N\
MerATive

Curam 8.1.2

Web Services Guide

Note

Before using this information and the product it supports, read the information in Notices on page
57

© Merative US L.P. 2012, 2024

© Merative US L.P. 2012, 2024

Edition
This edition applies to Curam 8.1, 8.1.1, and 8.1.2.

© Merative US L.P. 2012, 2024

Merative and the Merative Logo are trademarks of Merative US L.P. in the United States and
other countries.

© Merative US L.P. 2012, 2024

© Merative US L.P. 2012, 2024

Contents vii

Contents
L0 PP i
o 114 T] PSSP Y
1 Integrating with External Applications through Web Services.........cccccceeeiiiiiiieeennnn. 9
1.1 USING WED SEIVICES....oiiiiiiiiiiiiiieee ettt ettt e e et e ettt e et e et e e e e e e e et e ee e e et e e e e e e e e e e e e e eaaaaeaaeeees 9
OVErVIEW Of WED SEIVICES. .. oo eneenne 9
Benefits of the Apache AXIS2 PlatfOrm..........ooiiiiiiiiiii e 10
TYPES Of WED SEIVICES.....uuuiuiiiiiiiiiiiiiiiiiiiiiet it s e ee e e e eeesssssssessssssssesssssssssssssssnsssnnsnes 10
WED SEIVICES SECUIMY...uuuiii i e e e e e e e e e et e e e e e e e e e eeaana e e eeeeeeennnns 13
1.2 Building Outbound Web Service CONNECIOIS.uuuiiiiiiiiiiieiiiieieeeeeerreeeeeeereereeeeererrreereerreeeeees 13
Including the WSDL Files in Your Components File SyStem.......cccccovvvvvviviiiiiiiinie e, 14
Adding the WSDL File Location to the Outbound Web Services File..........ccccccvvvvvvevvieeiiennnnn. 14
Generating the Web Service StUDS............ooooi 15
Creating a Client and Starting the Web ServiCe........cccooviiiiiiiiiiiiiii e 15
Client Stub POOI CONfIQUIALION.iiiiiiiiiii e e e e e e e e 17
1.3 Developing INbound WeED ServiCES.ccoooiiiii oo 18
GEetliNG SEAMEA. ... 18
Modeling and Implementing an Inbound Web ServiCe..........cccccouiiiiiiiiiiieeiiiiiiiiiieiee e 19
Building and Packaging Web SEIVICES..........uu ittt eeeeeeeeeeeeeeeeeeeeeas 22
Providing Security Data for WeD SEIVICES.........uuuuuiuiiiiiiiiiiiiiiiiiiiieeieeeeeereeeeeeeeeeeeeeeeereeeeereeeeee 23
Providing Web Service CUSIOMIZAtIONS..........cuuuiiiiiiee it e e e e e ee e e s e e sannes 23
1.4 SECUNNG WED SEBIVICES.....oiiiiiiiiiitieee ettt e e et e e e e e e r e e e e e e e nnnneeees 29
AXis2 Security and RamPart.........cccccoviiiiiiie 30
CUSLOM SOAP HEAUEIS. ... e 30
Encrypting CuStom SOAP HEAUEIS.uuiiiiiiiiiiiiiiiii ettt e e 33
Using Rampart With WED SEIVICES.......uuvuiiiiiiiiiiiiiiieeeeeeeeeeeeeeee ettt e e e e e e e 35
Securing Web Service Network Traffic with HTTPS/SSL.........ccoieiiiiiiiiii e 44
Creating KeYSIOrE FIlES. ittt e e e s e e e e e e e anees 45
1.5 Inbound Web Service Properties: ws_inbound.Xml...........ccccoovviiiiiiiiiiiin e 45
1.6 Deployment Descriptor File: SErVICES.XML........uuuiiiiiiiiiiiiiieiieeeeeeeieee e e e e e e e e e e e e e eeeeees 47
A (0101 o] (=] g T To 11 o T PP PP PP PPPPPPPPON 49
Initial Server Validation and TroubleShoOotiNg..........cccvvviiiiiiiiiiiiii e, 50
Using an External Client to Validate and Troubleshoot............ccccoovi i, 51
TroubIESNOOTING AXIS2 EITOIS....coiii ittt e e e e e e e e s e eeeeeeeans 52
YN o o T aTo IO IY R o) =10)Y 1Y/ o 1T 53
F IS (o= o 1 10] £ 54
1.8 Including the Axis2 Admin Application in Your Web Services WAR File...........coovvvvvvvvivvennnee. 54
1.9 Including the Axis2 SOAP Monitor in Your Web Services WAR File.........cccccocvvviviniiininnninnnn. 55

© Merative US L.P. 2012, 2024

Curam 8.1.2 viii

A0) A (o1 57
PEIVACY POIICY . .cetiiiiiiiitee ettt ettt e e e e ettt et e e e e e e e bbb e et e e e e e e e a b bbn e e e e e e e 58
I Lo [T g =10 TP 58

© Merative US L.P. 2012, 2024

1 Integrating with External Applications through Web Services 9

1 Integrating with External Applications through Web
Services

Use this information to develop and secure Ciiram web services. You can make business logic
available as web services.

This information covers all aspects of Ciram web service development including modeling,
building, securing, deploying, and troubleshooting. Developers must be familiar with web service
concepts and their underlying technologies, including modeling and developing in an Ciram
environment.

Note: Curam web services are based on Apache Axis2. As the basis for the latest generation
of web service standards, Axis2 brings improved architecture, performance, and standards
support to your web services.

Related concepts

Related information
axis.apache.org/axis2/java/core/index.html

1.1 Using Web Services

An overview of web services and how to use them to integrate web-based applications. The
basics of Apache Axis2 web services are introduced and how Caram web services correspond to
this web service functionality.

Overview of Web Services

The term web services describes a standardized way of integrating web-based applications. Web
services allow different applications from different sources to communicate with each other.
Because all communication is in XML, web services are not tied to one operating system or
programming language.

This application-to-application communication is performed by using XML to tag the data, using:

* SOAP (Simple Object Access Protocol: A lightweight XML-based messaging protocol) to
transfer the data.

* WSDL (Web Services Description Language) to describe the services available.

« UDDI (Universal Description, Discovery and Integration) to list what services are available.

Web services can be considered in terms of the direction of flow, outbound/accessing and
inbound/implementing, which are supported by the Clram infrastructure for development and
deployment as described below:

* Qutbound Web Service Connector
An outbound web service connector allows the Ctaram application to access external
applications that have exposed a web service interface. The WSDL file that is used to describe
this interface is used by the web service connector functionality in Ciram to generate the

© Merative US L.P. 2012, 2024

http://axis.apache.org/axis2/java/core/index.html

Curam 8.1.2 10

appropriate client code (stubs) to connect to the web service. This means developers can
focus on the business logic to handle the data for the web service. For information about
how to develop outbound web service connectors, see 1.2 Building Outbound Web Service
Connectors on page 13.

* Inbound Web Service
Some functionality within the Cram application can be exposed to other internal or external
applications within the network. This can be achieved using an inbound web service. The
Curam infrastructure generates the necessary deployment artifacts and packages them
for deployment. After the application EAR file is deployed. any application that wants to
communicate with the Ctram application must implement the appropriate functionality based
on the WSDL for the web service. The infrastructure relies on the web service class to be
modeled and it utilizes Axis2 tooling in the generation step for inbound web services. For
information about how to develop Caram inbound web services, see 1.3 Developing Inbound
Web Services on page 18.

Benefits of the Apache Axis2 Platform

Apache Axis?2 is the supported platform, or stack, that is supported for web services. There are
several benefits to using Axis2.

There are other web service platforms that you can adapt for use with Curam instead of Axis2.
However, the benefits of Axis2 web services include the following.

* Axis2 provides significant improvements in flexibility due to the new architecture and
improved performance. Performance improvements come from a change in XML parser
changes by using the StAX API. The StAX API is faster than the SAX event-based parsing
that was used in the previous web services implementation.

+ New message types are available - This third generation of web service support makes new
message exchange patterns (MEPs) available. Rather than just in-out processing, in-only (also
known as fire-and-forget) and other MEPs are now available.

* Support for new and updated standards such as SOAP (1.2 and 1.1) and WSDL (2.0 and 1.1).

Types of Web Services

Web services are categorized in a number of ways. One of the main groupings is the web service
style and use that determines the way that web service operation parameters are handled.

The style option that is defined by the WSDL specification determines the structure of the SOAP
message payload. The payload is the contents of the <soap.body> element.

* Document (also referred to as document-oriented web services, or DOWS). The contents of
the web service payload are defined by the schema in the <wsdl:type> and is sent as a self-
contained document. This style is flexible and can process parameters and return data, or by
using IBM® Rational® Software Architect Designer modeling, can be a W3C Document that
is passed as an argument and return value. Document is assumed to be the default style if not
specified.

* RPC: The contents of the payload must conform to the rules specified in the SOAP
specification, that is, <soap:body> and can contain one element only. The element is named
after the operation. Also, all parameters must be represented as subelements of this wrapper
element. Typically, subelements would be parameters and return values.

© Merative US L.P. 2012, 2024

1 Integrating with External Applications through Web Services 11

Regardless of the choice of style, the contents of the SOAP message payload might look the same
for a SOAP message regardless of whether document or RPC style is specified in the WSDL.
This is because of the freedom available in the case of the document style.

The use option determines the serialization rules that are used by the web service client and server
to interpret the payload of the SOAP message.

» Literal. The type definitions are self-defining, following an XML schema definition in
<wsdl:types> by using either the element or type attribute.

* Encoded: The rules to encode and interpret the payload application data are in a list of
URIs specified by the encodingStyle attribute, from the most to least restrictive. The most
common encoding is SOAP encoding, which specifies how objects, arrays, and so on, must be
serialized into XML.

The style and use options for a web service are specified in the WSDL <wsd/:binding> section
(see http://www.w3.org/TR/wsdl and http://www.w3.org/TR/wsdl20) as attributes and control
the content and function of the resulting SOAP (see http://www.w3.org/TR/soapl1 and http://
www.w3.org/TR/soap12) message.

The following WSDL fragment illustrates the context for these settings, where the different
values for the options are separated by the pipe (|) character:

<wsdl : bi ndi ng name="nyService" ... >
<soap: bi nding transport="..." style="docunent|rpc"/>
<wsdl : operati on nanme="nyQperation">
<soap: oper ati on soapAction="urn:op2" style="docunent"/>
<wsdl : i nput >
<soap: body use="literal | encoded"
encodi ngStyl e="uri-list" ... />
</ wsdl : i nput >
<wsdl : out put >
<soap: body use="literal | encoded"
encodi ngStyl e="uri-list" ... />
</ wsdl : out put >
</ wsdl : operation>
</ wsdl : bi ndi ng>

The encoded use option is discouraged by the Web Services Interoperability Organization (WS-I)
and the Document/Literal is the preferred choice for web service style and use.

Within the context of the Document/Literal style, use pairing is the concept of "wrapped" and
"unwrapped". This paring is not a specific style or use, but a pattern that is characterized by a
single part definition, each part definition in the WSDL references an element, not a type as in
RPC (it's these referenced elements that serve as the "wrappers"), the input wrapper element
must be defined as a complex type that is a sequence of elements, the input wrapper name must
have the same name as the operation, the output wrapper name must have the same name as
the operation with "Response" appended to it, and, the style must be "document" in the WSDL
binding section. Based on the capabilities of Apache Axis2 only the "wrapped" pattern is

supportedl. However, it is not supported by WSDL 2.0. The following WSDL fragment illustrates
this pattern by using a simple web service that multiplies two numbers and returns the results.

"émsdlztypes>

1 Because only the Document/Literal-wrapped pattern for Axis2 is supported, turning this off via
doclitBaresettotrue intheservi ces. xm descriptor file is not supported.

© Merative US L.P. 2012, 2024

http://www.w3.org/TR/wsdl
http://www.w3.org/TR/wsdl20
http://www.w3.org/TR/soap11
http://www.w3.org/TR/soap12
http://www.w3.org/TR/soap12

Curam 8.1.2 12

<xs: el erent nane="sinpleMiltiply">
<xs: conpl exType>
<XS:sequence>
<xs: el ement
m nCccur s="0"
name="ar gs0"
type="xs:float"/>
<xs: el ement
m nCccur s="0"
name="ar gs1"
type="xs:float"/>
</ Xs: sequence>
</ xs: conpl exType>
</ xs: el enent >
<xs: el erent nane="si npl eMul ti pl yResponse" >
<xs: conpl exType>
<XS:sequence>
<xs: el ement
m nCccur s="0"
nane="return" type="xs:float"/>
</ xs: sequence>
</ xs: conpl exType>
</ xs: el enent >

<lﬁédl:types>

<wsdl : nessage nane="si npl eMul ti pl yRequest ">
<wsdl : part nanme="paraneters"
el enent ="ns: sinpleMul tiply"/>
</ wsdl : message>
<wsdl : nessage nane="si npl eMul ti pl yResponse" >
<wsdl : part name="par anet ers"
el ement ="ns: si npl eMul ti pl yResponse"/ >
</ wsdl : message>

<wsdl : operati on nanme="sinpleMiltiply">
<wsdl : i nput nessage="ns: si npl eMul ti pl yRequest "
wsaw. Act i on="urn: sinpleMiltiply"/>
<wsdl : out put nmessage="ns: si npl eMul ti pl yResponse"
wsaw. Act i on="urn: si npl eMul ti pl yResponse"/>
</ wsdl : operation>

<wsdl : operati on name="si npleMul tiply">
<soap: oper ati on soapAction="urn:sinpleMiltiply"
styl e="docunent"/>
<wsdl : i nput >
<soap: body use="literal"/>
</ wsdl : i nput >
<wsdl : out put >
<soap: body use="literal"/>
</ wsdl : out put >
</ wsdl : operati on>
</ wsdl : operation>

The following table shows the various style and use combinations that are supported in Ctram.

© Merative US L.P. 2012, 2024

1 Integrating with External Applications through Web Services 13

Table 1: Summary of Web Service Style and Use Support

Style/Use Caram with Axis2
RPClLiteral -
Document/Encoded Not supported (not WS-l compliant)
Document/Literal (wrapped) Supported

Of the supported style and use combinations, there are a number of relative strengths and
weaknesses to consider when defining your web services.

Table 2: Summary of Web Service Style and Use Strengths and Weaknesses

Style/Use Strengths Weaknesses

Document/Literal (wrapped) e WS-| compliant e Very complex WSDL
* No type encoding information
» Can validate in a standard

way
e Operation name in SOAP
message
RPCl/Literal (Axis2 only) e WS-| compliant * Hard to validate the message

e WSDL is straightforward

e Operation name is included in
the WSDL

¢ No type encoding information

RPC/Encoded (legacy only) e WSDL is straightforward e Not WS-I compliant
e Operation name is included in
the WSDL

Web Services Security

To ensure that your valuable and sensitive enterprise data remains safe, it is important to consider
web service security in your planning, implementation, and runtime support of web services.

The security is implemented entirely by the facilities that are integrated with Axis2, which
includes WS-Security, wss4j, and so on. However, with the support of web services with Axis2,
there is the option (recommended and on by default) that requires clients of inbound web services
to provide credentials by using Ctiram custom SOAP headers.

1.2 Building Outbound Web Service Connectors

You can create Ciram outbound web services. An Caram outbound web service connector allows
the application to access external applications that expose a web service interface.

The WSDL file that describes this interface is used by the web service connector functionality in
Curam to generate the appropriate client code (stubs) to connect to the web service.

© Merative US L.P. 2012, 2024

Curam 8.1.2 14

Including the WSDL Files in Your Components File System

You must have at least one WSDL file to generate client stubs. Place the WSDL file or files in the
file system, which is usually under source control.

The directories and files that are used are structured as follows.

+ EJBServer

+ build
+ svr
+ wsc2
+ <service name>
- <service name>.wsdl - where modeled service
WSDL files are built to
+ jav
+ src
+ wsconnector - default location for

generated stub source;
override with property
axis2.java.outdir

+ wsconnector - default location for
compiled stub code;
override, with axis2.
extra.wsdl2java.args

property
+ components
+ custom
+ axis
- ws_outbound.xml - where you identify

your WSDL files
+ <service_ name>
+ <service name>.wsdl - where you might copy a
WSDL file as pointed to
by ws outbound.xml

Place the WSDL files in the custom folder under the location that is represented by your
SERVER_DIR environment variable, typically, EJBSer ver / conponent s/ cust om and
specify the location in the ws_out bound. xml . Placing your WSDL in this structure ensures
that your web services are isolated from Caram web services. The base name of the root WSDL
file must use the service name.

Adding the WSDL File Location to the Outbound Web Services File

For each component that you want to build an outbound web service connector for, you must
specify the location of the WSDL file or files in aws_out bound. xm file.

The location for this file is typically EJBSer ver / conponent s/ cust om axi s/
ws_out bound. xm .

Specify the location of the WSDL file or files as shown in this example:

<?xml version="1.0" encoding="UTF-8"?>

<services>
<service name="SomeService"
location=
"components/custom/axis/SomeService/SomeService.wsdl" />
</services>

The ws_out bound. xm file contains one service entity for each web service, which specifies
the service name (matching the WSDL file base name) and location (relative to the SERVER DIR
environment variable).

© Merative US L.P. 2012, 2024

1 Integrating with External Applications through Web Services 15

Generating the Web Service Stubs

Generate the web service stubs by invoking the build script. The generation of the web service
stubs is based on the contents of the ws_out bound. xm files, as specified by your component
structure, the setting of the COMPONENT ORDER environment variable, and the files in your
conmponent s/ cust onf axi s directories.

Invoke the Ctiram build script:

build wsconnector?2

Each WSDL file that is identified by the ws_out bound. xm files is used to generate the stub
source code, which is compiled to produce executable code. The generated source is located in
the EJBSer ver/ bui | d/ svr/wsc2/j av/ src/wsconnect or directory and any compiled
Java™ code is located in the EJBSer ver / bui | d/ svr/wsc?2/j av/ wsconnect or
directory.

By default, the client stubs are generated with Axis2 data bindings (ADB). However, you
can generate some or all of your stubs by using XMLBeans bindings. To generate all stubs
by using XMLBeans bindings, run the wsconnector2 Ant target with the argument: -

Daxis2.extra.wsdl2java.args="-d xmlbeans".

Sometimes not all clients are suitable for the same binding. You can override the ADB default
selectively by adding the extraWsdl2javaArgs="-d xmlbeans" attribute to the service
definitions in the ws_out bound. xmi file, for example:

/>

<service name="SomeService"

location="components/custom/axis/SomeService/SomeService.wsdl"
extraWsdl2javaArgs="-d xmlbeans"

Creating a Client and Starting the Web Service

To start the web service, you must create and build a client, for example, a Java™ main program,
that uses the generated stubs to prepare arguments, start the web service, and process the return
results.

Starting the web service and using the generated code depends on your development
environment. For example, assuming that the web service is deployed and tested, it might include
the following steps.

1. Copy or reference the generated source and class files, for example, reference in Eclipse.

2. Code your client, for example, a Java™ main program. Typically, your steps include the
following:

Instantiate the generated stub class.

Optionally, increase the client timeout threshold, especially for a client that might run first
after the application server starts.

Set up the credentials in the custom SOAP header. For more information, see Custom
SOAP Headers on page 30.

Call the stub methods to instantiate objects and set their values to pass to the service.
Call the service operation.
Check the response.

© Merative US L.P. 2012, 2024

Curam 8.1.2 16

3. Build and test.

Typically the generated stub code provides a number of options to start the web service. These
sample code fragments can help illustrate that process.

The following sample web service client fragment calls a service that is named simpleAdd in
class WebserviceTest. for which the external tooling generates WebServiceTestStub and
related classes:

final WebServiceTestStub stub =
new WebServiceTestStub();

// Set client timeout for slow machines.

ServiceClient client = stub. getServiceClient();

client.getOptions () .setProperty (
HTTPConstants.SO_TIMEOUT, new Integer (180000)):;

client.getOptions () .setProperty (
HTTPConstants.CONNECTION TIMEOUT, new Integer (180000));

// test string and primitive data types

final WebServiceTestStub.SimpleAdd service =
new WebServiceTestStub.SimpleAdd() ;

final int i = 20;

final int j = 30;

service.setArgs0 (i) ;

service.setArgsl (j);

final WebServiceTestStub.SimpleAddResponse
simpleAddResponse = stub.simpleAdd (service) ;
final long sum = simpleAddResponse.get return();

client.cleanupTransport(); // Call when done with the service
// to avoid exhausting connection pool.
client.cleanup() ; // Call when done with the client.

Sometimes, while the generated code is convenient, you need a little more control over your
client environment. The following example illustrates how you might call an in-only service by
using a "hand-built" SOAP message, which in this case takes a simple String argument as input.
A sample web service client that uses generated stub and custom code is shown.

final TestWSStub stub =
new TestWSStub () ;

// Get client from stub
ServiceClient client;
client = stub. getServiceClient();

/*

* Define SOAP using string

=/

final String xml = " <rem:testString
+ "xmlns:rem=\"http://remote.testmodel.util.curam\"> "

" <rem:testString>"

My test string!

"</rem:testString>"

" </rem:testString>";

+ + + +

final ByteArrayInputStream xmlStream =

new ByteArrayInputStream(xml.getBytes());
final StAXBuilder builder = new StAXOMBuilder (xmlStream) ;
final OMElement oe = builder.getDocumentElement () ;

// Send the message

client.fireAndForget (oe); // API for In-Only processing
Thread.sleep (10000) ; // Required for fireAndForget ()
client.cleanupTransport(); // Call when done with the service

// to avoid exhausting connection pool.
client.cleanup() ; // Call when done with the client.

© Merative US L.P. 2012, 2024

1 Integrating with External Applications through Web Services 17

Note: Later versions of Axis2 Javadoc indicate that unless your client sets the
callTransportCleanup property to true (not recommended for performance
reasons) on the org.apache.axis2.client.Options object that you must call the
org.apache.axis2.client.ServiceClient.cleanupTransport () API after
processing the response.

Client Stub Pool Configuration

The following configuration settings are available for configuring the client stub pool.

curam.ws.client_stub_pool _size per endpoint

The number of cached client stubs per web service end point (IP-address:port:web-service).
The value of this property must be <= curam.ws.client max_host_connections. The default
value is 50.

curam.ws.client_stub_pool idle time

The amount of time in milliseconds that a pool entry can sit idle before it is eligible for
eviction. The default value is 300,000 (5 minutes).
curam.ws.client_stub_pool_eviction_run_interval

The amount of time in milliseconds between runs of evictions checks. The default value is
60,000 (1 minute).

curam.ws.client_max_total connections

The number of allowed total outbound connections to web service end points. The value of
this property must be >= curam.ws.client max_host _connections. The default value is 100.
curam.ws.client_ max_host connections

The allowed number of connections to one host end point (IP-address:port). The value

of this property must be >= curam.ws.client_stub_pool size per endpoint and <=
curam.ws.client max_total connections. The default value is 50.
curam.ws.client_connection_timeout

The amount of time, in milliseconds, that a client stub waits for a connection to a web service
end point. The default value is 60,000 (1 minute).

curam.ws.client_socket_timeout

The amount of time, in milliseconds, that a socket operation waits before a timeout error is
generated. The default value is 60,000 (1 minute).
curam.jmx.ws_outbound_statistics_enabled

The application property that specifies whether the JMX statistics for outbound web services
calls are enabled.

© Merative US L.P. 2012, 2024

Curam 8.1.2 18

1.3 Developing Inbound Web Services

An inbound web service is Cliram application functionality that is exposed to other internal or
external applications in the network. This information describes the infrastructure that supports
these services and the steps that you must complete to use it.

Getting Started

An overview of the process for developing inbound web services.

Model your web service and provide implementation code

You need to define the classes (WS Inbound) and operations in IBM® Rational® Software
Architect Designer that you are implementing to provide the functionality that you want to
expose as web services.

As with any Caram process class, you must provide the implementation for the classes and
operations you model that is described in the .

Build your web services and the web services EAR file

The Ctram build system will build and package your web services. Use the server and EAR
file build targets that are described in the guide and the deployment guide that is appropriate
to your platform.

Provide security data for your web services

By default your web services are not accessible until you: a) Provide security data (see
Providing Security Data for Web Services on page 23) that defines the service class

and operation and which security group(s) can access them; and b) Your clients must then
provide credentials appropriate to those security definitions (see Custom SOAP Headers on
page 30 (unless you choose to disable this security functionality; see Custom Credential
Processing on page 25).

Each of the above steps is explained in more detail in the sections that follow. To better
understand the process just outlined the following illustrates the structure of directories and files
used.

+ EJBSer ver

+ build
+ svr
+ gen
+ wsc2 - where the generator
pl aces ws_i nbound. xn
property files
- <service_name>. wsdl - where nodel ed service
WEDL files are generated
+ conponents

+ custom
+ axis
+ <servi ce_nanme>
- ws_i nbound. xni - where you might place a

custom ws_i nbound. xm
property file
- services. xnl - where you night place a
custom servi ces. xm
descriptor file
+ source - where optional schema

© Merative US L.P. 2012, 2024

1 Integrating with External Applications through Web Services 19

val i dati on code woul d go

+ schenas - where you m ght place
opti onal schema
+ webservice - where you nust place

custom recei ver code

Figure 1: File System Usage For Inbound Web Services

Modeling and Implementing an Inbound Web Service

Based on your design decisions, you will need to model the necessary classes and operations, and
set the appropriate properties in the Ctiram model.

For more information about how to use the IBM® Rational® Software Architect Designer tool
with the Caram model, see Working with the Ciiram Model in Rational Software Architect
Designer-.

You must also code your web service implementation classes in accordance with the standard
Curam development process that is described in the guide .

When you model your web services, consider the following.

» The web service binding style - Document (recommended, default) or RPC.
» The web service binding use - Literal or Encoded.

Note: Not all combinations of binding style and use are supported. For more information,
see Types of Web Services on page 10.

* Whether the service is processing struct and domain types or a W3C Document.

Creating Inbound Web Service Classes
To add an Axis2 inbound web service class to a package in IBM® Rational® Software Architect
Designer, select Add Class, W5 | nbound from the right-click context menu and name the class.

Note: In Caram, web service names are based on the class name that are specified in the
Rational® Software Architect Designer model and must be unique within the environment.

If you require passing and returning a W3C Document instead of Cliram domain types or structs
you must:

1. In the Curam properties tab for the WS Inbound class, select the WS Is XML Document
property (if passing W3C Documents providing schema validation is an optional activity and
is detailed in Providing schema validation on page 28);

2. Select Tr ue as the value from the drop down.

By default the web service style for the class is document, which is defined in the
WS Binding_Style property as " 0 - Unspeci fi ed ". If you require the RPC binding style:

1. Inthe Curam properties tab, select the WS Binding_ Style property;
2. Select" 2 - RPC" as the value from the drop down.

You can also set the value explicitlyto" 1 - Docunent ", but the generator defaults the " 0 -
Unspeci fi ed " value to be document.

© Merative US L.P. 2012, 2024

Curam 8.1.2 20

The class properties above will apply uniformly to all operations of the web service class; so,
you need to plan your design to account for this. That is, a class can contain W3C Document
operations or operations that use native data types or Ciram structs, but not both. Similarly the
binding style (WS_Binding_Style) will be applied to all operations of a class when passed as an
argument to the Java2WSDL tool; so, any requirement for operations with a different binding
style in generated WSDL would need to be handled in a separate modeled class.

Adding Operations to Inbound Web Service Classes
In IBM® Rational® Software Architect Designer, you add operations to Axis2 inbound web
service classes by using the right-click context menu.

Add an operation to an inbound web service class.

1. Select Operation from the right-click context menu and choose Default.
2. In the Create 'default' Operation Wizard, name the operation, and select its return type.

The following are issues with Axis2 that are relevant to you when you model inbound web
services:

Certain method names on inbound web services do not operate as expected because, when
handling an inbound web service call, Java reflection is used to find and start methods in

your application. The Axis2 reflection code identifies methods by name only (that is, not

by signature). This identification means that unexpected behavior can occur if your web
service interface contains a method with the same name as an inherited method. Each inbound
web service in your application causes a facade bean, that is, a stateless session bean to be
generated.

So, in addition to your application methods, this class also contains methods that are inherited
from javax.ejb.EjbObject, and possibly others generated by your application server
tooling. For example: remove, getEJBHome, getHandle.

This limitation is logged with Apache in JIRA AXIS2-4802. Currently, the only workaround is
to ensure that your inbound web service does not contain any methods whose names conflict
with those that are in javax.ejb.EjbObject.

Adding Arguments and Return Types to Inbound Web Service Operations
You add arguments and return types to inbound web service operations in the same way that they
are added to process and facade classes. However, they are only relevant for classes that don't
specify support for W3C Documents (WS Is XML Document property).

For more information about how to add arguments and return types to process classes, see the
related link to Modeling Ciram elements using Rational® Software Architect Designer.

Note: When modeling a web service struct aggregation in IBM® Rational® Software Architect
Designer graphical mode, Rational® Software Architect Designer automatically adds an
aggregation label. This causes the WSDL to be generated incorrectly. Remove this label in the
model before building and the WSDL will generate correctly.

Related information

© Merative US L.P. 2012, 2024

1 Integrating with External Applications through Web Services 21

Processing of Lists
An operation uses Ctram lists if its return value or any of its parameters utilize a struct which
aggregates another struct using 'multiple' cardinality.

In the UML metamodel, you can model a <<WS Inbound>> operation that uses parameters that
contain lists, that is, a struct that aggregates one or more other structs as a list. All operations that
are visible as a web service are normally also visible to the web client.

However, the web client does not support the following:

* List parameters.
* Non-struct parameters, that is, parameters which are domain definitions.
* Non-struct operation return types.

In these cases, the web client ignores the operations that it does not support, but these operations

can be used for Axis2 inbound web services.

Data Types
The Curam data types, except Blob (SVR_BLOB), can be used in Axis2 inbound web service
operations.

The mappings between Ciram and WSDL data types are shown in the following table:

Table 3: Cdram to WSDL data types for Axis2

Caram data type WSDL data type
SVR_BOOLEAN xsd:boolean
SVR_CHAR xsd:string
SVR_INT8 xsd:byte
SVR_INT16 xsd:short
SVR_INT32 xsd:int
SVR_INT64 xsd:long
SVR_STRING xsd:string
SVR_DATE xsd:string

(Format: yyyymdd)
SVR_DATETIME xsd:string

(Format: yyyymmddThhmss)

SVR_FLOAT xsd:float
SVR_DOUBLE xsd:double
SVR_MONEY xsd:float

With the supported data types shown in Data Types on page 21, only the related XML

schema types that map to primitive Java types and java.lang.String are supported for
inbound web services. For example, "xsd:boolean" and "xsd:long" that map to the boolean and
long Java types, respectively, and "xsd:string" that maps to java.lang.String are supported.
All other XML schema types that do not map to a Java primitive type or to java.lang.String
are not supported.

© Merative US L.P. 2012, 2024

Curam 8.1.2 22

An example of an unsupported XML schema type is "xsd:anyURI", which maps to
java.net.URI. This limitation applies to inbound web services only and is due to the fact

that inbound web services are generated based on what can be represented in a Ciram model.
Outbound web services are not affected by this issue. For more details on related modeling topics,
see Working with the Curam Model in Rational Software Architect Designer and the .

Note: Passing or returning the raw Ctram data types, that is, Date, DateTime, Money, as an
attribute to an Axis2 web service is restricted. Ciiram data types must be wrapped inside a
struct before they are passed as attributes to a web service.

Building and Packaging Web Services

Use the targets webspher eWebSer vi ces, webl ogi cWebSer vi ces, and
i bertyWebSer vi ces to build the web services EAR file.

The steps in this build process are as follows.

1. Package global WAR file directories: lib, conf, modules.

2. TIterate over the web service directories in bui | d/ svr/ gen/ wsc?2 (one directory per web
service class) that are created by the generator.

* Process the properties in the following order: custom, generator, defaults. For more
information, see Inbound Web Service Properties File on page 24.

* Unless a custom ser vi ces. xm has been provided, generate the ser vi ces. xmi
descriptor file, For more information, see Deployment Descriptor File on page 24.

» Package the web service directory.
The following properties and customizations are available.

* You can turn off the generation of the webser vi ces2. war by setting the property
disable.axis2.build.

* You can specify an alternate location for the build to read in additional or custom Axis2
module files by setting the axis2.modules.dir property that will contain all the . mar files and
the nodul es. | i st file to be copied into the VVEB- | NF\ nodul es directory;

* You can include additional, external content into the webser vi ces. war by setting either of
the following properties.

* axis2.include.location - that points to a directory containing a structure mapping to
the Axis2 WAR file directory structure;

* axis2.include.zip - that points to a zip file containing a structure mapping to the
Axis2 WAR file directory structure.

With either of the two properties above, setting the axis2.include.overwrite property
causes these contents to override the Ctiram packaged content in the WAR file. This capability
is for including additional content into your WAR file. An example of how you might use

this is to include the sample Version service to enable Axis2 to successfully validate the
environment (see Initial Server Validation and Troubleshooting on page 50).

For example, to include the sample Version web service for IBM® WebSphere® Application
Server you need to create a directory structure that maps to the webser vi ces2. war

file and includes the structure of Ver si on. aar file as is shipped in the Axis2 binary
distribution: axi s2- 1. 5. 1- bi n/ reposi tory/ servi ces/ ver si on. aar . That
structure would look like this:

© Merative US L.P. 2012, 2024

1 Integrating with External Applications through Web Services 23

+ VEB- | NF
+ servi ces
+ Ver si on

+ META-| NF
- ./services. xn

+ sanpl e
+ axi sversion

- ./ Version.class

Then, if the location of the Ver si on directory were in C: \ AXi s2-i ncl udes, you would
specify the following property value at build time: -Daxis2.include.location=C:\Axis2-
includes. Alternatively, you could package the above file structure into a zip file and specify
the -Daxis2.include.zip property instead. In both cases the file structure specified would
be overlaid onto the file structure (depending on the value of axis2.include.overwrite) and
packaged into the webser vi ce2. war WAR file. (For Oracle® WebLogic Server the above
would be changed to replace the contents of the Version directory with a Ver si on. aar file,
which is a compressed file.)

* You can set global, default web services credentials at build time through the following
properties that are set in your Boot st r ap. properti es file.

e curam.security.credentials.ws.username - the username that is used when
executing inbound web service calls;

* curam.security.credentials.ws.password - the password that is used when
executing inbound web service calls. This password must be encrypted.

The above credentials must exist on the Users table, must be enabled, and should be
assigned the appropriate security role.

Default credentials can streamline your development and testing processes, but should not
be used in a production environment when working with sensitive data and/or processes.

Providing Security Data for Web Services

You must provide security data in order to make your web service usable. In Ctiram, web services
are not automatically associated with a security group. This is to ensure that web services are not
vulnerable to a security breach.

As part of your development process, ensure that the appropriate security database entries are
created. For example:

INSERT INTO SecurityGroupSid (groupname, sidname)
values ('WEBSERVICESGROUP', 'ServiceName.anOperation');

For more information about the contents of the Curam security tables, see .

Providing Web Service Customizations

Providing customizations at build-time impacts the security and behavior of your web service at
run time. With the default configuration, the web services EAR file build performs the following
tasks:

» Assigns the appropriate Ciram message receiver for struct and domain types, for argument
and operation return values, or for W3C Documents. This assignment is based on how

© Merative US L.P. 2012, 2024

Curam 8.1.2 24

you set the WS _Is XML Document property in Rational Software Architect for the "WS
Inbound" (stereotype: <<wsinbound>>) class.

* Expects the web service client to pass a custom SOAP header with authentication credentials
to start the web service.

To change the default behaviors, you require a custom receiver. For more information, see
Customizing Receiver Runtime Functionality on page 25. You might also need to customize
the following.

* Implementing web services security (Apache Rampart). For more information, see 1.4
Securing Web Services on page 29.

* Providing external, non- Ctram functionality such as the Apache Axis2 Monitor. For more
information, see 1.9 Including the Axis2 SOAP Monitor in Your Web Services WAR File on
page 55.

» Providing other custom parameters for the deployment descriptor (ser vi ces. xm),
for example: doclitBare, mustUnderstand. For more information, see the Apache Axis2
documentation for more information (Apache Axis2 Configuration Guide).

To effectively customize your web services you need to know how Curam processes web services
at build time, which is explained in the following sections.

Inbound Web Service Properties File

Based on the web service classes modeled with IBM® Rational® Software Architect Designer, the
generator creates a folder in the bui | d/ svr/ gen/ wsc?2 directory for each web service class
modeled.

For more information, see Getting Started on page 18. (This maps closely to how
Axis2 expects services to be packaged for deployment.) In that folder a properties file,
Ws_i nbound. xmi , is generated.

To provide a custom Ws_i nbound. xm file, you can start with the generated copy that

you will find in the bui | d/ svr/ gen/ wsc2/ <ser vi ce_nane> directory after an

initial build. Place your custom Ws_i nbound. xm file in your conponent s/ cust on

axi s/ <servi ce_nane> directory (usually under source control). During the build the

ws_i nbound. xm files are processed to allow for a custom file first, overriding generated and
default values. For more information about the property settings in this file, see 1.5 Inbound Web
Service Properties: ws_inbound.xml on page 45 .

Deployment Descriptor File
Each web service class requires its own deployment descriptor file (ser vi ces. xmi .

The build automatically generates a suitable deployment descriptor for the defaults in accordance
with 1.5 Inbound Web Service Properties: ws_inbound.xml on page 45. The format and

contents of the ser vi ces. xm are defined by Axis2. See the Apache Axis2 Configuration
Guide (http://axis.apache.org/axis2/java/core/docs/axis2config.html) for more information.

To provide a custom ser vi ces. xm file, start with the generated copy that is located in the
bui | d/ svr/wsc?2/ <servi ce_nane> directory after an initial build of the web services
WAR/EAR file. This is illustrated in Getting Started on page 18.

Place your custom ser vi ces. xml file in your conponent s/ cust onf axi s/

<servi ce_nane> directory (usually under source control). For details about this contents
file, see 1.6 Deployment Descriptor File: services.xml on page 47. During the build, the
servi ces. xm files are packaged into the web services WAR file (webser vi ces2. war)

© Merative US L.P. 2012, 2024

http://axis.apache.org/axis2/java/core/docs/axis2config.html
http://axis.apache.org/axis2/java/core/docs/axis2config.html

1 Integrating with External Applications through Web Services 25

as per Axis2 requirements, that is, using this file system structure: \EB- | NF/ ser vi ces/
<servi ce_nane>/ META- | NF/ servi ces. xm . See the Apache Axis2 User's Guide -
Building Services http://axis.apache.org/axis2/java/core/docs/userguide-buildingservices.html).

Customizing Receiver Runtime Functionality
The default receivers that are provided with Curam should be sufficient for most cases. However,
you can provide overrides for the following functionality.

* Credentials processing

* Accessing the SOAP Message

* Application server-specific provider URL and context factory parameters
* SOAP factory provider for W3C Document processing

Custom Credential Processing
You might need to customize credentials processing, for example, if you want to obtain or
validate credentials externally before passing them to the receiver for authentication.

By default, Curam web services are built to expect the client to provide credentials using a
custom SOAP header. These credentials are then used in starting the service class operation. The
default processing flow is as follows:

* Unless curamWSClientMustAuthenticate is set to false in the ser vi ces. xm descriptor
for the service, the SOAP message is checked for a header and if present these credentials are
used. If the SOAP header is not present, then the invocation of the service fails.

o If curamWSClientMustAuthenticate is set to false the ser vi ces. xm jndiUser and
jndiPassword parameters are used.

 Ifthere are no jndiUser and jndiPassword parameters in the ser vi ces. xm descriptor file,
default credentials are used.

However, there is no security data generated for web services. In this case, the defaults
credentials on their own are not adequate to enable access to the service. For more information
on providing this data, see Providing Security Data for Web Services on page 23.

If you require your own credential processing you must code your own
getAxis2Credentials (MessageContext) method, extending
curam.util.connectors.axis2.CuramMessageReceiver, to provide these
parameters. This method takes a MessageContext object as an input parameter and returns
ajava.util.Properties object that contains the Axis2 parameter name and value. For
example:

public Properties getAxi s2Credenti al s(
fi nal MessageCont ext nmessageContextln) {

final Properties |oginCredentials = new Properties();

String sUser = null;
String sPassword = null;

<Your processing here...>
if (sUser !'=null) {
| ogi nCredenti al s. put (

org. apache. axi s2.rpc.receivers.ejb. EJBU i | . EIB_JNDI _USERNAME,
sUser);
}

© Merative US L.P. 2012, 2024

http://axis.apache.org/axis2/java/core/docs/userguide-buildingservices.html

Curam 8.1.2 26

if (sPassword !'= null) {
| ogi nCredenti al s. put (
org. apache. axi s2.rpc.receivers. ejb. EJBU i | . EJB_JNDI _PASSWORD,
sPassword) ;
}

return | ogi nCredenti al s;

}

Figure 2: Sample getAxis2Credentials Method

See Building Custom Receiver Code on page 27 on how to specify and build this custom
class for this method.

You can use the runtime properties curam.security.credentials.ws.username

and curam. security.credentials.ws.password (encrypted) to specify default web
services credentials. Using runtime properties might not be appropriate in a secure production
environment; but, could be a useful, for instance, in development for simulating functions that
would ultimately be provided by an external security system. For more information on encrypted
passwords, see the Curam Security Guide.

Accessing the SOAP Message
If you require access to the SOAP message, you can extend the Curam receiver class as shown in
the following example.

package webservi ce;

i mport org.apache. axi s2. Axi sFaul t;
i mport org. apache. axi s2. cont ext. MessageCont ext ;
i nport org. apache. | og4j . Logger;

/**

* Sanpl e SOAP nmessage access.
*/
public class CustonRecei ver| nQut AccessSOAPMsg
extends curamutil.connectors. axi s2. CuramvessageRecei ver {

/** Class |ogger. */
private final Logger log =
Logger . get Logger (Cust onRecei ver | nQut AccessSOAPMsg. cl ass) ;

/**

Access the SOAP nessage and i nvoke
Curam r ecei ver i nvokeBusi nessLogi c.

*
*
*
* @aram nessageContextln | nput MessageCont ext .
* @ar am nessageCont ext Qut Qut put MessageCont ext .
*
* @hrows Axi sFault based on call ed net hod.
*/
@verride
public void invokeBusi nessLogi c(final MessageCont ext
messageCont ext I n,
final MessageContext messageContextQut) throws AxisFault {
if (messageContextln !'= null) {
final org.apache. axi om soap. SOAPEnvel ope i nEnv =
nessageCont ext | n. get Envel ope();

© Merative US L.P. 2012, 2024

1 Integrating with External Applications through Web Services 27

if (inEnv !'= null) {
/1l lInsert custom SOAP processing here.
| og. debug(" Sanpl e access of SOAP nessage: " +
inEnv.toString());
}

}

super. i nvokeBusi nessLogi c(nmessageCont ext | n,
nmessageCont ext Qut) ;

}
}
Figure 3: Sample Custom Receiver to Access the SOAP Message

Note, the invocation of super.invokeBusinessLogic () must be made.

See Building Custom Receiver Code on page 27 on how to specify and build this custom
class.

Custom Application Server-Specific Parameters

The app_webser vi ces2. xm script generates correct application server-specific provider
URL and context factory parameters. However, if you are supporting multiple environments, you
can derive one or more of these values in your own custom code.

You can provide your own getProviderURL () and/or getContextFactoryName () methods
by overriding class curam.util.connectors.axis2.CuramMessageReceiver. Both
methods return a string representing the provider URL and context factory name, respectively.
For more information about how to specify and build this custom class for these methods, see
Building Custom Receiver Code on page 27.

Custom SOAP Factory

Generally, the default SOAP factory, org.apache.axiom.soap.SOAPFactory, is adequate
for processing your web services that process W3C Documents. However, you can override this
behavior by providing your own get SOAPFactory (MessageContext) method.

This method takes a MessageContext object as an input parameter and returns an
org.apache.axiom.soap.SOAPFactory.

Building Custom Receiver Code
To build custom receiver code, you must complete the following steps.

1. Extend the appropriate class. For example, publ i ¢ cl ass MyRecei ver extends
curamutil.connectors. axi s2. Cur amvessageRecei ver . For the list of
receiver classes and their usage, see Deployment Descriptor File on page 24.

2. Specify a package name of webservice in your custom Java program. For example, package
webservi ce; .

3. Place your custom source code in your components Sour ce/ webser vi ce directory. For
example, component s/ myconponent s/ sour ce/ webser vi ce). The ser ver build
target builds and packages this custom receiver code.

4. Create a custom ser vi ces. xm descriptor file for each service class to be overridden by
your custom behavior. See Deployment Descriptor File on page 24 and Building Custom
Receiver Code on page 27.

<messageRecei ver s>
<nmessageRecei ver
nmep="http://ww. w3. or g/ 2004/ 08/ wsdl /i n- out "
cl ass="webservi ce. WWRecei ver"/ >

© Merative US L.P. 2012, 2024

Curam 8.1.2 28

</ messageRecei ver s>

Figure 4: Sample services.xml Descriptor File Entry for a Custom Receiver

The webservices build that is implemented in app_webser vi ces2. xm packages these
custom artifacts into a WAR file.

Providing schema validation
When you use web services that pass and return a W3C Document object, you might want to use
schema validation to verify the integrity of the document you are processing.

Whether you choose to use schema validation depends on the following factors:

* The CPU cost of performing such validation, which depends on the volume of transactions
your system encounters.

* The source of the Documents being passed to your web service, whether that is under your
control or public.

The steps for validating an XML Document in an inbound web service are as follows:

1. Include the schema document in the application ear by storing it somewhere within directory
SERVER DI R/ conponent s/ **/ webser vi ces/ **/*. xsd.

2. Provide code within the implementation code of the BPO method that loads the schema file,
and passes it into the infrastructure validator class along with the org.w3c.Document class to
be validated.

The code example (Providing schema validation on page 28) illustrates how validation can be
implemented.

i mport curamutil.exception. AppExcepti on;

i mport curamutil.exception.Informational Exception;
i mport curamutil.webservi ces. DOABVal i dat or;

i mport java.io.lnputStream

i mport org.w3c.dom Docunent;

/**
* A sanple XM. docunment web service.
*/
public org.w3c.dom Docunent
nyWebSer vi ceOperation(final org.w3c.dom Docunent docln)
t hrows AppException, |Informational Exception {

/1 DOWBVal idator is the SDEJ infrastructure class for

/1 validating org.w3c. Docunent classes in web services.

final curamutil.webservices. DONSVal i dat or validator =
new curamutil.webservi ces. DOASVal i dat or () ;

try {
/1 The following is used only for error reporting
/'l purposes by DOASValidator. |In your code you can

/1 provide a relevant value to help identify the schem
/1 in the event of an error.
final String schemaURL = "n/a";

/! Load the schema file fromthe .ear file.

© Merative US L.P. 2012, 2024

}

1 Integrating with External Applications through Web Services 29

/1l For exanple, the source |ocation of
[l "testl.xsd was
/1 SERVER DI R/ conmponent s/ cust oml webser vi ces.

final |nputStream schemaStream =
get C ass() . get C assLoader ().
get Resour ceAsStrean("schemas/test 1. xsd");

if schema file is in

/1 SERVER DI R/ conponent s/ cust onf webservi ces/test/test 1. xsd

schemaStream =
get C ass() . get C assLoader ().
get Resour ceAsSt rean("schemas/test/test 1. xsd");

/'l Invoke the validator.
val i dat or. val i dat eDocunent (docl n, schemaStream
schemaURL) ;

catch (Exception e) {
/1 Schema validation failed. Throw an exception.
AppException ae = new
AppExcept i on(SOVE_MESSAGES. ERR_SCHEMA VAL DATI ON_ERROR,
e);

/1 normal BPO | ogi c goes here.

return result;

Figure 5: Sample lllustrating Schema Validation

1.4 Securing Web Services

Web service security is an important part of your web services implementation. Use this
information to learn about existing web service security and how to secure your web services.

For Rampart and Axis2 web services security, you will learn how to:

Use and set up Rampart.
Use custom SOAP headers with Axis2 and encrypt them.
Use HTTPS/SSL to secure web service network traffic.

You can also use the following to secure your web services:

Curam modeling requirements for using secure web services.

Code password callback handlers (also applicable to Axis2 if your policy specifies a password
callback handler).

Set up the client environment.

Create keystore files (also applicable to Axis2 if your environment requires these steps for
supporting HTTPS/SSL).

© Merative US L.P. 2012, 2024

Curam 8.1.2 30

Axis2 Security and Rampart

Rampart is the security module of Axis2. With the Rampart module you can secure web services
for authentication, integrity (signature), confidentiality (encryption/decryption) and non-
repudiation (timestamp).

Rampart secures SOAP messages according to specifications in WS-Security, using the WS-
Security Policy language.

The only specific restriction placed on the use of web service security for Caram applications is
that Rampart Authentication cannot be used. This is due to the requirements of Curam receivers
(this authentication is typically coded in the service code itself, which would be moot by that
point as these receivers would have already performed authentication). However, custom SOAP
headers provide similar functionality (see Custom SOAP Headers on page 30 for more

details).

WS-Security can be configured using the Rampart WS-Security Policy language. The WS-
Security Policy language is built on top of the WS-Policy framework and defines a set of policy
assertions that can be used in defining individual security requirements or constraints. Those
individual policy assertions can be combined using policy operators defined in the WS-Policy
framework to create security policies that can be used to secure messages exchanged between a
web service and a client.

WS-security can be configured without any Ctram infrastructure changes using Rampart and
WS-Security Policy definitions. A WS-Security Policy document can be embedded in a custom
servi ces. xm descriptor (see Deployment Descriptor File on page 24). WS-Policy and
WS-SecurityPolicy can also be directly associated with the service definition by being embedded
within a WSDL document.

Encryption generally incurs costs (e.g. CPU overhead) and this is a concern when using WS-
Security. However, there are ways to help minimize these costs and one of these is to set the WS-
SecurityPolicy appropriate for each individual operation, message, or even parts of the message
for a service, rather than applying a single WS-SecurityPolicy to the entire service (for example,
see Encrypting Custom SOAP Headers on page 33). To apply such a strategy you need to

have a clear grasp of your requirements and exposures. Questions you might consider as you plan
your overall security strategy and implementation: Can some services bypass encryption if they
are merely providing data that is already available elsewhere publicly? Are multiple levels of
encryption necessary; for instance, do you really need both Rampart encryption and HTTP/SSL
encryption?

Custom SOAP Headers

Curam enforces credential checking or web service invocations based on the default expectation
that a client that is calling a web service has provided a custom SOAP header. This information
describes how your clients can provide the required SOAP headers.

This topic was introduced in Providing Web Service Customizations on page 23. If you

choose to bypass this security checking, you must plan specific customizations. By default, the
provided receivers for Axis2 expect the client invocation of each web service to provide a custom
SOAP header that contains credentials for authenticating Ctiram access to the web service.

The following is an example of the Caram custom SOAP header in the context of the SOAP
message:

© Merative US L.P. 2012, 2024

1 Integrating with External Applications through Web Services 31

<?xm version="1.0" encodi ng=' UTF-8' ?>
<soapenv: Envel ope
xm ns: soapenv="http://ww. w3. or g/ 2003/ 05/ soap- envel ope" >
<soapenv: Header >
<curam Credenti al s
xm ns: curam="http://ww. cur ansof t war e. coni' >
<User nane>t est er | D</ User nane>
<Passwor d>passwor d</ Passwor d>
</ curam Credenti al s>
</ soapenv: Header >
<soapenv: Body>
<l -- SOAP nessage body data here. -->
</ soapenv: Body>
</ soapenv: Envel ope>

Figure 6: Example Custom SOAP Header

The following is a sample client method for creating custom SOAP headers:

i mport org. apache. axi s2.client. ServiceCient;
i mport javax.xm . nanespace. QNaneg;

i mport org.apache. axi om om OMAbst r act Fact ory;
i nport org. apache. axi om om QVEl enent ;

i mport org.apache. axi om om OMFact ory;

i mport org. apache. axi om om OVNode,;

i mport org.apache. axi om om OMNanespace;

i mport org.apache. axi om soap. SOAPFact ory;

i nport org. apache. axi om soap. SOAPHeader Bl ock

/**

* Create custom SOAP header for web service credentials.

*

* @aram serviceCient Wb service client

* @ar am user Nane User nane
* @aram password Password
*/

voi d set CuranCredenti al s(final Servicedient servicedient,
final String userName, final String password)

/1l Setup and create the header
final SOAPFactory factory =
OVAbst ract Fact ory. get SOAP12Fact ory();
final OWanespace ns =
factory. creat eOVNanespace("http://ww. curansoftware. cont',
"curant');
final SOAPHeader Bl ock header =
factory. creat eSOAPHeader Bl ock(" Credenti al s, ns);
final OVFactory onfactory = OMAbstract Factory. get OMFact ory();

/1 Set the usernane.
final OWNode user NaneNode =

onfactory. cr eat eOVEl errent (new QNane(" User nane")) ;
((OvEl erent) user NanmeNode) . set Text (user Nane) ;
header . addChi | d(user NaneNode) ;

/1 Set the password.
final OVNode passwor dNode =

© Merative US L.P. 2012, 2024

Curam 8.1.2 32

onfactory. cr eat eOVEl enment (new QNane(" Password"));
((OVEl erent) passwor dNode) . set Text (password) ;
header . addChi | d(passwor dNode) ;

servi ceC i ent. addHeader (header) ;

}

Figure 7: Sample Method to Create Custom SOAP Headers

Then a call to the above method would appear as:

/1l Set the credentials for the web service:
MyWebSer vi ceStub stub =
new MyWebSer vi ceSt ub();
set Cur anCredenti al s(stub. _get ServiceC ient(),
"systent, "password");

By default, the client that failed to provide this custom header will cause the service to not be
invoked. And, of course, incorrect or invalid credentials will cause an authentication error. The
following is an example of failing to provide the necessary custom SOAP header:

<soapenv: Envel ope xm ns:
soapenv="http://ww. w3. or g/ 2003/ 05/ soap- envel ope" >
<soapenv: Body>
<soapenv: Faul t >
<soapenv: Code>
<soapenv: Val ue
>soapenv: Recei ver </ soapenv: Val ue>
</ soapenv: Code>
<soapenv: Reason>
<soapenv: Text xml: | ang="en-US">
No aut henti cati on dat a.
</ soapenv: Text >
</ soapenv: Reason>
<soapenv: Detail />
</ soapenv: Faul t >
</ soapenv: Body>
</ soapenv: Envel ope>

© Merative US L.P. 2012, 2024

1 Integrating with External Applications through Web Services 33

Warning: Potential Security Vulnerability

By default, custom SOAP headers that contain credentials for authentication pass on the wire
in plain-text. This is an insecure situation and you must encrypt this traffic to prevent your
credentials from being vulnerable and your security from being breached. For information
about how you can rectify this, see Encrypting Custom SOAP Headers on page 33 and/or
Securing Web Service Network Traffic with HTTPS/SSL on page 44.

For example, this is what the custom SOAP header looks like in the SOAP message with the
credentials visible:

<?xm version='1.0" encodi ng=' UTF-8' ?>
<soapenv: Envel ope
xm ns: soapenv="htt p://ww. w3. or g/ 2003/ 05/ soap- envel ope" >
<soapenv: Header >
<curam Credenti al s
xm ns: curam="http://ww. cur ansof t war e. cont' >
<User nanme>t est er </ User nane>
<Passwor d>passwor d</ Passwor d>
</ curam Cr edenti al s>
</ soapenv: Header >
<soapenv: Body>

</ ébépenv: Body>
</ soapenv: Envel ope>

Figure 8: Sample Custom SOAP Header

Encrypting Custom SOAP Headers

By default, SOAP headers travel across the wire as plain text. You can use Rampart to encrypt
your Curam custom SOAP headers to help to ensure the security of these credentials.

We recommend that you plan a security strategy and implementation for all of your web services
and related data based on your overall, enterprise-wide requirements, environment, platforms, and
so on. This information is just one small part of your overall security picture.

There is additional information on coding your web service clients for Rampart security in Using
Rampart With Web Services on page 35 that provides more context for the following.

The steps to encrypt these headers are follows:
1. Add the following to your client descriptor file:

<encryptionPart s>
{El ement}{http://ww. curansoftware. con}Credentials
</ encryptionPart s>

(See Defining the Axis2 Security Configuration on page 35 for more information on the
contents of this file.)

Or, add the following to your Rampart policy file:

<sp: Encrypt edEl enent s
xm ns: soapenv="http://schemas. xn soap. or g/ soap/ envel ope/ "
xm ns: sp=
"http://schemas. xm soap. or g/ ws/ 2005/ 07/ securi typolicy">
<sp: XPat h xm ns: curam="http://ww. curansof t ware. cont' >

© Merative US L.P. 2012, 2024

Curam 8.1.2 34

/ soapenv: Envel ope/ soapenv: Header/ curam Credenti al s/ Password
</ sp: XPat h>
</ sp: Encrypt edEl enent s>

(See Defining the Axis2 Security Configuration on page 35 for more information on the
contents of this file.)

2. Engage and invoke Rampart in your client code as per Using Rampart With Web Services on
page 35.
With WS-Security applied as per above the credentials portion of the wsse:Security header will

be encrypted in the SOAP message as shown in this example below, which you can contrast with
Figure 8: Sample Custom SOAP Header on page 33:

In the following example encryptedParts was used to encrypt the Curam credentials.

<?xm version='"1.0" encodi ng=' UTF-8' ?>
<soapenv: Envel ope
xm ns: soapenv="http://schemas. xm soap. or g/ soap/ envel ope/ "
xm ns: wsa="http://ww. w3. org/ 2005/ 08/ addr essi ng"
xm ns: xenc="http://ww. w3. or g/ 2001/ 04/ xm enc#" >
<soapenv: Header >
<wsse: Security
xm ns: wsse="http://docs. oasi s- open. or g/ wss/
2004/ 01/ oasi s- 200401- wss-wssecuri ty-secext-1. 0. xsd"
soapenv: nust Under st and="1">
<xenc: Encrypt edKey
| d="EncKeyl d- ASACA637487ECDA81713059750729855" >
<xenc: Encrypti onMet hod
Al gorithm="http://ww. w3. org/ 2001/ 04/ xm enc#rsa-1_5" />
<ds: Keyl nfo
xm ns: ds="http://ww. w3. org/ 2000/ 09/ xni dsi g#" >
<wsse: SecurityTokenRef erence>

</ wsse: Security>

<I-- Credential data is then encoded in sections
that follow as illustrated -->
<xenc: Encrypt edDat a | d="EncDat al d- 3"
Type="http://ww. w3. or g/ 2001/ 04/ xm enc#El enent " >
<xenc: Encrypti onMet hod
Al gorithnm="http://ww. w3. or g/
2001/ 04/ xm enc#aes128-chc" />
<ds: Keyl nfo
xm ns: ds="http://ww. w3. org/ 2000/ 09/ xnl dsi g#" >
<wsse: SecurityTokenRef erence
xm ns: wsse="http://..oasis-
200401-wss-wssecurity-secext-1. 0. xsd">
<wsse: Ref erence
URI =" #EncKey| d- ASACA637444e87ECDA81713059750729855" / >
</wsse: SecurityTokenRef erence>

</ ds: Keyl nf 0>
<xenc: G pher Dat a>

<xenc: C pher Val ue>

eZFRr k6VSncabDanY(yVD=</ xenc: C pher Val ue>
</ xenc: G pher Dat a>

© Merative US L.P. 2012, 2024

1 Integrating with External Applications through Web Services 35

</ xenc: Encr ypt edDat a>
<wsa: Acti on>ur n: si nmpl eXM.</ wsa: Acti on>
</ soapenv: Header >

Figure 9: Example Encrypted Custom SOAP Header

Using Rampart With Web Services

There are a number of parts to Rampart security. Covering them in detail is outside the scope of
this information. However, the following gives a high-level view on using Rampart with your
Curam Axis2 web services.

These are the steps for using web services security with Axis2:

1. Define configuration data and parameters for your client and server environments;
2. Provide the necessary data and code specified in your configuration;
3. Code a client to identify and process the configuration.

There is a lot of flexibility in how you fulfill the above steps and the following sections will show
some possible ways of doing this.

Defining the Axis2 Security Configuration

While the necessary configuration will depend on what security features you choose to use,
the overall set of activities will be similar regardless. On the client side, you can define the
security configuration via a client Axis2 descriptor file (axi s2. xm), Rampart policy file, or
programmatically (now deprecated).

On the server side, you can define the security configuration via the service descriptor file
(servi ces. xm) or through a Rampart policy that is embedded in the service WSDL.

The following examples show the client and server configurations in the context of a client Axis2
descriptor and Rampart policy files and the server configuration via the context of the service
descriptor file.

Client configuration:

<axi sconfi g nane="Axi sJava2. 0" >
<nodul e ref="rampart" />

<par anet er nane="Infl owSecurity">
<action>
<items>Si gnature Encrypt</itens>
<si gnat ur ePr opFi | e>
client-crypto.properties
</ si gnat ur ePr opFi | e>
<passwor dCal | backd ass>
webservi ce. d i ent PWCal | back
</ passwor dCal | backCl ass>
<si gnat ureKeyl dentifier>
Di rect Ref erence
</ si gnat ureKeyl dentifier>
</ action>
</ par anet er >

<par anmet er name="CQutfl owSecurity">

<action>
<i tenms>Si gnature Encrypt</itens>

© Merative US L.P. 2012, 2024

Curam 8.1.2 36

<encrypti onUser >adm n</ encrypti onUser >
<user >t est er </ user >

<passwor dCal | backd ass>
webservi ce. i ent PWCal | back
</ passwor dCal | backCl ass>

<si gnat ur ePr opFi | e>

client-crypto. properties

</ si gnat ur ePr opFi | e>

<si gnat ur eKeyl denti fi er>
Di rect Ref erence

</ si gnat ureKeyl dentifier>

<encryptionParts>
{Element}{http://ww. curansoftware. con}Credentials
</ encryptionPart s>

</ action>
</ par anet er >

Figure 10: Sample Client Descriptor Settings (Fragment)

Server configuration:

<servi ceG oup>
<servi ce name="Si gnedAndEncrypt ed" >

<nmodul e ref="ranpart" />

<par aret er nane="Infl owSecurity">
<action>
<items>Si gnature Encrypt</itens>
<passwor dCal | backCl ass>
webser vi ce. Server PMCal | back
</ passwor dCal | backCl ass>
<encryptionUser >adm n</encrypti onUser >
<user >t est er </ user >
<si gnat ur ePr opFi | e>
server-crypto. properties
</ si gnat ur ePr opFi | e>
<si gnat ureKeyl dentifier>
Di rect Ref erence
</ si gnat ureKeyl dentifier>
</ action>
</ par anet er >

<par amet er nane="Qutfl owSecurity">
<action>
<items>Si gnature Encrypt</itens>
<encryptionUser >adm n</encrypti onUser >
<user >t est er </ user >
<passwor dCal | backCl ass>
webser vi ce. Server PMCal | back
</ passwor dCal | backCl ass>

© Merative US L.P. 2012, 2024

1 Integrating with External Applications through Web Services 37

<si gnat ur ePr opFi | e>
server-crypto. properties

</ si gnat ur ePr opFi | e>

<si gnat ur eKeyl dentifier>
Di rect Ref erence

</ si gnat ureKeyl dentifier>

</ action>
</ par anet er >

</ service>
</ servi ceG oup>

Figure 11: Sample Server Security Settings (services.xml Fragment)

All Rampart clients must specify a configuration context that at a minimum identifies the location
of the Rampart and other modules. The following example illustrates this and includes a client
Axis2 descriptor file. Later code examples will utilize this same structure assuming it is located in
the C: \ Axi s2\ cl i ent directory.

nmodul es/
addr essi ng-1. 3. mar
rahas-1.5. mar
ranpart-1.5. mar
conf/
client-axis2. xni

Figure 12: Axis2 Client File System Structure
The equivalent specification to the parameters in Defining the Axis2 Security Configuration on

page 35 and Defining the Axis2 Security Configuration on page 35 via a Rampart policy
file would be as follows:

(policy.xml Fragment)

<ranp: Ranpart Config
xm ns: ranmp="http://ws. apache. org/ ranpart/policy">
<ranp: user >beant est er </ r anp: user >
<ranp: encrypti onUser >cur anx/ ranp: encrypti onUser >
<r anp: passwor dCal | backd ass>
webservi ce. d i ent PWCal | back
</ ranp: passwor dCal | backCl ass>

<r anp: si gnat ur eCr ypt 0>
<ranp:crypto
provi der="or g. apache. ws. security. conponents. crypto. Merlin">
<ranp: property

nane="or g. apache. ws. security.crypto.nerlin. keystore.type">

JKS

</ ranp: property>

<ranp: property
nane="or g. apache. ws. security.crypto.nerlin.file">
client.keystore

</ ranp: property>

<ranp: property
name=

© Merative US L.P. 2012, 2024

Curam 8.1.2 38

"org.apache. ws. security.crypto.nerlin. keystore. password">
password
</ ranp: property>
</ranp: crypt o>
</ ranp: si gnat ur eCrypt o>
<ranp: encrypti onCypt o>
<ramp:crypto
provi der="or g. apache. ws. security. conmponents. crypto. Merlin">
<ranp: property

nane="or g. apache. ws. security.crypto.nerlin. keystore.type">
JKS
</ ranp: property>
<ranp: property
nane="or g. apache. ws. security.crypto.nerlin.file">
client. keystore
</ ranp: property>
<ranp: property
name=
"org.apache. ws. security.crypto.nerlin. keystore. password">
password
</ ranp: property>
</ ranp: crypt o>
</ ranp: encrypti onCypt o>
</ ranp: Ranpart Confi g>

Figure 13: Sample Rampart Policy

Providing the Security Data and Code

Use the example configurations in the Axis Security Configuration section to specify an
encryption property file and password call back routine that is used to encrypt your web service
data.

The value of signaturePropFile specifies the name of the signature crypto property file to use.
This file contains the properties used for signing and encrypting the SOAP message. An example
server crypto property file is shown in Providing the Security Data and Code on page 38.

When you use a Rampart policy file, as shown in Defining the Axis2 Security Configuration

on page 35, these property files are not relevant as the policy itself contains the equivalent
settings.

or g. apache.
or g. apache.
or g. apache.
or g. apache.
or g. apache.

.security.crypto. provider=
.security.conponents.crypto.Merlin
.security.crypto.nerlin. keystore.type=j ks
.security.crypto.nerlin. keystore. passwor d=password
.security.crypto.nerlin.file=server.keystore

55505 b

Figure 14: Example Rampart server-crypto.properties File

The cl i ent - crypt o. properti es file has similar properties as above, but with client-
specific values:

or g. apache.
or g. apache.
or g. apache.
or g. apache.
or g. apache.

.security.crypto. provider=

.security. conponents.crypto. Merlin
.security.crypto.nerlin. keystore.type=j ks
.security.crypto. nmerlin. keystore. passwor d=passwor d
.security.crypto.nerlin.file=client.keystore

55555

© Merative US L.P. 2012, 2024

1 Integrating with External Applications through Web Services 39

The creation of the keystore file and the related properties are discussed in Creating Keystore
Files on page 45.

When you configure a secure web service, you must place the server signature property file

and keystore file (ser ver - crypt o. properti es andserver. keyst or e) in the
%SERVER_DI R% pr oj ect/ confi g/ wss/ directory so that the build will package them and
they will be available on the classpath at execution time.

The password callback handlers are specified in the passwor dCal | backC ass parameter
entities.
Coding the client

Code snippets show you how to add to the basic client examples.

Code snippets show to add to the basic client examples in Creating a Client and Starting the Web
Service on page 15 to use the preceding security illustrations.

To use a client axi s2. xm descriptor file, make the following API call where C: / Axi s2/
cl i ent also contains the Axis2 modules directory as indicated in Defining the Axis2 Security
Configuration on page 35:

final ConfigurationContext ctx =
ConfigurationContextFactory.
createConfigurationContextFromFileSystem/(
// Looks for modules, etc. here:
"C:/Axis2/client",
// BAxis2 client descriptor:
"C:/Axis2/client/conf/client-axis2.xml") ;

Figure 15: Identifying Axis2 Client Rampart Configuration

To use a Rampart policy file you would need to create a context as shown in figure 1, but the
client Axis2 descriptor is not necessary in this example, just the Axis2 modules directory:

final ConfigurationContext ctx =
ConfigurationContextFactory.
createConfigurationContextFromFileSystem (
// Looks for modules, etc. here:
"C:/Axis2/client",
null);

When not using an Axis2 configuration that specifies the necessary modules (as shown in
Defining the Axis2 Security Configuration on page 35) you must engage the necessary

modules that are requiredbefore starting the service. The modules depend on the security features
and configuration you are using; for example,:

client.engageModule ("rampart") ;

Failing to do this results in a server-side error, for example:

org.apache.rampart.RampartException:
Missing wsse:Security header in request

© Merative US L.P. 2012, 2024

Curam 8.1.2 40

To use a Rampart policy, create a policy object and set it in the service options properties:

final org.apache.axiom.om.impl.builder.StAXOMBuilder builder =
new StAXOMBuilder ("C:/Axis2/client/policy.xml") ;
final org.apache.neethi.Policy policy =
org.apache.neethi.PolicyEngine.
getPolicy(builder.getDocumentElement ()) ;
options.setProperty (
org.apache.rampart.RampartMessageData.KEY RAMPART POLICY,
loadPolicy (policy) ;

Note: Any number of client coding errors, policy specification errors, configuration errors,
and so on, can manifest in the client and/or the server. Often an error in the client cannot

be debugged without access to the Apache Log4j 2 trace from the server. For instance, the
error when the proper modules are not engaged (discussed earlier) and appear in the client as
follows:

OMException in getSOAPBuilder
org.apache.axiom.om.OMException:
com.ctc.wstx.exc.WstxUnexpectedCharException:

Unexpected character 'E' (code 69) in prolog; expected '<'
at [row,col {unknown-source}]: [1,1]

© Merative US L.P. 2012, 2024

1 Integrating with External Applications through Web Services 41

The following example combines the fragments above, and show how to provide a Cliram custom

SOAP header using Rampart to encrypt it:

import wsconnector.MyServiceStub;

import java.io.File;

import java.net.URL;

import org.apache.axiom.om.impl.builder.StAXOMBuilder;
import org.apache.axiom.om.OMAbstractFactory;

import org.apache.axiom.om.OMElement;

import org.apache.axiom.om.OMFactory;

import org.apache.axiom.om.OMNamespace;

import org.apache.axis2.addressing.EndpointReference;
import org.apache.axis2.client.Options;

import org.apache.axis2.client.ServiceClient;

import org.apache.axis2.context.ConfigurationContext;
import org.apache.axis2.context.ConfigurationContextFactory;
import org.apache.axis2.transport.http.HTTPConstants;
import org.apache.neethi.Policy;

import org.apache.neethi.PolicyEngine;

import org.apache.rampart.RampartMessageData;

/‘k*
* Invoke a web service with encrypted credentials.
*
=/

public void webserviceClient () {

final String serviceName = "myService";
final String operationName = "myOperation";

// Instantiate the stub.
final MyServiceStub stub =
new MyServiceStub () ;

// Get the end point of the service and convert it to a URL
final Options options = stub. getServiceClient().getOptions();
final EndpointReference eprTo = options.getTo();

final URL urlOriginal = new URL (eprTo.getAddress());

// Use that URL,
// plus our service name to construct a new end point.
final URL urlNew = new URL (
urlOriginal.getProtocol (),
urlOriginal.getHost (),
urlOriginal.getPort (),
"/CuramWS2/services/" + serviceName) ;
final EndpointReference endpoint =
new EndpointReference (urlNew.toString());

// Load configuration.
final ConfigurationContext ctx = ConfigurationContextFactory.
createConfigurationContextFromFileSystem/(

"C:/Axis2/client", // Looks for modules, etc. here.

null); // Configuration provided via API engaging rampart.

final ServiceClient client = new ServiceClient (ctx, null);

// Set the credentials - illustrated as an example earlier
setCuramCredentials(client, "tester", "password");

// Set the operation in the endpoint.
options.setAction ("urn:" + operationName) ;
options.setTo (endpoint);

// Set client timeout to 30 seconds for slow machines.
options.setProperty (

HTTPConstants.SO_TIMEOUT, new Integer (30000));
options.setProperty (

HTTPConstants.CONNECTION TIMEOUT, new Integer (30000));

// Load the Rampart policy file.
final StAXOMBuilder builder =
new StAXOMBuilder ("C:/Axis2/client" + File.separator
+ "policy.xml") ;
final Policy policy =
PolicyEngine.getPolicy (builder.getDocumentElement ()) ;
options.setProperty (RampartMessageData.KEY RAMPART POLICY,
policy);

~lient caotOrtaimne (A1 Anal) o

© Merative US L.P. 201

2,2024

Curam 8.1.2 42

The following shows an equivalent technique for setting the security parameters
programmatically, although it is deprecated, it would replace the block of code commented "Load
the Rampart policy file" in Coding the client on page 39, above as well as the related policy

file:

final OutflowConfiguration outConfig =

new OutflowConfiguration() ;
outConfig.setActionItems ("Signature Encrypt");
outConfig.setUser ("tester");
outConfig.

setPasswordCallbackClass ("my.test.ClientPWCallback");
outConfig.

setSignaturePropFile ("client-crypto.properties") ;
outConfig.setSignatureKeyIdentifier (

WSSHandlerConstants.BST DIRECT REFERENCE) ;
outConfig.setEncryptionKeyIdentifier (

WSSHandlerConstants.ISSUER SERIAL) ;
outConfig.setEncryptionUser ("admin") ;

final InflowConfiguration inConfig =
new InflowConfiguration();
inConfig.setActionItems ("Signature Encrypt");
inConfig.
setPasswordCallbackClass ("my.test.ClientPWCallback");
inConfig.setSignaturePropFile ("client-crypto.properties") ;

//Set the rampart parameters

options.setProperty (WSSHandlerConstants.OUTFLOW SECURITY,
outConfig);

options.setProperty (WSSHandlerConstants.INFLOW SECURITY,
inConfig) ;

Figure 17: Sample Client Code (Deprecated) for Setting the Client Security Configuration

© Merative US L.P. 2012, 2024

1 Integrating with External Applications through Web Services 43

Here is an sample working axis2 client descriptor that provides the functionality to send
a soap request message using Rampart, with UserNameToken, wsse-Timestamp, Signing,
Encryption:

Use the following code snippet 1in the axis2 java client to load the axis2 client
descriptor.

ConfigurationContext ctx = ConfigurationContextFactory
.createConfigurationContextFromFileSystem(

"base directory under which the axis2 modules are present",

// pass the absolute path of your client axis2 descriptor, as this is very important.
"absolute path of your client-axis2.xml");

Sample client-axis2.xml

<?xml version="1.0" encoding="UTF-8"?>
<axisconfig name="AxisJavaz2.0">
ref="rampart" />

<parameter name="OutflowSecurity">
<action>
<items>UsernameToken Timestamp Signature Encrypt</items>
<!-- encryption user is the certificate alias , that is present in
keystore -->
<encryptionUser>verisignsecondarycacert</encryptionUser>

<!-- the username that is passed in username token-->
<user>scmca</user>
<!-- the client password callback class ,

where at runtime, the username and password can be manipulated-->
<passwordCallbackClass>curam.mm.verification.service.impl.MMClientPWCallback

</passwordCallbackClass>
<!-- the client crypto property file that provides the keystore

related information for the axis2 client engine-->
<signaturePropFile>client-crypto.properties</signaturePropFile>
<signatureKeyIdentifier>DirectReference</signatureKeyIdentifier>

</action>
</parameter>

<parameter name="InflowSecurity">
<action>
<items>Signature Encrypt</items>
<signaturePropFile>client-crypto.properties</signaturePropFile>
<passwordCallbackClass>
curam.mm.verification.service.impl.MMClientPWCallback</passwordCallbackClass>
<signatureKeyIdentifier>DirectReference</signatureKeyIdentifier>

</action>
</parameter>
== ==
<!-- Message Receivers -->
<N —— ——>

<!--This is the Default Message Receiver for the system ,
if you want to have MessageReceivers for -->
<!--all the other MEP implement it and add the correct entry
to here , so that you can refer from-->
<!--any operation -->
<!--Note : You can override this for particular
service by adding the same element with your requirement-->
<messageReceivers>
<messageReceiver mep="http://www.w3.0rg/2004/08/wsdl/in-only"

class="org.apache.axis2.receivers.RawXMLINOnlyMessageReceiver"/>
<messageReceiver mep="http://www.w3.0rg/2004/08/wsdl/in-