
Cúram 8.1.2
Tuning Batch Streaming Performance Guide

Note
Before using this information and the product it supports, read the information in Notices on page
27

© Merative US L.P. 2012, 2024

© Merative US L.P. 2012, 2024

Edition
This edition applies to Cúram 8.1, 8.1.1, and 8.1.2.

© Merative US L.P. 2012, 2024

Merative and the Merative Logo are trademarks of Merative US L.P. in the United States and
other countries.

© Merative US L.P. 2012, 2024

© Merative US L.P. 2012, 2024

Contents vii

Contents

Note.. iii

Edition... v
1 Tuning batch streaming performance.. 9
1.1 Overview.. 9

Intended Audience...9
What Batch Performance Mechanisms does the application Provide?.....................................9
Cúram Batch Processes using Batch Streaming.. 10
Operation of Streamed Batch Processes..10

1.2 Batch Streaming Architecture..10
Overview.. 10
Architectural Details...12

1.3 Data Caching...15
Core Entity Caches... 15

1.4 Batch Processes using Streaming.. 17
DetermineProductDeliveryEligibility... 17
GenerateInstructionLineItems.. 17
GenerateInstruments... 18
CREOLEBulkCaseChunkReassessmentByProduct.. 18
ApplyProductReassessmentStrategy...18
Perform Batch Recalculations From Precedent Change Set batch process........................... 19
RedetermineTranslator.. 19

1.5 Operation of Streamed Batch Processes..20
Running Batch Executables.. 20
Environment variables... 22
Error handling.. 25

Notices.. 27
Privacy policy... 28

Trademarks.. 28

© Merative US L.P. 2012, 2024

Cúram 8.1.2 viii

© Merative US L.P. 2012, 2024

1 Tuning batch streaming performance 9

1 Tuning batch streaming performance

Use this information to learn how to improve performance and scalability of batch streaming and
the caching of batch process data. Batch streaming allows for concurrent execution of multiple
instances of batch processes. SPM batch processes use transaction level data caching. This can
greatly reduce the volume of database transactions that are required for batch process execution.

1.1 Overview

This guide gives an overview of the application functionality which allows both caching of batch
data and execution of multiple instances of a single batch process. These enhancements were
designed to improve the efficiency and scalability of batch processing in Cúram.

Note that this guide should be read in conjunction with the Cúram Batch Processing
Guide, which provides a description of all other aspects of Batch Processing.

Intended Audience

This guide is intended for people interested in batch process performance mechanisms in the
application.

What Batch Performance Mechanisms does the application Provide?

Over and above good design and development paradigms, the application provides two primary
mechanisms for improving the performance and scalability of Batch Processes:

• Batch Streaming
• Caching of Batch Process Data

Batch Streaming
Batch Streaming refers to the application support for the concurrent execution of multiple
instances of batch processes. Each logical batch process in the application (for example,
GenerateInstructionLineItems) is represented by two physical batch executables. The first, the
'Chunker', divides the record set to be processed into a number of subsets or 'chunks', based on a
'chunk size' parameter set via system properties. The second, the 'Stream', processes these chunks.
The Stream processes each record in a chunk, commits the result, and then looks for another
chunk to process. Multiple instances of the Stream can execute in parallel.

By utilizing this Batch Streaming mechanism, batch processes can employ all of the available
processing power of their host machine(s). Ultimately, this allows for the processing of more
records in a given time period than a single instance of a batch process would allow.

Caching of Batch Process Data
Cúram batch processes can also avail of transaction level data caching. Utilization of this
mechanism can greatly reduce the volume of database I/O required for batch process execution. A
good example of the performance savings that this provides is when an error is encountered when

© Merative US L.P. 2012, 2024

Cúram 8.1.2 10

processing a record, requiring it to be skipped or excluded. Caching of data in such situations
(where processing effectively needs to restart without including a particular record) greatly
improves operational efficiency.

Cúram Batch Processes using Batch Streaming

The above streaming and caching mechanisms are used in the processing of the following batch
programs:

• Determine Product Delivery Eligibility
• Generate Instruction Line Items
• Generate Instruments
• CREOLE Bulk Case Chunk Reassessment By Product
• Apply Product Reassessment Strategy
• Perform Batch Recalculations From Precedent Change Set

Operation of Streamed Batch Processes

Batch Streaming introduces a number of operational considerations, including:

• Command-line execution of streamed batch processes
• Properties that are introduced by Batch Streaming
• Exception processing in streamed batch processes

1.2 Batch Streaming Architecture

This section describes the architecture underlying batch streaming in the application.

Overview

A simple overview of the architecture is included in the figure here. The mechanism is based
on the concept of segmenting data to be processed into subsets or 'chunks'. Once segmented, an
arbitrary number of batch processes then can operate in parallel on these chunks, performing
identical processing on each constituent record in each chunk. In this way, with the appropriate
configuration of the number and distribution of the batch processes, the use of resources used can
be maximized in the most efficient manner for each process.

© Merative US L.P. 2012, 2024

1 Tuning batch streaming performance 11

Figure 1: Streaming Architecture Overview

© Merative US L.P. 2012, 2024

Cúram 8.1.2 12

Architectural Details

As mentioned in the introduction, each logical Batch Process in composed of two physical batch
executables: the 'Chunker' and the 'Stream'.

The Chunker
The 'Chunker' is the batch process executable which identifies the records to be processed. This
process constructs 'chunks' of these records and writes them to the database, in effect assembling
them in a queuing table called BatchProcessChunk. This table is populated at the beginning of
batch processing, and each set of records to be processed is identified on this table by a chunk
ID. Note that this assembly is transactional, and must succeed before any Streams can start their
processing.

In addition to creating the chunks, the Chunker waits for all chunks to be processed by the
Stream(s) and produces a summary report when they are all complete. In most cases only one
instance of the Chunker is required for each batch process. Note that if the chunker fails after
chunk assembly, it is possible to just restart it even if streaming has already commenced.

The Stream
The Stream is the batch process executable which performs the appropriate business functionality
on each chunk. Each instance of a Stream operates on one chunk at a time, executing business
processing on each record in the chunk in turn, and updating the chunk record with summary
information once processing is complete. When complete, the records are marked as processed. If
further chunks are available, processing starts again and the streams pick up another chunk.

Two important elements of this processing are as follows:

1. Each chunk is processed in a separate database transaction providing commit-point
processing. This ensures that once a chunk is successfully processed, there will be no need to
reprocess its constituent records if other chunks do not succeed for any reason.

2. Because processing of chunks is transactional, problem records can be excluded from the
chunk during processing. For instance, if there is a lock contention during the processing
of a chunk, one of the records may not be able to be processed at that point in time. In this
instance, the work done by the chunk will be rolled back and the problem record removed.
Processing of the chunk can then start again. Note that use of transaction level caching can
greatly reduce the database I/O in this type of situation (see 1.3 Data Caching on page 15
for more details).

When all the chunks have been processed, a final search is done for any remaining
unprocessed records. One final attempt is made to process these. These unprocessed
chunks are processed serially. Streaming is not supported here to mitigate as far as possible
against database contention and concurrency problems. This final search is optional, and is
controlled by the 'chunkMainParameters' parameter of the runChunkMain method on the
BatchStreamHelper in question.

When this process is completed, a notification containing the details of those records
processed and those not processed is sent. The recipient of this notification is defined by
appropriate coding of the sendBatchReport method of the chunker batch process.

© Merative US L.P. 2012, 2024

1 Tuning batch streaming performance 13

Note: No differentiation is made by the Batch Streaming environment between records
remaining unprocessed because of technical issues, and those which were skipped for business
reasons by the batch process. It will be left up to the batch administrator or user to examine all
outputs to determine any cause of failures.

Additional Information

A more detailed diagram of the batch streaming architecture is included below. Two additional
elements are of note here:

1. Chunk Key

This table (called BatchChunkKey) is essentially used as a key server, allowing chunks to be
"served" up to individual streams without creating contention on the chunk table itself. It is
also worth noting that the value of the next key available can be examined to determine the
progress of the batch program.

2. Batch params

The details of the parameters passed into the Chunker batch process are stored to make them
available to each stream without being re-entered. This table, called BatchProcess, also
contains the total number of chunks written, along with some other information about the
Batch Process.

Note: The batch streaming architecture also supports the dynamic addition of streams while
the batch process is being run, subject to the appropriate hardware being available to execute
them.

© Merative US L.P. 2012, 2024

Cúram 8.1.2 14

Figure 2: Streaming Architecture Details

© Merative US L.P. 2012, 2024

1 Tuning batch streaming performance 15

1.3 Data Caching

The second batch performance mechanism provided by the application addresses the issue of
database I/O contention. Improvements to database I/O in batch processing are always worth
making, especially as batch windows reduce and the case and client loads increase. To this end a
number of in-memory caches have been introduced for core entities which are available for re-use
by Cúram batch processes.

Note that data which is accessed repeatedly during the eligibility processing is not limited to
that stored in core Cúram entities. As a result, consideration should be given by customers to the
caching of custom entities (for example, evidence) which are accessed as part of this process.

It is also worth noting that these caches have been constructed so that they cannot be used in on-
line mode. When on-line, because the application server is in control of the thread scheduling, the
consistency between the cached data and that on the database cannot be guaranteed.

Core Entity Caches

Caches are implemented for the following core entities:

• CaseEvidenceTree

This entity is one of the constituents of the Case Evidence Tree evidence maintenance
solution. The caching of this entity is incorporated into the CaseEvidenceAPI class and does
not need to be accessed directly.

• CaseEvidenceGroupLink

This entity is one of the constituents of the Case Evidence Tree evidence maintenance
solution. The caching of this entity is incorporated into the CaseEvidenceAPI class and does
not need to be accessed directly.

• AttributedEvidence

This entity is part of the Evidence maintenance solution. The caching of this entity is
incorporated into the Evidence Controller class and does not need to be accessed directly.

• CaseHeader

This stand-alone cache is implemented in the CachedCaseHeader class. Referencing this class
rather than the CaseHeader entity directly allows your processing take advantage of this cache.

• ConcernRole

This stand-alone cache is implemented in the CachedConcernRole class. Referencing this
class rather than the ConcernRole entity directly allows your processing take advantage of this
cache.

• CaseNomineeProdDelPattern

This stand-alone cache is implemented in the CachedCaseNomineeProdDelPattern class.
Referencing this class rather than the CaseNomineeProdDelPattern entity directly allows your
processing take advantage of this cache.

• CaseParticipantRole

This stand-alone cache is implemented in the CachedCaseParticipantRole class. Referencing
this class rather than the CaseParticipantRole entity directly allows your processing take
advantage of this cache.

© Merative US L.P. 2012, 2024

Cúram 8.1.2 16

• CaseRelationship

This stand-alone cache is implemented in the CachedCaseRelationship class. Referencing this
class rather than the CaseRelationship entity directly allows your processing take advantage of
this cache.

• CaseStatus

This stand-alone cache is implemented in the CachedCaseStatus class. Referencing this class
rather than the CaseStatus entity directly allows your processing take advantage of this cache.

• ConcernRoleRelationship

This stand-alone cache is implemented in the CachedConcernRoleRelationship class.
Referencing this class rather than the ConcernRoleRelationship entity directly allows your
processing take advantage of this cache.

• FinancialCalendar

This stand-alone cache is implemented in the CachedFinancialCalendar class. Referencing this
class rather than the FinancialCalendar entity directly allows your processing take advantage
of this cache.

• Person

This stand-alone cache is implemented in the CachedPerson class. Referencing this class
rather than the Person entity directly allows your processing take advantage of this cache.

• Product

This stand-alone cache is implemented in the CachedProduct class. Referencing this class
rather than the Product entity directly allows your processing take advantage of this cache.

• ProductDelivery

This stand-alone cache is implemented in the CachedProductDelivery class. Referencing this
class rather than the ProductDelivery entity directly allows your processing take advantage of
this cache.

• ProductDeliveryCertDiary

This stand-alone cache is implemented in the CachedProductDeliveryCertDiary class.
Referencing this class rather than the ProductDeliveryCertDiary entity directly allows your
processing take advantage of this cache.

• ProductDeliveryPattern

This stand-alone cache is implemented in the CachedProductDeliveryPattern class.
Referencing this class rather than the ProductDeliveryPattern entity directly allows your
processing take advantage of this cache.

• ProductDeliveryPatternInfo

This stand-alone cache is implemented in the CachedProductDeliveryPatternInfo class.
Referencing this class rather than the ProductDeliveryPatternInfo entity directly allows your
processing take advantage of this cache.

• ProductRulesLink

This stand-alone cache is implemented in the CachedProductRulesLink class. Referencing this
class rather than the ProductRulesLink entity directly allows your processing take advantage
of this cache.

• ProviderLocation

© Merative US L.P. 2012, 2024

1 Tuning batch streaming performance 17

This stand-alone cache is implemented in the CachedProviderLocation class. Referencing this
class rather than the ProviderLocation entity directly allows your processing take advantage of
this cache.

• RateTable

This cache is incorporated into the RateTable service layer class and does not need to be
accessed directly.

• SupplierReturnHeader

This stand-alone cache is implemented in the CachedSupplierReturnHeader class. Referencing
this class rather than the SupplierReturnHeader entity directly allows your processing take
advantage of this cache.

1.4 Batch Processes using Streaming

This section describes the Core batch processes which implement streaming and caching, together
with their operational characteristics. Each process has been provided as two executables.

DetermineProductDeliveryEligibility

This batch process takes "Approved" cases and runs the determine eligibility process.

Two batch executables are provided for this batch process:

• DetermineProductDeliveryEligibility

This executable is the Chunker for this process. It identifies all cases which are “Approved”
and writes their caseIDs to the chunks. This process also accepts a product identifier as an
optional input parameter, which is used to limit the cases selected to those which are instances
of a particular product.

• DetermineProductDeliveryEligibilityStream

This program is the Stream for this process. It runs the determine eligibility process for each
case and stores the results on the database.

GenerateInstructionLineItems

This batch program takes Financial Components due to be processed, reassesses the case for the
period to be paid and generates the appropriate Instruction Line Item records.

Two batch executables are provided for this program:

• GenerateInstructionLineItems

This executable is the Chunker for this process. It identifies all cases with Financial
Components due to be processed and writes their caseIDs to the chunks. This process also
accepts a set of optional input parameters, a 'from' date, a 'to' date and a delivery method,
which are used to limit the cases selected to be processed.

• GenerateInstructionLineItemsStream

This program is the Stream for this process. It runs the determine eligibility process for the
period to be paid for each case and generates all relevant Instruction Line Items.

© Merative US L.P. 2012, 2024

Cúram 8.1.2 18

GenerateInstruments

This batch program takes Instruction Line Items due to be processed and generates Payment
Instrument records.

Two batch executables are provided for this program:

• GenerateInstruments

This executable is the Chunker for this process. It identifies all nominees with Instruction Line
Items due to be processed and writes their nomineeIDs to the chunks.

• GenerateInstrumentsStream

This program is the Stream for this process. It generates Payment Instruments for each
nominee.

CREOLEBulkCaseChunkReassessmentByProduct

This batch process takes "Active" CER cases and runs the case reassessment process on them.

Two batch executables are provided for this batch process:

Important: As this process will cause reassessment of all cases of the specified type, it may
cause a lot of unneccessary reassessments. Where appropriate, a new batch process should
be written in order to more precisely identify the cases that require reassessment, especially
when the cases are spread across a range of products. For a full explanation of how to write an
appropriate batch process see the Inside Cúram Eligibility and Entitlement
Using Cúram Express Rules guide.

• CREOLEBulkCaseChunkReassessmentByProduct

This executable is the Chunker for the bulk case reassessment process. It identifies all cases
which are “Active” and writes their caseIDs to the chunks. The bulk case reassessment also
accepts a product identifier as an optional input parameter, which is used to limit the cases
selected to those which are instances of a particular product.

• CREOLEBulkCaseChunkReassessmentStream

This program is the Stream for the bulk case reassessment process. It runs the case
reassessment process for each case and, if the determination has changed, it stores the new
determination and supersedes the previous one.

ApplyProductReassessmentStrategy

This batch process checks all the cases for a CER-based product whose reassessment strategy has
changed.

• ApplyProductReassessmentStrategy

This executable is the Chunker for the Apply Product Reassessment Strategy process. It takes
a product ID as input, and for that product identifies all product delivery cases and writes their
caseIDs to the chunks.

• ApplyProductReassessmentStrategyStream

© Merative US L.P. 2012, 2024

1 Tuning batch streaming performance 19

This program is the Stream for the Apply Product Reassessment Strategy process. For each
product delivery case, the program checks to see if the case's support for reassessment has
changed due to the change in the product's reassessment strategy.

For each product delivery case for the product:

• if the case was not reassessable under the old strategy but becomes reassessable under the new
strategy, then an assessment is performed on the case to build up the dependency records for
the case's determination result;

• if the case was reassessable under the old strategy but is no longer reassessable under the new
strategy, then the dependency records for the determination result are removed;

• otherwise no action is performed on the case.

See the Inside Cúram Eligibility and Entitlement Using Cúram Express
Rules guide for more detail.

Perform Batch Recalculations From Precedent Change Set batch
process

The PerformBatchRecalculationsFromPrecedentChangeSet batch process analyzes a set of
changes to precedent data and recalculates all dependents that are potentially affected by any of
those precedent changes.

• PerformBatchRecalculationsFromPrecedentChangeSet

This executable is the Chunker for the Perform Batch Recalculations From Precedent Change
Set process. It takes a dependent type as input, examines the most-recent precedent change
set submitted for batch processing, identifies the unique set of dependents (for the type input)
potentially affected by any of the precedent change items in the submitted precedent change
set, and writes their dependent IDs to the chunks.

• PerformBatchRecalculationsFromPrecedentChangeSetStream

This program is the Stream for the Perform Batch Recalculations From Precedent Change Set.
For each dependent identified, the dependent is recalculated in a manner appropriate to its
type, for example, if the dependent identifies a CER-based case, the case is reassessed.

For full details on this batch process, see "The Dependency Manager" in the Cúram Express
Rules Reference Guide.

RedetermineTranslator

This batch process checks all open cases for which a particular user is assigned as the case owner
and compares the preferred language of each case participant in the case against the language skill
of the user, and then updates the translator required indicator for the case participant if necessary.
It is used to perform automatic redetermine translator processing when a change to the language
skill of a user is made and the change will affect large volumes of cases.

The application property, curam.cases.maxnocases.onlineautotranslatordetermination, is used
to control whether automatic redetermination of translator requirements occurs in batch mode
or in online mode. If the number of open cases that require processing exceeds this value,
redetermination will not occur in online mode and this batch process must instead be executed.
Two batch executables are provided for this program:

© Merative US L.P. 2012, 2024

Cúram 8.1.2 20

• RedetermineTranslator

This executable is the Chunker for the redetermine translator process. It takes a user name as
input, and for that user name identifies all the non closed cases and writes their caseIDs to the
chunks.

• RedetermineTranslatorStream

This program is the stream for the redetermine translator process. For each case, the program
compares the preferred language of each case participant in the case against the language
skill of the user, and then updates the translator required indicator for the case participant if
necessary.

1.5 Operation of Streamed Batch Processes

This section details various operational considerations which apply when deploying the streamed
batch processes in the application. Note that similar considerations should also apply to customer-
written streamed batch processes.

Running Batch Executables

To launch the batch executables on a machine the following command can be used:

ant -f app_batchlauncher.xml -Dbatch.username=superuser -
Dbatch.program=<method name>

Where the method name is the appropriate one from the list here:

© Merative US L.P. 2012, 2024

1 Tuning batch streaming performance 21

Table 1: Method Names for batch executables

Executable Method Name

DetermineProductDeliveryEligibility
curam.core.intf.DetermineProductDeliveryEligibility.process

DetermineProductDeliveryEligibilityStream
curam.core.intf.DetermineProductDeliveryEligibilityStream
.process

GenerateInstructionLineItems
curam.core.intf.GenerateInstructionLineItems
.processAllFinancialComponentsDue

GenerateInstructionLineItemsStream
curam.core.intf.GenerateInstructionLineItemsStream
.process

GenerateInstruments
curam.core.intf.GenerateInstruments
.processInstructionLineItemsDue

GenerateInstrumentsStream
curam.core.intf.GenerateInstrumentsStream
.process

CREOLEBulkCaseChunkReassessmentByProduct
curam.core.sl.infrastructure.assessment
.intf.CREOLEBulkCaseChunkReassessmentByProduct
.process

CREOLEBulkCaseChunkReassessmentStream
curam.core.sl.infrastructure.assessment.intf
.CREOLEBulkCaseChunkReassessmentStream.process

ApplyProductReassessmentStrategy
curam.core.sl.infrastructure.assessment.intf
.ApplyProductReassessmentStrategy.process

ApplyProductReassessmentStrategyStream
curam.core.sl.infrastructure.assessment.intf
.ApplyProductReassessmentStrategyStream.process

PerformBatchRecalculationsFromPrecedentChangeSet
curam.dependency.intf
.PerformBatchRecalculationsFromPrecedentChangeSet
.process

PerformBatchRecalculationsFromPrecedentChangeSetStream
curam.dependency.intf
.PerformBatchRecalculationsFromPrecedentChangeSetStream
.process

© Merative US L.P. 2012, 2024

Cúram 8.1.2 22

So for example to run the DetermineProductDeliveryEligibilityStream process the command
would be:

ant -f app_batchlauncher.xml -Dbatch.username=superuser -Dbatch.program=curam.core
.intf.DetermineProductDeliveryEligibilityStream.process

Note that it is possible to use the BatchLauncher to run the batch executables; however, the
queued processes is run sequentially.

Environment variables

The environment variables listed here control the operation of the various batch performance
mechanisms described in the previous sections. It is important to note that while the tuning of
these parameters is key to achieving the best performance when running batch processes, it is also
possible to compromise their performance by incorrect tuning of these parameters. It is therefore
advised that the impact of changes to each parameter be assessed individually to ensure that it has
the expected affect on performance.

General Batch streaming
The following environment variables control the generic batch streaming infrastructure behavior:

• curam.batch.streams.batchprocessreadwaitinterval

The interval (in milliseconds) for which a batch stream will wait before retrying when reading
the batch process table.

• curam.batch.streams.chunkkeyreadwaitinterval

The interval (in milliseconds) for which a batch stream will wait before retrying when reading
the chunk key table.

• curam.batch.streams.scanforunprocessedchunkswaitinterval

The interval (in milliseconds) for which the main batch process (chunker) will wait before
trying to scan for unprocessed chunks, once the value in the chunk key table has exceeded the
number of chunks.

General Caching

The following environment variables control generic caching behavior:

• curam.batch.caching.buffersize

Batch process caches using circular buffers will use this value to set the initial buffer size.

Determine Product Delivery Eligibility
The following environment variables control the behavior of the Determine Product Delivery
Eligibility program:

• curam.batch.determineproductdeliveryeligibility.chunksize

The number of cases in each chunk that will be processed by the Determine Product Delivery
Eligibility batch program.

• curam.batch.determineproductdeliveryeligibility.dontrunstream

Indicates whether the Determine Product Delivery Eligibility batch program should sleep
while waiting for processing to be completed.

© Merative US L.P. 2012, 2024

1 Tuning batch streaming performance 23

• curam.batch.determineproductdeliveryeligibility.chunkkeywaitinterval

The interval (in milliseconds) for which the Determine Product Delivery Eligibility batch
program will wait before retrying when reading the chunk key table.

• curam.batch.determineproductdeliveryeligibility.unprocessedchunkwaitinterval

The interval (in milliseconds) for which the Determine Product Delivery Eligibility batch
program will wait before retrying when reading the chunk table.

• curam.batch.determineproductdeliveryeligibility.processunprocessedchunk

Indicates whether the Determine Product Delivery Eligibility program should attempt to
process any unprocessed chunks found after all the streams have completed.

Generate Instruction Line Items
The following environment variables control the behavior of the Generate Instruction Line Items
process:

• curam.batch.generateinstructionlineitems.chunksize

The number of cases in each chunk that will be processed by the Generate Instruction Line
Items batch process.

• curam.batch.generateinstructionlineitems.dontrunstream

Indicates whether the Generate Instruction Line Items batch program should sleep while
waiting for the processing to be completed.

• curam.batch.generateinstructionlineitems.chunkkeywaitinterval

The interval (in milliseconds) for which the Generate Instruction Line Items batch process will
wait before retrying when reading the chunk key table.

• curam.batch.generateinstructionlineitems.unprocessedchunkwaitinterval

The interval (in milliseconds) for which the Generate Instruction Line Items batch process will
wait before retrying when reading the chunk table.

• curam.batch.generateinstructionlineitems.processunprocessedchunk

Indicates whether the Generate Instruction Line Items program should attempt to process any
unprocessed chunks found after all the streams have completed.

• curam.batch.generateinstructionlineitems.dontreassesscase

Indicates whether the Generate Instruction Line Items program should skip reassessment of
the case prior to payment.

Generate Instruments
The following environment variables control the behavior of the Generate Instruments process:

• curam.batch.generateinstruments.chunksize

The number of cases in each chunk that will be processed by the Generate Instruments batch
process.

• curam.batch.generateinstruments.dontrunstream

Indicates whether the Generate Instruments batch process should sleep while waiting for the
processing to be completed.

• curam.batch.generateinstruments.chunkkeywaitinterval

The interval (in milliseconds) for which the Generate Instruments batch process will wait
before retrying when reading the chunk key table.

© Merative US L.P. 2012, 2024

Cúram 8.1.2 24

• curam.batch.generateinstruments.unprocessedchunkwaitinterval

The interval (in milliseconds) for which the Generate Instruments batch process will wait
before retrying when reading the chunk table.

• curam.batch.generateinstruments.processunprocessedchunk

Indicates whether the Generate Instruments program should attempt to process any
unprocessed chunks found after all the streams have completed.

CREOLE Bulk Case Chunk Reassessment By Product
The following environment variables control the behavior of the CREOLE Bulk Case Chunk
Reassessment By Product program, and its associated Stream process (CREOLE Bulk Case
Chunk Reassessment Stream):

• curam.batch.creolebulkcasechunkreassessment.chunksize

The number of cases in each chunk that will be processed by the CREOLE Bulk Case Chunk
Reassessment Stream program.

• curam.batch.creolebulkcasechunkreassessment.dontrunstream

Indicates whether the CREOLE Bulk Case Chunk Reassessment By Product batch program
should sleep while waiting for processing to be completed.

• curam.batch.creolebulkcasechunkreassessment.chunkkeywaitinterval

The interval (in milliseconds) for which the CREOLE Bulk Case Chunk Reassessment By
Product batch program will wait before retrying when reading the chunk key table.

• curam.batch.creolebulkcasechunkreassessment.unprocessedchunkwaitinterval

The interval (in milliseconds) for which the CREOLE Bulk Case Chunk Reassessment By
Product batch program will wait before retrying when reading the chunk table for unprocessed
chunks.

• curam.batch.creolebulkcasechunkreassessment.processunprocessedchunk

Indicates whether the CREOLE Bulk Case Chunk Reassessment By Product program should
attempt to process any unprocessed chunks found after all the streams have completed.

Apply Product Reassessment Strategy
The following environment variables control the behavior of the Apply Product Reassessment
Strategy program, and its associated Stream process (Apply Product Reassessment Strategy
Stream):

• curam.batch.applyproductreassessmentstrategy.chunksize

The number of cases in each chunk that will be processed by the Apply Product Reassessment
Strategy batch program.

• curam.batch.applyproductreassessmentstrategy.dontrunstream

Indicates whether the Apply Product Reassessment Strategy batch program should sleep while
waiting for the processing to be completed (rather than run a stream in its context)

• curam.batch.applyproductreassessmentstrategy.chunkkeywaitinterval

The interval (in milliseconds) for which the Apply Product Reassessment Strategy batch
program will wait before retrying when reading the chunk key table.

• curam.batch.applyproductreassessmentstrategy.unprocessedchunkwaitinterval

© Merative US L.P. 2012, 2024

1 Tuning batch streaming performance 25

The interval (in milliseconds) for which the Apply Product Reassessment Strategy batch
program will wait before retrying when reading the chunk table for unprocessed chunks.

• curam.batch.applyproductreassessmentstrategy.processunprocessedchunk

Indicates whether the Apply Product Reassessment Strategy program should process any
unprocessed chunks found after all the streams have completed.

Perform Batch Recalculations From Precedent Change Set
The following environment variables control the behavior of the Perform Batch Recalculations
From Precedent Change Set program, and its associated Stream process (Perform Batch
Recalculations From Precedent Change Set Stream):

• curam.batch.performbatchrecalculationsfromprecedentchangeset.chunksize

The number of dependents in each chunk that will be processed by the Perform Batch
Recalculations From Precedent Change Set batch program.

• curam.batch.performbatchrecalculationsfromprecedentchangeset.dontrunstream

Indicates whether the Perform Batch Recalculations From Precedent Change Set batch
program should sleep while waiting for the processing to be completed (rather than run a
stream in its context)

• curam.batch.performbatchrecalculationsfromprecedentchangeset.chunkkeywaitinterval

The interval (in milliseconds) for which the Perform Batch Recalculations From Precedent
Change Set batch program will wait before retrying when reading the chunk key table.

• curam.batch.performbatchrecalculationsfromprecedentchangeset.unprocessedchunkwaitinterval

The interval (in milliseconds) for which the Perform Batch Recalculations From Precedent
Change Set batch program will wait before retrying when reading the chunk table for
unprocessed chunks.

• curam.batch.performbatchrecalculationsfromprecedentchangeset.processunprocessedchunk

Indicates whether the Perform Batch Recalculations From Precedent Change Set program
should process any unprocessed chunks found after all the streams have completed.

Determine Product Delivery Eligibility
The following environment variables control the behavior of the RedetermineTranslator Program:

• curam.cases.maxnocases.onlineautotranslatordetermination

Used to control whether automatic redetermination of translator requirements will occur in
batch mode versus online mode.

Error handling

Two key types of errors can occur when running the streamed batch programs:

• Skipped chunks

These are reported when the batch process completes, together with an estimate of the total
number of records which might have been affected. Re-running the batch process processes
these chunks correctly, unless some unrecoverable error is occurring during the batch
processing. Note that skipped chunks are a relatively rare phenomenon; skipped records are far
more likely.

• Skipped records

© Merative US L.P. 2012, 2024

Cúram 8.1.2 26

These are also reported when the batch program completes, and entries are added to the log
files for the stream(s), which encountered the errors, detailing the error that occurred and the
stack trace. There are two possible scenarios for this:

1. Some business error was encountered processing the record

The status of the record is changed to remove it from the set of records to be processed and
a task is created for the business owner. This takes the form of suspending the case and
sending a task to the case owner.

2. Some technical error was encountered processing the record

The status of the record is not changed by this event. The log file(s) can be examined to
determine the problem, and the batch process rerun to process these records, after the issue
is resolved.

© Merative US L.P. 2012, 2024

Notices

Permissions for the use of these publications are granted subject to the following terms and
conditions.

Applicability

These terms and conditions are in addition to any terms of use for the Merative website.

Personal use

You may reproduce these publications for your personal, noncommercial use provided that all
proprietary notices are preserved. You may not distribute, display or make derivative work of
these publications, or any portion thereof, without the express consent of Merative

Commercial use

You may reproduce, distribute and display these publications solely within your enterprise
provided that all proprietary notices are preserved. You may not make derivative works of these
publications, or reproduce, distribute or display these publications or any portion thereof outside
your enterprise, without the express consent of Merative.

Rights

Except as expressly granted in this permission, no other permissions, licenses or rights are
granted, either express or implied, to the publications or any information, data, software or other
intellectual property contained therein.

Merative reserves the right to withdraw the permissions granted herein whenever, in its
discretion, the use of the publications is detrimental to its interest or, as determined by Merative,
the above instructions are not being properly followed.

You may not download, export or re-export this information except in full compliance with all
applicable laws and regulations, including all United States export laws and regulations.

MERATIVE MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE
PUBLICATIONS. THE PUBLICATIONS ARE PROVIDED "AS-IS" AND WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT
LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT,
AND FITNESS FOR A PARTICULAR PURPOSE.

Merative or its licensors may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this documentation does not grant you any license
to these patents.

Information concerning non-Merative products was obtained from the suppliers of those products,
their published announcements or other publicly available sources. Merative has not tested those
products and cannot confirm the accuracy of performance, compatibility or any other claims
related to non-Merative products. Questions on the capabilities of non-Merative products should
be addressed to the suppliers of those products.

Any references in this information to non-Merative websites are provided for convenience only
and do not in any manner serve as an endorsement of those websites. The materials at those
websites are not part of the materials for this Merative product and use of those websites is at
your own risk.

© Merative US L.P. 2012, 2024

This information contains examples of data and reports used in daily business operations.
To illustrate them as completely as possible, the examples include the names of individuals,
companies, brands, and products. All of these names are fictitious and any similarity to actual
people or business enterprises is entirely coincidental.

The licensed program described in this document and all licensed material available for it are
provided by Merative under terms of the Merative Client Agreement.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate
programming techniques on various operating platforms. You may copy, modify, and distribute
these sample programs in any form without payment to Merative, for the purposes of developing,
using, marketing or distributing application programs conforming to the application programming
interface for the operating platform for which the sample programs are written. These examples
have not been thoroughly tested under all conditions. Merative, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample programs are provided
"AS IS", without warranty of any kind. Merative shall not be liable for any damages arising out of
your use of the sample programs.

Privacy policy
The Merative privacy policy is available at https://www.merative.com/privacy.

Trademarks

Merative ™ and the Merative ™ logo are trademarks of Merative US L.P. in the United States and
other countries.

IBM®, the IBM® logo, and ibm.com® are trademarks or registered trademarks of International
Business Machines Corp., registered in many jurisdictions worldwide.

Adobe™, the Adobe™ logo, PostScript™, and the PostScript™ logo are either registered
trademarks or trademarks of Adobe™ Systems Incorporated in the United States, and/or other
countries.

Oracle and Java are registered trademarks of Oracle and/or its affiliates.

The registered trademark Linux® is used pursuant to a sublicense from the Linux Foundation, the
exclusive licensee of Linus Torvalds, owner of the mark on a worldwide basis.

Microsoft™, Windows™, and the Windows™ logo are trademarks of Microsoft™ Corporation in
the United States, other countries, or both.

UNIX™ is a registered trademark of The Open Group in the United States and other countries.

Other company, product, and service names may be trademarks or service marks of others.

© Merative US L.P. 2012, 2024

https://www.merative.com/privacy

	Note
	Edition
	Notices
	Privacy policy
	Trademarks

	Contents
	1 Tuning batch streaming performance
	1.1 Overview
	Intended Audience
	What Batch Performance Mechanisms does the application Provide?
	Batch Streaming
	Caching of Batch Process Data

	Cúram Batch Processes using Batch Streaming
	Operation of Streamed Batch Processes

	1.2 Batch Streaming Architecture
	Overview
	Architectural Details
	The Chunker
	The Stream
	Additional Information

	1.3 Data Caching
	Core Entity Caches

	1.4 Batch Processes using Streaming
	DetermineProductDeliveryEligibility
	GenerateInstructionLineItems
	GenerateInstruments
	CREOLEBulkCaseChunkReassessmentByProduct
	ApplyProductReassessmentStrategy
	Perform Batch Recalculations From Precedent Change Set batch process
	RedetermineTranslator

	1.5 Operation of Streamed Batch Processes
	Running Batch Executables
	Environment variables
	General Batch streaming
	General Caching
	Determine Product Delivery Eligibility
	Generate Instruction Line Items
	Generate Instruments
	CREOLE Bulk Case Chunk Reassessment By Product
	Apply Product Reassessment Strategy
	Perform Batch Recalculations From Precedent Change Set
	Determine Product Delivery Eligibility

	Error handling

