labeled Required and optional fields are not labeled.

Procedure

Show labels for required questions only by adding the REACT_APP_DISPLAY_REQUIRED_LABEL
environment variable to your .env file with a value of true.
For example:

REACT_APP_DISPLAY_REQUIRED_LABEL=true

9.13 Configuring input formats and constraints for form fields

You can customize field inputs and constraints on IEG forms, such as phone numbers, social
security numbers (SSN), dates, currencies, and percentages. You can adjust the width of form
fields to match the length of the expected input, and choose to use a date picker for dates where
appropriate.

About this task

Where users need to type confidential information, you can obscure the input values to ensure
privacy. This configuration is done in the data store schema by setting a new data type and cannot

© Merative US L.P. 2012, 2025

9 IEG in the Universal Access Responsive Web Applications 335

be used with masks. Instead of using a mask, you can also implement any extra constraints,
such as the number of characters, in the data store schema by creating a custom domain, see
Configuring inputs to be obscured for privacy on page 339.

Masked input fields increase input field readability by formatting or constraining typed data.
You can apply input masks with the IEG class-names element, which is a child element of the
layout element. The class-names element adds the content of the element to the HTML that
is generated for the component, this element accepts multiple values that are separated by a space.
For more information about the IEG layout element, see the Authoring Scripts using Intelligent
Evidence Gathering Guide.

You might need a custom mask that is not supported by the class-names element, such as
variants of the Social Security Number (SSN) or Social Insurance Number (SIN). To create a
custom mask, use the mask-format element, which is a child element of the layout element, to
set custom masks with Cleave.js format.

• Input field masks

If the class name matches any of the reserved input mask class names, that class name is
applied to the HTML control input. If the class name does not match a reserved input mask
class name, the class name is applied to the <div> element that contains the HTML element
(cluster, question, or list-question). You can use the following design system CSS
classes as input masks to format and constrain input values for questions:

• wds-js-input-mask-currency

Masks input for currencies. The character limit is 21 characters. You can also set optional
environmental variables for currency symbols, see Configuring currency symbols on page
338.

• wds-js-input-mask-numeral

Masks input for numerical input.
• wds-js-input-mask-yyyy-mm-dd

Masks input for the YYYY-MM-DD date format.
• wds-js-input-mask-percentage

Masks input for percentage characters.
• wds-js-input-mask-phone

Masks input for phone number fields according to the defined locale for the application.
Configuring the phone number input mask requires some additional steps and you can also
set optional environmental variables for delimiters and country codes, see Configuring
phone numbers on page 337.

• wds-js-input-mask-postal-code

Masks input for 2 groups of 3 characters that are separated by a space, XXX XXX, such as
a Canadian postal code. Alphabetic characters are converted to uppercase.

• wds-js-input-mask-sin

Masks input for 3 groups of 3 characters that are separated by spaces, XXX XXX XXX,
such as a Canadian Social Insurance Number (SIN).

• wds-js-input-mask-ssn

© Merative US L.P. 2012, 2025

https://nosir.github.io/cleave.js/

Cúram 8.2.0 336

Masks input for digits that are separated by dashes and grouped as follows, XXX-XX-
XXXX, such as a US social security number (SSN).

• wds-js-input-layout-size--field_size

Adjusts the width of form fields to match the length of the expected input. Where
field_size is one of the following sizes:

• x-small
Use for 2 - 3 characters, such as DD, MM, or title.

• small
Use for 4 - 6 characters, such as ZIP code, postal code, or CVV number.

• medium
Use for around 8 characters, such as SSN or DD/MM/YYYY.

• large
Use for around 16 characters, such as credit card numbers.

• x-large
Use for around 24 characters, such as email addresses.

• Form field width

To avoid confusion about expected inputs, always match the width of form fields to the
expected input. For example, use a form field that matches the length of the SSN.

• Date picker

For date questions, in addition to the masked input, you can choose to add a date picker for
dates by setting the value of the type child element of the layout element to date-picker.
For those questions, you can then use the calendar or type the date. By default, date questions
are displayed with the masked input field if no layout type is specified.

Procedure

1. In your IEG script, add the appropriate CSS classes to the layout element for the question.
For example:

<question id="ssn" mandatory="true">
 <label id="SSN.Label">SSN</label>
 <layout>
 <class-names>custom-css-class1 wds-js-input-mask-ssn wds-js-input-layout-size--
medium
 </class-names>
 </layout>
</question>

2. If you want to add a custom mask, use a mask-format element in the layout element.
Define the mask-format text value by using an XML CDATA section with a JSON object
with reference to the Cleave.js documentation,
For example,

<layout><mask-format><![CDATA[{ "delimiter": " ", "blocks": [2, 2, 2],
 "numericOnly": true }]]></mask-format><layout>

© Merative US L.P. 2012, 2025

https://nosir.github.io/cleave.js/

9 IEG in the Universal Access Responsive Web Applications 337

Configuring phone numbers

You can configure an input mask class name to format phone number fields in IEG forms
according to the defined locale for the application. You can also configure a phone number
delimiter or a country prefix if needed.

Procedure

1. Add cleave.js as a dependency in your package.json file.

"cleave.js": "<version>"

Where version is the version that you want to use.
2. Import the region-specific .js file in your initializing .js file.

For example:

import 'cleave.js/dist/addons/cleave-phone.[country]';

Where country is the locale that you want to use.
3. Add a REACT_APP_PHONE_MASK_FORMAT environment variable to your .env file.

REACT_APP_PHONE_MASK_FORMAT=[country]

Where country is the locale that you want to use.
4. In your IEG script, add the wds-js-input-mask-phone class name to the question. For

example:

<question id="primaryPhoneNumber" mandatory="true" show-field-help="true">
 <layout>
 <class-names>wds-js-input-mask-phone</class-names>
 </layout> <label id="PrimaryPhoneNumber.Label">Primary Phone Number</label>
</question>

5. Optional: You can set a custom delimiter for phone numbers by adding the
REACT_APP_PHONE_MASK_DELIMITER environment variable to your .env file.
For example, to convert 1 636 5600 5600 to 1-636-5600-5600, set the environment variable as
follows:

REACT_APP_PHONE_MASK_DELIMITER=-

6. Optional: You can set a fixed country code for phone numbers by adding the
REACT_APP_PHONE_MASK_LEFT_ADDON environment variable to your .env file.
For example, to convert 1-636-5600-5600 to +1-636-5600-5600, set the environment variable
as follows:

REACT_APP_PHONE_MASK_LEFT_ADDON=+

© Merative US L.P. 2012, 2025

Cúram 8.2.0 338

Configuring date formats

You can configure the date format in IEG forms by setting the REACT_APP_DATE_FORMAT
environment variable.

About this task

By default, the date format is MM/DD/YYYY if you do not set a value for the
REACT_APP_DATE_FORMAT environment variable. If you set an invalid value, the default date
format is used.

The valid values are:

dd-mm-yyyy
mm-dd-yyyy
yyyy-mm-dd

Note: Specific globalization considerations apply to the date format when it is
used in hint text and messages. Ensure that you have the same date format in the
REACT_APP_DATE_FORMAT environment variable, and in the DateAdapter_DateFormat
and Errors_date messages in the intelligent-evidence-gathering-locales
package.

Procedure

Change the date format by adding the REACT_APP_DATE_FORMAT environment variable to your
.env file.
For example, to change the date format to DD/MM/YYYY, set the environment variable as
follows:

REACT_APP_DATE_FORMAT=dd-mm-yyyy

Note: The date display format supports the forward slash (/) date separator character only.
However, when you specify the date configuration you must use the dash (-) character. For
example, yyyy-mm-dd. The use of a custom date separator character is not supported.

Configuring currency symbols

You can configure the currency symbol that is displayed for currency fields in IEG forms.
Configure the REACT_APP_CURRENCY_MASK_ADDON environment variable to specify a currency
symbol to display either before or after the currency amount. The alignment of the currency
symbol is based on the locale.

About this task

For more information about how the currency symbol is aligned based on locale, see the
developer.mozilla.org documentation.

© Merative US L.P. 2012, 2025

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Intl/NumberFormat

9 IEG in the Universal Access Responsive Web Applications 339

The value of the REACT_APP_CURRENCY_MASK_ADDON environment variable takes
precedence over the deprecated REACT_APP_CURRENCY_MASK_LEFT_ADDON and
REACT_APP_CURRENCY_MASK_RIGHT_ADDON environment variables.

Procedure

Use the following option to configure and align the currency symbol based on the locale by
configuring the REACT_APP_CURRENCY_MASK_ADDON environment variable.
• Add the REACT_APP_CURRENCY_MASK_ADDON environment variable to your .env file.

For example, to set the currency symbol to US dollars, enter the following command:

REACT_APP_CURRENCY_MASK_ADDON=$

Use the following deprecated option to explicitly align the currency symbol on either the left side
or the right side.
•

Add a currency symbol for currency fields by adding
the REACT_APP_CURRENCY_MASK_LEFT_ADDON or
REACT_APP_CURRENCY_MASK_RIGHT_ADDON environment variables to your .env file.
For example, to set the currency symbol for US dollars, enter the following command to set
the environment variable:

REACT_APP_CURRENCY_MASK_LEFT_ADDON=$

If both environment variables are set, REACT_APP_CURRENCY_MASK_LEFT_ADDON takes
precedence.

Configuring inputs to be obscured for privacy

Where users need to type confidential information, you can obscure the input values to ensure
privacy. Users can show or hide the text as they type. The user input is obscured when they
type the confidential information, such as their Social Security Number (SSN). By default no
constraints are applied, but you can create a custom domain to apply custom constraints where
needed. For example, you can restrict the number of characters.

About this task

You can obscure inputs by setting the data type for a specified attribute of an entity to
IEG_OBSCURED in the data store schema. This configuration cannot be used with masks. Instead
of using a mask, you can also implement any extra constraints, such as the number of characters,
in the data store schema by creating a custom domain.

For more information about data types and IEG domains, see the Authoring Scripts using
Intelligent Evidence Gathering Guide.

For more information about data store schemas, see the Authoring Scripts using Intelligent
Evidence Gathering Guide.

Procedure

1. In the entity, identify the attributes for which you want to obscure the input.

© Merative US L.P. 2012, 2025

Cúram 8.2.0 340

For example, the ssn attribute for the social security number.
2. Edit the data store schema .xsd file for the IEG script and in the entity, change the type of

the attribute to IEG_OBSCURED.
For example,

<xsd:attribute name="ssn" type="IEG_OBSCURED"/>

3. Optional: To apply further input constraints to the field, create a custom domain.
For example, to constrain the user from typing more than 9 characters in the input field for an
SSN, you can create a custom domain called SSN_OBSCURED.
a) Create a custom domain like the following domain.

....
 <xsd:include schemaLocation="IEGDomains"/>
<!-- NEW TYPE BEGIN-->
 <xsd:simpleType name="SSN_OBSCURED">
 <xsd:restriction base="IEG_OBSCURED">
 <xsd:minLength value="8"/>
 <xsd:maxLength value="9"/>
 </xsd:restriction>
 </xsd:simpleType>

<!-- NEW TYPE END-->
 <xsd:element name="Application">
.....

b) Edit the data store schema .xsd file for the IEG script and change the type of the ssn
attribute to SSN_OBSCURED.
For example,

<xsd:attribute name="ssn" type="SSN_OBSCURED"/>

9.14 Configuring code-table hierarchies for form fields

You can use code-table hierarchies to add two related questions in IEG forms. When you answer
the first question, the second question is enabled.

About this task
Any question where the data type is defined as a code table hierarchy is displayed as two separate
questions in vertically aligned drop-down menus. The first question menu corresponds to the root
code table in the hierarchy, and displays the label that is specified for the question. The second
question menu corresponds to the second-level code table in the hierarchy, and displays a label
that corresponds to the code table display name. The second menu is disabled until a selection is
made in the first menu. Summary pages display both questions.

Displaying a code-table hierarchy value in a list, or the codetable-hierarchy-layout
options, are not supported.

Procedure

To ensure that the label is displayed correctly for the second question, you must ensure
that, for each code table name element, there is a corresponding locale element within the
displaynames element in your code-table definition.

© Merative US L.P. 2012, 2025

9 IEG in the Universal Access Responsive Web Applications 341

For example, see the following code-table definition.

<codetables package="curam.codetable" hierarchy_name="CountyCityHierarchy">
 <!-- Parent codetable - County -->
 <codetable java_identifier="COUNTYCODE" name="CountyCode">
 <displaynames>
 <name language="en">County</name>
 <locale language="en">County</name>
 </displaynames>
 <!-- code items... -->
 </codetable>
 <!-- Child codetable - City -->
 <codetable java_identifier="CITYCODE" name="CityCode"
 parent_codetable="CountyCode">
 <displaynames>
 <name language="en">City</name>
 <locale language="en">City</name>
 </displaynames>
 <!-- code items... -->
 </codetable>
</codetables>

9.15 Implementing a combo box for form fields

You can implement a combo box question with an auto-complete search function to help you
to complete form fields in IEG forms as you type. For example, known address fields can be
automatically selected when you enter an address. You can implement the option to add new
items if they are not found, for example, add an address.

About this task

You must implement a search function in the Cúram Universal Access Responsive Web
Application and register the search function with IEGRegistry. The search function can point
to an internal or external search service to provide the information. Then, update the datastore
schema definition and your IEG script.

Implementing search functions for ComboBox components

You can implement the ComboBox component to search external data sources as you type in
a form field, with a built-in filter function. Implement a search function and associated error
handling, and make that search function available to the IEG form. If needed, you can implement
an Add New option so that users can add an item if it is not found.

Procedure

1. Implement the search function. A search function is a JavaScript™ function that receives
one parameter that contains the value of the ComboBox, and returns an array of items to be
displayed by the ComboBox.

The response of search-function is an array of items, {items}. Each item is an object
with the following structure:

{
 id:"key"
 value:"value"
 item: { "attribute1": "value1", "attribute2": "value2" },
}

© Merative US L.P. 2012, 2025

Cúram 8.2.0 342

Where:

• id is a mandatory attribute to store the ID in the data store.
• value is the value of the question to store in the data store and to render in the list of

options of the ComboBox.
• item is an optional complex object with the structure of the formData to be populated if

that element is selected in the ComboBox component.

The structure of the item object must match the formData of the target entity. The following
simple example populates the ResidentialAddress entity:

{
 'street1': 'street1',
 'street2': 'street2',
 'city': 'city',
 'zipCode':' zipCode',
 'state': 'state',
}

2. Register the search function with the IEGRegistry object. IEGForm has access to
IEGRegistry and all registered functions. IEGForm reads the custom functions from
IEGRegistry and stores them on its formContext so IEGForm can call custom functions.

1. Implement the JavaScript™ function in any .js file.
2. Import IEGRegistry in a JavaScript™ initial file, such as App.js, and add the custom

function to the registry. For example:

 import { IEGRegistry } from '@spm/core';
 import { searchCity, customFunction } from './examples/playground/
customFunctions';
...

const App = () => {
 IEGRegistry.registerComboBoxSearchFunctions({ searchCity, customFunction });

};

Add New option

If you want to render an Add New option in the menu that is displayed by the ComboBox, the
response of the JavaScript™ function must follow the structure:

{
 newItem: { id: '-1', label: 'Add New', value: ' ', position: 'top' },
 items,
 }

Where:

• newItem is a complex object with the definition of the Add New option.
• id is the ID of the new option.
• label is the label of the new option.
• value is the value of the new option.
• position is the position where the new option renders. The possible values are bottom and

top.

© Merative US L.P. 2012, 2025

9 IEG in the Universal Access Responsive Web Applications 343

Error messages

The search function must implement its own logic to handle errors if an error needs to be
displayed on the UI, the response of the search function must be:

 {errorMessage: 'Controlled Error Message'}

The error message is displayed underneath the ComboBox.

Customizing Screen Reader Announcements for ComboBox search
results

Aside from the default behavior where the Screen Reader announces the number of results found
as the user types in the ComboBox, you can use this feature to announce messages that are more
tailored to your needs.

Procedure

1. Implement a function to generate custom messages. This is a JavaScript™ function that
receives and object that contains the following properties:

Source: https://github.com/downshift-js/downshift?tab=readme-ov-file#geta11ystatusmessage

Property Type Description

highlightedIndex number/null The currently highlighted index

highlightedItem any The value of the highlighted item

inputValue string The current input value

isOpen boolean The isOpen state

itemToString function(any) The function for getting the string
value from one of the options

previousResultCount number The total items showing in the
dropdown the last time the
status was updated

resultCount number The total items showing in the
dropdown

selectedItem any The value of the currently
selected item

You can use a combination of these properties which are updated with each keystroke from
the user to generate a string that will be read aloud by the AT tool of your choosing.

Note: Please note that if an empty string is returned, the Screen Reader won’t announce
anything.

© Merative US L.P. 2012, 2025

https://github.com/downshift-js/downshift?tab=readme-ov-file#geta11ystatusmessage

Cúram 8.2.0 344

The following is an example of a customization function that slightly changes the default
behavior by not announcing anything if the user didn’t input at least 3 characters, and then
depending on the number of results found shows a different message:

const screenReaderResultAnnouncement = downshiftObject => {
 const { inputValue, resultCount } = downshiftObject;
 if (inputValue.length < 3) {
 return '';
 }

 if (resultCount === 0) {
 return 'No results found';
 }
 if (resultCount === 1) {
 return `1 result found for ${inputValue}`;
 }
 return `${resultCount} results found for ${inputValue}`;
};

You can implement this JavaScript™ function in any .js file as long as you export it.
2. Register your custom functions with IEGRegistry

Like registering the search function, we can use IEGRegistry to register the custom
function that was created. However, it is necessary to register your custom Screen Reader
announcements function under screenReaderResultAnnouncement property name and using
the registerComboBoxCustomFunctions method of the IEGRegistry. This is achieved by:

• Naming the function screenReaderResultAnnouncement (like shown in the example) when
you define it and using JavaScript™’s Shorthand Property Assignment as follows:

import { IEGRegistry } from '@spm/core';
import { screenReaderResultAnnouncement } from './path/to/custom/functions'

IEGRegistry.registerComboBoxCustomFunctions({ screenReaderResultAnnouncement });

/**
 * App component entry point.
 */
const App = () => {…}

• Giving the function any custom name, and assigning it to the
screenReaderResultAnnouncement property of the object we pass to the
registerComboBoxCustomFunctions method as follows:

import { IEGRegistry } from '@spm/core';
import { customFunctionName } from './path/to/custom/functions'

IEGRegistry.registerComboBoxCustomFunctions({
 screenReaderResultAnnouncement: customFunctionName
});

/**
 * App component entry point.
 */
const App = () => {…}

© Merative US L.P. 2012, 2025

9 IEG in the Universal Access Responsive Web Applications 345

Configuring combo box scripts and schemas

Add the combo-box element to a question in your IEG script and configure the combo-box
element attributes. Add a cluster after the question to display the information to the user when
they select a menu item. Update the schema definition with the appropriate elements.

About this task

The question schema type must be a string. You cannot use a question with a combo-box
child element as a control question.

You can review the design system usage guidance for the ComboBox component. In your
development environment, open the Social Program Management Design System Storybook
documentation at <path>@govhhs/govhhs-design-system-react/doc/
index.html and search for ComboBox.

For more information about the IEG combo-box element, see the Authoring Scripts using
Intelligent Evidence Gathering Guide.

Procedure

1. Add the combo-box child element to the question element. For example:

<question-page id="AboutTheApplicant_GB" read-only="false" set-focus="false" show-
back-button="false" show-exit-button="true" show-next-button="true" show-person-
tabs="false" show-save-exit-button="true" entity="Person" >

<!-- ComboBox -->
<cluster entity="SearchAddress">
 <title id="SearchAddress.Title">Your address</title>
 <question id="fullAddress" mandatory="true" show-field-help="false">
 <label id="FullAddress.Label">Search for your address</label>
 <combo-box key="id" search-function="searchAddress" target-
entity="ResidentialAddress" filter-items="true" />
</question>
</cluster>
 </question-page>

Where:

• key is the id to be stored in the data store and renders as a hidden widget on the front end.
It is mandatory and the entity must define this property in the schema definition. The key
schema type must be a string.

• search-function is the name of the JavaScript™ search function to be called on each
keydown event.

• target-entity is an optional attribute to show information to the user when they select
a combo box menu item. In target-entity, specify the cluster entity to be populated
with the value of the search-function result item attribute. Update the script to display
the cluster entity on the page, the target entity must be shown on the same page as the
combo box. If more than one cluster on the page is related to the same entity name, the first
cluster that matches the entity attribute value with the target-entity value is populated.

• filter-items is an optional attribute that, if true, filters the items as you type with the
built-in filter. By default, it is false.

© Merative US L.P. 2012, 2025

Cúram 8.2.0 346

2. Add a cluster to display the target-entity information when a user selects a menu item.

<question-page id="AboutTheApplicant_GB" read-only="false" set-focus="false" show-
back-button="false" show-exit-button="true" show-next-button="true" show-person-
tabs="false" show-save-exit-button="true" entity="Person" >

<!-- ComboBox -->
<cluster entity="SearchAddress">
 <title id="SearchAddress.Title">Your address</title>
 <question id="fullAddress" mandatory="true" show-field-help="false">
 <label id="FullAddress.Label">Search for your address</label>
 <combo-box key="id" search-function="searchAddress" target-
entity="ResidentialAddress" filter-items="true" />
</question>
</cluster>

<!-- ComboBox -->
<cluster entity="ResidentialAddress">
 <title id="Address.Title">Enter address</title>
 <help-text id="ADHelp">You must enter the address in which you physically
 reside (residential address).</help-text>
 <question control-question="false" id="street1" mandatory="true" multi-
select="false" show-field-help="false">
 <label id="Street1.Label">Street 1</label>
 </question>
 <question control-question="false" id="street2" mandatory="false" multi-
select="false" show-field-help="false">
 <label id="Street2.Label">Street 2</label>
 </question>
 <question control-question="false" id="city" mandatory="false" multi-
select="false" show-field-help="false">
 <label id="City.Label">City</label>
 </question>
 <question control-question="false" id="zipCode" mandatory="false" multi-
select="false" show-field-help="false">
 <label id="Zipcode.Label">ZIP code</label>
 </question>
</cluster>
 </question-page>

3. Edit the schema definition and add an element for the combo box and the target entity, for
example:

<!-- ComboBox -->
<xs:element name="SearchAddress">
 <xs:complexType>
 <xs:attribute name="id" type="IEG_STRING" />
 <xs:attribute name="fullAddress" type="IEG_STRING"/>
 </xs:complexType>
</xs:element>
<!-- Target Entity -->
 <xs:element name="ResidentialAddress">
 <xs:complexType>
 <xs:attribute name="street1" type="IEG_STRING"/>
 <xs:attribute name="street2" type="IEG_STRING"/>
 <xs:attribute name="city" type="IEG_STRING"/>
 <xs:attribute name="zipCode" type="IEG_STRING"/>
 </xs:complexType>
 </xs:element>
2. Associate that new element to a Person entity.
<xs:element name="Person">
 <xs:complexType>
 <xs:sequence minOccurs="0">
 <xs:element ref="SearchAddress" minOccurs="0" maxOccurs="1"/>
 <xs:element ref="ResidentialAddress" minOccurs="0" maxOccurs="unbounded"/>

 </xs:element>
</xs:complexType>

© Merative US L.P. 2012, 2025

9 IEG in the Universal Access Responsive Web Applications 347

9.16 Customizing script behavior with BaseFormContainer

The behavior of scripts in the application is controlled by the BaseFormContainer.js
container component. Each form calls this container component, which controls script behavior
such as whether partial submission is allowed, or where to go on exiting the script. You can
customize the behavior for individual scripts by modifying BaseFormContainer properties.

About this task

The following BaseFormContainer properties are available:

• iegFormId. (Mandatory) This property corresponds to the IEG execution ID that is obtained
from one of the following options:

• An API that starts the script, by creating the execution with the necessary script ID and
data store schema.

• Existing executions that can be resumed.

Note: Later, the ID is used on the server to ensure that the current user matches the user
who is associated with the execution in the CitizenScriptInfo table. The ID also
ensures that the execution is not completed.

• title. (Mandatory) The title to be displayed in the header. You can convert the property by
using the formatMessage for react-intl.

• isLoginOrSignupAllowed. If the property is true when Save and exit is clicked and the
user is not logged in, the log-in screen is displayed. The default value is True.

• isPartialSubmissionAllowed. Specifies that partially completed scripts can be
submitted. The corresponding option must be added to the header. The default value is False.

• onExit. Specifies what happens when a user exits the script without saving. By default, it
goes to the home page.

• onFinish. Specifies what happens when the last page of the script is submitted. By default, it
goes to the home page.

• onPartialSubmission. Specifies what happens when a partial script is submitted. By
default, it saves the current page and then starts the OnFinish handler.

• onSaveAndExit. Specifies what happens when a user saves and exits the script. By default, it
saves the current page and determines what page to go to. If the user is not logged in, the log-
in page is displayed. If the user is logged in, the dashboard is displayed.

• onRef. A function that receives the instance of the current BaseFormContainer to provide
access to its defined functions and props. You can use this function to customize the default
BaseFormContainer functions. For an example of using the onRef function to customize
the behavior of Save and exit, see the SampleApplicationFormComponent in the
sampleApplication.

• onBackForFirstPage. A function that is called on the back-button click event of the first
page of a form to redirect back to another form. The function contains the code responsible
for the redirection. For example, you might want to go back to an application script from a
submission script to change something before you submit an application.

© Merative US L.P. 2012, 2025

Cúram 8.2.0 348

Procedure

To modify the behavior for an existing form feature, follow the standard steps in Reusing existing
features. For example, to customize the form that is loaded from the /eligiblity/form
URL, do the following steps:
1. Find the path variable in the node_modules/@spm/universal-access-ui/

routes/Paths.js file.
For example, search for /eligibilty/form to locate PATHS.ELIGIBILITY.FORM.

2. Search the Routes file for the path variable to find the location of the feature that it loads.
For example, in the node_modules/@spm/universal-access-ui/src/routes/
Routes.js file search for the PATHS.ELIGIBILITY.FORM path variable that you located
in the previous step. The path variable maps to the feature/Forms/Eligibility
location.

3. Copy the source code from the feature folder that you identified in the previous step to your
custom folder.
For example, copy node_modules/@spm/universal-access-ui/src/
features/Forms/Eligibility to the your-custom-app/src/features/
Forms/Eligibility folder.

4. Add a route in the your-custom-app/src/routes.js file with the same path as the
original PATHS.ELIGIBILITY.FORM feature.
a) Map the new route to your custom version of the form feature.

5. Update the properties of the form container according to your requirements.
For example, use custom functions to change the behavior of the on-exit and on-finish flows,
as shown in the following code sample:

<BaseFormContainer
 iegFormId={formId}
 iegHookBindingKey={HookBindings.SCREENING}
 onExit={this.myCustomHandleExitForm}
 onFinish={this.myCustomHandleFinishForm}
 title={myCustomTitle || ''}
 />

9.17 Merging clusters with the cluster element grouping-id
attribute

If you are developing pages in IEG, you can merge several clusters on summary pages by using
the cluster element grouping-id attribute. The grouping-id attribute is not supported
for standard Cúram web applications.

Related data fields can be defined within different clusters under the following conditions. You
can use the grouping-id attribute to merge these related data fields into a single cluster on
IEG pages.

• Data is defined within different schema entities but a single cluster can be defined for a single
entity only.

• Data is defined within a conditional cluster but it must be included in a non-conditional cluster
when the condition is met.

© Merative US L.P. 2012, 2025

9 IEG in the Universal Access Responsive Web Applications 349

All clusters with a specific grouping-id attribute are merged into the first cluster with that
grouping-id attribute. Aside from the questions, the cluster elements are shown as defined
by the first cluster. Ensure that the other cluster elements in the first cluster, such as the title or
buttons, are suitable for the merged cluster.

Where possible, do not have a conditional cluster as the first cluster if you are merging
conditional and non-conditional clusters. If the first cluster is conditional and the condition is not
met, then the merged cluster is not displayed. If a conditional cluster must be positioned before
non-conditional clusters in a merged cluster, then add a non-conditional cluster with no questions
as the first cluster with the grouping-id.

This sample XML snippet merges three clusters into a single cluster with the grouping-id
attribute. The three clusters have data fields from three different entities and the last cluster is
conditional.

<cluster entity="ResidentialAddress" grouping-id="100">
 <title id="Address.Title">Address</title>
 <edit-link
 skip-to-summary="false"
 start-page="AboutTheApplicant_GB"
 />
 <layout>
 <type>flow</type>
 <num-cols>2</num-cols>
 <label-alignment>left</label-alignment>
 </layout>
 <question
 id="street1"
 >
 <label id="Street1.Label">Street 1:</label>
 </question>
...
</cluster>
<cluster entity="Person" grouping-id="100">
 <question
 id="applyToMailingAddress"
 >
 <label id="ApplyToMailingAddress.Label">Mail to Same Address?</label>
 </question>
</cluster>
<condition expression="Person.applyToMailingAddress=="N2OITYN2"">
 <cluster entity="MailingAddress" grouping-id="100">
 <question
 id="street1"
 >
 <label id="Street1.Label">Street 1:</label>
 </question>
 ...
</cluster>

9.18 Configuring relationship pages questions

If you are developing pages in IEG, you can configure the text of the relationship questions on
relationship pages.

By default, the question label is dynamic, in the first relationship question page, it renders as
“What is [Name and Age of the Person related] to you?”. On the following relationship question
pages, it renders “What is [Name and Age of the Person related] to [Name and Age of the
Person]?

The attribute name for the start date must be startDate.

© Merative US L.P. 2012, 2025

Cúram 8.2.0 350

To show age in the relationship question label, you must populate the date of birth, which is
defined as the dateOfBirth attribute of the Person entity.

You can use the following IEG configuration property to configure the default text.

relationship question label on relationship page
relationship.question.label={index, select, 0 {What is %2s to you?} other {What is %2s
 to %1s?}}

The example ICU template does the following:

In the first iteration:

What is %2s to you?

Where %2s is the related person in the first iteration.

From the second iteration until the end:

What is %2s to %1s?

Where %1s is the new main person in the iteration and %2s is the related person in the iteration.

9.19 Configuring relationship starting dates on relationship
summary pages

If you are developing pages in IEG, you can configure the start date of relationships for
relationship summary pages. For example, Married since Jun 12, 2014.

You can use the following IEG configuration property to configure the default text.

relationship type and start date label.
relationship.type.date.label=%1s since %2s

Where %1s is the relationship type and %2s is the relationship start date.

© Merative US L.P. 2012, 2025

9 IEG in the Universal Access Responsive Web Applications 351

9.20 Configuring quick-add-list

The quick-add-list feature is enabled at the IEG script level. The quick-add-list
component receives two parameters, entity with the Entity object is managed by the component
and criteria with any specific criteria that the component might need to meet.

© Merative US L.P. 2012, 2025

Cúram 8.2.0 352

Common pattern

The code that follows is an example of a fully functional implementation of the quick-add-
list component in a section of an IEG script:

<section>
 <question-page id="AnyMemberPage" show-back-button="true" show-exit-button="false"
 show-save-exit-button="true" show-person-tabs="false">
 <title id="AnyMemberPage.Title">Household</title>
 <description id="AnyMemberPage.Description">Please enter details about the other
 people besides yourself who live in your home including those who are not related to
 you. Once you’re finished please check the box to confirm the number of other people
 living in your home (not including yourself).
 </description>
 <condition expression="false">
 <cluster entity="Application">
 <question id="dummy" default-value-expression="householdCount()"/>
 </cluster>
 </condition>
 <quick-add-list entity="Person" criteria="isPrimaryParticipant==false">
 <title id="HouseholdList.Title">Household members</title>
 <quick-edit-link >
 <page-title id="Edit.PageTitle">Edit %1s (%2s)<argument id="Person.firstName"/
><argument id="Person.age"/>
 </page-title>
 </quick-edit-link>
 <quick-delete-link>
 <page-title id="Delete.PageTitle">Remove %1s %2s (%3s) from the household?
<argument id="Person.firstName"/><argument id="Person.lastName"/><argument
 id="Person.age"/></page-title>
 <confirm-message id="Delete.Message">Are you sure you want to remove %1s?
<argument id="Person.firstName"/></confirm-message>
 <confirm-button id="Delete.Button">Remove %1s<argument id="Person.firstName"/
></confirm-button>
 </quick-delete-link>
 <quick-add-link>
 <page-title id="Add.PageTitle">Add new person to household</page-title>
 <title id="Add.Title">Add new member</title>
 </quick-add-link>
 <page-content id="HouseholdMember"/>
 </quick-add-list>
 <condition expression="Application.householdCount != 0">
 <cluster>
 <question id="doneEditingHousehold" mandatory="true" control-
question="true" control-question-type="IEG_BOOLEAN">
 <label id="HasOtherMembers.Label">There are %1s other people in your
 home not including yourself<argument id="Application.householdCount"/></label>
 </question>
 </cluster>
 </condition>
 <condition expression="Application.householdCount == 0">
 <cluster>
 <question id="doneEditingHousehold" mandatory="true" control-
question="true" control-question-type="IEG_BOOLEAN">
 <label id="HasOtherMembers.Label">There are no other people in your
 household, just yourself</label>
 </question>
 </cluster>
 </condition>
 </question-page>
 <loop loop-type="hidden" entity="Person" criteria="isPrimaryParticipant==false">
 <question-page id="HouseholdMember">
 <title id="HouseholdMember.Title">Household</title>
 <cluster>
 <title id="HouseholdMember.Cluster.Title">Personal details</title>
 <question id="firstName" mandatory="true">
 <label id="FirstName.Label">First Name</label>
 </question>
 <question id="lastName" mandatory="true">
 <label id="lastName.Label">Last Name</label>
 </question>
 <question id="dateOfBirth" mandatory="true">
 <label id="DateOfBirth.Label">Date of birth</label>
 </question>
 </cluster>
 </question-page>
 </loop>
</section>

© Merative US L.P. 2012, 2025

9 IEG in the Universal Access Responsive Web Applications 353

The quick-add-list component uses a custom function householdCount that updates the
number of household members. The logic for that custom function can be written as follows:

 public Adaptor getAdaptorValue(final RulesParameters rulesParameters)
 throws AppException, InformationalException {

 final IEG2Context ieg2Context = (IEG2Context) rulesParameters;
 final long executionID = ieg2Context.getExecutionID();
 final long rootEntityID = ieg2Context.getRootEntityID();

 final IEGScriptExecution scriptExecution = IEGScriptExecutionFactory
 .getInstance().getScriptExecutionObject(executionID);
 Datastore ds = null;
 try {
 ds = DatastoreFactory.newInstance()
 .openDatastore(scriptExecution.getSchemaName());
 } catch (final NoSuchSchemaException e) {
 throw new AppException(IEG.ID_SCHEMA_NOT_FOUND);
 }

 final Entity rootEntity = ds.readEntity(rootEntityID);

 final Entity[] personEntities =
 rootEntity.getChildEntities(ds.getEntityType("Person"));

 rootEntity.setTypedAttribute("householdCount", personEntities.length - 1);
 rootEntity.update();

 return AdaptorFactory.getBooleanAdaptor(true);
 }

9.21 Configuring how and when server-side validations are
displayed

In Citizen Engagement, there are two phases of validation in IEG forms. They are client-side
validations and server-side validations. Client-side validations occur first. They are displayed
at the top of the page in the error section, with a link to the field with the error, and the message
is repeated inline beneath the field. Examples are typically mandatory field validations. For
example, Complete the field "Date of Birth". Server-side validations occur when a call is made
to the backend to check the information provided by the user. Examples are where a person's date
of birth can't be in the future, or where an SSN/SIN needs to be in a certain format and have a
specific number of characters.

About this task
By default server-side error messages are displayed at the top of the page in the error section once
all client-side errors have been corrected. Unlike client-side error messages, there is no link to the
field with the error and the error is not repeated inline. You can choose whether client-side and
server-side validations should operate the same way and display simultaneously with links to the
field with the error.

Procedure

Set the environment variable
REACT_APP_ACCESSIBLE_SERVER_SIDE_VALIDATIONS_ENABLED in your .env file with a
value of true to display all error messages at the same time whether they are as a result of client-
side or server-side validations. When this is set to true, all error messages including server-side

© Merative US L.P. 2012, 2025

Cúram 8.2.0 354

error messages are displayed with a link to the field where the error occurred. The field with the
error is highlighted to the user and the error message is repeated inline.

© Merative US L.P. 2012, 2025

10 Universal Access for Authorized Representatives 355

10 Universal Access for Authorized Representatives

Reaching citizens in need

Many benefits go unclaimed by citizens, and often by citizens who desperately require them.
This is because a citizen may not know what they are entitled to, or don’t know how to find
that information. For some citizens, working with online technology can be challenging for
many reasons. They may not have the cognitive or physical abilities or the skills to work with
technology or read and complete forms. Or they may not have a device that they can use to access
the service in the first place. Finding ways to ensure these citizens receive the appropriate support
available can significantly impact positive outcomes.

Authorized Representatives

Authorized representatives can play an important role in connecting vulnerable citizens with the
help they are entitled to.

Authorized representatives may be family members, legal representatives, carers, community-
based organizations, or other approved third parties. Tasks such as creating an online account,
applying for benefits, and managing associated tasks can be carried out from an approved account
linked to the citizen.

Support for Authorized Representatives

Cúram Citizen Engagement (CE) provides a citizen-facing responsive web application, a ready-
to-deploy reference application enabling agencies to offer a web self-service solution to their
citizens to apply for benefits and track & manage their interactions with the agency. With CE,
the citizen can view and make changes to their account, once they have been authenticated with
the Cúram system. Support for authorized representatives requires extending the authorization
beyond the citizen. As part of this extension, the citizen's data privacy and control of who
has access to their data must not be lost. The Cúram Web APIs support customization of the
authorization strategy to support this business function.

10.1 Authorized Representative Sample App

For reference purposes, the Authorized Representative Sample App is provided. It illustrates
how a dashboard home page for an authorized representative might be presented. It illustrates
“Theming” to differentiate this portal from the citizen portal. It also presents a simple workflow
that allows an authorized representative to complete a citizen's application, demonstrating
customized authorization.

Installing the Authorized Representative Sample App

The sample application comes with the Universal Access Responsive Web Application
asset, and the same process can be used to install it as described in section 4.2 Installing the
Merative ™ Cúram Universal Access development environment. However, for the Authorized

© Merative US L.P. 2012, 2025

Cúram 8.2.0 356

Representative Sample App, there are two small differences to notice when using the 4.2
Installation steps:

– In step number 3 of the Procedure section. Replace spm-universal-access-starter-
pack-.tgz with spm-universal-accesssample-app-auth-rep-.tgz as the package that
is extracted as your project root.

– In step number 5 (Automated option), locate the steps described in the note for Mac OS users.
Replace file name ./installCEDeps.sh with installCEDepsForAuthRepApp

– All other steps remain the same.

Customizing the Sample Application

The instructions for customizing the authorized representative sample application are the same
as provided for the universal access starter pack; the same documentation can be used. See
Developing with the Cúram Universal Access in the Universal Access guide.

Screen Design

The application provides sample screens as conceptual designs for the user experience, such as
a dashboard that presents the list of clients with actions that can be taken. These are intended as
helpful guides but require further design and development to meet individual project requirements
and be production-ready.

Theming

The application is themed using the Theme Builder and Design System tokens. See the section on
ThemeBuilder in Customizing the color and typography of the application.

Authorization Testing

The application also provides a modal for testing the execution of an IEG script on behalf of
another user. This basic implementation is not intended to be the user experience in production,
it is to help developers explore and test the authorization controls that they will need to develop
to allow authorized representatives to act on behalf of their clients. The following sections delve
deeper into customizing the authorization process.

APIs, data security, and authorization

Any application that connects to Cúram using the Cúram Web APIs must ensure that a user's
data can not be viewed or edited by anyone not authorized. By default, this is achieved by
authenticating who the user is, for example, via a username and password, and then carrying out
an authorization check. The default authorization check is a 2 phase process.

1. Is the current user, based on their role, allowed to access this API? (Role Based Access
Security)

2. Is the current user the owner of this data and therefore allowed to access or update it? (Policy
Based Access Control)

The second check is critical, as it is possible for another user to a) authenticate successfully and
b) have a role that allows them to call an API to retrieve the data. However, they will fail on the
final check, because the system will know which user they are through the authentication process,
and compare their user id against the user id of the data owner.

© Merative US L.P. 2012, 2025

10 Universal Access for Authorized Representatives 357

This check prevents unauthorized access through URL manipulation. For example, a malicious
user could attempt to view another person’s data by resending an API request generated from
their account, replacing an identifier with one that belongs to another user.

In the context of authorized representatives, the checks described above could prevent the
representative from helping the citizen. The next section describes how the Cúram Web APIs can
be customized to support authorized representatives.

10.2 Customizing Cúram Web APIs to allow authorized
representatives to assist citizens

When a citizen operates on their online account, using the product Web APIs, the system makes 2
assumptions.

1. The operation is on behalf of the currently logged-in user. For example, when the user
‘johnsmith’ is logged in and submits an application, the application will be created for that
John Smith.

2. Authorization checks are carried out against the currently logged-in user. For example, if
‘johnsmith’ tries to resume a form that he had started the system will validate that johnsmith,
the current user, is the owner of the form being resumed, otherwise the request will be
rejected.

When an authorized representative assists a client the 2 assumptions above will be incorrect. The
current logged-in user is not the intended applicant, and they are not the data owner.

AuthorizedRepresentativeProvider Interface

To facilitate a representative acting on behalf of a citizen a service provider class can be used to
nominate the citizen being represented. The system will use the value returned by the Service
Provider Interface class implementation to carry out authorization checks and retrieve and update
data. For example, submitting an application form when acting as an authorized representative
will create an application for the citizen being assisted, not for the representative.

The AuthorisedRepresentativeProvider class is a simple Service Provider Interface(SPI)
that allows the provider to define their strategy for how the APIs decide who the operation is on
behalf of and how to check authorization for the current user.

The getCitizenUserName method is used to return the name of the citizen that the
representative is currently assisting. How the citizen's username is decided is the responsibility of
the provider.

Example implementation

The implementation is a 2 step process

1. Configure the implementation of the AuthorisedRepresentativeProvider
interface

Implementations of the AuthorisedRepresentativeProvider interface class are configured via
a Guice Module. Create a MapBinding using the user's Application Code as the key and the

© Merative US L.P. 2012, 2025

Cúram 8.2.0 358

implementation class as the value. The Application Code is assigned to the user when their
account is created. This value is found on the ExternalUser database table.

Note: Note: To learn more about Guice Modules and how to use them see the section
‘Creating a Guice Module’ in the Developing with Persistence Infrastructure guide.

final MapBinder<String, AuthorisedRepresentativeProvider>
 mapBinderAuthorisedRepresentativeProvider =
 MapBinder.newMapBinder(binder(),
 String.class, AuthorisedRepresentativeProvider.class);
mapBinderAuthorisedRepresentativeProvider
 .addBinding(APPLICATION_CODE.AUTHREPAPP)
 .to(AuthorisedRepresentativeProviderSample.class);

Using MapBinder allows multiple strategies to be employed, one per application code. This
provides flexibility for different authorized representative strategies, one per end-user application.
For example, if the user type ‘AuthorizedRepresentative’ has their own application, and therefore
their own application code of AUTHREPAPP, then the binding should use this value as the key so
that the same strategy is employed for all users of type ‘AuthorizedRepresentative’.

2. Implement the Service Provider Interface class

The code example below is simplistic but illustrates how the
AuthorisedRepresentativeProvider interface class could be implemented. Realistically,
the resolution of the citizen's name will involve implementing a more sophisticated solution
that maps citizens to authorized representatives, perhaps involving database tables. It may also
facilitate switching representatives or revoking permission from representatives, etc...

The code shows how 3 authorized representatives are mapped to 3 citizens. The
TransactionInfo.getProgramUser public API returns the currently logged-in user, and
this value is used to look up the mapping. The citizen's username is returned by the mapping
and used by the system to determine which user the action is on behalf of. If there is no mapping
the current user's name will be returned as it would have been if no implementation of the
AuthorisedRepresentativeProvider had been configured.

public class AuthorisedRepresentativeProviderSample
 implements AuthorisedRepresentativeProvider {

 @Override
 public String getCitizenUserName() {

 final Map<String, String> isHelping = new HashMap<>();
 isHelping.put("authrep1", "jamessmith");
 isHelping.put("authrep2", "lindasmith");
 isHelping.put("authrep3", "robsmith");

 if (isHelping.containsKey(TransactionInfo.getProgramUser())) {
 // return the citizen the logged in user is helping
 return isHelping.get(TransactionInfo.getProgramUser());
 }

 return TransactionInfo.getProgramUser();
 }
}

© Merative US L.P. 2012, 2025

10 Universal Access for Authorized Representatives 359

The result of the code above will be that the representative authrep1 will act as jamessmith
whenever they invoke a product API that supports authorized representatives. Similarly, authrep2
will be lindasmith anytime they invoke a product API that supports authorized representatives,
etc... If the mapping fails the current user's name will be returned. The default authorization
checks will be applied as they would have been without this implementation being provided.

10.3 Customizing the authorization strategy

In the previous section, the AuthorisedRepresentativeProvider class changed the default
processing for supported Cúram Web APIs. While this solves the problem of granting permission
to authorized representatives to act on behalf of the Citizen, it also grants the representative the
same rights as the data owner. This may be considered too permissive.

When providing authorization to 3rd parties to act on a user's data, the authorization often comes
with limitations that would not be applied to the data’s owner. This type of authorization control
is known as Policy Based Access Control.

Cúram provides customization points that support customers plugging in their policies for
authorization. The customization is via a Service Provider interface that will be invoked by the
system every time an API is called. If required, the service provider can optionally add their
authorization checks on top of the default product checks, or override the default checks.

For example, imagine that an authorized representative was granted permission to help a citizen
using the AuthorisedRepresentativeProvider class. While there are many tasks that a citizen
would like help with, they may not be comfortable with the representative viewing their financial
information. Access to the API that provides the financial information can be restricted using the
AuthorisationStrategy class.

This Service Provider Interface exposes 2 methods that can be implemented to control access.

doAuthorisationCheck(Object...)

The first method doAuthorisationCheck will either return without failure (succeed) or throw
an authorization exception (fail). The optional parameter of type 'Object' is the parameter received
by the API from which the doAuthorisation method was called if the API received a parameter
object. This parameter may be required to carry out the authorization check, such as reading an
entity using an ID(s) passed to the API. The generic parameter can be cast back to the correct
Java type in the implementation class.

disableDefaultAuthorizationChecks()

The second method allows the default product authorization checks to be disabled. This
may be required if they conflict with the custom authorization checks implemented by
doAuthorizationCheck.For more on custom authorisation checks please see the section
‘Customizing Web API Authorization’ checks in the Universal Access Responsive Web
Application guide.

© Merative US L.P. 2012, 2025

Cúram 8.2.0 360

© Merative US L.P. 2012, 2025

11 Troubleshooting and support 361

11 Troubleshooting and support

Use this information to help you to troubleshoot issues with the Merative ™ Cúram Universal
Access Responsive Web Application or Cúram Design System.

The Cúram supported assets can be installed, customized, and deployed separately from Cúram,
before being integrated into the system.

When troubleshooting web applications that are integrated with Cúram, use this troubleshooting
information in conjunction with the troubleshooting information for Cúram.

For more information about troubleshooting, see the Troubleshooting Guide guide.

Related information

11.1 Examining log files

Log files are a useful resource for troubleshooting problems.

Examining the browser console logs

For JavaScript applications, you can examine the browser console logs for errors that might be
relevant to investigating problems. For the exact details about how to locate the console logs
within the browser, see your browser documentation.

Note: When you are developing applications with the Cúram Design System, console
logging information might also be displayed in the console that runs the start process for the
application.

Examining the HTTP Server log files

When you deploy a built application on an HTTP Server, the built application introduces a new
point with which logging is captured in your system topology. The IBM® HTTP Server, Oracle
HTTP Server, and the Apache HTTP Server include comprehensive logging system and related
information.

For more information about troubleshooting the IBM® HTTP Server, see Troubleshooting IBM
HTTP Server.

For more information about troubleshooting the Oracle HTTP Server, see Managing Oracle
HTTP Server Logs.

For more information about troubleshooting the Apache HTTP Server, see Log Files.

Examining the IEG log files

System administrators can enable improved logging by setting the curam.trace system
administration property to trace_on or higher, and you can then check the server logs after you
call the datastore prepopulation feature. You can view detailed logs that are generated during

© Merative US L.P. 2012, 2025

https://www.ibm.com/support/knowledgecenter/en/SSEQTJ_9.0.0/com.ibm.websphere.ihs.doc/ihs/tihs_troubsteps.html
https://www.ibm.com/support/knowledgecenter/en/SSEQTJ_9.0.0/com.ibm.websphere.ihs.doc/ihs/tihs_troubsteps.html
https://docs.oracle.com/middleware/1212/webtier/HSADM/man_logs.htm#HSADM218
https://docs.oracle.com/middleware/1212/webtier/HSADM/man_logs.htm#HSADM218
https://httpd.apache.org/docs/2.4/logs.html

Cúram 8.2.0 362

the population of data during screening, application intake, and life events to better explain
what interactions have taken place. Information is output to the server logs during datastore
prepopulation to describe which code path was taken and why.

The following information is written to the server logs during datastore prepopulation:

• Information about which code path was taken and why.
• The values of the relevant system administration properties.
• The schema names of the relevant IEG scripts.
• The number of records in the ViewProcessor table.

11.2 Connect a React development environment to an Cúram
server

A common troubleshooting technique is to connect your React development environment
on localhost:3000 to an Cúram deployment, typically a test system deployment. In this
environment, you must complete some extra configuration steps to handle browser CORS
security features.

With this environment, you can debug issues in the React application without having to rebuild
an Cúram development environment, which can save time in many scenarios. For example,
where replicating the problem scenario in the development environment is onerous, but you can
troubleshoot it on the test server.

Due to CORS security features built into browsers, you must change the Cross-Site Request
Forgery (CSRF) and session cookies that the React application uses, from the default
Samesite=Lax to Samesite=None. Otherwise, browsers report CORS errors and the React
application cannot communicate with the Cúram server.

You can deploy a gateway web server in front of Cúram to modify the cookie by using this
directive:

Header edit Set-Cookie ^(.*)$ $1;SameSite=None;Secure

For Cúram clusters, place this directive in the web servers where Cúram applications are mapped.

11.3 Citizen Engagement components and licensing

You can use and customize the Merative ™ Cúram Universal Access Responsive Web Application
for your organization, or develop your own custom web applications in addition to the standard
Cúram application. Use this information to understand the Cúram components, supported assets,
and licenses that you need.

© Merative US L.P. 2012, 2025

11 Troubleshooting and support 363

Installable components

• Cúram Design System supported asset
The design system provides foundational packages for building accessible and responsive web
applications. It consists of a React UI component library, React development resources, and a
style guide for creating web applications.

• Merative ™ Cúram Universal Access Responsive Web Application supported asset
The Merative ™ Cúram Universal Access Responsive Web Application provides a reference
web application, which you can use and customize for your organization. The Merative ™
Cúram Universal Access Responsive Web Application requires the Cúram Design System and
the Universal Access application module.

• Universal Access application module
The Universal Access (UA) application module provides the Universal Access administrator
application and the Universal Access REST APIs that expose interfaces to Universal Access
functions for consumption by the Merative ™ Cúram Universal Access Responsive Web
Application. Universal Access requires the Cúram Platform.

Licensing Universal Access

You can buy the Universal Access application module, which entitles the Merative ™ Cúram
Universal Access Responsive Web Application asset, and Cúram Platform, which entitles the
Cúram Design System asset.

Alternatively, you can buy Citizen Engagement, which includes the Universal Access application
module, the Cúram Platform, and both assets.

Licensing the Cúram Design System

To develop custom web applications to complement the Cúram Platform, you can buy the Cúram
Platform, which entitles the Cúram Design System asset.

11.4 Citizen Engagement support strategy

The Citizen Engagement assets are typically released monthly, and they can be upgraded
independently of Cúram . Each release is a full release and not a delta release.

The assets are supported for the lifetime of the latest supported Cúram version available at the
time of the asset release.

• The main asset line is released monthly and contains new features, enhancements, security
updates, defects, and support for the latest Cúram version.

• Merative ™ Cúram Universal Access Responsive Web Application 2.6 continues to be
supported with security updates and critical defect fixes for older compatible Cúram versions.

Although new features can be delivered in any asset release, they are typically delivered at the
same time as the Universal Access application module release that contains the new APIs for
those features. Where possible, Universal Access REST API changes are delivered in refresh
pack or other impact-free releases that impose no forced upgrade impact.

© Merative US L.P. 2012, 2025

Cúram 8.2.0 364

Semantic versioning

The assets use semantic versioning. As a general guideline, this means:

• MAJOR version for incompatible API changes
• MINOR version for adding functionality in a backwards-compatible manner
• PATCH version for backwards-compatible bug fixes

11.5 Known limitations

Review the known limitations for the Cúram Universal Access Responsive Web Application, and,
where available, workaround information.

Landing page error caused by the public messages environment variable not
being correctly disabled

Cúram Universal Access Responsive Web Application 5.0.0 fails to load the application
landing page when it is used with either Cúram 7.0.10 or 7.0.11. Cúram 8.0.0 provides a /ua/
public_messages API that displays public messages on the landing page.

The /ua/public_messages API is not available in Cúram 7.0.10 or 7.0.11. If you are using
the Cúram Universal Access Responsive Web Application 5.0.0 with either Cúram 7.0.10 or
7.0.11, you can resolve the issue by disabling the public messages feature. To disable the public
messages feature, configure the following environment variable in your .env file:

REACT_APP_DISABLE_PUBLIC_MESSAGES =true

Navigation section breaks when you edit household members from the Summary
page without saving your changes

When you edit household members from the Summary page but you don’t save your changes,
clicking the section that contains the Quick Add list in the Go to section menu brings you to the
Summary page.

© Merative US L.P. 2012, 2025

https://semver.org/

Notices

Permissions for the use of these publications are granted subject to the following terms and
conditions.

Applicability

These terms and conditions are in addition to any terms of use for the Merative website.

Personal use

You may reproduce these publications for your personal, noncommercial use provided that all
proprietary notices are preserved. You may not distribute, display or make derivative work of
these publications, or any portion thereof, without the express consent of Merative

Commercial use

You may reproduce, distribute and display these publications solely within your enterprise
provided that all proprietary notices are preserved. You may not make derivative works of these
publications, or reproduce, distribute or display these publications or any portion thereof outside
your enterprise, without the express consent of Merative.

Rights

Except as expressly granted in this permission, no other permissions, licenses or rights are
granted, either express or implied, to the publications or any information, data, software or other
intellectual property contained therein.

Merative reserves the right to withdraw the permissions granted herein whenever, in its
discretion, the use of the publications is detrimental to its interest or, as determined by Merative,
the above instructions are not being properly followed.

You may not download, export or re-export this information except in full compliance with all
applicable laws and regulations, including all United States export laws and regulations.

MERATIVE MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE
PUBLICATIONS. THE PUBLICATIONS ARE PROVIDED "AS-IS" AND WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT
LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT,
AND FITNESS FOR A PARTICULAR PURPOSE.

Merative or its licensors may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this documentation does not grant you any license
to these patents.

Information concerning non-Merative products was obtained from the suppliers of those products,
their published announcements or other publicly available sources. Merative has not tested those
products and cannot confirm the accuracy of performance, compatibility or any other claims
related to non-Merative products. Questions on the capabilities of non-Merative products should
be addressed to the suppliers of those products.

Any references in this information to non-Merative websites are provided for convenience only
and do not in any manner serve as an endorsement of those websites. The materials at those

© Merative US L.P. 2012, 2025

websites are not part of the materials for this Merative product and use of those websites is at
your own risk.

This information contains examples of data and reports used in daily business operations.
To illustrate them as completely as possible, the examples include the names of individuals,
companies, brands, and products. All of these names are fictitious and any similarity to actual
people or business enterprises is entirely coincidental.

The licensed program described in this document and all licensed material available for it are
provided by Merative under terms of the Merative Client Agreement.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate
programming techniques on various operating platforms. You may copy, modify, and distribute
these sample programs in any form without payment to Merative, for the purposes of developing,
using, marketing or distributing application programs conforming to the application programming
interface for the operating platform for which the sample programs are written. These examples
have not been thoroughly tested under all conditions. Merative, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample programs are provided
"AS IS", without warranty of any kind. Merative shall not be liable for any damages arising out of
your use of the sample programs.

Privacy policy

The Merative privacy policy is available at https://www.merative.com/privacy.

Trademarks

Merative ™ and the Merative ™ logo are trademarks of Merative US L.P. in the United States and
other countries.

IBM®, the IBM® logo, and ibm.com® are trademarks or registered trademarks of International
Business Machines Corp., registered in many jurisdictions worldwide.

Adobe™, the Adobe™ logo, PostScript™, and the PostScript™ logo are either registered
trademarks or trademarks of Adobe™ Systems Incorporated in the United States, and/or other
countries.

Oracle and Java are registered trademarks of Oracle and/or its affiliates.

The registered trademark Linux® is used pursuant to a sublicense from the Linux Foundation, the
exclusive licensee of Linus Torvalds, owner of the mark on a worldwide basis.

Microsoft™, Windows™, and the Windows™ logo are trademarks of Microsoft™ Corporation in
the United States, other countries, or both.

UNIX™ is a registered trademark of The Open Group in the United States and other countries.

Other company, product, and service names may be trademarks or service marks of others.

© Merative US L.P. 2012, 2025

https://www.merative.com/privacy

	Note
	Edition
	Notices
	Privacy policy
	Trademarks

	Contents
	1 Universal Access
	2 What's new and release notes for Universal Access
	2.1 What's new in Universal Access
	2.2 Release notes
	2.3 V7 Migration

	3 Business overview of the Cúram Universal Access Responsive Web Application
	3.1 Screen
	Filtered and eligibility screening types
	Anonymous or authenticated screening
	Authenticated screening

	The Check what you might get page
	The Here's what you might get screening results page
	Screening from a citizen account

	3.2 Apply
	Start an application
	Complete the application form
	Sign and submit
	Manage existing applications

	Submit application-specific documents

	3.3 Verify
	Citizen alerts and to-do messages
	Viewing verifications
	Submitting documents
	Caseworker tasks

	3.4 Track
	Creating a citizen account and logging in
	The Dashboard page
	The All payments page
	Citizen account messages
	Verifications messages

	The Your benefits page
	The 'Your documents' page
	The Notices page
	The Profile page
	Selecting a language

	3.5 Update
	Enter a life event

	3.6 Appeal
	Decide to appeal
	Submit an appeal request
	View your appeals
	Appeals notices and notifications
	Requesting an appeal from the citizen account

	4 Installing the application development environment and web server
	4.1 Prerequisites and supported software
	4.2 Installing the Merative ™ Cúram Universal Access development environment
	4.3 Upgrading the Merative ™ Cúram Universal Access Responsive Web Application
	4.4 Install and configure IBM® HTTP Server with WebSphere® Application Server
	Generating an IBM® HTTP Server plug-in configuration
	Configuring the IBM® HTTP Server plug-in

	4.5 Install and configure Oracle HTTP Server with Oracle WebLogic Server
	Installing Oracle HTTP Server and its components
	Configuring the Oracle HTTP Server plug-in

	4.6 Installing and configuring Apache HTTP Server
	4.7 Building the Cúram Universal Access Responsive Web Application for deployment
	4.8 Deploying your web application to a web server

	5 Developing with the Cúram Universal Access Responsive Web Application
	5.1 Starter pack and packages
	5.2 Sample application project structure
	5.3 Developing compliantly
	5.4 Enforce good code style with ESLint and EditorConfig
	5.5 Universal Access UI coding conventions
	5.6 The sampleApplication feature
	5.7 Manage state with React Hooks
	5.8 Redux in Universal Access
	Universal Access Redux modules
	Web Development Accelerator
	Generating custom hooks
	Generating Universal Access Redux modules

	5.9 Error handling with a React higher-order component (HOC)
	5.10 Connectivity handling
	Implementing a connectivity handler

	5.11 Developing with routes
	The Routes component
	Adding routes
	Replacing routes
	Redirecting routes
	Removing routes
	Advanced routing

	5.12 Connecting to Universal Access REST APIs
	The mock server API service
	The RESTService utility
	Adding metadata to file uploads
	Universal Access REST API reference

	5.13 Developing toast notifications
	5.14 Localization
	Configuring languages in the application
	Translating your application
	Extracting translatable content
	Including translated content in your application
	Translating the multilingual messages for when JavaScript is disabled

	Regional settings

	5.15 Customizing the application
	Changing text in the application
	Customizing images, fonts, and files
	Customizing the color and typography of the application

	Adding content to the application
	Styling content with the Social Program Management Design System
	Changing the application header or footer
	Customizing headers and footers

	Creating an Cúram API
	Connecting to REST APIs from the application
	Testing REST API connections with Tomcat
	Handling failures in the application
	Implementing a loading mask
	Reusing existing features

	5.16 Implementing page view analytics
	5.17 Implementing a test environment
	End-to-end test environment
	End-to-end test helper files
	End-to-end test initial setup and configuration
	Page object development and best practices
	The pageObject class
	Adding custom behavior to your page objects
	Building, exporting and configuring your page objects
	Writing end-to-end scripts
	Running end-to-end tests

	Jest and Enzyme test environment
	Unit and snapshot test initial setup and configuration
	Unit and snapshot test helper files
	Guidelines for writing unit test scripts
	Running Jest and Enzyme tests

	5.18 React environment variable reference

	6 Security for the Cúram Universal Access Responsive Web Application
	6.1 Build secure web apps with the Social Program Management Design System
	Protect yourself during development
	Protect your production environment
	How to address security vulnerabilities

	6.2 Securing access to Universal Access REST APIs
	Enabling Cross-Site Request Forgery (CSRF) protection for Universal Access

	6.3 Universal Access authentication
	Customizing the authentication method

	6.4 Authenticating with external security systems
	Integrating with IdPs for multifactor authentication
	External security authentication example for Universal Access
	Configuring an alternative login ID
	Deploying in identity-only mode for registered users
	Disabling the Create Account screens
	Redirecting users to register with an external system
	Enabling users to log on immediately after registration with CentralID

	6.5 User account types
	6.6 User account authorization
	6.7 Customizing account creation and management
	Account management configurations
	Account management events
	CitizenWorkspaceAccountManager API

	6.8 Data caching

	7 Configuring the Cúram Universal Access Responsive Web Application
	7.1 Configuring the browser
	7.2 Configuring service areas
	7.3 Configuring PDFs
	Defining PDF forms
	Specifying a PDF application form for program applications
	Specifying a PDF application form for screening results
	Defining PDF summary mappings for a program

	7.4 Configuring programs
	Configuring a program
	Defining a name and reference
	Defining an intake processing system
	Defining case processing details
	Defining the integrated case strategy
	Specifying a client selection strategy
	Specifying a product delivery type
	Configuring timers
	Configuring multiple applications
	Defining a URL
	Defining description and summary information
	Defining local office application details

	Defining local offices for a program
	Defining program evidence types

	7.5 Configuring screenings
	Configuring a new screening
	Configuring eligibility and screening details
	Configuring screening display information
	Defining programs for a screening
	The screening auto-save property
	Configuring rescreening
	Prepopulating the screening script
	Resetting data captured from a previous screening
	Writing Rule Sets For Screening
	Addin a data store schema
	The screening rules interface

	7.6 Configuring applications
	Configuring applications in the administration application
	Configuring application information and display information
	Configuring scripts

	Configuring application properties
	Configuring other application settings

	7.7 Configuring online categories
	7.8 Configuring life events
	Configuring a life event
	Mapping life event information to evidence entities
	Defining a question script, answer script, and schema
	Categorizing life events
	Defining Remote Systems

	7.9 Configuring the citizen account
	Configuring messages
	Account messages
	Creating appeal request acknowledgment or appeal rejection messages
	Creating application acknowledgments
	Creating meeting messages
	Creating payment messages

	System messages
	Configuring message duration
	Switching off messages

	Configuring last logged in information
	Configuring contact information
	Configuring user session timeout
	Configuring appeal requests
	Configuring communications on the Notices page
	Configuring payments

	8 Customizing the Cúram Universal Access Responsive Web Application
	8.1 Customizing screenings
	Track the volume, quality, and results of screenings
	Populating a custom screening results page

	8.2 Customizing applications
	Linking directly to an application
	Customizing application overview pages
	Customizing the intake application workflow
	Customizing the generic PDF summary form for processed applications
	Configuring the generic PDF summary template
	Customizing generic PDF summary forms based on the IntakeApplicationPDFTemplate.xsl template
	Customizing generic PDF summary forms based on the WSXSLTEMPLATEINST001.xsl template

	Using events to extend intake application processing
	Customizing the concern role mapping process
	Enable the ConcernRoleMappingStrategy API
	Use the ConcernRoleMappingStrategy API

	How to send applications to remote systems for processing

	8.3 Customizing life events
	Enabling and disabling life events
	How to build a life event
	Customizing advanced life events
	How to build a life event
	Analysis
	Considerations for life events analysis
	Building the components of a life event
	Writing life event IEG Scripts
	Pre-populating a life event
	Driving updates from life events
	Configuring the evidence broker for use with the holding case
	Putting it all together

	Event APIs for life events

	8.4 Customizing verifications
	Enabling or disabling verifications
	Enabling the submitted document review feature for citizen verifications

	Customizing file formats and size limits for file uploads
	Customizing a file upload lead time for verifications
	Customizing how verification information is presented
	Customizing verifiable data item grouping

	Customizing verification names
	Customizing caseworker tasks
	Customizing application-specific verification polling

	8.5 Customizing with web services
	Inbound and outbound web services
	Web services security
	Process application service
	Receive application
	Receive withdrawal request

	Update Application Service
	Intake Program Application Update
	Withdrawal Request Update

	life event service
	Create account service
	Link service
	Unlink service
	Citizen message
	Payment service
	Contact service
	Case service
	Sample SOAP requests
	Intake program application update
	Withdrawal request update
	Create account
	Account link
	Account unlink
	Citizen message
	Payment (simple)
	Payment (batched)
	Contact
	Cases

	8.6 Customizing appeals
	Enabling and disabling appeals

	8.7 Customizing the citizen account
	Messages
	Configuring citizen messages
	Adding a new type of citizen message
	Implementing a new message type
	Customizing specific message types
	Payment messages
	Meeting messages
	Application acknowledgment message

	Customizing the Notices page
	Communication processing hooks and events

	Customizing appeal request statuses
	Error logging in the citizen account

	8.8 Artifacts with limited customization scope

	9 IEG in the Universal Access Responsive Web Applications
	9.1 IEG in the Cúram Universal Access Responsive Web Application
	9.2 IEG elements and attributes specific to the design system and Cúram Universal Access Responsive Web Application
	9.3 IEG configuration not currently supported for the Cúram Universal Access Responsive Web Application
	9.4 Customizing the Back button in IEG forms
	9.5 Configuring section navigation for forms
	9.6 Configuring progress information for forms
	9.7 Configuring dynamic titles on forms
	9.8 Configuring rich text on forms
	Configuring external links to open in a new tab or window

	9.9 Configuring hint text for forms
	9.10 Configuring explainer text for forms
	9.11 Configuring the 'Help' label for forms
	9.12 Configuring required or optional labels for form fields
	9.13 Configuring input formats and constraints for form fields
	Configuring phone numbers
	Configuring date formats
	Configuring currency symbols
	Configuring inputs to be obscured for privacy

	9.14 Configuring code-table hierarchies for form fields
	9.15 Implementing a combo box for form fields
	Implementing search functions for ComboBox components
	Customizing Screen Reader Announcements for ComboBox search results
	Configuring combo box scripts and schemas

	9.16 Customizing script behavior with BaseFormContainer
	9.17 Merging clusters with the cluster element grouping-id attribute
	9.18 Configuring relationship pages questions
	9.19 Configuring relationship starting dates on relationship summary pages
	9.20 Configuring quick-add-list
	9.21 Configuring how and when server-side validations are displayed

	10 Universal Access for Authorized Representatives
	10.1 Authorized Representative Sample App
	10.2 Customizing Cúram Web APIs to allow authorized representatives to assist citizens
	10.3 Customizing the authorization strategy

	11 Troubleshooting and support
	11.1 Examining log files
	11.2 Connect a React development environment to an Cúram server
	11.3 Citizen Engagement components and licensing
	11.4 Citizen Engagement support strategy
	11.5 Known limitations

