A
MerATive

Curam 8.1.2

Content Management Interoperability
Services Integration Guide

Note

Before using this information and the product it supports, read the information in Notices on page
27

© Merative US L.P. 2012, 2024

© Merative US L.P. 2012, 2024

Edition
This edition applies to Curam 8.1, 8.1.1, and 8.1.2.

© Merative US L.P. 2012, 2024

Merative and the Merative Logo are trademarks of Merative US L.P. in the United States and
other countries.

© Merative US L.P. 2012, 2024

© Merative US L.P. 2012, 2024

Contents vii

Contents
L0 PP i
o 114 T] PSSP Y
1 Integrating with a content management system (CMS).........cccccoviiiiiiiiiiiiiiiiiiniiinnee, 9
1.1 Configuring Clram to use With @ CMS...........oooiiii i, 9
Registering and adding a CMS to the target SyStem.........ccooeviiiiiiii e 9
ACTIVALING 8 CMS ...t e e e e e e e e e s s bbb e e e e e e e s e bbb e e eeee s 11
1.2 Integrating a CMS with CUram.............ccciiii 13
Gradual MIGEATION. ..ot e e e e et e e e e e st e e e e e e e anbbeerreeeeeeaanne 14
Attachments and securing documents iN @ CMS..........ooiiiiiiiiiiiiiiecieeeeeeeeeeeeee e 15
Microsoft® Word and pro forma commuUNICAtIONS.............cveiieeireeiiieeiree et 15
1.3 MEBLAUALA.cce e eeeiee e 16
Using the default Metadatal..........ccoooeiiiiiiiiiii e e nnrernneenrernee 18
O O U1 0] 0 742 L[o PP 19
(O1U LSy (o) 04T a o T 1411 7= Lo = L= VAP 19
Custom directory structures and file-naming strategies...........ccuuieeiiiiiirieeeicciin e, 22
SINGIE SN0ttt e e e e e e et e e e e e e e e e e e e e e aeeeas 24
1.5 CMIS validation €rTOr MESSAQES. .. .ccceeeieeeeiiiiat et e e e e eeeetttis s e e e e e ee e et eeeeeeeeeerra e aeeeeeeensennnns 25
N[0 o =PRI 27
e 117z 103 YA o o] o Y 2RSS 28
B0 =T 00 T T OO UPPT S POPPPPPPPRTP 28

© Merative US L.P. 2012, 2024

Curam 8.1.2 viii

© Merative US L.P. 2012, 2024

1 Integrating with a content management system (CMS) 9

1 Integrating with a content management system (CMS)

Register a target system so that you can use a content management system (CMS) as a repository
for documents. When you integrate with a CMS, attachments, Microsoft™ Word communications,
and pro forma communications documents are stored and retrieved from the CMS.

Organizations use a content management system (CMS) to store and manage various types

of content. Various configuration options are available to integrate Ciiram with a CMS. The
following list outlines the concepts that you must be familiar with before you start to configure
Curam to integrate with a CMS:

» The basic elements of case processing in the human services industry.
* The Clram case management function.

For more information, see the Communications Overview Guide and the Integrated Case
Management Guide.

Standards

Curam uses the Content Management Interoperability Services (CMIS) standard. CMIS
integration is verified with IBM® FileNet P8 v5.5.1 and IBM® FileNet CMIS v3.0.5. For more
information about CMIS standards, see the Content Management Interoperability Services
(CMIS) Version 1.0 and the Content Management Interoperability Services (CMIS) Version 1.1
related links.

Related concepts
Content Management Interoperability Services (CMIS) Version 1.0
Content Management Interoperability Services (CMIS) Version 1.1

1.1 Configuring Cdram to use with a CMS

Before you can use a content management system (CMS) as a repository for documents, two
steps are required. You must register the CMS as a target system and then configure Cliram so
that the application can communicate with the CMS.

Registering and adding a CMS to the target system

To permit two-way communication between Cliram and a content management system (CMS),
register a target system. To add the CMS service to the target system, specify the service settings.

Register a target system

A system administrator must configure the details for the content management target system. The
following steps outline how to register a target system:

1. Log in to the system administration application.
2. Select to create a new target system.

3. Enter a unique name for the target system.

4. Enter the URL of the target system.

© Merative US L.P. 2012, 2024

http://docs.oasis-open.org/cmis/CMIS/v1.0/cmis-spec-v1.0.html
https://docs.oasis-open.org/cmis/CMIS/v1.1/CMIS-v1.1.html

Curam 8.1.2 10

CMS target system service settings

You must specify CMS service settings for a target system. To specify the CMS service settings,
you must first check your CMS to determine which CMIS binding type (service name) is
available and the associated URL for that binding type.

Service name

* Description
Service name is the unique name of the service.
Select Content Management Interoperability Service over Atompub or Content
Management Interoperability Service over Browser Binding.

Note: The Atompub binding is available for all repositories that support CMIS version
1.0 and 1.1. The browser binding is available only since CMIS version 1.1 and only for
repositories where this optional binding is implemented.

* Mandatory
Yes.

Extension

* Description
Extension is the URL extension that the system adds to the system address of the address.
The extension provides the full location of the Content Management Interoperability Service
(CMIS) repository.

* Mandatory
Yes.

Invoking user username

* Description
Invoking user username is the login username that the CMIS service requires. By default, the
account is required to connect to the CMS. If the organization implemented CMIS single sign-
on support and enabled single sign-on support in the application, leave the setting blank. For
more information about single sign-on, see Single sign-on on page 24.

* Mandatory
No.

Invoking user password

* Description
The CMIS service requires the login password. By default, the account is required to connect
to the CMS. If the organization implemented CMIS single sign-on support and enabled single
sign-on support in the application, leave the setting blank. For more information about single
sign-on, see Single sign-on on page 24.
When the target system service is created, the login password is encrypted by Curam
encryption algorithms. The plain text password is never stored. Ciiram compares the encrypted
values only for authentication. The password is not retrieved during later editing of the
service. If you edit the service, the system displays the Invoking User Password field as
empty.

For more information about encryption, see the Security Guide.

© Merative US L.P. 2012, 2024

1 Integrating with a content management system (CMS) 11

* Mandatory
No

Note: A configuration is valid only where exactly one target system service exists for the
Content Management Interoperability Service. Creating a service definition does not test the
connection to the service. The system administrator must ensure that all target system and
service details are correct before they enable CMIS in Ciram. Any connection issues are
reported when users interact with the CMS through any Caram CMIS integration, for example,
when users create, view, or update attachments.

Activating a CMS

After you add the content management system (CMS) service to the target system, configure and
activate the CMS.

Content Management Interoperability Service (CMIS) properties

Use the system properties group to configure the details for the content management target
system. Click System Administration > Property Administration > Application Properties -
Content Management Settings. Use the following property information to update the Content
Management Interoperability Service (CMIS) properties of the CMIS target system service.

curam.cms.enable

* Description
The curam. cms.enable property indicates whether the CMIS is enabled. True determines
that the storage location for specific files is in a configured CMS. False determines that the
storage location is in the Ctiram database.

* Default value
True.

curam.cms.attachment.enable

* Description
The curam.cms.attachment.enable property indicates whether the CMIS is enabled.
True determines that the storage location for attachments is in a configured CMS. False
determines that the storage location is in the Ctiram database.

* Default value
True.

curam.cms.proforma.enable

* Description
The curam.cms.proforma.enable property indicates whether storing pro forma
communications to the CMS is enabled. True determines that the storage location for
communications is in a configured CMS. False determines that the storage location is in the
Ctram database.

* Default value
True.

© Merative US L.P. 2012, 2024

Curam 8.1.2 12

curam.cms.metadata.enable

* Description
The curam.cms.metadata.enable property indicates whether CMIS metadata is enabled.
True determines that the associated metadata is uploaded with any file that is uploaded to
the CMS. False determines that the only the file is uploaded to the CMS. Before you set the
property to True, ensure that the metadata properties are configured on the CMS. For more
information about configuring the metadata properties, see Customizing metadata on page
19.

¢ Default value
False.

curam.cms.curam.dir

* Description
The curam. cms.curam.dir property indicates the absolute path to the root directory
for Cliram content within the global CMS repository that the Ctiram application uses. The
following list outlines the criteria for the absolute path:

» The absolute path must begin with /
» The absolute path must not end with /
* The absolute path must not contain any unsupported characters.

For more information about unsupported characters, see the documentation for your CMS.

* Default value
The set is based on the organization implementation, for example / Cur am

curam.cms.repository.name

* Description
The curam. cms. repository.name property is the single repository for the global CMS
account that the Ctiram application uses.

* Default value
The set is based on the organization implementation.

curam.cms.sso.enable

* Description
The curam.cms.sso.enable property indicates whether single sign-on (SSO) is enabled.
True enables SSO support. False disables SSO support. False uses the default authentication.
Use True only when the organization implemented the custom code for SSO. For more
information, see Single sign-on on page 24.

¢ Default value
False.

curam.cms.connectiontimeout

* Description
The curam. cms.connectiontimeout property indicates the number of milliseconds that
is spent connecting with the configured CMS before the result is a connection failure. Set the
property to any positive integer or to zero. When the property is set to zero, the property is
ignored.

© Merative US L.P. 2012, 2024

1 Integrating with a content management system (CMS) 13

¢ Default value
0

curam.cms.readtimeout

* Description
The curam. cms. readtimeout property indicates the number of milliseconds that is spent
reading from the configured CMS before the result is a read failure. Set the property to any
positive integer or to zero. When the property is set to zero, the property is ignored.

¢ Default value
0

Note: Do not change the CMIS application properties after the system goes live. Changing the
properties after the system goes live requires extensive analysis and offline reconfiguration of
the system.

1.2 Integrating a CMS with Caram

When you enable integration with a content management system (CMS), attachments, Microsoft
Word communications, and pro forma communications documents are stored and retrieved

from the CMS. Attachment, Microsoft Word communications, and pro forma communications
documents are not stored in the Ctiram database.

Customizing the CMS

To use a Content Management Interoperability Service (CMIS) with attachments, organizations
must verify whether the organization overrode the Curam attachment entity implementation. If
the organization overrode the Curam attachment entity implementation, then the organization can
use the customization and the CMIS with attachments functionality. However, the organization
must update the custom version to match the most recent Curam version. Update the custom
implementation so that it runs the same functions as the Ciram implementation. Update each
custom function to call the Caram implementation.

Note: CMIS integration is not supported for Ctiram batch jobs.

Note: Curam's CMIS integration supports versionable document types only. Ctiiram's CMIS
integration does not support non-versionable document types.

Configuring the CMS

To use the Curam functionality, you must configure the CMS. The following list outlines the
classes that you must add:

e Add a CuramDocument class as a subclass of cmis:document.
e AddaCcuramAttachment class as a subclass of CuramDocument.

The following table outlines the properties that are required on the CuramAttachment document
class on the CMS.

© Merative US L.P. 2012, 2024

Curam 8.1.2 14

Table 1: CMIS metadata properties

Property Type
caseReference String
communicationDate Date

documentReceiptDate Date

documentType String
documentTypeCode String
participantDOB Date

participantFirstName String
participantLastName String
participantReference String
applicationReference String

Gradual migration

Organizations that are using the Ctiram application and who are storing files in the application
database can enable Content Management Interoperability Service (CMIS) integration without
performing an upfront migration of the content in the content management system (CMS)
repository.

The documents that are stored in the Social Program Management application database remain

in the database and are fully accessible. Documents are saved to the CMS only after any changes
are made to a document or after a document is created. After a document is saved to the CMS, the
document is also removed from the application database.

Note: When you enable the CMIS, do not disable it. Documents that are stored on the CMS
can't be accessed from within the application.

CMIS attachment integration points that read or modify content

You must create or update custom CMIS attachment integration points that read or modify
content. Update integration points that read content to check whether the content exists on the
CMS. Update the modify integration points by using the following pseudocode logic:

}if CMIS is enabled {
if content exists on the CMS for the record in question {
modify the contents on the content management system
} else {
create the contents on the content management system
blank the application database copy (optional)
}
} else CMIS is not enabled {
maintain the database copy

}

Note: Custom pro forma communication integration points are not affected.

© Merative US L.P. 2012, 2024

1 Integrating with a content management system (CMS) 15

Attachments and securing documents in a CMS

When a user views the attachment, the attachment is retrieved from the content management
system (CMS). Existing Ctiram security mechanisms provide access to documents that are stored
in a CMS.

Attachments

Attachment records in the Caram database no longer store the associated file content. Instead,

the file and any of the configured attachment metadata elements for the attachment are stored

in the CMS. If the user uploads a new version of the file, the original document that is stored

in the CMS is superseded by the new document. If the user updates any configured attachment
metadata elements, the elements are also updated in the CMS. Selecting the attachment returns
the most recent version of the file on the CMS. In CMS repositories that support version control
of documents, superseded versions of documents are still available to view directly from the CMS
application.

Securing documents in a CMS

Access to documents that are stored in a CMS are secured only through existing Caram security
mechanisms, for example data-based security and location-based security. For more information
about data-based and location-based security, see the Server Developer's Guide and the Security
Guide. Customers must provide their own means of securing alternative forms of access to
documents in the CMS, for example security for accessing documents directly from the CMS.

Microsoft® Word and pro forma communications

For Microsoft® Word communications, the Microsoft® Word document is stored in the content
management system (CMS) when the communication is created. For pro forma communications,
the generated PDF file uses a pro forma template that is stored in the CMS when the status of the
pro forma communication is set to Sent.

Microsoft® Word communications

The Microsoft® Word document in the CMS includes any configured attachment metadata
elements that exist for the Microsoft® Word document. When a user opens the Microsoft® Word
document, the Microsoft® Word document is retrieved from the CMS. When the user modifies
the Microsoft® Word document, a new version of the document is stored in the CMS. When the
Microsoft Word document is opened, the most recent version of the document is retrieved.

Pro forma communications

When the PDF file is stored in the CMS, any requests to preview the pro forma communication
retrieves the file from the CMS.

Note: Except for the document title, no metadata is stored for pro forma communications.

© Merative US L.P. 2012, 2024

Curam 8.1.2 16

1.3 Metadata

You can store metadata with a document that is stored in the content management system (CMS).
By default, any CMS that supports Content Management Interoperability Service (CMIS)

must save part of the cmis:document metadata for all files. Typically, the front end of a CMS
highlights only the document title of the system metadata. However, the rest of the document is
usually accessible.

Attachment metadata

When CMIS is enabled in Curam, by default metadata is stored for all Social Program
Management attachments. You can update custom attachment integration points to use the
CMISAccess API functions to store and modify extra metadata properties with a file that is
stored in a CMS. Attachments are stored as class type Cur amAt t achnent . The class type
Cur amAt t achment is a subclass of Cur anDocunent . The subclass Cur anDocunent
is a subclass of cmi s: docunent . Pro forma communication attachments are stored as
Cur anDocunent . Pro forma communication attachments do not support metadata.

Metadata properties

Metadata is stored for all attachments, including attachments that are associated to recorded
communications and to Microsoft Word communications. By default, you can store 10 metadata
properties. The following class type tree lists the metadata properties:

* cmis:document
* CuramDocument
* CuramAttachment

* caseReference

* communicationDate

* documentReceiptDate
* documentType

* documentTypeCode

* participantDOB

* participantFirstName
* participantLastName
* participantReference
* applicationReference

Administrative users can enable or disable the storage of individual metadata properties. When
administrative users enable or disable a metadata property, the change applies to all attachment
integration points. The metadata that is stored depends on the attachment business flow. For
example, where the case reference metadata property is enabled the following list outlines the
effects:

* The property is stored as metadata for a case attachment created within an integrated case.
» The property is not stored for a participant attachment that is created for a person because it is
not relevant.

© Merative US L.P. 2012, 2024

Metadata descriptions

1 Integrating with a content management system (CMS) 17

The following table describes each of the 10 default metadata properties. The table includes
information about when and how the metadata is stored.

Table 2: CMIS metadata descriptions

Metadata element

Description

Case reference

Participant reference

Participant first name

Participant last name

Participant date of birth

Document type

Document type code

Document receipt date

Communication date

Application reference

Case reference is the case reference number of the case where
the attachment, recorded communication, or Microsoft Word
communication is created, if created within a case. For example, if
an attachment is created within a service plan, the case reference
of the service plan is stored. The case reference of the case where
the service plan was created is not stored.

Participant reference is the participant reference number,

which is stored as the primary alternate ID for the participant.

The participant reference number is stored for all participant
attachments and for attachments that are created in other contexts.
For example, participant reference numbers that are created within
a case where the attachment business flow permits the user to
select a specific participant while the user creates the attachment.

Participant first name is the given name of a participant, which is
stored as part of the primary alternate name for the participant. The
metadata property is stored only for person and prospect person
type participants.

Participant last name is the surname of a participant, which is
stored as part of the primary alternate name for the participant. The
metadata property is stored only for person and prospect person
type participants.

Participant date of birth is the birth date of a participant. The
metadata property is stored only for person and prospect person
type participants.

Document type is the type of document, as captured in the
Document Type field when the system is creating an attachment.
The metadata property is stored for all attachments where the
information is stored in the application database. The metadata
property is not stored where a particular attachment business flow
does not capture the information.

The document type code is the code for the document type, as
captured in the Document Type field when the system is creating
an attachment. The metadata property is stored for all attachments
where the information is stored in the application database. The
metadata property is not stored where a particular attachment
business flow does not capture the information.

Document receipt date is the date that the document was received,
as captured in the Receipt Date field when the system is creating
an attachment. The metadata property is stored for all attachments
where the information is stored in the application database. The
metadata property is not stored where a particular attachment
business flow does not capture the information.

Communication date is the date of the communication to which the
attachment is associated. The metadata property is stored only for
attachments that are associated to recorded communications.

Application reference is the reference number for the application
case.

© Merative US L.P. 2012, 2024

Curam 8.1.2 18

The metadata that is modified is determined by the attachment business flow and the data that

is stored as metadata that can be modified in the application. For example, for integrated case
attachments, the document type for the attachment can be modified in the application. Where

the document type for the attachment is modified, it is modified in the CMS. However, the case
reference of the attachment can't be modified. If an attachment record is initially created without
an associated file, initially no file or metadata is stored in the CMS. However, if the attachment is
then updated and a file is associated, then all metadata elements that are enabled and available are
stored with the file in the CMS.

You can also set up a custom implementation by using the new APIs that includes extra metadata
properties.

Note: The infrastructure updates the file content only if the content changed. The
infrastructure updates the metadata properties only if the properties are supplied.

Using the default metadata

To use the metadata properties that are provided by default when the Content Management
Interoperability Service (CMIS) is enabled, ensure that the content management system (CMS)
is configured with a metadata schema that matches the schema that is implemented on the
application side.

When a file is sent to the CMS through the CMIS API, contextual information, including
metadata, is collected. The following list outlines the steps that are performed by the CMIS API:

» Fetches the collected contextual information.
* Derives as much metadata as possible.

» Distinguishes between metadata that is enabled by using the system administration screen and
other contextual information.

* Calls a custom hook point that can wire up or derive extra, custom metadata.
* Updates the metadata on the CMS.

Configuring metadata properties on the CMS

To use the CMIS metadata support, you must configure the CMS for metadata. The properties
that are required for the CuramAttachment document class on the CMS are listed in the
following table.

Table 3: CMIS metadata properties

Property Type Length
caseReference String 40
communicationDate Date n/a
documentReceiptDate Date n/a
documentType String 500
documentTypeCode String 10
participantDbOB Date n/a
participantFirstName String 65
participantLastName String 65

© Merative US L.P. 2012, 2024

1 Integrating with a content management system (CMS) 19

Property Type Length
participantReference String 18
applicationReference String 10

Configuring metadata properties in the Cdram application

A user with system administrator privileges can manage metadata properties within the system
administration application. Users can enable or disable each individual property. To provide
multi-language support, users can specify multiple display names and descriptions for each

property.

Note: By default, the metadata properties are enabled. Before the CMIS goes live, ensure that
the properties are checked. If required, change the properties.

Note: When the CMIS is live, disabling a property through the application does not remove
existing content from the CMS.

1.4 Customization

You can customize three main parts of the content management system (CMS): metadata, the
directory structures and file-naming strategies, and the single sign-on.

Customizing metadata

Use an explicit method or a transaction-scoped method to collect extra metadata for a document.

Adding custom metadata properties to the documents that are stored on the CMS

In addition to the metadata properties that are stored by default, you can add custom metadata
properties to the documents that are stored on the content management system (CMS). The
following steps outline how to add the custom metadata properties to the documents that are
stored on the CMS:

1. Ensure that the additional metadata properties are configured correctly on the CMS.

2. Implement and bound a custom hook point on the application side to derive or wire up the
additional metadata.

3. Optionally, collect inputs for the custom hook point. You can collect the inputs at any point in
the business flow.

There are two ways of collecting extra metadata for a document.
Explicit method

Make modelling changes and pass the metadata from function to function to the integration point.
At the integration point, the custom code adds the metadata to the document that is to be stored.
The method makes it easier to follow the information flow when you are reading code or when
you are debugging code.

Transaction-scoped method

© Merative US L.P. 2012, 2024

Curam 8.1.2 20

The transaction-scoped method means that metadata can be collected at any point in the business
flow by using an object that is injected by Guice. When the metadata is collected by the Guice-
injected object before the call to the Content Management Interoperability Service (CMIS)
infrastructure, then the metadata is available to wire up in the custom hook point. Metadata that is
wired up in the custom hook point is sent with the document to the CMS.

Configuring extra metadata properties on the CMS

Configure the document class on the CMS for the new custom metadata properties that are
required. For more information about setting up document classes and configuring metadata
properties, see 1.2 Integrating a CMS with Caram on page 13 and 1.3 Metadata on page

16.

Note: When you add extra metadata properties, the properties are enabled. System
administrators can't configure the properties. Add extra metadata properties so that the
properties are to be stored, not disabled.

Note: The following code samples show how to add the metadata string properties
xyz contextualReference and xyz updatedBy. By default, neither of the two properties
are included with the Caram application. You must configure the properties on the CMS.

Note: To start using the updated metadata schema over CMIS, some CMS implementations
must be recycled.

Collecting metadata transactionally with Guice injection

The following code sample shows how to collect metadata using a transaction-scoped object
injected by Guice. In the example, the metadata is collected within the transaction that is
associated with the creation or modification of a document. When the document is either added
to the CMS or updated on the CMS, the metadata that is stored in the transaction-scoped object is
available within the custom hook point to wire it up to the document.

The following code sample shows the transactional collection of contextual information or
metadata:

@Inject
private Provider<CMSMetadataInterface> cmsMetadataProvider;

public SampleConstructor () {
GuiceWrapper.getInjector () .injectMembers (this) ;

}

public sampleMethod() {
CMSMetadataInterface cmsMetadata = cmsMetadataProvider.get () ;
cmsMetadata.add ("xyz_contextualReference", contextualReference);

cmsMetadata.add ("xyz updatedBy",
curam.util.transaction.TransactionInfo.getProgramUser());

: aao

© Merative US L.P. 2012, 2024

1 Integrating with a content management system (CMS) 21

Note: The name of a custom input to the custom hook point must, as shown in the preceding
code, be prefixed by a string, for example "xyz ", where "xyz" is a customer-specific prefix.

For more information, see the Business Intelligence and Analytics Guide.

The following code sample shows the integration point for transactional method:

// save the contents to the content management system

cmisAccess.create (details.attachmentID, CMSLINKRELATEDTYPEEntry.ATTACHMENT,
attachmentDtls.attachmentContents.copyBytes (), attachmentDtls.attachmentName,
CMISNAMINGTYPEEntry.ATTACHMENT, null, CMSMETADATACLASSTYPEEntry.ATTACHMENT) ;

Adding or updating metadata explicitly

An alternative mechanism is to add the metadata explicitly. When you are reading or debugging
code, then adding or updating metadata explicitly can make it easier to follow the data flow.

In the method where the document is created or modified, where there is metadata to be added
to the default set, call the CMISAccessImpl.addItemToExplicitMetadata method. The
method takes in three parameters: the list to which to add the metadata, the metadata name, and
either a string value or a date value.

The following code example shows how to use
CMISAccessImpl.addItemToExplicitMetadata and how to call the overloaded
CMISAccessImpl.create with the explicit metadata list. Replicate where custom metadata
must be added to a document that is being created. The following code example shows the
explicit collection of contextual information or metadata:

CMSMetadataltemList metadatalList = new CMSMetadataItemList () ;
cmisAccess.addItemToExplicitMetadata (metadatalList, "xyz contextualReference",
contextualReference) ;

The following code example shows the integration point for the explicit method:

// save the contents to the content management system

cmisAccess.create (details.attachmentID, CMSLINKRELATEDTYPEEntry.ATTACHMENT,
attachmentDtls.attachmentContents.copyBytes (), attachmentDtls.attachmentName,
CMISNAMINGTYPEEntry.ATTACHMENT, null, metadatalist,
CMSMETADATACLASSTYPEEntry.ATTACHMENT) ;

Wiring up and deriving custom metadata
From the default set of metadata, you can derive extra custom metadata values.

To create a custom metadata hook, extend
curam.core.sl.infrastructure.cmis.impl.CMSMetadataClassCustombDefaultImpl.
Do not implement the underlying interface. By using a Guice module, bind the extra extension
class to a code table on CMSMetadataClassType. The following Guice module code sample
shows how to bind a sample implementation:

MapBinder<CMSMETADATACLASSTYPEEntry, CMSMetadataClassCustomInterface>
metadataStrategyCustomBinder
= MapBinder.newMapBinder (
binder (), CMSMETADATACLASSTYPEEntry.class,
CMSMetadataClassCustomInterface.class) ;

metadataStrategyCustomBinder.addBinding (CMSMETADATACLASSTYPEEntry.ATTACHMENT)
.to(SampleCustomMetadataImpl.class) ;

© Merative US L.P. 2012, 2024

Curam 8.1.2 22

The following code sample shows how to extend the CMSMetadataClassCustomDefaultImpl
class, which is used to derive and gather further metadata and then adds the metadata to the
metadata to send to the CMS.

In the implementable functions, properties contains the enabled metadata properties. otherData
contains any extra contextual information and any metadata that is disabled.

The following code is a sample for a custom metadata collection:

public class SampleCustomMetadataImpl extends CMSMetadataClassCustomDefaultImpl {

public void collectMetadataForNewFile (Map<String, Object> properties,
Map<String, Object> otherData) throws AppException,
InformationalException {

// Manually add the metadata property to the Map
properties.put ("xyz updatedBy",
curam.util.transaction.TransactionInfo.getProgramUser ()) ;

// Wire up additional metadata collected in custom facade
properties.put ("xyz contextualReference",
otherData.get ("xyz contextualReference"));

// Potentially derive more custom metadata
// properties from the data available

}

public void collectMetadataForUpdate (Map<String, Object> properties,
Map<String, Object> otherData) throws AppException,
InformationalException {

// Manually add the metadata property to the Map
properties.put ("xyz updatedBy",
curam.util.transaction.TransactionInfo.getProgramUser ()) ;

// Wire up additional metadata collected in custom facade
properties.put ("xyz contextualReference",
otherData.get ("xyz contextualReference"));

// Potentially derive more custom metadata
// properties from the data available

Custom directory structures and file-naming strategies

You can customize how Clram organizes and names the files that it stores in the content
management system (CMS).

The following list outlines the directory structures and file names that are used by default within
the directory that is specified by the curam. cms.curam.dir application property:

+ <ROOT>Def aul t/ <ext ensi on>/ YYYY/ MM DD HHMVBS <M | | i seconds>/
<fil ename>. <ext ensi on>

« <ROOT>Attachnent/ YYYY/ MM DD/ <fi | ename>. <ext ensi on>

+ <ROOT>Pr oFor ma/ YYYY/ MM DD/
<fil ename>_HHMVES <M I | i seconds>. <ext ensi on>

The cMISNamingType code table determines where the files are stored on the CMS. Attachments
are stored in the At t achnent s directory. Pro-formas are stored in the Pr oFor ma directory.
Any other content types that are configured as the CuramDocument base class type are stored in

© Merative US L.P. 2012, 2024

1 Integrating with a content management system (CMS) 23

the Def aul t directory. The content types do not exist in the product that is ready for immediate
use.

Creating a custom-naming strategy

To create a custom-naming strategy, extend
curam.core.sl.infrastructure.cmis.impl.CMISNamingDefaultImpl. Do not
implement the CMISNaminglInterface. Bind this extra extension class, by using a Guice module,
to a code table on CMISNamingType. The following Guice module code sample shows how a
sample implementation can be bound:

MapBinder<CMISNAMINGTYPEEntry, CMISNamingInterface> namerBinder =
MapBinder.newMapBinder (
binder (), CMISNAMINGTYPEEntry.class, CMISNamingInterface.class);

namerBinder.addBinding (CMISNAMINGTYPEEntry.ATTACHMENT) . to (
SampleAttachmentCMISImpl.class);

The directory structure and file name are composed in the
CMISNamingInterface.getFilePath method. The method returns the file path as an ordered
list of folder names that are followed by the file name, including extension. Build the intended
directory tree by adding the parts of the intended naming strategy to the list in the correct order.
Add the file name or extension last.

Note: The curam.cms.curam.dir application property is added to the list within the CMIS
APIL

The following code shows the sample attachment-naming strategy implementation:

public class SampleAttachmentCMISImpl extends CMISNamingDefaultImpl ({

@Override
public List<String> getFilePath (String filename, long relatedID, Object relatedData)
throws AppException, InformationalException {

List<String> filePathBelowRoot = new ArrayList<String>();

filePathBelowRoot.add (
CodeTable.getOneltem (CMISNAMINGTYPE.TABLENAME, CMISNAMINGTYPE.ATTACHMENT)) ;

// Format current date time
long currentTimeMillis = System.currentTimeMillis() ;
DateTime currentDateTime = new DateTime (currentTimeMillis) ;

String formattedDateTime = Locale.getFormattedDateTime (currentDateTime,
Locale.Date IS08601 complete);

filePathBelowRoot.add (formattedDateTime.substring (0, 4)); // YEAR
filePathBelowRoot.add (formattedDateTime.substring (4, 6)); // MONTH
filePathBelowRoot.add (formattedDateTime.substring (6, 8)); // DAY
filePathBelowRoot.add (filename) ;

return filePathBelowRoot;

Parameters

The file name parameter of getFilePath is the full file name, including the extension but not
prefixed by any directory structure. getFilePath is a method of CMISNamingInterface or
CMISNamingDefaultImpl.

© Merative US L.P. 2012, 2024

Curam 8.1.2 24

The relatedID parameter of getFilePath is the identifier for the applicable Cliram object on the
Curam database. For example, with the attachment integration, for immediate use, the related ID
is the attachmentID. For communications, the related ID 1s communicationID.

The relatedData parameter of getFilePath is any object that the organization considers
potentially useful to its naming-strategy implementation. No integrations with the product
implement the feature, but organizations can use the parameter in their own naming strategies. By
default, the namingType and the current date are available for the naming strategy.

Single sign-on

Single sign-on (SSO) is a mechanism that permits an authenticated user to access multiple
different systems and services without requiring the user to log in to each system and service.
Typically, authentication is shared between the systems through a transmission of security tokens.

Implementing SSO with Caram's Content Management Interoperability Service (CMIS)
functionality requires custom development to integrate with an organization's SSO system.
Making configuration updates to Curam is also required.

Custom development

Organizations must first implement a hook point to add custom cookies to the CMIS
invocations that Caram performs. For example, custom security tokens that the
organization's SSO implementation uses. The organization must create a class that

extends the CMISAuthenticationProviderDefaultImpl class that includes the

method getHTTPHeaders. Bind the extra extension class, by using a Guice module, to
CMISAuthenticationProviderDefaultImpl. The following Guice module code sample
shows how to bind a sample implementation.

bind (CMISAuthenticationProviderDefaultImpl.class) .to(
CustomCMISAuthenticationProvider.class) ;

The following code sample shows how to create the custom SSO implementation.

public class CustomSSOImplementation extends CMISAuthenticationProviderDefaultImpl ({

@Override

public Map<String, List<String>> getHTTPHeaders (String url) {
String tokenName = // Get token name
String tokenValue = // Get security token value

Map<String, List<String>> tokenMap = new HashMap<String, List<String>>();
List<String> tokenList = new List<String>();

tokenList.add (tokenValue) ;
tokenMap.put (tokenName, tokenList);

return tokenMap;

Enabling SSO support

You must then enable SSO support. Use the system administration application property
curam.cms.sso.enable to administer Caram SSO support. The following list outlines the
actions that are performed by the CMIS API after you enable the curam.cms.sso.enable
application property:

© Merative US L.P. 2012, 2024

1 Integrating with a content management system (CMS) 25

* Enables the transmission of cookies by using a CMIS to a content management system (CMS).

» Disables the transmission of the global CMS username and password credentials.

 (Calls the custom hook point to populate custom cookies.

1.5 CMIS validation error messages

When you use a content management system (CMS) with Curam, various validation error

messages might be displayed.

The following table describes the Content Management Interoperability Service (CMIS)

validation error messages.

Validation

When is the validation displayed?

An error occurred while interacting with the Content
Management System. Please inform your system
administrator.

No application property supplied for

The application property ‘curam.cms.curam.dir’
must be in the form '/x/y/z'. Please contact your
administrator.

The configured Content Management System is
unavailable. Please contact your administrator.

The file was not found on the Content Management
System.

The file is no longer on the Content Management
System. Please contact your administrator.

The Content Management System has not been
configured. Please contact your administrator.

Multiple Content Management Systems have been
configured. Please contact your administrator.

An error occurred gathering information about a
file to send to the configured Content Management
System. Please inform your system administrator.

An error occurred gathering information about a
file to send to the configured Content Management
System. Please inform your system administrator.

An error occurred updating a file on the configured
Content Management System. Please inform your
system administrator.

‘curam.cms.xxxx'. Please contact your administrator.

A generic exception that produces an error from the
CMIS infrastructure when there is no associated
error handler.

When the system is storing a file to the CMIS, a
required application property is empty.

When the system is storing a file to the CMIS, the
following list outlines the potential sources of the
validation:

e The path doesn't start with /
e The path ends with /

e The path contains a folder name with an
unsupported character.

When the system is storing a file to the CMIS, a
connection to the target system cannot be made.
The validation can be triggered by networking
issues, by exceeding timeouts, or by incorrect target
system settings.

When the system is retrieving a file at a specified
location from the CMIS within Claram, the file was
deleted directly from the CMS application.

When the system is retrieving a file from CMIS
within Social Program Management, the file was
deleted directly from the CMS application.

When the system is accessing a CMS, the CMIS
target system is not configured.

When the system is accessing a CMS, more than
one CMIS target system is configured.

When the system is compiling metadata about a file,
one or more properties are not configured.

When the system is compiling metadata about a file,
a required metadata property is not provided.

When the system is trying to modify a file stored in

the CMS, no changes are applied as all information
is equal to the preexisting data or the file cannot be
checked back in.

© Merative US L.P. 2012, 2024

Curam 8.1.2 26

Validation

When is the validation displayed?

An error occurred reading a file on the configured
Content Management System. Please inform your
system administrator.

The file '%1s' could not be found within '%2s' on the
Content Management System. Please inform your
system administrator.

The file '%1s' was found in multiple locations
within '%2s' on the Content Management System.
Modification is not supported in this scenario.

A target system service already exists for Content
Management Interoperability Service.

When the system is trying to read a file from the
CMS, the file is not the found.

When the system is trying to replace a file on the
CMS, the file is not found on the CMS.

When the system is trying to replace a file on the
CMS, more than one location within the root folder is
specified.

When a system administrator attempts to add more
than one target system service for the Content
Management Interoperability Service.

© Merative US L.P. 2012, 2024

Notices

Permissions for the use of these publications are granted subject to the following terms and
conditions.

Applicability
These terms and conditions are in addition to any terms of use for the Merative website.
Personal use

You may reproduce these publications for your personal, noncommercial use provided that all
proprietary notices are preserved. You may not distribute, display or make derivative work of
these publications, or any portion thereof, without the express consent of Merative

Commercial use

You may reproduce, distribute and display these publications solely within your enterprise
provided that all proprietary notices are preserved. You may not make derivative works of these
publications, or reproduce, distribute or display these publications or any portion thereof outside
your enterprise, without the express consent of Merative.

Rights

Except as expressly granted in this permission, no other permissions, licenses or rights are
granted, either express or implied, to the publications or any information, data, software or other
intellectual property contained therein.

Merative reserves the right to withdraw the permissions granted herein whenever, in its
discretion, the use of the publications is detrimental to its interest or, as determined by Merative,
the above instructions are not being properly followed.

You may not download, export or re-export this information except in full compliance with all
applicable laws and regulations, including all United States export laws and regulations.

MERATIVE MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE
PUBLICATIONS. THE PUBLICATIONS ARE PROVIDED "AS-IS" AND WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT
LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT,
AND FITNESS FOR A PARTICULAR PURPOSE.

Merative or its licensors may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this documentation does not grant you any license
to these patents.

Information concerning non-Merative products was obtained from the suppliers of those products,
their published announcements or other publicly available sources. Merative has not tested those
products and cannot confirm the accuracy of performance, compatibility or any other claims
related to non-Merative products. Questions on the capabilities of non-Merative products should
be addressed to the suppliers of those products.

Any references in this information to non-Merative websites are provided for convenience only
and do not in any manner serve as an endorsement of those websites. The materials at those
websites are not part of the materials for this Merative product and use of those websites is at
your own risk.

© Merative US L.P. 2012, 2024

This information contains examples of data and reports used in daily business operations.

To illustrate them as completely as possible, the examples include the names of individuals,
companies, brands, and products. All of these names are fictitious and any similarity to actual
people or business enterprises is entirely coincidental.

The licensed program described in this document and all licensed material available for it are
provided by Merative under terms of the Merative Client Agreement.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate
programming techniques on various operating platforms. You may copy, modify, and distribute
these sample programs in any form without payment to Merative, for the purposes of developing,
using, marketing or distributing application programs conforming to the application programming
interface for the operating platform for which the sample programs are written. These examples
have not been thoroughly tested under all conditions. Merative, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample programs are provided
"AS IS", without warranty of any kind. Merative shall not be liable for any damages arising out of
your use of the sample programs.

Privacy policy

The Merative privacy policy is available at https://www.merative.com/privacy.

Trademarks

Merative ™ and the Merative ™ logo are trademarks of Merative US L.P. in the United States and
other countries.

IBM®, the IBM® logo, and ibm.com® are trademarks or registered trademarks of International
Business Machines Corp., registered in many jurisdictions worldwide.

Adobe™, the Adobe™ logo, PostScript™, and the PostScript™ logo are either registered
trademarks or trademarks of Adobe™ Systems Incorporated in the United States, and/or other
countries.

Oracle and Java are registered trademarks of Oracle and/or its affiliates.

The registered trademark Linux® is used pursuant to a sublicense from the Linux Foundation, the
exclusive licensee of Linus Torvalds, owner of the mark on a worldwide basis.

Microsoft™, Windows™, and the Windows™ logo are trademarks of Microsoft™ Corporation in
the United States, other countries, or both.

UNIX™ is a registered trademark of The Open Group in the United States and other countries.

Other company, product, and service names may be trademarks or service marks of others.

© Merative US L.P. 2012, 2024

https://www.merative.com/privacy

	Note
	Edition
	Notices
	Privacy policy
	Trademarks

	Contents
	1 Integrating with a content management system (CMS)
	1.1 Configuring Cúram to use with a CMS
	Registering and adding a CMS to the target system
	Activating a CMS

	1.2 Integrating a CMS with Cúram
	Gradual migration
	Attachments and securing documents in a CMS
	Microsoft® Word and pro forma communications

	1.3 Metadata
	Using the default metadata

	1.4 Customization
	Customizing metadata
	Custom directory structures and file-naming strategies
	Single sign-on

	1.5 CMIS validation error messages

