N\
MerATive

Curam 8.1.2

Persistence Cookbook

Note

Before using this information and the product it supports, read the information in Notices on page
141

© Merative US L.P. 2012, 2024

© Merative US L.P. 2012, 2024

Edition
This edition applies to Curam 8.1, 8.1.1, and 8.1.2.

© Merative US L.P. 2012, 2024

Merative and the Merative Logo are trademarks of Merative US L.P. in the United States and
other countries.

© Merative US L.P. 2012, 2024

© Merative US L.P. 2012, 2024

Contents vii

Contents
L0 PP i
o 114 T] PSSP Y
1 Developing with the Persistence INfrastruCtUre. ... 9
0 [01 o T [T 1o T o PO PERPT 9
LT C=T a0 [T N B o 1= o = 9
7= Tod (0 £ 18] o o U P TS PPPPPPPPPPPPN 9
T L= = To [T Vo PN 9
Structure of this dOCUMENT.........oo o, 10
1.2 Making calls to SErVICE-layer APIS........ .. e ee e eaasaneaanrannrnane 10
You want to read some data from a database table..........ccccccoi 10
You want to insert a new row onto a database table..........cccccooeiiiiiiiiiiiiis 16
You want to modify a row on a database table.............cooooiiiiiiiii e, 19
You want to remove (physically delete) a row from a database table............ccccccvieeeins 22
You want to cancel (logically delete) a row on a database table..................................L. 24
You want to list all rows of a database table...........ccooouiiiiiiiiiii 26
You want to list all child rows of a database table belonging to some parent row (on
= L[] 1 LT g = o] 1) 29
SUMIMABIY ittt 32
1.3 Coding service-layer APIS.o 36
You want to start writing the API for a new database table.............cccccciiiiiiiiiiiiiiiiiiiiiin, 36
You want to add getters and setters to your entity interface............cccuveeveeeiiiiiiiiiieeeee s 37
You want to add persistence methods to your entity interface...................c.cc 46
You want to specify Searches 0N YOUr @NLItY............uuuuuuuuumurueriiiriierieereeerererreerrnerereee—————. 49
S0 01 0 =TT PP UPPPPPPPPPR 50
1.4 Coding service-layer implementationS.............uuviiiiiiiiiiiii e 50
You want to start implementing your entity APL.........ccocoiiiiiiiiiii s 50
You want to iMpPIemMENt gEHEIS.......ooeiiiie e e e e e e e e e e e 59
You want to implement NEW rowW defaullS. ...t 65
YOu want t0 iMPIEMENT SEIEIS.uuuuiiiiiiiiiiiiiiiiiitierireerirerrrrrere e 66
You want to implement single-field validation...............cooririiiiiii e 70
You want to implement mandatory-field validation................eeeeiiiiiiiiiiie e 76
You want to implement cross-field validation..............ccccccciiiiiiiii 78
You want to implement cross-entity validation..............cccooooiriiiiiiii s 78
1.5 Creating @ GUICE MOUUIE.........ueiiiiiieeeieieeeeeeee ettt eeeseeeeeeaeeeeeeeaeeaaeeees 79
Create a class extending ABStractMOdUIE.............ueeiiiii i 79
Store a row 0N ModuleClasSNaME...........ccoiiiiiii e 80
I YT o £ F PP PPPPTPTRT 81
Identify where an event musSt De raiSEd...........cc.uuiiiiiiiiiiii e 81

© Merative US L.P. 2012, 2024

Curam 8.1.2 viii

Define the EVENt INEIMTACE. ... e e et e e e e e e eaanes 82
Create an EventDispatCherFactory.........ccccccciiii 83
= VT I AV = o1 TP 83
Create an EVENLE [ISTENET......uui it e e e e e e e e ee bt e e e 84
(@70] g1 110 [T LI U o USRS 85
Writing listeners for automatic persiStenCe EVENTS.......ccoiiieeiieiiee e 86
Design Considerations With EVENLS............ccooviiiiiiiiiicec e, 87
Backward COMPAtiDIlity............uuueiiiiee e e e s e e e e e e e e as 87
1.7 USING ENLILY CONTEXL....eiiiiiiiiiiiiiii ettt e e e e e e e e e e e e e e s e e e eeeeas 87
LI LS 0] 1 1= o SRR POPPPRRR 87
TRE SOIULION. ...ci e 87
Customising INserts uUSiNg eNtity CONTEXL........oiiiiuiiiiiiiieei it 88
Customising Reads using entity CONEXL..............cooiiiiiiiiiiiii 91
Customising other operations uSiNg €Ntity CONEXT...........uuvrriiieriiiiiiiiiieee e e 93
R ST = LC I I = 1 1] (o 0 PSRRI 94
TRE PrODIEIM.....ceeeeee ettt e e e e e e et e e e e e e e e e 94
THE SOIULION. ...t e bbb eeeeeeeeeastba e eeeeeeesesbtannnnss 95
WL u (] o I L= 1 B (oTo =Y i L= PP 105
RS I o] g =Y) =V g (o O UPTUUPTPRRR 111
IdeNtifying INNEITANCE. e aaa e aaa s saasanssnnssanssnneannes 111
Entity interface iNNEMTANCE............ouiieeee e 112
(D)Y@ 41 (=T ¢ 1= (o1 E SR PTRO PP PSR 112
Deciding on database StOrage..........coooeeiiiiiie e, 113
1.10 Adding New Searches to EXIStiNg ENTILIES.ccoiiiiiiiiiiiiiiiiee i 138
Y 0] 0] (0 7= o o T 138
LY o] 6] (0 1= (o o PP PP PP PPPPPPP PPN 139
N [0 o = 141
PEIVACY POIICY ..ttt ettt e e e e et e e e e et e e et e e e e e e e e e s 142
I E= 10 (5] 0 1= 1 T 142

© Merative US L.P. 2012, 2024

1 Developing with the Persistence Infrastructure 9

1 Developing with the Persistence Infrastructure

Use this information to learn how to use and develop service-layer APIs, and how to customize
software that uses the persistence infrastructure. The persistence infrastructure uses facade-
layer logic to translate data that is received from a user interface screen into a format suitable for
passing into a service-layer API call. It also translates the data that is returned from a service-
layer API call into a format suitable for returning to a user interface screen.

1.1 Introduction

Intended Audience

This documented is intended to be read and used by designers and developers of server
application functionality which:

 calls service-layer APIs developed using the Persistence Infrastructure; and/or
» is developed as service-layer APIs using the Persistence Infrastructure.

Background
The service layer in "classic" Ciram was developed using an approach which combined:

» "Process classes", which contained processing logic only (i.e. no data); and
» "Struct classes", which contained data only (i.e. no processing logic).

By comparison, a service layer developed using the Persistence Infrastructure contains classes
which contain both processing and data.

Thus a service layer developed using the Persistence Infrastructure looks and feels very different
to its classic-Ctram counterpart, not only to those designers and developers delivering such a
service layer, but also to those designers and developers who must make use of it. Code which
calls service-layer APIs is typically either:

» facade-layer logic, responsible for translating the data received from a user interface screen
into a format suitable for passing into a service-layer API call, or similarly translating the data
returned from a service-layer API call into a format suitable for returning to a user interface
screen; or

» server logic in another system, which is designed to re-use the service layer developed using
the Persistence Infrastructure.

The purpose of this document is to show developers how to use and develop service-layer APlIs,
through a series of scenarios and solutions, and how to customize out-of-the-box software that
uses the Persistence Infrastructure.

Further Reading

For more information about the classes and interfaces included in the Persistence Infrastructure,
see its JavaDoc.

© Merative US L.P. 2012, 2024

Curam 8.1.2 10

Structure of this document

The scenarios in this cookbook are categorized (according to the task at hand) as follows:

» making calls to service-layer APIs;
* coding service-layer APIs; and
* coding service-layer implementations.

Each of these categories enumerates a number of scenarios, and each scenario describes the
problem to be solved and walks through how to "cook up" a solution.

One possible scenario is that you are customizing software provided out-of-the-box. One
common reason for doing this is to add attributes to database entities provided out-of-the-box.
If this is what you are doing then you may only need to read the following three chapters, after
which you may selectively read the rest of this guide as necessary:

 creating a Guice module;
* events;
* using entity context.

There are also chapters covering more advanced topics:

 state transitions; and
 inheritance; and
» adding new searches to existing entities.

1.2 Making calls to service-layer APIs

The scenarios in this section describe how to make calls into service-layer APIs from other code.
Typically this "other code" is fagade-layer logic.

Whilst service-layer APIs can perform a wide variety of functionality, very typically the
overwhelming majority of service-layer API calls are related to the reading or writing of database
data. Accordingly, the scenarios in this section are described in terms of database tables.

These scenarios build up a typical fagade which controls the

e read;

e insert;

* modification;

e removal;

» cancellation; and
o list

of a data stored on a database table.

You want to read some data from a database table

The problem
You are writing a fagade method which needs to:

* retrieve a database row based on its primary key; and

© Merative US L.P. 2012, 2024

1 Developing with the Persistence Infrastructure 11

+ format the data for return to the user interface, where it will be displayed to the user.
Under classic Ctiram, you would have created a call to the generated "entity" method as follows:

public class MyFacade {
...
public SomeEntityDetails viewSonmeEntityDetail s(
final SonmeEntityKey key) throws AppException,
I nf or mat i onal Exception {

/] create an instance of the return struct
final SomeEntityDetails soneEntityDetails =
new SoneEntityDetail s();

/1l objects for reading the database
final SonmeEntity soneEntityChj =
SoneEntityFact ory. new nstance();
final SomeEntityKey soneEntityKey = new SoneEntityKey();
final SonmeEntityDtls sonmeEntityDtls;

/1 map the key
soneEntityKey. soneEntityl D = key. soneEntityl D;

/1 do the read
sonmeEntityDils = soneEntityQbj.read(sonmeEntityKey);

/1 map the details returned - in this situation the return
/1 struct aggregates the generated entity Dtls struct
sonmeEntityDetails.details = sonmeEntityDtls;

[/ return to the client
return someEntityDetails;

}

Figure 1: Facade calling classic Cdram entity to read a database row

How do you read from a database table using a service-layer API (developed using the
Persistence Infrastructure)?
The solution

Reading data from a service-layer API (developed using the Persistence Infrastructure) involves
writing code using two interfaces, which will be introduced by example:

+ the interface for the entity being read; and
+ the interface for the entity's Data Access Object ("DAQO").

Coding the solution involves these steps:

« create a class variable to hold the DAO;

* create a constructor to request Guice to inject class variables

» use the DAO to retrieve the instance of the entity; and

+ access the entity instance to map field values to the client struct.

Create a class variable to hold the DAO

Firstly, you need to create a class member variable for the entity's DAO, and annotate it with
@Inject:

© Merative US L.P. 2012, 2024

Curam 8.1.2 12

public class MyFacade {
...

@ nj ect
private SoneEntityDAO soneEntityDAQ

Figure 2: Creating an injected member variable for a DAO

(The @Inject annotation is provided by Guice, a dependency injector. At runtime, Guice will
initialize the someEntityDAO variable to use the configured implementation of SomeEntityDAO.
You don't really need to worry about any of this.)

The someEntityDAO object "knows" how to create instances of the entity interface. In this
scenario, you'll use the DAO to retrieve the instance of the entity from the database.

Create a constructor to request Guice to inject class variables

Because instances of your class are created outside of Guice's control, you must code an explicit
constructor which requests Guice to "inject" class variables (in particular the someEntityDAO
variable you created in the previous step):

public MyFacade() {
Qui ceW apper.getinjector().injectMenbers(this);

}

Figure 3: Creating a public constructor to inject member variables

If you fail to do this step, then when your application runs you will likely see a
NullPointerException when your application attempts to access the someEntityDAO variable.

Use the DAO to retrieve the instance of the entity

In your fagade method, code a variable to hold an instance of the entity interface, and set its value
by calling.get() on the DAO, passing the key of the database row:

/[l retrieve the instance of the entity
final SonmeEntity soneEntity =
someEnt i t yDAQO. get (key. soneEntityl D);

Figure 4: Calling a DAO to get an instance of an entity based on its key

Here, the DAO instance has "dished up" the required instance of the entity interface. someEntity
now holds an object which "knows" how to:

+ get at data (via "getter" methods); and also
* "do things" with that data (via other methods).

Access the entity instance to map field values to the client struct
Now code calls to the entity "getters" to map fields values to your return struct:

/'l map the details fromthe entity instance
sonmeEntityDetails.details.someEntityl D = soneEntity.getlD();
sonmeEntityDetails.details.nanme = soneEntity. get Name();
soneEntityDetails.details.versionNo =

sonmeEntity. get Versi onNo();

fi nal DateRange dat eRange = soneEntity. get Dat eRange();
sonmeEntityDetails.details.startDate = dateRange.start();
soneEntityDetails. details. endDate = dat eRange. end();

© Merative US L.P. 2012, 2024

1 Developing with the Persistence Infrastructure 13

/1 ...nore mappi ngs

Figure 5: Calling getter methods on an entity interface

Points to note:

* Every entity API has a.getID() method, which returns its primary key. There will not be a
specific getter for the entity's primary key field, e.g. there is no someEntity.getSomeEntityID()
method.

» The API for any entity which supports optimistic locking has a.getVersionNo() method.

* Some getters do not return primitive types, but instead return objects, e.g. there are no
someEntity.getStartDate() or.getEndDate() methods, only a.getDateRange() method which
returns a DateRange object which contains a start and end date, but is also capable of date-
range processing such as validation and comparison.

You must code a mapping for each field that you need to return to the client. Code-completion in
IDEs like Eclipse will help!

Putting it all together
Here's the complete code for this scenario solution:

public class MyFacade {
...

@ nj ect
private SoneEntityDAO soneEntityDAG

public MyFacade() {
Gui ceW apper.getinjector().injectMenbers(this);
}

public SonmeEntityDetails viewSoneEntityDetail s(
final SoneEntityKey key) throws AppException,
I nf or mat i onal Excepti on {

/] create an instance of the return struct
final SonmeEntityDetails sonmeEntityDetails =
new SoneEntityDetail s();

/1 retrieve the instance of the entity
final SonmeEntity sonmeEntity =
soneEnt it yDAQ. get (key. soneEntityl D);

/1 map the details fromthe entity instance
sonmeEntityDetails.details.sonmeEntityl D = soneEntity.getlD();
sonmeEntityDetails.details.nanme = soneEntity. get Name();
soneEntityDetails.details.versionNo =

sonmeEntity. get Versi onNo();

fi nal DateRange dat eRange = soneEntity. get Dat eRange();
soneEntityDetails.details.startDate = dateRange.start();
soneEntityDetails. details. endDate = dat eRange. end();

/1 ...nore mappi ngs

// return to the client
return someEntityDetails;

© Merative US L.P. 2012, 2024

Curam 8.1.2 14

/1
}

Figure 6: Complete listing for a fagade "view" method

For this first scenario only, here's a side-by-side look at the classic approach vs. the service-layer
API approach:

© Merative US L.P. 2012, 2024

1 Developing with the Persistence Infrastructure 15

{ypuaabueyaiep = S3EQPUS
SrlImlESbuEHelER = S3P01ITLE
S abusdateqiabk A TIuRownE =

...__".__u_.,.“__...,_.l._l..m..._”m._.,...._m.m..._m.u._._...l._.....un_“u..Eﬂm. - OHUSTEIGAT

DETTEINOATIUTONCE UITeT
IUSTTD 293 o1 UINIal

Shutddemw Saow: -)

rETTE1SD ETTE1a0A1TIUToWoS
TETTEISD T STTE18I8 I TIUTamoS

sbueygaqgen Sbhueysqe] [euss Vl

ETTE190 " ETTE1808 ITIuTawoS

Sl ameNgak AQTIUGSWIE = SWRUCSTTElSR Y ST TS0 T Iusouss
diigTzeb-AzTIiugswcEs = JTATZTIUSWOETETTEISP ' ETTEIagiiTIugawos
asuelguT S171us Byl woal STTelan aygl dew fp S

dpaTfaTaugawos - Aay) 3ak - ovoliTaugswss - SlTjugswss LaTilumswos [EUTE
ST QS S0 O SDUEQEUT DU SanTIn0d J

DUPETTEISIATIVRGUOS ABY = STTEa0A3TIUEIW0S STTea0ATTIusSwns Teuty
JOTNIZ1E UIng3=2I oyl Jo aluelsSudT Uur o3E'EaIo g

bouafadaadEreunsienioge] funtjdaleddy smoIyy
}fay AavAlTiugawss TERUTI) ETTEITAITIUYSWSSMaTA STTEISTAITIUdzWCS STTgnd

Ty} sraguayizalur - {1ao3zalurial r1addeipmacTng
bl aceaegdin orTgnd

fovalatiumsucs oyndiltiuzawos; egeatdd
JoaluTh

P osueselin 5ERTD uﬂwnﬂm

[dV Auua 1ake[-221A125 B SuIs()

© Merative US L.P. 2012, 2024

B o B
JoMI]sE WIndex =293 UuDT3e

Hifagilta

P
ThilAd

1 favlaTiuqga

HyeourisurMan - Ainaowal

SlETTEIa0fAI TIUESW0 ASU -

b
(hay AoyAaTiuEswog TRUWTF) F]

A1nqua wear

Curam 8.1.2 16

1. The object which knows how to retrieve instances of the entity. Using the persistence package,
the object is called a Data Access Object ("DAO") and is a class member variable initialized
by Guice using @Inject. The class constructor requests Guice to initialize this (and any other)
class variable(s).

2. The retrieval of the entity from the database uses the DAO.
3. The data held on the entity is mapped to the client struct.

Note that when using service-layer APIs, in general:

* Code to retrieve instances of these APIs is more terse than when using classic Curam; but
* Code to map entity data to client structs is more verbose (but this is after all one of the main
purposes of facade logic).

You want to insert a new row onto a database table

The problem
You are writing a fagade method which needs to insert a new row onto a database table.

Under classic Ctiram, you would have created a call to the generated "entity" method as follows:

...
public SomeEntityKey createSonmeEntityDetail s(
final SonmeEntityDetails details)
throws AppException, |nformational Exception {

[/ create an instance of the return struct
final SoneEntityKey key = new SoneEntityKey();

/!l objects for witing to the database

final SoneEntity soneEntityChj =
SoneEntityFactory. newl nstance();

final SoneEntityDtls sonmeEntityDtls;

/[l map the details
someEntityDtls = details.details;

/1 do the insert
sonmeEntityQoj.insert(sonmeEntityDtls);

/'l check for informational exceptions
Transacti onl nfo. getl nfornati onal Manager (). fail Operation();

/1 map the key assigned
key. soneEntityl D = soneEntityDtls. soneEntityl D

[/ return to the client
return key;

}
/1

Figure 8: Facade calling classic Cldram entity to create a database row

How do you insert a new row onto a database table using a service-layer API (developed using
the Persistence Infrastructure)?

© Merative US L.P. 2012, 2024

1 Developing with the Persistence Infrastructure 17

The solution
Coding the solution involves these steps:

e create a class variable to hold the DAO;

» use the DAO to create a new instance of the entity;

* access the entity instance to set field values from the client struct;
* instruct the entity instance to insert itself onto the database; and

* map the entity instance key back to the client (if required).

Create a class variable to hold the DAO

This step is identical to that in You want to read some data from a database table on page 10
above.

In general more than one fagade method will require to use the DAO object. Of course, you only
need to create the DAO object class member once for the fagade class!

Use the DAO to create a new instance of the entity

In your fagade method, code a variable to hold an instance of the entity interface, and set its value
by calling.newInstance() on the DAQO, passing the key of the database row:

/'l create a new entity instance
final SomeEntity sonmeEntity = soneEntityDAQO new nstance();

Figure 9: Calling a DAO to create a new instance of an entity

Here, the DAO instance has "dished up" a new instance of the entity interface, which does not
(yet) exist on the database. The entity itself takes care of setting its data fields to sensible defaults.

someEntity now holds an object which "knows" how to:

+ get at data (via "getter" methods);
» set data (via "setter" methods); and
» "do things" with that data (via other methods).

Access the entity instance to set field values from the client struct
Now code calls to the entity "setters" to map fields values from your input struct:

/1 map the details
sonmeEntity. set Nane(detail s. details. nane);

fi nal DateRange dat eRange = new Dat eRange(
detail s.detail s.startDate,
detail s.details. endDate);
sonmeEntity. set Dat eRange(dat eRange) ;
/1 ...nmore nmappings

Figure 10: Calling setter methods on an entity instance
Points to note:

» Often, an entity may have a getter to allow retrieval of a data field, but have no corresponding
setter. This is because the entity manages the setting of such fields, and does not allow the
field to be set by calling code. Common examples include:

* the entity's ID;

© Merative US L.P. 2012, 2024

Curam 8.1.2 18

+ the "logical delete" record status; and
+ lifecycle state.

* Some setters do not take primitive types, but instead take objects, e.g. there are no
someEntity.setStartDate() or.setEndDate() methods, only a.setDateRange() method which
takes a DateRange object which contains a start and end date.

* When you call a setter on an entity instance, the entity instance will perform any single-field
validation on the field being set.

You must code a mapping for each field that you need to populate from the client.

Instruct the entity instance to insert itself onto the database

Once the entity instance has been populated with data supplied by the client, you must code a call
for the entity instance to store itself:

/1 do the insert
soneEntity.insert();

Figure 11: Calling the insert persistence method on an entity instance

The entity instance will:
» perform additional validation, including:

* mandatory field validation (i.e. check that all mandatory fields have been set);
» cross-field validation; and
* cross-entity validation;

* assign a primary key value; and

* insert its data into the database.

Map the entity instance key back to the client (if required)
Some fagade methods require to return back to the client the key of a new row stored.
If required, code a mapping to return the key:

/1 map the key assigned
key. soneEntityl D = soneEntity.getlX);

Figure 12: Retrieving the ID of an entity instance

Putting it all together

Here's the complete code for this scenario solution:

...
public SomeEntityKey createSoneEntityDetail s(
final SonmeEntityDetails details)
throws AppException, |nformational Exception {

/] create an instance of the return struct
final SomeEntityKey key = new SoneEntityKey();

/'l create a new entity instance
final SoneEntity soneEntity = soneEntityDAO new nstance();

/1 map the details
someEntity. set Nane(detail s. details. nane);

© Merative US L.P. 2012, 2024

1 Developing with the Persistence Infrastructure 19

final DateRange dateRange =
new Dat eRange(details.details.startDate,
details.detail s. endDate);

soneEntity. set Dat eRange(dat eRange) ;

/1 ...nore mappi ngs

/1 do the insert
soneEntity.insert();

/1 map the key assigned
key. soneEntityl D = soneEntity.getlX);

[/ return to the client
return key;
}

11

Figure 13: Complete listing for a fagcade "create" method

Note that there is no call to TransactionInfo.getInformationalManager().failOperation() - the
entity insert operation takes care of all error handling.

You want to modify arow on a database table

The problem

You are writing a fagade method which needs to modify the contents of an existing row on the
database.

Under classic Curam, you would have created a call to the generated "entity" method as follows:

...
public void nodi fySomeEntityDetail s(
final SoneEntityDetails details)
throws AppException, |nfornmational Exception {

/1 objects for witing to the database

final SoneEntity soneEntityChj =
SonmeEnt it yFact ory. newl nstance();

final SonmeEntityDtls sonmeEntityDtls;

/1 map the details
sonmeEntityDils = details.details;

/'l create an instance of the key
final SoneEntityKey soneEntityKey = new SoneEntityKey();
sonmeEntityKey. soneEntityl D = soneEntityDtls. sonmeEntityl D;

/1 do the nodify
soneEnti tyObj . nodi fy(sonmeEntityKey, sonmeEntityDtls);

/'l check for informational exceptions
Transacti onl nfo. getl nfornati onal Manager (). fail Operation();

© Merative US L.P. 2012, 2024

Curam 8.1.2 20

11

Figure 14: Facade calling classic Curam entity to modify a database row

How do you modify an existing row on a database table using a service-layer API (developed
using the Persistence Infrastructure)?

The solution
The solution draws together elements of processing seen in the earlier scenarios:

* You want to read some data from a database table on page 10; and

* You want to insert a new row onto a database table on page 16.

Coding the solution involves these steps:

e create a class variable to hold the DAO;

» use the DAO to retrieve the instance of the entity;

» access the entity instance to set field values from the client struct; and
* instruct the entity instance to modify its data on the database.

Create a class variable to hold the DAO

This step is identical to that in You want to read some data from a database table on page 10
above.

Use the DAO to retrieve the instance of the entity

This step is identical to that in You want to read some data from a database table on page 10
above.

Access the entity instance to set field values from the client struct

This step is identical to that in You want to insert a new row onto a database table on page 16
above.

It is likely that a facade class will contain both of the following methods:

« amethod which insert a new row onto a database table; and
» amethod which modifies an existing row on a database table.

For facades which contain both of these kinds of methods, it is likely that the steps to map client
data to setters are very similar. Any identical processing should be factored into a common

method:
...
/**
* Maps client details to the setters on the service-layer API
*
* @aram soneEntity
* the service-layer instance of the entity
* @param soneEntityDtls
*

the client details to map

*

*/
private void setSoneEntityDetail s(final SoneEntity soneEntity,
final SoneEntityDtls someEntityDtls) {

© Merative US L.P. 2012, 2024

1 Developing with the Persistence Infrastructure 21

/1 map the details
soneEntity. set Nane(soneEntityDtls. nane);

fi nal DateRange dat eRange =
new Dat eRange(sonmeEntityDtls. startDate,
sonmeEntityDtls. endDat e);
soneEntity. set Dat eRange(dat eRange) ;
/1 ...nmore nmappings

}
11

Figure 15: Factoring out common calls to setter methods

Note that this method cannot be modeled as the entity interface argument is not present in the
Curam model; thus this method is private to the Java implementation.

Instruct the entity instance to modify its data on the database

Once the entity instance has been populated with data supplied by the client, you must code a call
for the entity instance to store its changes:

/!l do the nodify, passing the version nunber fromthe client
sonmeEntity. nodi fy(details.details.versionNo);

Figure 16: Calling the modify persistence method on an entity
The entity instance will:
+ perform additional validation, including:

» mandatory field validation (i.e. check that all mandatory fields have been set);
« cross-field validation; and
* cross-entity validation;

* modify its data on the database.

Important: For an entity which supports optimistic locking, you must pass the version
number held by the client struct. Do not be tempted to use the version number on the entity
instance which has been retrieved, as this would render the optimistic lock mechanism useless
and allow one user's updates to be overwritten by another user's updates:

/** R R R I b O VERY VERY BAD - I:D I\IO'I' m THI S| *kkkhkkkkhkkkk*x */

/1 do the nodify, passing the version nunber fromthe
entity

/1 instance

sonmeEntity. nodi fy(soneEntity. getVersionNo());

/** *kkkkkkkk*x VERY VERY BAD - [x) NGI’ m THI S| EIR R I I O
*/

Figure 17: Incorrect - bypassing optimistic locking safeguards

Putting it all together

Here's the complete code for this scenario solution:
...
public void nodi fySomeEntityDetail s(
final SoneEntityDetails details)
throws AppException, |nformational Exception {

© Merative US L.P. 2012, 2024

Curam 8.1.2 22

/[l retrieve the instance of the entity
final SonmeEntity soneEntity = soneEntityDAO
.get(details.details.soneEntitylD);

/1l set the fields
set SonmeEntityDetail s(sonmeEntity, details.details);

/1 do the nodify, passing the version nunber fromthe client
sonmeEntity. nodi fy(details.details.versionNo);

}

/**

* Maps client details to the setters on the service-layer API
*

* @aram soneEntity

* the service-layer instance of the entity

* @param soneEntityDtls

* the client details to map

*

*/

private void setSoneEntityDetail s(final SoneEntity soneEntity,
final SoneEntityDtls someEntityDtls) {

/[l map the details
sonmeEntity. set Nane(soneEntityDtls. nane);

fi nal DateRange dat eRange =
new Dat eRange(sonmeEntityDtls. startDate,
soneEntityDtls. endDat e) ;
sonmeEntity. set Dat eRange(dat eRange) ;
/1 ...nore mappi ngs

}
/1

Figure 18: Complete listing for a facade "modify" method

You want to remove (physically delete) a row from a database table

The problem
You are writing a fagade method which needs to remove an existing row from the database.

Under classic Caram, you would have created a call to the generated "entity" method as follows:

...
public void renmoveSoneEntityDetail s(final SoneEntityKey key)
throws AppException, |nformational Exception {

/1 objects for witing to the database
final SomeEntity sonmeEntityChj =
SomeEnt i tyFactory. newl nstance();

/'l create an instance of the key
final SonmeEntityKey soneEntityKey = new SonmeEntityKey();

© Merative US L.P. 2012, 2024

1 Developing with the Persistence Infrastructure 23

soneEntityKey. soneEntityl D = key. soneEntityl D;

/1 do the renove
soneEntityCObj . renove(soneEntityKey);

/'l check for informational exceptions
Transacti onl nfo. getl nfornati onal Manager (). fail Operation();

}
/1

Figure 19: Facade calling classic Curam entity to remove a database row

How do you remove an existing row from a database table using a service-layer API (developed
using the Persistence Infrastructure)?

The solution

Coding the solution involves these steps:

 create a class variable to hold the DAO;
» use the DAO to retrieve the instance of the entity;
* instruct the entity instance to remove its data from the database.

Create a class variable to hold the DAO

This step is identical to that in You want to read some data from a database table on page 10
above.

Use the DAO to retrieve the instance of the entity

This step is identical to that in You want to read some data from a database table on page 10
above.

Instruct the entity instance to remove its data from the database
You must code a call for the entity instance to remove its data from the database:

/!l do the renpve, passing the version nunber fromthe client
sonmeEntity. renmove(key. versi onNo) ;

Figure 20: Calling the remove persistence method on an entity

The entity instance will:

» perform cross-entity validation, allowing other entities to veto the removal; and
* remove its data from the database.

For an entity which supports optimistic locking, you must pass the version number held by the
client struct. Note that this approach is stricter than the classic Cliiram approach which does not
require a version number.

Important: Do not be tempted to use the version number on the entity instance which has
been retrieved, as this would render the optimistic lock mechanism useless and allow one user's
updates to be removed by another user acting on out-of-date data:

© Merative US L.P. 2012, 2024

Curam 8.1.2 24

/**

*Rxxkxxkkxxx VERY VERY BAD - DO NOT DO THI SI **x*xkxkxx

/!l do the renpbve, passing the version nunber fromthe entity
/'l instance

sonmeEntity. renmove(soneEntity. getVersionNo());

/** kkkkkkkkk*%x VERY VERY BAD _ m NO'I’ I:D THI S| *kkkkkkkkk*k */

Figure 21: Incorrect - bypassing optimistic locking safeguards

Putting it all together

Here's the complete code for this scenario solution:

/11

pﬁbiic voi d renoveSoneEntityDetail s(

}

I

final SomeEntityKeyVersion key)
throws AppException, |nfornational Exception {

/1 retrieve the instance of the entity
final SonmeEntity sonmeEntity =
soneEntit yDAQ. get (key. soneEntityl D);

/1 do the renove, passing the version nunber fromthe client
sonmeEntity. renmove(key. versi onNo);

Figure 22: Complete listing for a facade "remove" method

You want to cancel (logically delete) a row on a database table

The problem

You are writing a fagade method which needs to cancel an existing row on the database (i.e. set its
"recordStatus" to "Canceled").

Under classic Caram, you would have created a call to a non-stereotyped "entity" method as
follows:

11

pﬁbiic voi d cancel SoneEntityDetail s(

final SomeEntityKeyVersion key)
t hrows AppException, |nformational Exception {

/1 objects for witing to the database
final SoneEntity soneEntityChj =
SonmeEntityFact ory. new nstance();

/'l create an instance of the key/version

final SonmeEntityKeyVersion sonmeEntityKeyVersion =
new SoneEntit yKeyVersi on();

soneEntit yKeyVersi on. sonmeEntityl D = key. soneEntityl D

soneEntit yKeyVersi on. versi onNo = key. versi onNo;

/1 do the cance
sonmeEntityQoj . cancel (sonmeEntityKeyVersion);

© Merative US L.P. 2012, 2024

1 Developing with the Persistence Infrastructure 25

/'l check for informational exceptions
Transacti onl nfo. getl nfornati onal Manager (). fail Operation();

}
/1

Figure 23: Fagade calling classic Curam entity to cancel a database row

How do you cancel an existing row on a database table using a service-layer API (developed
using the Persistence Infrastructure)?

The solution

Coding the solution involves these steps:

 create a class variable to hold the DAO;
+ use the DAO to retrieve the instance of the entity;
* instruct the entity instance to cancel its data on the database.

Create a class variable to hold the DAO

This step is identical to that in You want to read some data from a database table on page 10
above.

Use the DAO to retrieve the instance of the entity

This step is identical to that in You want to read some data from a database table on page 10
above.

Instruct the entity instance to cancel its data on the database
You must code a call for the entity instance to cancel its data on the database:

/1 do the cancel, passing the version nunber fromthe client
sonmeEntity. cancel (key. versi onNo) ;

Figure 24: Calling the cancel method on an entity
The entity instance will:

» perform cross-entity validation, allowing other entities to veto the cancellation; and
» cancel its data from the database.

For an entity which supports optimistic locking, you must pass the version number held by the
client struct.

Important: Do not be tempted to use the version number on the entity instance which has
been retrieved, as this would render the optimistic lock mechanism useless:

/** *kkkkkkkk*k*%x VERY VERY BAD _ [x) NO'I' m THI S| *kkkkkkkkk*k */
/1 do the cancel, passing the version nunmber fromthe entity
/'l instance
sonmeEntity. cancel (soneEntity. get Versi onNo());
/** R R Ik I S VERY VERY BAD - I:x) I\IO'I' [x) THI S| IR IR I I */

Figure 25: Incorrect - bypassing optimistic locking safeguards

© Merative US L.P. 2012, 2024

Curam 8.1.2 26

Putting it all together

Here's the complete code for this scenario solution:

...
public void cancel SoneEntityDetail s(
final SonmeEntityKeyVersion key)
t hrows AppException, Informational Exception {

I/l retrieve the instance of the entity
final SomeEntity soneEntity =
someEnt i t yDAQ. get (key. soneEntityl D);

/1 do the cancel, passing the version nunber fromthe client
sonmeEntity. cancel (key. ver si onNo) ;

}
/1

Figure 26: Complete listing for a fagade "cancel" method

You want to list all rows of a database table

The problem
You are writing a facade method which needs to:

« retrieve all rows from a database table; and
+ format the data for return to the user interface, where it will be displayed to the user.

Under classic Ctram, you would have created a call to the generated "entity" method as follows:

...
public SonmeEntitySunmmaryDetail sList |istSonmeEntityDetails()
throws AppException, |nfornational Exception {

/1l create an instance of the return struct
final SomeEntitySummaryDetailsList list =
new SoneEntitySummaryDet ail sList();

/1 objects for reading the database
final SonmeEntity soneEntityChj =
SoneEnt i tyFact ory. newl nstance();
final SomeEntityDtlsList soneEntityDtl sList;

/1 do the read
sonmeEntityDtlsList = soneEntityQoj.readAll ();

/[l map the details returned
for (int i =0; i < someEntityDtlsList.dtls.size(); i++) {
final SonmeEntitySummaryDetails someEntitySunmaryDetails =
new SoneEntitySumraryDetail s();
soneEntitySummaryDet ai | s. assi gn(
soneEntityDtlsList.dtls.item(i));

list.details.addRef (soneEntitySumaryDetails);
}

© Merative US L.P. 2012, 2024

1 Developing with the Persistence Infrastructure 27

[/ return to the client
return |ist;

}
/1

Figure 27: Fagade calling classic Curam entity to list all database rows

How do you list all rows from a database table using a service-layer API (developed using the
Persistence Infrastructure)?

The solution

Coding the solution involves these steps:

 create a class variable to hold the DAO;

» use the DAO to retrieve all the instances of the entity; and

+ iterate the set of entity instances and access these instances to map field values to the client
struct.

Create a class variable to hold the DAO

This step is identical to that in You want to read some data from a database table on page 10
above.

Use the DAO to retrieve all the instances of the entity

In your fagade method, code a variable to hold a set of instances of the entity interface, and set its
value by calling.readAll() on the DAO:

Il retrieve all the instances of the entity
final Set<SoneEntity> soneEntities = soneEntityDAQ readAll();

Figure 28: Calling a DAO method to read multiple entity instances

Note that (in this particular example):

* the DAO readAll method returns a Set, typed with the entity interface (SomeEntity); and

* this scenario assumes that the API designer created a readAll method on the DAO (it does not
have one by default).

Iterate the set of entity instances and access these instances to map field values
to the client struct

Now code a loop which iterates the set retrieved, and maps each instance to the client struct. Note
that since a Set is used, the Java 5 syntax for "for" loops can be used:

/1 map the details returned
for (final SoneEntity soneEntity : sonmeEntities) {
final SoneEntitySummaryDetails sonmeEntitySunmaryDetails =
new SoneEntitySumraryDetail s();
soneEntitySummaryDetail s. soneEntityl D = soneEntity.getlD();
someEntitySummaryDetai | s. name = soneEntity. get Nane();

list.details.addRef (soneEntitySummaryDetails);
}

Figure 29: Iterating through multiple entity instances

© Merative US L.P. 2012, 2024

Curam 8.1.2 28

Putting it all together

Here's the complete code for this scenario solution:

...
public SomeEntitySumraryDetail sList |istSonmeEntityDetail s()
throws AppException, |nfornational Exception {

/] create an instance of the return struct
final SomeEntitySummaryDetailsList list =
new SoneEntitySummaryDet ail sList();

Il retrieve all the instances of the entity
final Set<SoneEntity> soneEntities = soneEntityDAQ readAll();

/! map the details returned
for (final SoneEntity soneEntity : soneEntities) {
final SomeEntitySumraryDetails sonmeEntitySumraryDetails =
new SoneEntitySumraryDetail s();
sonmeEntitySummaryDetails. soneEntityl D = soneEntity. getlD();
sonmeEntitySummaryDetai | s. name = soneEntity. get Nane();

list.details.addRef (soneEntitySumaryDetails);
}

/] return to the client
return |ist;

}

Figure 30: Complete listing for a facade "list all* method

Note that the assignment to the someEntities set was shown for clarity only - equivalent terser
code is shown below:

...
public SomeEntitySunmaryDetail sList |istSoneEntityDetail s()
throws AppException, |nformational Exception {

/1 create an instance of the return struct
final SomeEntitySumraryDetailsList |ist =
new SoneEntitySumaryDet ail sList();

for (final SoneEntity soneEntity : soneEntityDAO readAll ()) {
/1 map the details returned
final SonmeEntitySumraryDetails sonmeEntitySumraryDetails =
new SoneEntitySumraryDetail s();
someEntitySummaryDetail s. sonmeEntityl D = soneEntity.getlD();
sonmeEntitySummaryDetai | s. name = soneEntity. get Nane();

list.details.addRef (soneEntitySummaryDetails);
}

[/ return to the client
return list;

}
/1

Figure 31: Complete listing for a facade "list all"* method (terser version)

© Merative US L.P. 2012, 2024

1 Developing with the Persistence Infrastructure 29

You want to list all child rows of a database table belonging to some
parent row (on another table)

The problem
You are writing a facade method which needs to:

 retrieve all rows from a database table for a given "parent ID"; and
« format the data for return to the user interface, where it will be displayed to the user.

Under classic Cliram, you would have created a call to the generated "entity" method as follows:

...
public SomeChil dSummaryDet ai | sLi st |i st SonmeChil dDetail s(
final SomeParent Key key)
throws AppException, |nfornational Exception {

/] create an instance of the return struct
final SomeChil dSumraryDetail sList list =
new SoneChi | dSunmaryDet ai | sList();

/'l objects for reading the database
final SonmeChild someChil dObhj =
SomeChi | dFact ory. new nst ance() ;
final SonmeChildDtl sLi st soneChil dDt| sLi st ;

/1l set up the key
final SonmeParent Key soneParent Key = new SonePar ent Key() ;
sonePar ent Key. soneParent | D = key. sonePar ent | D;

/1 do the read
someChi | dDt | sLi st =
someChi | dQbj . sear chBySonePar ent (somePar ent Key) ;

/1 map the details returned
for (int i =0; i < someChildDtlsList.dtls.size(); i++) {
final SonmeChil dSummaryDetails soneChil dSunmaryDetails =
new SoneChi | dSunmar yDet ai | s() ;
soneChi | dSunmmar yDet ai | s. assi gn(
someChi | dDt |l sList.dtls.item(i));

list.details.addRef (sonmeChil dSumaryDetail s);
}

// return to the client
return |ist;
}

11

Figure 32: Facade calling classic Curam entity to list all child database rows for a given parent

How do you list child rows for a given parent using a service-layer API (developed using the
Persistence Infrastructure)?

The solution

Coding the solution involves these steps:

© Merative US L.P. 2012, 2024

Curam 8.1.2 30

+ create a class variable to hold the DAO for the parent entity;

» use the DAO to retrieve the instance of the parent entity;

 call a getter on the parent entity instance to retrieve its set of child entity instances; and

 iterate the set of child entity instances and access these instances to map field values to the
client struct.

Create a class variable to hold the DAO

@ nj ect
private SoneParent DAO sonePar ent DAG,

Figure 33: Declaring a variable to hold a DAO for an entity

Use the DAO to retrieve the instance of the parent entity

In your fagade method, code a variable to hold an instance of the entity interface, and set its value
by calling.get() on the DAO, passing the key of the database row:
/1 retrieve the instance of the parent entity

final SoneParent someParent =
sonePar ent DAO. get (key. sonePar ent | D) ;

Figure 34: Retrieving an instance of a parent entity

Call a getter on the parent entity instance to retrieve its set of child entity
instances

Now code a call to the appropriate getter on the parent entity instance to retrieve its child entity
instances:

Il retrieve all the child instances of the entity for this parent
final Set<SonmeChild> sonmeChildren = soneParent. get SomeChil dren();

Figure 35: Calling a getter method on a parent entity instance to retrieve its child entity instances

Iterate the set of child entity instances and access these instances to map field
values to the client struct

Now code a loop which iterates the set retrieved, and maps each instance to the client struct:

/1 map the details returned
for (final SonmeChild sonmeChild : sonmeChildren) {
final SomeChil dSumraryDetails soneChil dSunmaryDetails =
new SonmeChi | dSunmaryDet ai |l s();
someChi | dSummar yDet ai | s. soneChil dI D = sonmeChil d. getl X);
someChi | dSumrar yDet ai | s. nanme = soneChi | d. get Nane() ;

l'ist.details.addRef (sonmeChil dSummaryDetail s);
}

Figure 36: Iterating through child entity instances

Putting it all together

Here's the complete code for this scenario solution:

...
@ nj ect
private SonmePar ent DAO sonePar ent DAG,

© Merative US L.P. 2012, 2024

1 Developing with the Persistence Infrastructure 31

public SomeChil dSummaryDet ai | sLi st |istSonmeChil dDetail s(
final SomeParent Key key)
throws AppException, |nfornational Exception {

/] create an instance of the return struct
final SomeChil dSumraryDetail sList list =
new SonmeChi | dSunmaryDet ai | sList();

/'l retrieve the instance of the parent entity
final SomeParent soneParent =
somePar ent DAQ. get (key. soneParent | D) ;

Il retrieve all the child instances of the entity for this
[l parent
final Set<SomeChild> soneChildren =

sonePar ent . get SonmeChi | dren() ;

/1 map the details returned
for (final SomeChild sonmeChild : soneChildren) {
final SomeChil dSumraryDetails soneChil dSunmaryDetails =
new SonmeChi | dSunmar yDet ai | s();
someChi | dSummar yDet ai | s. soneChil dI D = sonmeChild.getl X);
someChi | dSumrar yDet ai | s. nanme = soneChi | d. get Nane() ;

l'ist.details.addRef (sonmeChil dSummaryDetail s);
}

// return to the client
return list;

}
/1

Figure 37: Complete listing for a fagade "list children" method

Again, here is a briefer version which has no intermediate variable to hold the Set of child entity
instances:

...
publ i ¢ SomeChi | dSumrar yDet ai | sLi st |i st SomeChil dDet ail s(
final SomeParent Key key)
throws AppException, |nfornational Exception {

/] create an instance of the return struct
final SomeChil dSumraryDetail sList list =
new SoneChi | dSunmar yDet ai | sLi st ();

/[l retrieve the instance of the parent entity
final SomeParent soneParent =
sonePar ent DAQ. get (key. soneParent | D) ;

for (final SonmeChild soneChild
sonePar ent . get SomeChi I dren()) {
/1 map the details returned
final SomeChil dSummaryDetails soneChil dSunmaryDetails =
new SoneChi | dSunmaryDet ai | s();
soneChi | dSummar yDet ai | s. someChi | dI D = sonmeChi | d. get 1 D();
soneChi | dSummar yDet ai | s. nane = soneChi | d. get Nane() ;

© Merative US L.P. 2012, 2024

Curam 8.1.2 32

l'ist.details.addRef (sonmeChil dSummaryDetail s);

}

[/ return to the client

return list;

}
11

Figure 38: Complete listing for a facade "list children" method (terser version)

Summary

Here is the entire listing for the fagade class:

package curam cookbook. facade. persi stence;

i mport curamutil. persistence. Gui ceW apper;
i nport curamutil.type. Dat eRange;

i mport java.util. Set;

i mport com googl e.inject.Inject;

i mport curam cookbook.
i nport curam cookbook.
i mport curam cookbook.
i mport curam cookbook.
i mport curam cookbook.
i mport curam cookbook.
i nport curam cookbook.
i mport curam cookbook.
i mport curam cookbook.
i mport curam cookbook.
i mport curam cookbook.
i mport curam cookbook.
i mport curam cookbook.
i nport curam cookbook.

public class MyFacade

@ nj ect

SoneChi | d;
SoreEntity;

SomeEnt i t yDAG,

SonePar ent ;

SonePar ent DAQ,
struct.
struct.
struct.
. SonmeEnt i t yKeyVer si on;
struct.
struct.

f acade.
f acade.
f acade.
f acade.
f acade.
f acade.

struct

SonmeChi | dSumar yDet ai | s;
SomeChi | dSunmar yDet ai | sLi st ;
SonmeEntityDetails;

SomeEnt i t ySunmar yDet ai | s;
SonmeEnt i t ySummar yDet ai | sLi st ;

sl.entity.struct. SoneeEntityDtls;
sl.entity.struct. SomeEntityKey;
sl.entity.struct. SonePar ent Key;

i mport curamutil.exception. AppException;

i mport curamutil.exception.|nformational Excepti on;

{

private SoneEntityDAO sonmeEntityDAG

public MyFacade() {

Gui ceW apper.getlnjector().injectMenbers(this);

}

public SomeEntityDetails viewSonmeEntityDetail s(
final SoneEntityKey key)

throws AppExcepti on,

I nf or mat i onal Exception {

/] create an instance of the return struct
final SomeEntityDetails sonmeEntityDetails =
new SoneEntityDetail s();

/1 retrieve the instance of the entity

© Merative US L.P. 2012, 2024

1 Developing with the Persistence Infrastructure 33

final SonmeEntity sonmeEntity =
soneEntit yDAQ. get (key. soneEntityl D);

/1 map the details fromthe entity instance
soneEntityDetails.details.someEntityl D = soneEntity.getlD();
sonmeEntityDetails.details.name = soneEntity. get Name();
soneEntityDetails.details.versionNo =

sonmeEntity. get Versi onNo();

final DateRange dat eRange = soneEntity. get Dat eRange();
sonmeEntityDetails.details.startDate = dateRange.start();
soneEntityDetails. details.endDate = dateRange. end();

/1 ...nore mappi ngs

[/ return to the client
return someEntityDetails;

public SonmeEntityKey createSoneEntityDetail s(
final SonmeEntityDetails details)
throws AppException, |nformational Exception {

[/ create an instance of the return struct
final SoneEntityKey key = new SoneEntityKey();

/]l create a new entity instance
final SonmeEntity soneEntity = soneEntityDAO new nstance();

/1 map the details
sonmeEntity. set Nane(detail s. details. nane);

fi nal DateRange dat eRange =
new Dat eRange(details.details.startDate,
detail s.details. endDate);
sonmeEntity. set Dat eRange(dat eRange) ;
/1 ...nmore nmappings

/]l do the insert
soneEntity.insert();

/1 map the key assigned
key. soneEntityl D = sonmeEntity.getl D();

// return to the client
return key;

public void nodifySonmeEntityDetail s(
final SonmeEntityDetails details)
t hrows AppException, |nformational Exception {

/'l retrieve the instance of the entity
final SonmeEntity soneEntity = soneEntityDAO
.get(details.details.soneEntitylD);

/Il set the fields
set SoneEntityDetail s(someEntity, details.details);

© Merative US L.P. 2012, 2024

Curam 8.1.2 34

/1 do the nodify, passing the version nunber fromthe client
soneEntity. nodify(details.details.versionNo);

}

/**

* Maps client details to the setters on the service-layer API
*

* @aram soneEntity

* the service-layer instance of the entity

* @aram sonmeEntityDtls

* the client details to map

*

*/

private void set SoneEntityDetail s(final SoneEntity soneEntity,
final SonmeEntityDtls sonmeEntityDils) {

/1 map the details
soneEntity. set Nane(soneEntityDtls. nane);

fi nal DateRange dat eRange = new Dat eRange(
sonmeEntityDtls. startDate,
sonmeEntityDtls. endDat e) ;
soneEntity. set Dat eRange(dat eRange) ;
/1 ...nore mappi ngs

}

public void renoveSoneEntityDetail s(
final SoneEntityKeyVersion key)
throws AppException, |nformational Exception {

/1 retrieve the instance of the entity
final SonmeEntity sonmeEntity =
sonmeEnt it yDAQ get (key. soneEntityl D);

/1 do the renove, passing the version nunber fromthe client
sonmeEntity. renmove(key. versi onNo) ;

public void cancel SoneEntityDetail s(
final SonmeEntityKeyVersion key)
t hrows AppException, |nformational Exception {

/'l retrieve the instance of the entity
final SonmeEntity sonmeEntity =
sonmeEnt i t yDAQO get (key. soneEntityl D);

/1 do the cancel, passing the version nunber fromthe client
soneEntity. cancel (key. versi onNo) ;

}

public SomeEntitySunmaryDetail sList |istSoneEntityDetail s()
t hrows AppException, |nformational Exception {

/] create an instance of the return struct
final SoneEntitySummaryDetail sList list =

© Merative US L.P. 2012, 2024

1 Developing with the Persistence Infrastructure 35

new SoneEntitySummaryDet ail sList();

/1l retrieve all the instances of the entity
final Set<SoneEntity> soneEntities = soneEntityDAO readAll ();

/1 map the details returned
for (final SomeEntity sonmeEntity : soneEntities) {
final SonmeEntitySummaryDetails sonmeEntitySunmaryDetails =
new SoneEntitySumraryDetail s();
someEntitySummaryDetail s. soneEntityl D = soneEntity. getlDX);
sonmeEntitySummaryDet ai | s. name = soneEntity. get Name();

l'ist.details.addRef (sonmeEntitySummaryDetails);
}

/] return to the client
return list;

}

@ nj ect
private SonePar ent DAO sonePar ent DAG,

publ i c SomeChil dSummar yDet ai | sLi st |i st SomeChil dDetail s(
fi nal SoneParent Key key)
throws AppException, |nfornmational Exception {

/] create an instance of the return struct
final SomeChil dSummaryDetail sList |ist =
new SoneChi | dSunmar yDet ai | sLi st ();

/[l retrieve the instance of the parent entity
final SomeParent soneParent =
somePar ent DAQ. get (key. soneParent | D) ;

Il retrieve all the child instances of the entity for this
/1 parent
final Set<SonmeChild> soneChildren =

sonePar ent . get SoneChi | dren() ;

/1 map the details returned
for (final SonmeChild sonmeChild : sonmeChildren) {
final SomeChil dSumraryDetails soneChil dSunmaryDetails =
new SonmeChi | dSunmaryDet ai |l s();
soneChi | dSummar yDet ai | s. someChi | dI D = sonmeChi | d. get 1 D();
someChi | dSummar yDet ai | s. nanme = soneChi | d. get Nanme() ;

l'ist.details.addRef (sonmeChil dSummaryDetail s);
}

/] return to the client
return |ist;

}

Figure 39: Facade class listing

© Merative US L.P. 2012, 2024

Curam 8.1.2 36

1.3 Coding service-layer APIs

The scenarios in this section describe how to write service-layer APIs, which may be called from
other code such as:

* implementations of other service-layer APIs;
» "classic" Clram service layers in other components; and/or
» facade layer code.

You want to start writing the API for a new database table

The problem

You identify the need for a new database table and you want to control access to this database
table through a service-layer APL

How do you start?

The solution
The interface for interacting with your database table breaks down as follows:

* DAQO interface - responsible for describing how to search your database table for rows
matching certain criteria ("readmultis"); and

+ Entity interface - responsible for describing what calling code can "do" with your entity once
row(s) have been retrieved.

Coding the solution involves these steps:

+ create an entity interface java file; and
 create an entity DAO interface java file.

Create an entity interface java file
Create a new java file named after your entity, and declare an interface extending StandardEntity:

package curam nypackage;

import curamutil. persistence. StandardEntity;

/**

* Description of nmy wonderful new entity.

*/

public interface MyNewentity extends StandardEntity {
}

Figure 40: Creating an entity interface file

The StandardEntity super-interface provides a standard API for all entities, and must be extended
by all entity APIs.

nan

As far as callers of your code are concerned, this interface "is" your entity, which is why (by
convention) you name the entity interface after your entity. Ensure that the interface is well-
commented.

© Merative US L.P. 2012, 2024

1 Developing with the Persistence Infrastructure 37

So far your new entity API doesn't do very much, but that'll change during later the scenarios.

Note that not all interfaces need to be public - if the interface does not need to be visible outside
of its package then remove the "public" declaration and make the interface "package-private".
Typically this can only be done with entities which are not exposed to calling code, e.g. link
tables which do not (directly) appear on Ul screens. Only make an interface public if it needs to
be (which is usually the case).

Only include methods in your interface which must be visible to other classes - implementation-
only methods will exist only in your implementation class (see 1.4 Coding service-layer
implementations on page 50).

Create an entity DAO interface java file

Create another interface in the same java package, named after your entity but suffixed with
"DAQO", extending StandardDAO (typed with your entity interface):

package curam nypackage;

i mport curamutil. persistence. St andar dDAG,

/**
* Data access for {@inkplain MyNewentity}.
*/

public interface MyNeweEntityDAO ext ends Standar dDAO<MyNewEntity>
{

}

Figure 41: Creating an entity DAO interface file

The StandardDAO super-interface must be extended by all entity DAO APIs. It provides two
DAO API methods "for free":

* newlnstance() - creates a new instance of MyNewEntity suitable for inserting onto the
database; and

» get(Long id) - retrieves the instance of MyNewEntity with the primary key value specified by
id

Your DAO declares that it is responsible for managing MyNewEntity instances by virtue of the

type argument to StandardDAO.

In a later scenario you will add additional methods to the DAO interface.

You want to add getters and setters to your entity interface

The problem
Your database table contains a number of data columns. You need to allow callers of your code to:

+ get the values held in some of these columns; and
+ set the values held in some of these columns.

You also need to support navigation to related entity instances.

In classic Curam, callers of your code had access full access to each field on the entity Dtls struct,
and so there was no need (nor any way) to decide whether a particular field was:

© Merative US L.P. 2012, 2024

Curam 8.1.2 38

e hidden;
» read-only; or
* read/write.

Regarding navigation, in classic Curam callers of your code had to perform their own navigation
by executing queries on related entities, and seeding those queries with foreign key fields from an
entity Dtls struct.

How do you add getters and setters to your entity interface?

The solution

You must code getters and setters on your entity interface, and make an informed decision as to
the level of visibility of each field.

For each column on your database table, you must decide:

* whether callers of your entity must be able to read the data - if so you must code a getter
method; and

» whether callers of you entity must be able to write the data - if so you must code a setter
method; and

» whether access to the column is on a "per-column" basis or whether there is some logical
grouping of columns which should be combined into a single object (see the date range
example below).

Example
You'll step through an example database table and code getters/setters in your APIL.
Let's say that the database table MyNewEntity has these columns:

* myNewEntitylD - primary key;

* name - String;

« startDate - date;

* endDate - date;

» typeCode - codetable code, specifying the "type" of the entity; and

* myParentEntitylD - foreign key to a row on a different database table.

Let's go through the attributes on MyNewEntity and flesh out the entity APIL.

myNewEntityID

In general, getters and setters for your primary key column are straightforward - you don't write
any.

You rarely need to code anything for the primary key of an entity, because each entity already has
a getID method (inherited from StandardEntity).

Important: Do not be tempted to write your own getter for the ID:

/** *khkkkkhkkkkk*k VERY VERY BAD - m I\IO'I' m THI S[IR IR I O */
/**
* @eturn the primary key of MyNewEntity.
*/
public Long get MyNewentityl D();

© Merative US L.P. 2012, 2024

1 Developing with the Persistence Infrastructure 39

/** *kkkkkkkk*x VERY VERY BAD_ I:XJI\D'I' mTHI S| *kkkkkkikkk* */

Figure 42: Incorrect - redundant getter method for entity 1D

Similarly, each entity implementation typically takes care of assigning its own primary key, and
so callers of the entity API do not require a facility to set the primary key themselves.

Important: Do not be tempted to write your own setter for the ID:

/** kkhkkkkkkkk*% VERY VERY BAD_ m'\D‘I’ mTHI S| kkkkkkkkk*k */

/**

* @param val ue

* the primary key of MyNewkEntity.
*/

public void set MyNewentityl D(final Long val ue);

/** kkkkkkkkk* VERY VERY BAD_ ml\D'r mTHI S| kkkkkkkkk*x */

Figure 43: Incorrect - setter method for entity ID

name

After analysis of requirements, you determine that callers of your API require to both get and set
the name column of a database row.

Code a field getter as follows:
/ * %

* CGets the nane.

*

* @eturn the nane
*/
public String getNane();

Figure 44: Interface declaration for a simple get method

Note that:

* by convention, the method is named get<Fieldname> with the first letter of the field name
upper-cased (one exception is that getters that return a boolean value often read better as
is<Condition>); and

* the name column holds a String, so the getter must return a String.

Code a field setter as follows:
/**
* Sets the nane.
*
* @aram val ue
* t he nane
*/
public void setNane(final String val ue);

Figure 45: Interface declaration for a simple set method

Note that:

* by convention, the method is named set<Fieldname>, with the first letter of the field name
upper-cased;

© Merative US L.P. 2012, 2024

Curam 8.1.2 40

* by convention, the variable name of the value passed in is "value";
 the setter returns void; and
* the name column holds a String, so the setter must take a String value.

startDate and endDate
After analysis of requirements, you determine that:

+ callers of your API require to get the start and end dates, to compare the range of dates
covered with dates supplied by other processing;

+ the start date is always set to the current business date when a new row is created; and
+ the end date is only set (to a specified date) when the entity enters a state of "closed".

Accordingly, you decide that:

* the start date and end date should be returned to callers as a DateRange "helper" object; and
+ callers should not be free to set the start and end dates - manipulation of these end dates should

be taken care of by specialized methods on the entity (see e.g. 1.8 State Transitions on page
94).

You require your entity to return a DateRange helper object - rather than coding a getDateRange
method, instead it's better to change your API to extend DateRanged:
/ * %
* Description of ny wonderful new entity.
*/
public interface MyNeweEntity extends StandardEntity, DateRanged {

Figure 46: Extending the DateRanged interface

The DateRanged interface provides your entity with a getDateRange method and also allows
access to helper functions which provide commonly-used processing on entities which contain a
date range.

typeCode

After analysis, you determine that your entity stores a codetable code describing the "type" of the
entity instance.

Create a codetable specifying the permitted values:

<?xm version="1.0" encodi ng="UTF-8"?>
<codet abl es package="curam nypackage. codet abl e" >
<codet abl e
java_identifier="MYNEVWENTI TYTYPE"
name=" MYNEVENTI TYTYPE"
>
<code
defaul t="f al se"
java_identifier="SOVETYPE"
st at us=" ENABLED"
val ue="TYPEL"

<l ocal e
| anguage="en"
sort_order="0"
>

<descri pti on>Some type</description>

© Merative US L.P. 2012, 2024

1 Developing with the Persistence Infrastructure 41

<annot ati on/ >
</l ocal e>
</ code>
<code
def aul t ="fal se"
java_identifier="SOVEOTHERTYPE"
st at us=" ENABLED"
val ue="TYPE2"

<l ocal e
| anguage="en"
sort_order="0"
>
<descri pti on>Sorre ot her type</description>
<annot ati on/ >
</l ocal e>
</ code>
</ codet abl e>
</ codet abl es>

Figure 47: Codetable for the type of an entity

The Persistence Infrastructure includes a code generator to generate a class per codetable. These
classes provide a type-safe mechanism for passing around an entry from the codetable, and each
class is named after its codetable suffixed with the word Entry:

package curam nypackage. codet abl e. i npl;

/**

* Represents an entry fromthe

* {@inkplain curam nmypackage. codet abl e. MYNEVENTI TYTYPE} code

* table.

*/

public class MYNEWENTI TYTYPEEntry extends
curamutil.type. CodeTabl eEntry {

I

/**

* Private constructor.

*/

private MYNEVENTI TYTYPEEntry(final String code) {
super (TABLENAME, code);

/**
* Gets the
* {@inkplain

curam nypackage. codet abl e. i npl . MYNEVEENTI TYTYPEENt r y}
* for the specified code val ue.

*

@ar am code
* the String representation of the code val ue
required.
*

* @eturn a
* {@inkpl ain
curan1nypackage codet abl e. i npl . MYNEVENTI TYTYPEENt r y}
representation of the specified code val ue.

© Merative US L.P. 2012, 2024

Curam 8.1.2 42

@hrows curamutil.exception. AppRunti meExcepti on
if the specified code value is not present in the
* {@inkplain
curam nmypackage. codet abl e. MYNEVENTI TYTYPE}
* code table.

* *

*/
public static
curam mypackage. codet abl e. i npl . MYNEVENTI TYTYPEEnt ry get (
final String code) {
...
}

/**

* The name of the
* {@inkplain curam nmypackage. codet abl e. MYNEVENTI TYTYPE} tabl e

* {@al ue}.
*/

public static String TABLENAME =
cur am mypackage. codet abl e. MYNEVENTI TYTYPE. TABLENANE;

/**
* Not specified (i.e. blank).
*/
public static final
curam mypackage. codet abl e. i npl . MYNEVEENTI TYTYPEENt ry
NOT_SPECI FI ED = get (nul) ;

/**
* TYPEL en = Sone type
*/
public static final
curam mypackage. codet abl e. i npl . MYPNEVEENTI TYTYPEENt ry
SOVETYPE =
get (cur am nmypackage. codet abl e. MYNEVEENTI TYTYPE. SOVETYPE) ;

/**

* TYPE2 en = Sone ot her type
*/
public static final
cur am nmypackage. codet abl e. i npl . MYNEVEENTI TYTYPEENt ry
SOVEOTHERTYPE =

get (cur am nypackage. codet abl e. MYNEVENTI TYTYPE. SOVEOTHERTYPE) ;
}

Figure 48: Excerpts from a generated "Entry" class for a codetable

Use of this generated class is preferable to using a String to pass around the value, as (in
particular) a String can be constructed with any text whereas the generated class only permits
values corresponding to the underlying code table.

Code:

+ a getter to return an instance of this generated class; and
» asetter which takes an instance of this generated class:

© Merative US L.P. 2012, 2024

1 Developing with the Persistence Infrastructure 43

/**
* Gets the type of this entity instance.
*
* @eturn the type of this entity instance
*/
publi c MYNEWENTI TYTYPEEntry get Type();

/**

* Sets the type of this entity instance.

*

* @aram val ue

* the type of this entity instance

*/

public void setType(final MYNEVENTI TYTYPEEntry val ue);

Figure 49: Getter and setter methods for a codetable-based value

Note: Getter and setter methods do not have to be named exactly after their database columns
(in this example, the data column typeCode is accessed via methods named getType and
setType, not getTypeCode and setTypeCode.

In particular, some database column names are abbreviated to comply with database

name length constraints, and for these the getter and setter names should not slavishly
repeat the abbreviation, e.g. use getSomeVery VeryLongDatabaseColumnName rather than
getSmVyVyLgDbColNm.

myParentEntityID

For foreign keys to related entity instances, in general you should not create getters and setters for
the entity ID, but instead code getters and setters which deal with the API of the related entity:
/ * %

* Gets the parent instance of MyParentEntity.

*

* @eturn the parent instance of MyParentEntity, or null if
not

* yet set

*/

public MyParentEntity get MyParentEntity();

/**

* Sets the parent instance of MyParentEntity.

*

* @aram val ue
* the parent instance of MyParentEntity

*/
public void set MParentEntity(final MyParentEntity val ue);

Figure 50: Interface declaration for getting/setting a related entity instance

Note that this code assumes that the MyParentEntity API has already been coded. If not, you must
create a skeletal API:

public interface MyParentEntity extends StandardEntity ({

}

Figure 51: Creating a skeletal API for a related entity

© Merative US L.P. 2012, 2024

Curam 8.1.2 44

Important: Do not be tempted to expose the related entity ID directly:

/** kkkkkkkkk* VERY VERY BAD_ ml\Ur mTHI S| kkkkkkkkk*x */

/**

* @eturn the foreign key to the parent MyParentEntity
i nstance

*/

public Long get MyParentEntityl X);

/**

* @aram val ue

* the foreign key to the parent MyParentEntity
i nstance

*/

public void setM/ParentEntityl D(final Long val ue);

/** *kkkkkkkk*x VERY VERY BAD - [x) I\D'I' m THI S| *kkkkkkkk* */

Figure 52: Incorrect - getting/setting a related ID instead of the related entity

Child instances

Each instance of your entity has a set of associated child entity instances (from a different
database table).

If callers of your API require to navigate to these child instances, code a getter which returns a
Set, typed with the API of the child entity:

/**

* Gets the MyChildEntity children of this entity instance.

*

* @eturn the MyChildEntity children of this entity instance
*/
public Set<MyChil dEntity> get MyChil dren();

Figure 53: Interface declaration for getting a set of related entities

Note that this code assumes that the MyChildEntity API has already been coded. If not, you must
create a skeletal API:

public interface MyChildEntity extends StandardEntity {
}

Figure 54: Creating a skeletal API for another related entity

Putting it all together

Here's the complete code for this scenario solution, showing the getters, setters and changes to the
interface inheritance hierarchy:

package curam nypackage;
i mport java.util. Set;
i nport com googl e.inject.|npl enent edBy;

import curamutil. persistence. StandardEntity;
i mport curamutil.type. Dat eRanged;

© Merative US L.P. 2012, 2024

1 Developing with the Persistence Infrastructure 45

/**

* Description of ny wonderful new entity.

*/

@ npl enent edBy(MyNewent i tyl npl . cl ass)

public interface MyNewentity extends StandardEntity, DateRanged {

/**

* Gets the nane.

*

* @eturn the name
*/
public String getName();

/**

* Sets the nane.

*

* @aram val ue
* t he nane
*/
public void setNane(final String val ue);

/**

* Gets the parent instance of MyParentEntity.

*

* @eturn the parent instance of MyParentEntity, or null if
not

* yet set

*/

public MyParentEntity get MyParentEntity();

/**

* Sets the parent instance of MyParentEntity.

*

* @aram val ue

* the parent instance of MyParentEntity

*/

public void setM/ParentEntity(final MyParentEntity val ue);

/**

* Gets the MyChildEntity children of this entity instance.

*

* @eturn the MyChildEntity children of this entity instance
*/

public Set<MyChil dEntity> get MyChil dren();

/**

* Gets the type of this entity instance.

*

* @eturn the type of this entity instance
*/

publ i c MYNEVENTI TYTYPEEntry get Type();

*

/
Sets the type of this entity instance.

* ok ok ok ok

@ar am val ue
the type of this entity instance

© Merative US L.P. 2012, 2024

Curam 8.1.2 46

*/
public void setType(final MYNEVENTI TYTYPEEntry val ue);

}

Figure 55: Complete listing for an entity API with getter and setter methods

You want to add persistence methods to your entity interface

The problem

Callers of your entity API need to be able to ask instances of your entity to store data on the
database.

In classic Curam, callers of your code made calls to modeled methods which were generated onto
entity "process" classes.

How do you add persistence to your entity interface?

The solution

You must first analyze your requirements and decide which types of database write must be
publicly supported by your API:

* insert - typically every entity API contains an insert() operation, to create a new row on the
database;

» modify - typically required if your entity API contains setter methods. You must decide
whether the modify requires optimistic lock support;

 cancel - typically required if your entity must allow callers to request that the entity instance
be "logically deleted"; and

* remove - (rare) typically required if your entity must allow callers to request that the entity
instance be "physically deleted". You must decide whether the remove requires optimistic lock
support;

Note that it is quite in order not to publish any persistence methods on your entity interface, and
instead create your own specialized methods instead.

In practice, entities often combine a mixture of exposing some persistence methods (for what are
known as "CRUD" operations) and other specialized methods for business operations such as
controlling the change of an entity's state.

Insert

If your entity API contains setter methods, then typically calling code will require an insert
method to store new instances of your entity on the database:

@ nj ect
private Myl nsertabl eEntityDAO nyl nsertabl eEntityDAG

public void soneCall ToAnl nsert () throws | nfornmational Exception

final Mylnsertabl eEntity nylnsertabl eEntity =
nyl nsert abl eEnti t yDAO. new nst ance() ;

/] set sone field values on the new instance
nyl nsertabl eEntity. set SomeFi el d("sone val ue");

© Merative US L.P. 2012, 2024

1 Developing with the Persistence Infrastructure 47

nyl nsertabl eEntity. set SomeQt her Fi el d("sone ot her val ue");

/1l ask the new entity instance to store itself on the
dat abase
nyl nsertabl eEntity.insert();

}

Figure 56: Sample code calling an entity insert

If your entity API must publish an insert method, change the entity API declaration to extend the
Insertable interface:

/**

* This entity supports callers asking it to insert itself.

*/

public interface Myl nsertabl eEntity extends StandardEntity,
Insertable {

}

Figure 57: Extending the Insertable interface

Note that the.insert() method (inherited from Insertable) throws InformationalException, in the
case that validation errors are detected.

Modify

If your entity API contains setter methods, then typically calling code will require a.modify
method to store changes on the database any changes to field values.

If modify support is required, you must decide whether your API should support:

* an optimistic-lock modify - (common) the modify only succeeds if the version number held by
the caller matches that on the database - this mechanism prevents users from over-writing each
others' concurrent modifications;

* anon-optimistic-lock modify - (less common) no version number checking is performed; or
* both (rare).

Change the entity API declaration to extend (as appropriate):

* OptimisticLockModifiable; and/or
* Modifiable

e.g.
/**

* This entity supports callers asking it to nodify itself.

*/

public interface MyModifiabl eEntity extends StandardEntity,
Opti m sticLockModifiable {

}

Figure 58: Extending the OptimisticLockModifiable interface

Note that database tables which store historical data (e.g. a history of state changes or other
events) typically should not support modify.

© Merative US L.P. 2012, 2024

Curam 8.1.2 48

Cancel

If your entity supports the concept of logical deletion, then typically calling code will require
a.cancel method to logically delete an instance of your entity.

If cancel support is required, change the entity API declaration to extend LogicallyDeleteable:
/ * %

* This entity supports callers asking it to cancel itself.

*/

public interface M/Logi call yDel et eabl eEntity extends
StandardEntity, LogicallyDel eteable {

}

Figure 59: Extending the LogicallyDeleteable interface

Note that support for logical deletes requires support for optimistic locking.

Remove

If your entity supports the concept of physical deletion, then typically calling code will require a
remove method to physically delete an instance of your entity.

Business tables in Curam rarely support physical deletion (favoring logical deletion instead).
Technical tables (such as link tables) may support physical removal.

If remove support is required, you must decide whether your API should support:

* an optimistic-lock remove - the remove only succeeds if the version number held by the caller
matches that on the database - this mechanism prevents one user deleting data containing
updates that another user has concurrently made;

* anon-optimistic-lock remove - no version number checking is performed; or
* both.

Change the entity API declaration to extend (as appropriate):

* OptimisticLockRemovable; and/or
* Removable

e.g.
/**

* This entity supports callers asking it to renove itself.

*/

public interface MyPhysicallyDel et eabl eEntity extends
StandardEntity, Optim sticlLockRenovabl e {

}

Figure 60: Extending the OptimisticLockRemovable interface

Putting it all together

Typically your entity API will support a number of persistence operations, as evidence by its
inheritance hierarchy:
/ * %

* Description of ny wonderful new entity.
*/

© Merative US L.P. 2012, 2024

1 Developing with the Persistence Infrastructure 49

public interface MyNewentity extends StandardEntity,
Dat eRanged,
Li fecycl e<MyNewEntity. State>, Insertable,
Optim sticLockMdifiable, LogicallyDeleteable {

Figure 61: Entity API extending multiple interfaces for persistence

You want to specify searches on your entity

The problem

Instances of your entity need to be retrieved using data other than the primary key of your entity,
which may include:

» searches ("readmultis") of your entity, which may return zero or more matches; and/or
» singleton reads ("nsreads") of your entity, which may return zero matches or exactly one
match.

In classic Curam, you would model readmulti and nsread operations on your entity. Callers
of your nsread would be expected to handle a RecordNotFoundException (or use the
NotFoundIndicator mechanism).

How do you add non-key retrievals to your entity?

The solution
You must code retrievals of your entity on your entity DAO API, not on the entity itself.

A singleton read method must return your entity API, and should specify that null will be
returned if no matching entity instance is found:
/ * %

Reads the instance with the specified nane.

the nanme to find
@eturn the instance with the specified name, or null if not
* f ound.
*/
public MyNewkentity readByNane(final String name);

Figure 62: DAO interface declaration for a singleton read

*
*
* @aram nane
*
*

A search method (which can return zero, one or many instances) must return a collection of your
entity API (typically a Set):

/**

* Searches all the instances which have the specified type.

*

* @aramtype

* the type to search for

* @eturn all the instances which have the specified type, or
an

* enpty set if none found.

*/

public Set<MyNewkntity> searchByType(
final MYNEVENTI TYTYPEEntry type);

Figure 63: DAO interface declaration for a search

© Merative US L.P. 2012, 2024

Curam 8.1.2 50

Your method names must follow the naming standards for modeled entity operations.

Use entity APIs in preference to passing primary keys, e.g. do this:
/ * %

* Searches all the instances belonging to the specified
par ent .
*

* @aramnyParentEntity
* the parent to search for
@eturn all the instances belonging to the specified parent,

*

or
* an enpty set if none found.
*/
public Set<MyNewkntity> sear chByParent (
final MyParentEntity nmyParentEntity);

Figure 64: DAO interface taking an entity instance as a parameter

not this:
/** R R Sk I 2 I I VERY VERY BAD - m I\IO'I' m THI S| *kkkkhkkkkh*x*k */

/**

* Searches all the instances which have the specified parent
| D.

*

* @aram nmyParentEntityl D

* the parent ID to search for

* @eturn all the instances which have the specified parent
I D,

* or an enpty set if none found.

*/

public Set<MyNewkntity> searchByParent| D
final Long nyParentEntitylD);
[*¥* xxxxkkxxkk VERY VERY BAD - DO NOT DO THI SI ***x**kkx% */

Figure 65: Incorrect - DAO interface taking an entity ID value as a parameter

Summary
At this point you have developed the API for your entity and its DAO.

Because entities interact with each other through their APIs, it is possible to develop the service
layer APIs for an entire component before commencing implementation. Such an approach allows
you to publish the APIs to any interested parties and/or generate navigable JavaDoc for your
APIs.

Alternatively, you may wish to create a limited number of entity APIs and proceed to implement
these APIs.

1.4 Coding service-layer implementations

The scenarios in this section describe how to implement your service-layer APIs.

You want to start implementing your entity API

© Merative US L.P. 2012, 2024

1 Developing with the Persistence Infrastructure 51

The problem

You have created interfaces for your entity and its DAO. You now need to create implementations
of these interfaces.

Where do you start?

The solution
You must:

* model your database table in the Caram model; and
» create the following classes:

» an adapter for generated data access methods;
* an implementation for your entity DAO interface; and
* an implementation for your entity interface.

Model your database table in the Ciram model
You must model your database table in the Caram model using Curam's modeling tools.
Ensure that:

» you model a single primary key attribute for the table, which unwinds to a long;
* you model a standard read operation;

* any write operations that you require to model are standard write operations (insert, modify
and remove);
+ if you model a standard insert operation, that it specifies an AUTO_ID strategy (if required);
+ if your entity supports optimistic locking (i.e. your entity specifies
ALLOW_OPTIMISTIC LOCKING=yes) and if you model a standard modify operation,

that optimistic locking is switched on for this operation (i.e. your modify operation specifies
OPTIMISTIC LOCKING=yes);

+ if your entity supports any non-standard read operations, then you model a struct to hold the
search criteria and specify the return struct as the full Dtls struct;

» if your entity supports any search operations, then you model a struct to hold the search
criteria (you do not need specify any return struct - by default the DtlsList struct will be used);
and

+ if your entity supports logical deletes, then you model a recordStatus attribute (using the
RECORD_STATUS CODE domain).

Do not model:

* any non-stereotyped operations;
* any non-standard write operations;
 any standard write operations which are not required (e.g. remove is only rarely required);

* any read or search operations which return anything other than the full Dtls or DtlsList struct;
nor

* any pre- or post- exit points.

Extract and generate your model using the standard command-line tools.

© Merative US L.P. 2012, 2024

Curam 8.1.2 52

Create an adapter for generated data access methods

You must create an adapter which wraps the generated code for reading, searching and writing
database rows.

The Persistence Infrastructure includes a code generator which generates adapter code using
information extracted from the Caram model. To generate a new adapter, add the name

of your database table to the file EJBServer/components/<your component>/properties/
adapters.properties.

The adapter code generator runs automatically as part of the server build scripts.
Create an implementation for your entity DAO interface
You must create an implementation class for your entity DAO interface.

Create a class in the same package as your DAO interface, and name the class after your entity,
suffixed with DAOImpl:

package curam nypackage;

/**
* Standard inplenentation of {@inkplain MyNewkntityDAG.
*/

public class MyNewentityDAO npl {

}

Figure 66: Creating a DAO implementation file

Your DAO implementation must implement the DAO interface:

public class MyNewentityDAO npl inplenments MyNewentityDAO {
Figure 67: Implementing the entity DAO interface

However, if you were to directly implement this interface, you would have to write a huge
amount of "plumbing" code. A great deal of plumbing is supplied by StandardDAOImpl, so
extend this class, supplying the entity API and the generated Dtls struct for the database table as
type parameters:

i nport curam nypackage. struct. MyNewentityDtl s;
i mport curamutil. persistence. Standar dDAQ npl ;

/**
* Standard inplenentation of {@inkplain MyNewentityDAG .
*/
public class MyNewentityDAO npl extends
St andar dDAO mpl <MyNewkntity, M/NewentityDtl s>
i mpl ements MyNewEenti t yDAO {

Figure 68: Extending StandardDAOImpl

Annotate the class with @Singleton:

@i ngl et on

public class MyNewkntityDAO npl extends

St andar dDAO mpl <MyNewkntity, M/NewentityDtl s>
i mpl ements MyNewEnti t yDAO {

Figure 69: Annotating the DAO implementation as a Singleton

Create a private static variable to hold an instance of your entity adapter:

© Merative US L.P. 2012, 2024

1 Developing with the Persistence Infrastructure 53

/**
* Single instance of the entity adapter shared across all DAO
* inpl enent ati ons.
*/
private static M/NewentityAdapter adapter =
new MyNewEntityAdapter();

Figure 70: Declaring a static member variable for the entity adapter

Create a protected constructor which passes the adapter and the class of the entity API to
StandardDAOImpl:
/ * %
*/ @ee Standar dDAQ npl
*
protected MyNewEentityDAO npl () {
super (adapter, MyNewtntity.class);

Figure 71: Creating a protected constructor

Use the "Add unimplemented methods" feature in Eclipse to add in the methods you must
implement:

public MyNewentity readByName(String name) {
/1 TODO Aut o- generated nmethod stub
return null;

}

public Set<MyNewkntity> searchByParent (
MyParent Entity myParentEntity) {
/1 TODO Aut o-generated nmethod stub
return null;

}

public Set<MyNewEntity> searchByType(
final MYNEVENTI TYTYPEEntry type) {
/1 TODO Aut o- generated method stub
return null;

}

Figure 72: Adding unimplemented methods

The implementation of the non-standard singleton readByName calls the adapter to return a Dtls
struct (by reading the database), and passes this to a StandardDAOImpl method to create an
instance of your entity interface:
/ * %
*/{@nheri t Doc}
*
public MyNewentity readByNane(final String name) {
} return getEntity(adapter.readByNanme(nane));

Figure 73: Implementing a singleton read

The implementation of the readmulti searchByParent calls the adapter to return an array of Dtls
structs (by reading the database), and passes this to a StandardDAOImpl method to create set of
instances of your entity interface:

/**

© Merative US L.P. 2012, 2024

Curam 8.1.2 54

* {@nheritDoc}
*/
public Set<MyNewkntity> searchByParent (
final MyParentEntity nyParentEntity) {
return
newSet (adapt er. sear chByParent (myParent Entity.getlD()));

Figure 74: Implementing a search

The implementation of the readmulti searchByType must translate from the codetable value
supplied to the String representation stored on the database:
/ * %
* {@nheritDoc}
*/
public Set<MyNewtntity> searchByType(

final MYNEVENTI TYTYPEEntry type) {
return newSet (adapter.searchByType(type. get Code()));

}

Figure 75: Implementing a search based on a codetable value

Your implementation of the DAO interface is now complete. However, there is a final important
step, which is to specify your DAO implementation as the default implementation of the DAO
interface.

Open the DAO interface and add an annotation prescribing the default implementation:

/ * %
* Data access for {@inkplain MyNewEntity}.
*/

@ npl enent edBy(MyNewEnt i t yDAQ npl . cl ass)

public interface MyNewentityDAO ext ends Standar dDAO<MyNewEntity>
{

Figure 76: Specifying the DAO implementation as the default implementation of the DAO interface

If you fail to do this step, then when your application runs you will likely see a
NullPointerException when Guice fails to inject instances of your DAO interface:

/*

* This variable will be null if you don't specify the default
* inplenmentation of MyNewtntityDAO properly...

*/

@ nj ect

private MyNewEntityDAO nyNewEntityDAG

Figure 77: Null pointer exceptions will occur if no default DAO implementation is specified on the DAO
interface

Putting it all together
Here's the complete code for the DAO implementation:

package curam nypackage;
i mport java.util. Set;

i mport com googl e. i nject. Singleton;

© Merative US L.P. 2012, 2024

1 Developing with the Persistence Infrastructure 55

i mport curam nmypackage. struct. MyNewentityDtls;
i nport curamutil . persistence. St andar dDAQ npl ;

/**
* Standard inplenentation of {@inkplain MyNewkntityDAG.
*/
@i ngl et on
public class MyNewkntityDAO npl extends
St andar dDAQ npl <MyNewkentity, MyNewEntityDtls> inpl enments
MyNewEnt i t yDAO {

/**

* Single instance of the entity adapter shared across all DAO
* i npl enent ati ons.
*/
private static MyNewkntityAdapter adapter =
new MyNewEnt it yAdapter();

/**
* @ee Standar dDAO npl
*/
protected MyNewEentityDAO npl () {
super (adapter, MyNewkEntity.cl ass);

/**
* {@nheritDoc}
*/
public MyNewtentity readByNane(final String name) {
return getEntity(adapter.readByNanme(nane));
}

/**

* {@nheritDoc}
*/
public Set<MyNewkntity> searchByParent (
final MyParentEntity nmyParentEntity) {
return
newSet (adapt er. searchByParent (myParentEntity.getl X)));

}
Figure 78: Complete listing for an entity DAO implementation
Create an implementation for your entity interface

You must create an implementation class for your entity interface. In this scenario you will only
create the skeleton of your implementation class - it will be fleshed-out in later scenarios.

Create a class in the same package as your entity interface, and name the class after your entity,
suffixed with Impl:

package curam nypackage;

/**

* Standard inplementation of {@inkplain M/NewEntity}.
*/
public class MyNewkntityl npl

© Merative US L.P. 2012, 2024

Curam 8.1.2 56

}

Figure 79: Creating an entity implementation file

Your entity implementation must implement the entity interface:

public class MyNewentitylnpl inplenments MyNewentity {
Figure 80: Implementing the entity API

There are a number of common development patterns in the Curam server layer, and the
Persistence Infrastructure comes with a number of helper implementations that implement these
patterns.

A common pattern is that an entity:

+ stores its data on a single database table;
» supports logical deletes; and
» requires logic for single-field, cross-field and cross-entity validations.

These patterns are implemented by the SingleTableLogicallyDeleteableEntitylmpl helper class, so
let's base your entity implementation on it:

package curam nypackage;
i mport curam nmypackage. struct. MyNewentityDtls;

i mport
curamutil . persistence. hel per. Si ngl eTabl eLogi cal | yDel et eabl eEntityl npl;

/**

* Standard i nplementation of {@inkplain MyNewentity}.
*/
public class MyNewEntityl npl extends
Si ngl eTabl eLogi cal | yDel et eabl eEntityl mpl <MyNewkntityDt!| s>
i mpl ements MyNewentity {

Figure 81: Entity implementing extending SingleTableLogicallyDeleteableEntitylmpl

SingleTableLogicallyDeleteableEntitylmpl provides a standard implementation of these methods:

e insert;

* modify;

e cancel;

e lock;

* getlD;

+ getRecordStatus; and
» getVersionNo.

Add a protected no-argument constructor:

protected MyNewentitylnmpl () {
/* Protected no-arg constructor for use only by Guice */

}

Figure 82: Adding a protected constructor to the entity implementation

Use the "Add unimplemented methods" feature in Eclipse to add in the methods you must
implement, and categorize them to aid readability:

package curam nypackage;

© Merative US L.P. 2012, 2024

1 Developing with the Persistence Infrastructure 57

i mport java.util.HashMap;
i nport java.util.Map;
i mport java.util. Set;

i mport com googl e.inject.|nject;

i nport curam nessage. i npl . MYNEVEENTI TYExcepti onCr eat or;
i mport
cur am nmypackage. codet abl e. i npl . MYLI FECYCLEENTI TYSTATEEnt r y;
i mport curam nmypackage. struct. MyNewentityDtl s;
i mport curamutil. persistence. Validati onHel per;
import curamutil. persistence. hel per. Codet abl eSt at €;

i mport

curamutil. persistence. hel per. Si ngl eTabl eLogi cal | yDel et eabl eEntityl npl ;
i mport curamutil.persistence. hel per. State;
i mport curamutil. persistence. hel per. Transition;
i mport curamutil.type. Dat eRange;
i nport curamutil.type. StringHel per;

/**
* Standard i npl ementation of {@inkplain M/NeweEntity}.
*/
public class MyNewentityl npl extends
Si ngl eTabl eLogi cal | yDel et eabl eEntityl mpl <MyNewkentityDt!| s>
i npl enents MyNewentity {

protected MyNewentitylnmpl () {
/* Protected no-arg constructor for use only by Guice */

}

/*

* Field getters

*/

public String getNane() {
/1 TODO Aut o-generated nmethod stub
return null;

}

publ i ¢ Dat eRange get Dat eRange() {
/1 TODO Aut o-generated nmethod stub
return null;

}

public State getlLifecycleState() {
/1 TODO Aut o-generated nmethod stub
return null;

}

publ i c MYNEVENTI TYTYPEEntry get Type() {
/1 TODO Aut o-generated nmethod stub
return null;

}

/*
* Related-entity getters
*/
public Set<MyChil dEntity> getMyChildren() {

© Merative US L.P. 2012, 2024

Curam 8.1.2 58

/1 TODO Aut o-generated nmethod stub
return null;

}

public MyParentEntity get MyParentEntity() {
/1 TODO Aut o- generated nmethod stub
return null;

}

/-k
* Setters
*/
public void set M/ParentEntity(M/ParentEntity val ue) {
/1 TODO Aut o-generat ed nmet hod stub

}

public void setName(String value) {
/1 TODO Aut o-generat ed nmet hod stub

}

public void setType(final MYNEVWENTI TYTYPEEntry val ue) {
/1 TODO Aut o-generated nmethod stub

}

/*
* Validation
*/
public void nandatoryFi el dvalidation() {
/1 TODO Aut o-generat ed nmet hod stub

}

public void crossFieldVvalidation() {
/1 TODO Aut o-generated nmethod stub

}

public void crossEntityVvalidation() {
/1 TODO Aut o-generated nmethod stub

}

Figure 83: Adding unimplemented methods to the entity implementation

Your implementation of the skeletal entity interface is now complete. However, there is a final
important step, which is to specify your entity implementation as the default implementation of
the entity interface.

Open the entity interface and add an annotation prescribing the default implementation:
/ * %

* Description of nmy wonderful new entity.
*/
@ npl enent edBy(MyNewEnt i tyl npl . cl ass)
public interface MyNeweEntity extends StandardEntity, DateRanged,

© Merative US L.P. 2012, 2024

1 Developing with the Persistence Infrastructure 59

Insertable, OptimsticLockModifiable, LogicallyDeleteable {

Figure 84: Specifying the entity implementation as the default implementation of the entity API

If you fail to do this step, then when your application runs you will likely see exceptions when
Guice callers of your API attempt to read or create instances of your entity:

/*

* These attenpts to construct instances of the entity
interface

*will fail if you don't specify the default inplenentation
of

* MyNewkentity properly...
*/
final long sonelD = 123;
final MyNewkntity tryi ngToRead = myNewEntityDAQ. get (sonel D);

final MyNewkntity tyringToCreate =
myNewEnt i t yDAO newl nst ance() ;

Figure 85: Exceptions will occur if no default entity implementation is specified on the entity API

You want to implement getters

The problem

You have created a skeletal implementation for your entity. You now need to implement getter
methods.

How do you implement getters?

The solution

You must create implementations for your skeletal getter methods created above. Each getter
method is responsible for retrieving one or more fields from an underlying Dtls struct and
returning a value (either primitive or object) to calling code.

The implementation of your entity has at its heart an instance of a RowManager. The
RowManager instance contains a generated Dtls struct and manages the manipulation of this
struct.

Getter methods must use the RowManager. getDtls method to get at the Dtls struct.

For implementations extending SingleTableEntitylmpl (which the example does via
SingleTableLogicallyDeleteableEntitylmpl), there is a convenience getDtls method which can be
used directly as a shorthand.

Our example requires these getters to be implemented:

» getName;

» getDateRange;

* getType;

» getMyParentEntity; and
+ getMyChildren.

In general the JavaDoc for your getter implementations can simply inherit from your entity API
JavaDoc.

© Merative US L.P. 2012, 2024

Curam 8.1.2 60

getName

The getter for name is a straight-forward mapping of the name held in the Dlts struct:
/ * *
* {@nheritDoc}
*/
public String getName() {
return getDtls().nane;

}

Figure 86: Implementation of a simple get method

getDateRange

The getter for your entity's date range must use the startDate and endDate held on the generated
Dtls struct and construct a new DateRange object:
/ * %
*/{@nheri t Doc}
*
publ i ¢ Dat eRange get Dat eRange() {
} return new Dat eRange(getDtls().startDate, getDtls().endDate);

Figure 87: Implementation of a get method which returns a single object representing multiple database
column values

getType
The getter for your entity's type must retrieve the relevant MYNEWENTITY TYPEEntry value
based on the codetable code String value held in the typeCode field on the Dtls struct:

/**

* {@nheritDoc}
*/
public MYNEVWENTI TYTYPEEntry get Type() {
return MYNEVENTI TYTYPEEntry. get(getDtl s().typeCode);
}

Figure 88: Implementation of a get method which returns a codetable entry value

getMyParentEntity

The getter for a single record must retrieve that related record and return it. However, the getter
must check whether the key is currently zero (which is used throughout the server application to
signify that a unique ID value has not been set), and if so instead return null.

Create a class member variable for the related record's DAO:

@ nj ect
private MyParent EntityDAO nyParent Entit yDAQ

Figure 89: Creating a member variable for a related entity's DAO

In the getter, conditionally call the DAO, depending on whether the value of myParentEntityID is
Zero:
/ * %
* {@nheritDoc}
*/
public MyParentEntity get M/ParentEntity() {

© Merative US L.P. 2012, 2024

1 Developing with the Persistence Infrastructure 61

final long myParentEntityl D = getDtls(). myParentEntitylD;

if (nyParentEntityl D == 0) {
return null;
} else {
return myParent EntityDAQ. get (nyParentEntitylD);
}
}

Figure 90: Implementing a get method to retrieve a related entity instance

getMyChildren
The getter for a set of related records must call a DAO method to perform a search.

Create a class member variable for the related records' DAO:

@ nj ect
private MyChil dEntityDAO nyChil dEntityDAG

Figure 91: Creating a member variable for another related entity's DAO

In the getter, call the DAO passing in this object:
/**
* {@nheritDoc}
*/
public Set<MyChil dEntity> get WChildren() {
return myChil dEntityDAQO. searchByParent (this);
}

Figure 92: Implementing a get method to retrieve a set of related entity instances

You must add the searchByParent method to the DAO:
/**
* Data access for {@inkplain MChildEntity}.
*/
public interface MyChil dEntityDAO
ext ends St andar dDAO<MyChi | dEntity> {

/**

* Searches all the instances belonging to the specified
par ent .

*

* @aram nmyNewentity

* the parent to search for

* @eturn all the instances belonging to the specified parent,
or

* an enpty set if none found.

*/

public Set<MyChil dEntity> searchByParent (

final MyNewkntity myNewentity);

Figure 93: Adding a search method to the related entity's DAO interface

Important: Do rot be tempted to take Eclipse's suggestion of using the MyNewEntitylmpl
class as an argument:

/** kkhkkkkkkkk*% VERY VERY BAD_ m'\D‘I’ [DTHI S| kkkkkkkkk*x */

© Merative US L.P. 2012, 2024

Curam 8.1.2 62

/**

* Searches all the instances belonging to the specified
par ent .

*

* @aram i npl

* the parent to search for

* @eturn all the instances belonging to the specified parent,
or

* an enpty set if none found.

*/

public Set<MyChil dEntity> searchByParent (MyNewkentityl npl inpl);
/** kkkkkkhkkk*%x VERY VERY BAD - I:x) NOT m THI S[*kkkkkkkkk*x */

Figure 94: Incorrect - adding a search method taking the entity implementation as a parameter

(The underlying principle here is that entity and DAO interfaces are allowed to be dependent on
other entity and DAO interfaces, but are not allowed to be dependent on implementations.)

If an implementation exists for MyChildEntityDAO, then you must implement the new method,
and model a new search operation (a readmulti) to retrieve the required records.

Putting it all together

You now have a full set of implemented getter methods. In doing the implementation, you have:

+ fleshed out MyNewEntitylmpl; and
* added a new method to MyChildEntityDAO.

The full code for these classes is shown below:

MyNewEntityImpl

package curam nypackage;
import java.util. Set;
i nport com googl e.inject.Inject;

i mport curam nmypackage. struct. MyNewentityDtls;
i mport curamutil.exception.Informational Exception;

i mport

curamutil. persistence. hel per. Si ngl eTabl eLogi cal | yDel et eabl eEntityl npl;
i mport curamutil.type. Date;
import curamutil.type. Dat eRange;

/**
* Standard inpl enmentation of {@inkplain M/NeweEntity}.
*/
public class MyNewentityl npl extends
Si ngl eTabl eLogi cal | yDel et eabl eEntityl npl <MyNewkentityDt!| s>
i npl enents MyNewentity {

@ nj ect
private MyParent EntityDAO myParent Entit yDAG,

@ nj ect
private MyChil dEntityDAO nyChil dEntityDAG,

© Merative US L.P. 2012, 2024

1 Developing with the Persistence Infrastructure 63

protected MyNewentitylnmpl () {
/* Protected no-arg constructor for use only by Guice */

}

/-k

* Field getters

*/

/**

* {@nheritDoc}

*/

public String getNane() {
return getDtls(). nane;

}
/**
* {@nheritDoc}
*/
publ i ¢ Dat eRange get Dat eRange() {

return new Dat eRange(getDtls().startDate, getDtls().endDate);
}

/**
* {@nheritDoc}
*/
publ i c MYNEVENTI TYTYPEEntry get Type() {

return MYNEVENTI TYTYPEEntry. get(getDtls().typeCode);
}

/*
* Related-entity getters
*/
/**
* {@nheritDoc}
*/
public Set<MyChildEntity> get MyChildren() {
return myChil dEntityDAQO. searchByParent (this);

}

/**

* {@nheritDoc}

*/

public MyParentEntity get M/ParentEntity() {
final long myParentEntityl D = getDtls(). myParentEntitylD;

if (nyParentEntityl D == 0) {
return null;
} else {
return myParent EntityDAQO. get (nyParentEntitylD);
}
}

/-k
* Setters
*/
public void set WParentEntity(M/ParentEntity val ue) {
/1 TODO Aut o- gener ated net hod stub

© Merative US L.P. 2012, 2024

Curam 8.1.2 64

}

public void setNane(String val ue) {
/1 TODO Aut o-generated nmethod stub

}

public void setType(final MYNEVWENTI TYTYPEEntry val ue) {
/1 TODO Aut o- generated nethod stub

}
/-k
* Validation
*/
public void mandat oryFi el dvalidation() {
/1 TODO Aut o-generated nethod stub

}

public void crossFieldValidation() {
/1 TODO Aut o- gener ated net hod stub

}

public void crossEntityVvalidation() {
/1 TODO Aut o-generat ed nmet hod stub

}

Figure 95: Complete listing for an entity implementation with implemented getter methods

MyChildEntityDAO

package curam nypackage;
i mport java.util. Set;

i mport curamutil. persistence. St andar dDAG,

/**

* Data access for {@inkplain MyChildEntity}.
*/
public interface MyChil dEntityDAO extends
St andar dDAC<MyChi | dEntity> {

/**

* Searches all the instances belonging to the specified
par ent .

*

* @aram nyNeweEntity

* the parent to search for

* @eturn all the instances belonging to the specified parent,
or

* an enpty set if none found.

*/

public Set<MyChil dEntity> searchByParent (

© Merative US L.P. 2012, 2024

1 Developing with the Persistence Infrastructure 65

final MyNewentity nmyNewEntity);
}

Figure 96: Complete listing for changes made to a related entity DAO arising from implementation of a getter
which calls a new search

You want to implement new row defaults

The problem

You have an entity which has one or more fields which require defaulting when new instances are
inserted into the database.

How do you specify new row defaults for your entity?

The solution

You must override the setNewlInstanceDefaults method and initialize any fields which require
defaulting before a new instance is inserted onto the database.

In the example, the initial typeCode of MyNewEntity must be defaulted to "SomeType", and the
date range set to start on today's date and no end date specified:
/ * *
Def aul t s:

the type to {@i nkpl ai n MYNEVENTI TYTYPEENt r y#SOVETYPE} ;
and</ i >
the date range to { @i nkpl ai n Dat eRange#t odayOnwar ds()}.

* <ful>
*/
public void set Newl nstanceDefaul ts() {
set Type(MYNEVEENTI TYTYPEENnt ry. SOVETYPE) ;
set Dat eRange(Dat eRange. t odayOnwar ds()) ;

* % X F X

}

Figure 97: Setting default values on new instances of an entity

Note: Be sure to include a call to super.setNewInstanceDefaults().

For example, for logically-deleteable entities, this super implementation defaults the
recordStatus to "active".

Note that this implementation of new instance defaults calls a new private setter (setDateRange -
this setter is not available in the entity API but is local to the entity implementation class. (Recall
that you do not want callers of your class to be able to set its dates directly.)

The DateRange class contains the convenience method todayOnwards to return a data range that
starts on the current business date and has no end date specified.

Create a skeletal implementation of this private setters - you'll flesh it out later:

public void set Dat eRange(Dat eRange val ue) {
/1 TODO Aut o-generated nmethod stub

© Merative US L.P. 2012, 2024

Curam 8.1.2 66

}

Figure 98: Creating a skeletal implementation of a private setter method

You want to implement setters

The problem

You have created a skeletal implementation for your entity. You now need to implement setter
methods.

How do you implement setters?

The solution

You must create implementations for your skeletal setter methods created above. Each setter
method is responsible for taking a value (either primitive or object) supplied by calling code and
setting one or more fields in an underlying Dtls struct.

Our example requires these setters to be implemented:

e setName;

+ setDateRange (private, not present in the entity interface);
* setType; and

+ setMyParentEntity.

Note: In general the JavaDoc for your setter implementations can simply inherit from your
entity API JavaDoc.

Private setters must detail their own JavaDoc (as there is no API JavaDoc to inherit from).

setName

The setter for the name field maps the value provided to the name field on the Dtls struct. The
setter must trim/compress white space and convert any null value passed to an empty string:

/**

* {@nheritDoc}

*/

public void setNane(final String value) {
getDtls().name = StringHel per.trin(val ue);

Figure 99: Implementation of a simple setter method

The StringHelper class contains the convenience method trim which converts a null to an empty
string, trims white space from the ends of genuine strings passed and compresses any contiguous
embedded spaces down to a single space.

setDateRange

The setter for the date range field must set two values on the underlying Dtls struct:
/ * %

Sets the start and end fields fromthe date range supplied.

© Merative US L.P. 2012, 2024

1 Developing with the Persistence Infrastructure 67

* @aram val ue

* the date range supplied

*/

private voi d setDat eRange(fi nal Dat eRange val ue) {
getDtls().startDate = value.start();
getDtls().endDate = val ue. end();

Figure 100: Implementation of a setter method which sets multiple database column values from one object

setType

The setter for the typeCode database column must convert the state supplied into its codetable
code for storage on the database:
/ * %
*/{@nheri t Doc}
*
public void set Type(final MYNEVWENTI TYTYPEEntry val ue) {
getDtl s().typeCode = val ue. get Code();

Figure 101: Implementation of a setter which translates an codetable entry to a codetable code String value

setMyParentEntity

The setter for a related record must retrieve the object's ID and store it in the appropriate field on
the Dtls struct. A null value must be converted to zero:
/ * %
*/{@nheri t Doc}
*
public void set MParentEntity(final MyParentEntity val ue) {
final long myParentEntitylD;

if (value == null) {
nyParentEntityl D = O;
} else {

nyParentEntityl D = val ue. getlD();

}
getDtls().myParentEntityl D = nyParent Entityl D

Figure 102: Implementation of a setter which sets a related entity

Putting it all together
You now have a full set of implemented setter methods. Here's the code so far:

package curam nypackage;
import java.util. Set;
i mport com googl e.inject.|nject;

i mport curam nmypackage. struct. MyNewentityDtls;
i mport curamutil.exception.|nformational Excepti on;

i mport

curamutil . persistence. hel per. Si ngl eTabl eLogi cal | yDel et eabl eEnti tyl npl ;

© Merative US L.P. 2012, 2024

Curam 8.1.2 68

i mport curamutil.type. Date;
i nport curamutil.type. Dat eRange;
i mport curamutil.type. StringHel per;

/**

* Standard inplenentation of {@inkplain M/NewEntity}.
*/

public class MyNewEkntityl npl extends

Si ngl eTabl eLogi cal | yDel et eabl eEntityl npl <MyNewkentityDt!| s>
i mpl ements MyNewentity {

@ nj ect
private MyParent EntityDAO nyParent EntityDAG

@ nj ect
private MyChil dEntityDAO nyChil dEntityDAG,

protected MyNewentitylnpl () {
/* Protected no-arg constructor for use only by CGuice */
}

/*
* Field getters
*/

/**

* {@nheritDoc}
*/
public String getNane() {
return getDtl s().nane;
}

/**
* {@nheritDoc}
*/
publ i c Dat eRange get Dat eRange() {
return new Dat eRange(getDtls().startDate, getDtls().endDate);
}

/**
* {@nheritDoc}
*/
publ i ¢ MYNEVENTI TYTYPEEntry get Type() {
return MYNEVENTI TYTYPEEntry. get(getDtls().typeCode);

}

/*
* Related-entity getters
*/
/**
* {@nheritDoc}
*/
public Set<MyChildEntity> getMyChildren() {
return myChil dEntit yDAQO. sear chByParent (this);

}
/**

* {@nheritDoc}

© Merative US L.P. 2012, 2024

1 Developing with the Persistence Infrastructure 69

*/
public MyParentEntity get M/ParentEntity() {
final long nyParentEntityl D = getDtls(). nmyParentEntitylD;

if (nyParentEntityl D == 0) {
return null;
} else {
return myParent EntityDAQ. get (nyParentEntitylD);
}
}

/*

* Setters

*/

/**

* {@nheritDoc}

*/

public void setM/ParentEntity(final MyParentEntity val ue) {
final long nmyParentEntitylD;

if (value == null) {
nyParentEntityl D = O;

} else {
nyParentEntityl D = val ue. get 1 D();

}
getDtls().myParentEntityl D = nyParent Entityl D

/**

* {@nheritDoc}

*/

public void setNane(final String value) {
getDtls().name = StringHel per.trin(val ue);

/**

* Sets the start and end fields fromthe date range suppli ed.

*

* @aram val ue

* the date range supplied

*/

private void setDat eRange(fi nal DateRange val ue) {
getDtls().startDate = value.start();
getDtl s().endDate = val ue. end();

/**
* {@nheritDoc}
*/
public void setType(final MYNEVENTI TYTYPEEntry val ue) {
getDtls().typeCode = val ue. get Code();

/*
* Validation
*/
public void mandat oryFi el dvalidation() {

© Merative US L.P. 2012, 2024

Curam 8.1.2 70

/1 TODO Aut o-generated nmethod stub

}

public void crossFieldValidation() {
/1 TODO Aut o- generated nmethod stub

}

public void crossEntityValidation() {
/1 TODO Aut o-generated nmethod stub

~

* ok ok ok ok ok ok

Def aul t s:

the type to {@inkpl ai n MYNEVENTI TYTYPEEnt r y#SOVETYPE} ;
and
the date range to { @i nkpl ai n Dat eRange#t odayOnwar ds()}.

* <lul >
*/
public void set New nst anceDefaul ts() {
set Type(MYNEVENTI TYTYPEEnt ry. SOVETYPE) ;
set Dat eRange(Dat eRange. t odayOnwar ds()) ;

}
}

Figure 103: Complete listing for an entity implementation with implemented setter methods

You want to implement single-field validation

The problem

You have created an implementation for your entity setters. You now need to implement single-
field validation logic.

How do you implement single-field validation logic?

The solution

Each field setter is responsible for ensuring that the value being set is appropriate. In

general, errors arising from single-field validation should be "accumulated" using the
InformationalManager, so that callers can be notified of al/l the single-field validation errors
found. This is particularly useful to online users who may have entered several fields in error -
if single-field validation errors are reported one-by-one then it would be frustrating for the user
to be presented with a series of single-error messages instead of a list of all known single-field
validation errors.

One important corollary of this is that each field setter should only attempt to validate the field
being set. It should make no reference to other fields.

For the purposes of single-field validation, a field corresponds to the value received by the setter.
Generally, there is one setter per underlying database field; however, in cases where database

© Merative US L.P. 2012, 2024

1 Developing with the Persistence Infrastructure 71

fields are grouped together (notably with DateRange), it is the object received by the setter which
is validated, not the individual underlying database fields. In the case of a setDateRange method,
it is the date range which is validated. This single-field validation of the DateRange typically
includes start/end date validation which under classic Ciram would have been considered "cross-
field" validation.

One other point to note is that the validation of whether mandatory fields have been set

is deferred to a special "mandatory field validation" method (see You want to implement
mandatory-field validation on page 76 below); this is because you cannot guarantee which (if
any) setters have been called from calling code.

You must add single-field validation logic to the setters:

e setName;

+ setDateRange; and
+ setType; and

* setMyParentEntity.

setName

After analyzing requirements, you determine that the setter for the name must validate that the
name length is within acceptable bounds.

First create a message catalog:

<?xm version="1.0" encodi ng="UTF-8"?>
<nessages package="curam nessage" >
<message nane="ERR_MY_NEW ENTI TY_FV_NAME_EMPTY" >
<l ocal e | anguage="en">
The name nust be specifi ed.
</l ocal e>
</ message>
<nmessage nane="ERR_MY_NEW ENTI TY_FV_NAME_SHORT" >
<l ocal e | anguage="en" >
The name nust be at |east %n characters.
</l ocal e>
</ message>
<nmessage nanme="ERR MY _NEW ENTI TY_FV_NAME _LONG'>
<l ocal e | anguage="en">
The name nust be no nore than %n characters.
</l ocal e>
</ message>
</ messages>

Figure 104: Creating a message catalog with validation error messages

Note that the validation messages for minimum/maximum length take as argument the minimum/
maximum lengths permitted, rather than hard-coding these bounds into the messages.

Now code validation logic in the setter and raise errors using the ValidationHelper:

/**

* Mnimumvalid name | ength

*/

private static final |ong kM ni numNaneLength = 3;
/**

* {@nheritDoc}

*/

© Merative US L.P. 2012, 2024

Curam 8.1.2 72

public void setNane(final String value) {
getDtls().name = StringHel per.trimval ue);

final |long naneLength = getDtls().nane.length();
i f (nanmeLength > 0 && namelLength < kM ni mumNaneLengt h) {
Val i dati onHel per. addVal i dati onError (
MYNEVEENTI TYExcept i onCr eat or
. ERR_MY_NEW ENTI TY_FV_NAME_SHORT(kM ni numNaneLengt h)) ;
} else if (naneLength > MyNewEntityAdapt er. kMaxLengt h_nane) {
Val i dati onHel per. addVal i dati onError(
MYNEVENTI TYExcept i onCr eat or
. ERR_MY_NEW ENTI TY_FV_NAVME_LONG
MyNewEnt i t yAdapt er . kMaxLengt h_nane)) ;

}
}

Figure 105: Implementing single field validation logic

Note that:

 validation regarding whether the name has been set at a// will occur during mandatory-field
validation; and

 constants for the maximum length of database text columns are automatically generated into
the entity adapter. These constants should be used in preference to creating your own, as they
will automatically be updated should the length of the database column be customized (by
changing the domain definition in the model).

The ValidationHelper class contains the convenience method addValidationError to format an
error message and add it to the informational manager. It takes an AppException or CatEntry
(shown here). It also has a deprecated overload which takes a String, which can be used as a
"quick and dirty" way of writing error messages:

[** **** Myst be "cleaned up" prior to testing and rel ease ** */
final long naneLength = getDtls().nane.length();
i f (nanmeLength > 0 && nanmeLength < kM ni numNaneLengt h) {
Val i dati onHel per. addVal i dati onError (" Name too short!");
} else if (naneLength > MyNewEntityAdapter. kMaxLengt h_nane) {
Val i dati onHel per. addVal i dati onError("Nane too |ong!");

[** **** Must be "cleaned up"” prior to testing and rel ease **
*/

Figure 106: Using ValidationHelper to create temporary error messages

You must convert these Strings to message catalog entries prior to testing and release. This
facility exists purely to minimize the "switching" you might have to do between editing Java and
editing/generating message files that you might otherwise have to do when writing validation
logic.

setDateRange

After analyzing requirements, you determine that the date range requires the following validation
logic:

 the range is valid (i.e. that the start date is not after the end date); and

+ the start date has been specified (but the end date is optional, or, more to the point, whether the
end date is required is dependent on the value of other fields).

© Merative US L.P. 2012, 2024

1 Developing with the Persistence Infrastructure 73

The first of these is amenable to single-field validation; the second is more appropriate for
mandatory-field validation.

Code validation logic to use the standard validation message on DateRange:

/**
* Sets the start and end fields fromthe date range suppli ed.
*
* @aram val ue
* the date range supplied
*/

private void setDat eRange(fi nal DateRange val ue) {
getDtls().startDate = value.start();
getDtl s().endDate = val ue. end();

val ue. val i dat eRange();

}

Figure 107: Using DateRange to perform standard validation

The DateRange class contains the convenience method validateRange which validates the start
and end dates of the range and raises a standard error message if the start date is after the end
date. If you require a specific message, then use DateRange.isValidRange instead.

setType

After analyzing requirements, you determine that the type field has no single-field validation
requirements. Mandatory field validation will be required to ensure that the type has been set.

Note that the caller of this method must supply an instance of MYNEWENTITYTYPEEntry, and
will fail with a runtime error if it attempts to retrieve an entry value which from a value which is
not present in the corresponding code table.

setMyParentEntity

After analyzing requirements, you determine that the parent entity ID field has no single-field
validation requirements. Mandatory field validation will be required to ensure that the parent
entity has been set.

Putting it all together

Here's the entity implementation code with the single-field validation logic:

package curam nypackage;

i mport java.util. Set;

i mport com googl e.inject.|nject;

i mport curam nessage. i npl . MYNEVEENTI TYExcept i onCr eat or ;

i mport curam nmypackage. struct. MyNewentityDtls;
i mport curamutil. persistence. Validati onHel per;

i mport
curamutil. persistence. hel per. Si ngl eTabl eLogi cal | yDel et eabl eEntityl npl;

import curamutil.type. Dat eRange;
i mport curamutil.type. StringHel per;

© Merative US L.P. 2012, 2024

Curam 8.1.2 74

/**
* Standard i nplementation of {@inkplain MyNewentity}.
*/
public class MyNewEkntityl npl extends
Si ngl eTabl eLogi cal | yDel et eabl eEntityl mpl <MyNewkntityDt!| s>
i mpl ements MyNewentity {

@ nj ect
private MyParent EntityDAO myParent Entit yDAG,

@ nj ect
private MyChil dEntityDAO nyChil dEntityDAG,

/**

* Mnimumvalid nane | ength
*/
private static final |ong kM ni mumNaneLength = 3;

protected MyNewentitylmpl () {
/* Protected no-arg constructor for use only by Guice */
}

/*

* Field getters

*/

/**

* {@nheritDoc}

*/

public String getName() {
return getDtls(). nane;

}

/**
* {@nheritDoc}
*/
publ i ¢ Dat eRange get Dat eRange() {
return new Dat eRange(getDtls().startDate, getDtls().endDate);
}

/**
* {@ nheritDoc}
*/
publ i c MYNEVENTI TYTYPEEntry get Type() {
return MYNEVENTI TYTYPEEntry. get (getDtl s().typeCode);

}

/*
* Related-entity getters
*/
/**
* {@nheritDoc}
*/
public Set<MyChildEntity> getMyChildren() {
return myChil dentit yDAQ. sear chByParent (this);

}

/**

© Merative US L.P. 2012, 2024

1 Developing with the Persistence Infrastructure 75

* {@nheritDoc}

*/

public MyParentEntity get MyParentEntity() {
final long myParentEntityl D = getDtls(). myParentEntitylD;

if (nyParentEntityl D == 0) {
return null;
} else {
return myParent EntityDAQO get (nyParentEntitylD);
}
}

/*

* Setters

*/

/**

* {@ nheritDoc}

*/

public void set MParentEntity(final MyParentEntity val ue) {
final long nyParentEntityl D

if (value == null) {
nyParentEntityl D = O;

} else {
nyParentEntityl D = val ue.getl () ;

}
getDtls().myParentEntityl D = nyParent Entityl D

/**

* {@nheritDoc}

*/

public void setNane(final String value) {
getDtls().name = StringHel per.trin(val ue);

final long naneLength = getDtls().nane.length();
if (nanmeLength > 0 &% nanmelLength < kM ni numNaneLength) {
Val i dati onHel per
.addVal i dat i onErr or (MYNEVENTI TYExcept i onCr eat or

. ERR_MY_NEW ENTI TY_FV_NAME_SHORT(kM ni numNaneLengt h)) ;
} else if (nanmeLength > MyNewEntityAdapt er. kMaxLengt h_nane) {
Val i dat i onHel per
.addVval i dati onErr or (MYNEVEENTI TYExcept i onCr eat or
. ERR_MY_NEW ENTI TY_FV_NAME_LONG
MyNewEnt i t yAdapt er . kMaxLengt h_nane)) ;
}
}

/**

* Sets the start and end fields fromthe date range suppli ed.
*

* @aram val ue

* the date range supplied

*/

private voi d setDat eRange(fi nal Dat eRange val ue) {
getDtls().startDate = value.start();

© Merative US L.P. 2012, 2024

Curam 8.1.2 76

getDtls().endDate = val ue. end();

val ue. val i dat eRange();

}
/**
* {@nheritDoc}
*/
public void setType(final MYNEVENTI TYTYPEEntry val ue) {
getDtl s().typeCode = val ue. get Code();

/*
* Validation
*/
public void mandat oryFi el dvalidation() {
/1 TODO Aut o-generated method stub

}

public void crossFieldVvalidation() {
/1 TODO Aut o-generated nmethod stub

}

public void crossEntityValidation() {
/1 TODO Aut o-generated nmethod stub

~

* ok ok ok ok ok ok

Def aul t s:

the type to {@i nkpl ai n MYNEVENTI TYTYPEENt r y#SOVETYPE} ;
and</1li >
the date range to { @i nkpl ai n Dat eRange#t odayOnwar ds()}.

* <ful >
*/
public void set Newl nstanceDefaul ts() {
set Type(MYNEVEENTI TYTYPEEnt ry. SOVETYPE) ;
set Dat eRange(Dat eRange. t odayOnwar ds()) ;

}
}

Figure 108: Complete listing for an entity implementation with implemented single-field validation logic

You want to implement mandatory-field validation

The problem

Your entity is only valid if certain fields have values specified (commonly known as "mandatory"
fields).

How do you implement mandatory-field validation logic?

© Merative US L.P. 2012, 2024

1 Developing with the Persistence Infrastructure 77

The solution

Each class that implements Validator (which MyNewEntitylmpl does via SingleTableEntitylmpl)
must implement standard methods for validation logic.

(Note that in general, implementation classes may implement Validator but that entity APIs
should not extend Validator - you do not want calling code to be able to call validation methods
directly.)

One of these Validator methods is mandatoryFieldValidation, where you must place any logic
which detects whether any field value has not been set. It is up to your logic to determine how to
detect whether or not a field value is "set" (typically with reference to the defaulted values of the
generated Dtls struct).

The persistence infrastructure automatically calls mandatoryFieldValidation prior to any insert
or modify operation (but not before a physical remove operation), and fails the operation if any
validation errors have been raised. These errors include those raised by setter methods as well as
by mandatoryFieldValidation. In particular, processing will not proceed to cross-field or cross-
entity validation if any single-field or mandatory-field validation errors have been found.

Logic placed in mandatoryFieldValidation must consider each field on a field-by-field basis; logic
which checks one field value against another must instead be placed in cross-field validation.

In particular, the persistence infrastructure will prevent any database access occurring during
mandatoryFieldValidation.

After analyzing requirements, you determine that in order to be valid your entity must always
have the following specified:

* name;
+ start date of the date range;
* type; and

* parent entity instance.

You add the following code to implement mandatoryFieldValidation:
/**
* {@nheritDoc}
*/
public void mandat oryFi el dvalidation() {
/*
* Name cannot be enpty
*/
if (StringHel per.isEnmpty(getDtls().nanme)) {
Val i dati onHel per. addVal i dati onError (
MYNEVENTI TYExcept i onCr eat or
. ERR_MY_NEW ENTI TY_FV_NAVE_EMPTY()) ;
}

/*

* Start date nust be specified
*/

get Dat eRange() . val i dateStarted();

/*
* Type nust be specified
*/
i f (getType().equal s(MYNEVENTI TYTYPEEntry. NOT_SPECI FI ED)) {
Val i dat i onHel per

© Merative US L.P. 2012, 2024

Curam 8.1.2 78

.addVval i dati onError (" Type nust be specified");
}

/*
* Parent entity instance nust be specified
*/
if (getMyParentEntity() == null) {
Val i dat i onHel per
.addVval i dati onError(
"Parent entity instance nust be specified"

);
}
}

Figure 109: Implementing mandatory field validation logic

Note that:

+ the fields are tested sequentially, raising validation errors via ValidationHelper, so that all
errors are accumulated and reported in one "batch" to calling code;

+ the StringHelper class contains the convenience method isEmpty to check whether the string is
empty or null;

* MYNEWENTITYTYPEEntry contains the generated constant NOT SPECIFIED, which is
the value returned if a null or empty String is passed to MYNEWENTITYTYPE.get; and

» the DateRange class contains the convenience method validateStarted which raises a standard
error message if no start date has been specified. If you require a specialized message, use
DateRange.isStarted instead.

You want to implement cross-field validation

The problem

Your entity is only valid if the data in certain groups of fields obeys business rules (commonly
known as "cross-field" validation).

How do you implement cross-field validation logic?

The solution

Each class that implements Validator has a crossFieldValidation method where you must place
any logic which validates the value in one field against one or more others.

If single-field and mandatory-field validation has succeeded, then the persistence infrastructure
automatically calls crossFieldValidation prior to any insert or modify operation (but not before

a physical remove operation), and fails the operation if any validation errors have been raised.

In particular, processing will not proceed to cross-entity validation if any cross-field validation
errors have been found. The persistence infrastructure will prevent any database access occurring
during crossField Validation.

You want to implement cross-entity validation

© Merative US L.P. 2012, 2024

1 Developing with the Persistence Infrastructure 79

The problem

Your entity is only valid if its data obeys business rules with regard to data on other entities
(commonly known as "cross-entity" validation).

How do you implement cross-entity validation logic?

The solution

Each class that implements Validator has a crossEntity Validation method where you must place
any logic which validates the value in your entity against data on other entities.

If cross-field validation has succeeded, then the persistence infrastructure automatically calls
crossEntity Validation after any insert or modify operation (but not after a physical remove
operation), and fails the operation if any validation errors have been raised. The persistence
infrastructure permits database access occurring during crossEntityValidation, so that your
validation logic can retrieve data on other entities required to implement the validation.

1.5 Creating a Guice module

In earlier chapters you saw how Guice's @ImplementedBy annotation is used to designate the
default implementation of an interface.

Guice has another more flexible configuration mechanism, namely a Guice Module which you
code yourself.

Moreover, the configuration that you place in a Guice Module takes precedence over any
@ImplementedBy annotations in the code, which allows you to configure Guice to use
your custom implementation instead of the default implementation. This may be useful for
customisation or testing purposes.

To create your own Guice Module, follow these steps:

+ create a class extending AbstractModule; and
» store a row on ModuleClassName.

Create a class extending AbstractModule

Create a class as follows:

package curam nypackage;

i mport com googl e. i nj ect. Abstract Modul e;

**
/: Contai ns ny Gui ce bindings.
pu/bl ic class MyModul e extends Abstract Modul e {
[*%
:/{@nheritDoc}
@verride

public void configure() {
/1 no explicit bindings

}

© Merative US L.P. 2012, 2024

Curam 8.1.2 80

}

Figure 110: Skeleton Guice Module

You can now add new Guice "bindings" to the configure method to override default
implementations:

@verride
public void configure() {
bi nd(MyNewEntity. cl ass).to(M/CustonNewkentityl npl.class);

This configuration will cause Guice to dish up an instances of MyCustomNewEntitylmpl instead
of the default implementation (MyNewEntitylmpl), whenever an MNewEntity interface instance
is @Injected.

You will also add configuration code if your application uses events (see 1.6 Events on page
81).

Important: Each interface can only be bound to a single implementation. If the set of runtime
Guice modules attempts to bind the same interface more than once, Guice will raise a runtime
exception.

As such, code which is delivered to customers should not use this mechanism to bind an
interface to an implementation in any situation where the customer should be permitted to
specify their own binding for the interface.

Store a row on ModuleClassName

The Persistence Infrastructure reads from a database table named ModuleClassName to identify
Guice modules which should be loaded.

You must add a row to this database table with the name of your module. The most
straightforward way to do this is to use the Data Manager, by creating a custom DMX file
containing the row required:

<?xm version="1.0" encodi ng="UTF-8"?>
<t abl e nanme="Modul eC assNane" >

<col umm
nanme="nodul eCl assNange"
type="text"
/>
<r ow>
<attribute nane="nodul eCl assNanme" >
<val ue>
curam nypackage. MyModul e
</val ue>
</attribute>
</ row>
</t abl e>

Figure 111: DMX file to create a row for your module on ModuleClassName

© Merative US L.P. 2012, 2024

1 Developing with the Persistence Infrastructure 81

1.6 Events

The Persistence Infrastructure provides some helper classes which allow you to raise and listen
for events. You can define your own events or write listeners for ones that are already defined
"out-of-the-box".

Events can be a useful tool in removing an explicit dependency from one class (the event raiser)
to another (the event listener). If you require to add another listener to an event, you can do so
without having to "open up" the code that raises the event - the event raiser and listener only
depend on the event interface, not on each other's implementation.

The Persistence Infrastructure supports:

» an instance of a class raising events declared on an interface;
» zero, one or more "listener" instances wired to listen for these events; and

» special classes of "persistence events" which are automatically raised for all persistence
operations, signalling when various standard operations are performed on entities.

To implement events and listeners, follow these steps (described in detail below):

* identify where an event must be raised;
e define the Event interface;

+ create an EventDispatcherFactory;

* raise events;

» create an event listener; and

* configure Guice.

After these steps there is a description of how to add a listener for generic persistence events.

Identify where an event must be raised

Let's take as an example a simple class which has a simple method:

package curam nypackage;
public class MyEvent Source {
public void doSonething() {

// do whatever it is that needs to be done
Systemout. println("Do something!");

}

Figure 112: A simple class which performs an action

You decide that events should be raised:

* before doSomething performs its logic (preDoSomething); and
+ after doSomething performs its logic (postDoSomething).

© Merative US L.P. 2012, 2024

Curam 8.1.2 82

Define the Event interface

You must define an interface to contain your event methods.
The event interface will be:

» used by the event source to raise events; and
» implemented by event listeners to listen to and react to events.

Note that we are using the word "interface" loosely here. A very important consideration is
whether you might ever change the event interface to create additional methods. If you do, all
existing implementations of the interface are forced to implement the new methods. In this case,
you are strongly advised to use abstract classes rather than Java interfaces. These classes should
provide empty implementations of event methods, rather than declare them abstract, so that newly
added methods do not cause compilation problems for existing implementations. This approach
also means that you can group many related events together in a single abstract class declaration,
knowing that only those methods of interest to a particular customer need to be implemented,
since default empty implementations for all methods are inherited.

The event interface is typically public so that class in any code package can listen to its events.
The interface can be created as an inner interface, in which case it can simply be named Event
without fear of name collision with other event interfaces. Typically your entity implementations
are package-protected, and so the event interface should be declared as an inner interface of your
entity's public interface. However, here for brevity an inner interface is shown declared on the
simple class:

package curam nypackage;

public class MyEvent Source {
public abstract class Event {
public void preDoSonet hi ng(MyEvent Source raiser) {
[l intentionally enpty
}

public void post DoSonet hi ng(MyEvent Source rai ser) {
/1 intentionally enpty
}

}
public void doSoret hing() {

// do whatever it is that needs to be done
Systemout. println("Do sonething!");

}

Figure 113: Defining the Event interface

You must carefully think about the signature of your event methods. The event method

is free to pass any number of parameters and/or throw exceptions; note though that the
EventDispatcherFactory (see below) ignores any return values, so if you require listeners to return
a value then you have to supply your own custom event dispatch logic.

Because each listener is a single instance, typically each event method should pass the instance
which raised the event, so that the listener can identify the source of the event. In the example

© Merative US L.P. 2012, 2024

1 Developing with the Persistence Infrastructure 83

both preDoSomething and postDoSomething take an instance of MyEventSource, namely the
instance which raised the event.

Create an EventDispatcherFactory
Your class needs a mechanism for dispatching events to listeners.

Create an instance of EventDispatcherFactory parameterized with your Event interface:

package curam nypackage;
i mport com googl e.inject.|nject;
i nport curamutil . persistence. hel per. Event Di spat cher Fact orvy;
public class MyEvent Source {
public abstract class Event {

public void preDoSornet hi ng(MyEvent Sour ce rai ser) {
/1 intentionally enpty

}

public void post DoSonet hi ng(My Event Sour ce rai ser) {
/1 intentionally enpty

}
} _
@ nj ect

private EventDi spat cher Fact ory<Event> di spat cher;
public void doSonething() {

[/ do whatever it is that needs to be done
Systemout. println("Do sonething!");

}

Figure 114: Creating an EventDispatcherFactory

Raise events

You must now raise events at appropriate points in the class's logic. Retrieve an instance of your
dispatcher to call the methods on your Event interface:

package curam nypackage;
i mport com googl e.inject.|nject;
i mport curamutil . persistence. hel per. Event Di spat cher Fact orvy;
public class MyEvent Source {
public abstract class Event {

public void preDoSornet hi ng(MyEvent Sour ce rai ser) {
/1l intentionally enpty

© Merative US L.P. 2012, 2024

Curam 8.1.2 84

}

public void post DoSornet hi ng(MyEvent Source rai ser) {
/1 intentionally enpty

}

}

@ nj ect
private Event D spatcher Fact ory<Event> di spat cher;

public void doSonething() {
/1l notify listeners that sonmething is about to happen
di spatcher. get (Event. cl ass). preDoSonet hi ng(this);
/1 do whatever it is that needs to be done
Systemout. println("Do sonething!");
/1 notify listeners that sonmething has just been done
di spat cher. get (Event. cl ass) . post DoSonet hi ng(t hi s);
}

}

Figure 115: Raising events

Note how the dispatcher.get method took the class of the Event interface as a parameter. Calling
this method returned an event "multiplexer" instance on which any method call will be dispatched
to each of the registered listeners for that event interface.

This completes the coding to raise events. You can now move on to create listeners.

Create an event listener

You can create as many event listener classes as you require. These classes can be in any code
package and each event listener can react to the event in its own way.

package curam nypackage;
i mport com googl e. i nject. Singleton;
@i ngl et on
final class MyListener inplenents
curam nmypackage. MyEvent Sour ce. Event {

protected MyListener() {
/1l Protected constructor for use only by Guice

}
@verride
public void preDoSonet hing(final MyEvent Source raiser) {
Syst em out
.println("preDoSonet hi ng event was rai sed from object "
+ raiser);
}
@verride
public voi d post DoSonet hi ng(fi nal MyEvent Source raiser) {
Syst em out

.println("post DoSonet hi ng event was rai sed from object "

© Merative US L.P. 2012, 2024

1 Developing with the Persistence Infrastructure 85

+ raiser);

}

Figure 116: Creating an event listener class

Note that the listener class implements the Event interface from the event source, and uses the
event methods to respond to the events as required.

You have created a listener class which will listen for events raised from MyEventSource
instances. However, in order for these events to be dispatched to your listener instance, you must
first perform some Guice configuration.

Configure Guice

You must add code to the configure method of your Guice Module (see 1.5 Creating a Guice
module on page 79) to "wire" your listeners to your events.

Note that no Guice configuration is required to simply declare an event interface and dispatch
events on it. Configuration is only required for implementations of the event interface. You need
similar configuration for each implementation of the event interface, although this can be split
across as many Guice modules as you want. The Multibinder syntax in the figure below ensures
that no matter how many implementations and modules you provide, they all end up in the same
set of event listeners.

@verride
public void configure() {

/*
* Cet the listener set
*/
Mul ti bi nder <MyEvent Sour ce. Event > nmyEvent Li steners =
Mul ti bi nder
. newSet Bi nder (bi nder (), MyEvent Source. Event. cl ass);
/*
* Add a |istener
*/
nyEvent Li st eners. addBi ndi ng() .t o(MyLi st ener. cl ass);

}

Figure 117: Adding wiring

The wiring is now complete, and a call to MyEventSource.doSomething() will result in output
resembling the following:

preDoSomet hi ng event was raised from

obj ect curam nypackage. MyEvent Sour ce@25d06e
Do sonet hi ng!
post DoSonet hi ng event was rai sed from

obj ect curam nypackage. MyEvent Sour ce@25d06e

© Merative US L.P. 2012, 2024

Curam 8.1.2 86

Writing listeners for automatic persistence events

The Persistence Infrastructure provides automatically dispatched events for all entity classes. To
use these events all you need to do is write event listeners and wire them using Guice, very much
as described in the previous section. The event interface for persistence events differs from the
previous example in that it is a parameterized abstract class called PersistenceEvent, which takes
the name of the entity as a type parameter.

See the Javadoc for the PersistenceEvent class for a complete list of methods. Default empty
implementations are provided for all event methods. In the example following, a listener is
written which implements just the postInsert method of PersistenceEvent for an entity called
MyEntity:

package curam nypackage;

i mport com googl e.inject. Singleton;
i mport curamutil.persistence. PersistenceEvent;

@si ngl et on
final class MyListener inplenents
Persi st enceEvent <MyEntity> {

protected MyListener() {
/1l Protected constructor for use only by Quice

}

@verride
public void postlnsert(final MyEntity entity) throws
I nf or mat i onal Excepti on, AppException {
/1 handl e the event here

}
}

Figure 118: Creating a persistence event listener class

As for other events, you have to wire your listener implementation in a Guice module:

@verride
public void configure() {

/-k
* Get the listener set
*/
Mul ti bi nder <Per si st enceEvent <M/Enti ty>> nyEvent Li steners =
Mul ti bi nder. newSet Bi nder (bi nder (),
new TypelLiteral <Persi stenceEvent <MyEntity>>() { /

*% });
/-k
* Add a |istener
*/
nyEvent Li st eners. addBi ndi ng() .t o(MyLi st ener. cl ass);

}

Figure 119: Adding wiring for persistence event listeners

© Merative US L.P. 2012, 2024

1 Developing with the Persistence Infrastructure 87

Design Considerations with Events
Some things to think about when defining events or writing listeners for them:

» Like any other class or interface in Java, it is possible to create package-protected event
interfaces. This allows you to use Events in your design, without making them freely available
to all API clients.

+ It is more efficient to implement a listener class as a singleton (either using the @Singleton
Guice annotation on the class, or binding the class in singleton scope in the Guice module).
Singletons need to be implemented in a thread-safe way, but even if you don't use singletons
you should still assume that your listener should be thread-safe, since the safety requirements
are imposed by the class which raises events. In short, unless an Event interface is documented
as not requiring thread-safe listeners, you should assume thread-safety is required.

» It will rarely be appropriate for your listener methods to modify arguments passed to them.
Remember that the same arguments are passed to all listeners, and that furthermore you have
no control over the order in which different registered listeners will be called. Changing the
contents of a listener method parameter (for instance, calling mutator methods on it) can have
negative consequences and cause unexpected results or violate validation requirements. Unless
an Event interface documents what can validly be changed, assume nothing can.

Backward compatibility

Previous versions of the Persistence Infrastructure provided event dispatching functionality via
the EventDispatcher and StandardEventDispatcher classes. These provided similar functionality
but were harder to configure. Their use is now deprecated but they are still supported for
backward compatibility. The approach described in this chapter is recommended for all new event
handling.

1.7 Using Entity Context

The Persistence Infrastructure allows you to add additional information to any entity instance at
runtime. This facility has a number of possible uses which are described later. First we describe
the facility and how to use it.

The Problem

You want to attach additional information to an entity instance at runtime, so that it is available
to event handlers and other custom code. However, the entity interface itself is not easily
customizable.

The Solution

Use Entity Context. Every entity instance allows you to attach additional context information. In
fact, you can store a whole variety of different types of information, indexed by the class of the
information.

In practice the context information is stored in a ContextContainer which is essentially a Map
attached to the entity. The key of the Map is the Java Class of the stored information:

© Merative US L.P. 2012, 2024

Curam 8.1.2 88

voi d soneMet hod(MyEntity entity) {

/1l Get the string stored in the entity's context:
String s = entity. get ContextContainer().get(String.class);
Systemout. println(s);

/[l Store an updated string in the entity context:
s += " |onger context";
entity. get Context Container().put(String.class, s);

}

Figure 120: Manipulating entity context

As will be clear from the code above, you can only have one String value stored at any given time
in the entity context. It is up to you to make sure that you "own" any class that you use as context
on an entity, and that it will not interfere with other customizations. In practice, it may be wise to
define your own classes for use as context, rather than using built-in classes such as String.

What if you want to store a set or a list as context? The Java List is a built-in class, and there
are no class literals for Lists of your own types, i.e. no List<MyClass>.class. You can use a
TypeLiteral as a key in this case, and it will be distinct from Lists of any other type which may
also be stored in the entity context:

" void someMet hod(M/Entity entity) {

/'l CGet the List<MyCd ass> stored in the entity's context:
TypelLiteral <Li st<Myd ass>> type =

new TypelLiteral <Li st<Myd ass>>() { /**/ };
Li st<Myd ass> list = entity. get Context Container().get(type);
Systemout.printlin(list);

}

Figure 121: Manipulating parameterized types in context

The ContextContainer class lets you retrieve, set, or remove context information by

Class or by TypeLiteral. When you set the contents of the context container (using the
ContextContainer.put(Class) method) the previous contents of the context container for that class,
if any, are returned.

Customising Inserts using entity context

A common customization pattern is that you want to store additional information on the
application database whenever a Ciram entity is inserted. In "classic" Curam you might have
extended the out-of-the-box entity but this is discouraged for code constructed using Persistence
Infrastructure because of the undesirable dependencies it creates between custom code and out-
of-the-box code. Instead, you'll create a whole separate entity that gets updated in synch with the
original.

Let's take a typical use case. A method of a fagade class is called by the Ctiram client to insert
data collected on a UIM page. The fagade method gets data from its parameters, and invokes
service layer APIs to create a new entity instance and persist it. You want to collect additional
information and persist it on a new entity along with the original, using the same primary key
value.

The initial steps you will take are as follows, and are the same as described for "classic" Ciaram
code in the Curam Server Developer's Guide:

© Merative US L.P. 2012, 2024

1 Developing with the Persistence Infrastructure 89

» customize the relevant UIM page to add new fields;
* make corresponding changes to the fagade method parameters to add new attributes;
» subclass the fagade and override the particular method in question;

The remaining steps are particular to code using the Persistence Infrastructure:

+ define a new entity to store the additional attributes;

» store additional attributes collected in the fagcade as entity context;

» write a listener for insert events on the original entity (as described in the earlier chapter on
Events), and have its implementation insert on the new entity using the stored entity context
information;

» register the listener.

Here's how that works in practice. In order to keep the program listings concise we assume that
you've already declared a new "classic" entity called MyAdditionalEntity and have extended the
facade parameters to take the new details.

Here's the original facade:

pubI ic class MyFacade {
@ nj ect
protected MyEntityDAO nyEntityDAQ

public void createMyEntity(final MyEntityDetails details)
t hr ows
AppException, |nformational Exception {
MyEntity nmyEntity = nyEntityDAQ new nstance();
setDetail s(nyEntity, details.dtls);
nmyEntity.insert();

protected void setDetails(final M/Entity e,
final MyEntityDtls dtls)
t hrows AppException, |Informational Exception {
e.setFirstnanme(dtls. firstname);
e. set Surnanme(dtl s. surname);

}
}

Figure 122: A fagade which stores MyEntity

Here's our override of the fagade:

pubI i c class MyCustonfFacade extends
curam cust om f acade. base. MyCust onfFacade {

@verride
public void createMyEntity(final MyEntityDetails details)

throws AppException, |nfornational Exception {
MEntity nyEntity = nyEntityDAO new nstance();
setDetail s(nyEntity, details.dtls);

/*

* Store additional details in entity context
*/

© Merative US L.P. 2012, 2024

Curam 8.1.2 90

myEnti ty. get Cont ext Cont ai ner (). put (MyAddi ti onal EntityDtls. cl ass,
details.additionalDtls);
nyEntity.insert();

}

Figure 123: A fagcade subclass which uses entity context

Here's our listener for inserts on the original entity. Note the handling when we find that no
entity context has been passed. This is a design decision that must be made in each case - do

we store blank additional details, or do we store nothing. If we choose to store nothing, then the
application must know how to handle the situation later when we retrieve an entity and there are
no additional details to be read.

Of course we know that there will always be context if the insert that is occurring was triggered
via the facade we've just customized. But we always have to cater for the situation where the
insert is occurring on code other than our fagade.

@i ngl et on
class MyEntityLi stener extends PersistenceEvent <MWEnNtity> {
/**
* After MyEntity is inserted, also insert MyAdditional Entity.
*/
@verride
public void postlnsert(final MyEntity e) throws AppException,
I nf or mat i onal Exception {

/*

* Retrieve the stored details fromentity context

*/

MyAddi tional EntityDtls dtls = e.get Context Container().get(
MyAddi ti onal EntityDtls. cl ass);

Note - don't store null details; on reads, the application
nmust handl e having no additional details for a M/Entity

* jnstance

*/

if (dtls '= null) {

* *

/*

* Use sane id as original entity
*/

dtls.id = e.getl);

/*
* I nsert additional details
*/
MyAddi ti onal Entity additional Entity =
MyAddi ti onal EntityFactory. new nstance();

additional Entity.insert(dtls);

}
}
}

Figure 124: A listener for inserts on MyEntity

© Merative US L.P. 2012, 2024

1 Developing with the Persistence Infrastructure 91

Here's how we register our listener:

public class MyMddul e extends Abstract Modul e {

@verride
protected void configure() {

/-k
* Cet the |listener set
*/
Mul ti bi nder <Per si stenceEvent <MyEntity>> nyEventLi steners =
Mul ti bi nder. newSet Bi nder (bi nder (),
new TypelLiteral <Persi stenceEvent<MyEntity>>() {/**/});

/*
* Add a |istener
*/
nyEvent Li st eners. addBi ndi ng().to(MyEntityLi stener.cl ass);

}
}

Figure 125: A Guice module to register the listener in the previous listing

In summary, what we've done is to provide a listener which receives insert events for one entity
and performs inserts on another, supplemental entity. The data for the supplemental entity was
piggybacked on "entity context", and will normally have been provided via a fagade. However,
it's important to note that this listener pattern works no matter where the insert was invoked from,
although you'll find you have to decide how to handle the situation where an insert was performed
but no entity context was provided.

Customising Reads using entity context

If you've customized an entity Insert to store additional information, you'll typically want to also
customize the Read operation to retrieve the additional attributes. This is very much like the
Insert operation in reverse. You'll do the following:

 retrieve additional attributes from entity context and return them from your subclassed fagcade
method;

+ write a listener for read events on the original entity and have its implementation read from the
new entity, storing the results in entity context for use by the facade;

* register the listener.

Note that in the sample code that follows, the facade and listener classes can be the same classes
as from our Insert example. We're just looking at different methods. By the same token, if you
just have a single Listener class to handle both Insert and Read then you only have to do the
Listener registration once. Here's how it all looks in practice. As before, we're assuming that
you've already declared a new "classic" entity called MyAdditionalEntity and have extended the
facade parameters to take the new details.

Here's the original fagade:

pubI ic class MyFacade {
@ nj ect
protected MyEntityDAO nyEntityDAG

public MyEntityDetails readMyEntity(final MEntityKey key)

© Merative US L.P. 2012, 2024

Curam 8.1.2 92

throws AppException, |nfornmational Exception {

MyEntityDetails details = new MyEntityDetail s();
MEntity nyEntity = nyEntityDAQO get(key.id);
getDetail s(nyEntity, details.dtls);
return details;

}

protected void getDetail s(final MyEntity nyEntity,
final MyEntityDtls dtls)
throws AppException, |nformational Exception {
dtls.firstname = nyEntity. getFirstnanme();
dtls.surnanme = nyEntity. get Surname();

}
}

Figure 126: A fagade which reads MyEntity

Here's our override of the fagade:

pubI i c class MyCustonfacade extends
curam cust om f acade. i npl . MyFacade {

@verride
public MyEntityDetails readMyEntity(final MEntityKey key)
t hrows AppException, |Informational Exception {
MyEntityDetails details = new MyEntityDetail s();
MyEntity myEntity = nyEntityDAQO get (key.id);
getDetail s(nyEntity, details.dtls);

/*
* Retrieve additional details fromentity context
*/
details.additional Dtls = myEntity. get Cont ext Cont ai ner (). get(
MyAddi ti onal EntityDtl s. cl ass);

return details;

}

Figure 127: A fagcade subclass which uses entity context

Here's our listener for reads on the original entity. Note, we're assuming that there will always be
a corresponding record on the new entity. Your design may have to cater for the situation where
this is not the case.

@i ngl et on
class MyEntityLi stener extends PersistenceEvent<MyEntity> {

/**
* After MyEntity is read, also read MyAdditional Entity.
*/
@verride
public void postRead(final MyEntity e) throws AppException,
I nf or mat i onal Excepti on {
/*

© Merative US L.P. 2012, 2024

1 Developing with the Persistence Infrastructure 93

* Read additional details from database

*/
MyAddi ti onal Entity additional Entity =

MyAddi ti onal EntityFactory
. newl nst ance();

MyAddi ti onal EntityKey key = new MyAdditional EntityKey();
key.id = e.getl X);
MyAddi tional EntityDtls dtls = additional Entity.read(key);

/*

* Store additional details in entity context

*/

e. get Cont ext Cont ai ner (). put (MyAddi tional EntityDtls. cl ass,
dtls);

}
}

Figure 128: A listener for reads on MyEntity

Here's how we register our listener. Note that if you combined the listener from the Insert
example and the Read example into a single listener class, you won't need this step. You only
register each listener class once:

public class MyMddul e extends Abstract Modul e {

@verride
protected void configure() {

/*
* Get the listener set
*/
Mul ti bi nder <Per si st enceEvent <MyEnti ty>> nyEvent Li steners =
Mul ti bi nder . newSet Bi nder (bi nder (),
new TypelLiteral <Persi stenceEvent<MyEntity>>() {/**/});

/-k
* Add a |istener
*/
nyEvent Li st eners. addBi ndi ng().to(MyEntityLi stener. cl ass);

}
}

Figure 129: A Guice module to register the listener in the previous listing

In summary, we've created a listener which receives read events for one entity and performs reads
on another, supplemental entity. The data from the supplemental entity is piggybacked on "entity
context", and is available to a fagade method which returns the details to a client.

Customising other operations using entity context

We've shown how to customize entity Insert and Read operations to handle additional data. It is
just as easy to handle additional data with other operation types using very similar approaches.

For modifications on an entity, perform the same facade-level customizations, and handle the
PersistenceEvent.postModify(ENTITY) event.

There are also persistence events for readmulti, remove, and cancel operations.

© Merative US L.P. 2012, 2024

Curam 8.1.2 94

1.8 State Transitions

The Persistence Infrastructure provides support for implementing entities which are state
machines. These entities each have their own "lifecycle", and the state of a particular entity
instance is held in a database column.

Typically, the state of an entity instance may be retrieved, but changes to the state must be
controlled through specialized methods.

This chapter explains how to implement an entity which has a state-based lifecycle.

The problem

Let's take an example: you analyze requirements to determine that your entity should support the
following state transitions:

Open ————suspend ——» Suspended
+—resume

close
close
——» Closed -«

Figure 130: State transition diagram for the example cookbook code

Moreover, each of these transitions has its unique validation, data manipulation and notification
requirements.

© Merative US L.P. 2012, 2024

1 Developing with the Persistence Infrastructure 95

The solution

You must follow these steps to implement state transitions using the Persistence Infrastructure
helper classes:

* Specify states;

» Specify storage mechanism for the state value;

* Identify transition methods;

* Implement getLifecycleState;

* Create a map to hold the permitted states;

* Create an object for each state;

* Create an object for each permitted transition;

+ Create a private getter to retrieve the current State;
» Create a private setter to set the current State;

» Create a private helper method to perform a state transition;
* Implement state transition methods;

* Specify the initial state;

» Add state transition validation logic; and

* Override the modify method (if required).

Specify states
Firstly you must identify the possible states of your entity. The possible states are:

* open;
» suspended; and
* closed.

Specify storage mechanism for the state value

Your entity must store its state in some form. A typical storage mechanism is to enumerate the
states in a codetable and store the code's String value on a database column.

In this example, you'll enumerate these states in a new codetable called
MYLIFECYCLEENTITYSTATE, and present the value as an instance of the generated
MYLIFECYCLEENTITYSTATEEntry class.

Create the codetable:

<?xm version="1.0" encodi ng="UTF-8"?>
<codet abl es package="curam nypackage. codet abl e" >
<codet abl e
java_identifier="MLI FECYCLEENTI TYSTATE"
name=" MYLI FECYCLEENTI TYSTATE"

>

<code
defaul t="fal se"
java_identifier="C0OPEN
st at us=" ENABLED"
val ue=" OPEN"

>
<l ocal e

| anguage="en"
sort _order="0"
>

© Merative US L.P. 2012, 2024

Curam 8.1.2 96

<descri pti on>QOpen</ descri pti on>
<annot ati on/ >
</l ocal e>
</ code>
<code
default="fal se"
java_identifier="SUSPENDED"
st at us=" ENABLED"
val ue=" SUSPENDED"
>
<l ocal e
| anguage="en"
sort _order="0"
>
<descri pti on>Suspended</ descri pti on>
<annot ati on/ >
</l ocal e>
</ code>
<code
default="fal se"
java_identifier="CLOSED"
st at us=" ENABLED"
val ue=" CLCSED"

<l ocal e
| anguage="en"
sort_order="0"
>

<descri pti on>Cl osed</ descri pti on>
<annot ati on/ >
</l ocal e>
</ code>
</ codet abl e>
</ codet abl es>

Figure 131: Creating a code table file listing the states of an entity

Now mark your entity's interface to extend the Lifecycle interface, parameterized with the data
type used to present the state (in this case, MYLIFECYCLEENTITY STATEEntry):
/ * %
* Description of ny state-nachine entity.
*/
@ npl enent edBy(MyLi f ecycl eEntityl npl . cl ass)

public interface MyLifecycleEntity extends StandardEntity,
Li f ecycl e<MYLI FECYCLEENTI TYSTATEEnt ry>

Figure 132: Extending the Lifecycle interface

Identify transition methods

Typically an entity must carefully control its transitions between states. As such, it is often better
to create specialized methods for state transitions rather than expose a setState method. Typically
the name of each specialized method will reflect the state being transitioned to.

Since a state-transition method will modify the entity's data on the database, each such method
should take the entity's version number (assuming that the entity supports optimistic locking).
Each specialized method is free to specify additional arguments which may be required, e.g.:

© Merative US L.P. 2012, 2024

1 Developing with the Persistence Infrastructure 97

» suspend (taking a suspension reason);
* resume (no arguments); and
* close (taking the end date of the entity).

Suspend
/**
* Suspends busi ness pendi ng investigation.
*
* Transitions the state to
* {@inkplain MYLI FECYCLEENTI TYSTATEENt r y#SUSPENDED}, if it is
* valid to suspend.
*
* @param r eason
* the reason for suspension
*
* @aram ver si onNo
* the version nunber as previously retrieved
*
* @hrows | nformati onal Exception
* if the entity is not in a valid state to
transition
* to
* {@inkpl ain

IWLI FECYCLEENTI TYSTATEENt r y#SUSPENDED} ,
or if any other validation errors are found
*/
public void suspend(final String reason, final int
ver si onNo)
t hrows | nformati onal Excepti on;

Figure 133: Interface declaration of a "suspend" state transition method

Resume
/**

* Resumes business follow ng a suspension investigation
resulting

* in acquittal.

*

* Transitions the state to

* {@inkplain MYLI FECYCLEENTI TYSTATEEnt ry#OPEN}, if it is
valid

* to resune business.

@ar am ver si onNo
the version nunber as previously retrieved

* ok ok ok ok

@hrows | nformational Exception
if the entity is not in a valid state to

*

transition
* to {@inkpl ai n MYLI FECYCLEENTI TYSTATEENt r y#OPEN},
or
* if any other validation errors are found
*/
public void resunme(final int versionNo)

© Merative US L.P. 2012, 2024

Curam 8.1.2 98

t hrows I nformational Excepti on;

Figure 134: Interface declaration of a "resume" state transition method

Close
/**

Ceases business with the agency.

Transitions the state to
{ @i nkpl ai n MYLI FECYCLEENTI TYSTATEEnt r y#CLOSED}, if it is
valid to cease conducting business.

@ar am endDat e
the date on which business with the agency was
sed

@ar am ver si onNo
t he version nunber as previously retrieved

* Ok Q) ok Ok Ok ok F ¥ F

@hrows | nfornmational Exception
if the entity is not in a valid state to

*

t ransi tion
to {@inkplain
IWLI FECYCLEENTI TYSTATEENt r y#CLOSED} ,
or if any other validation errors are found
*/
public void close(final Date endDate, final int versi onNo)
t hrows | nformati onal Excepti on;

Figure 135: Interface declaration of a "close" state transition method
Implementations of these methods are free to perform method-specific validations and

notifications, e.g. whenever suspend is called, to notify an investigations worker to launch an
investigation.

Note that this approach of having specialized methods (e.g. controlling the setting of state and
endDate through the close method) is far "cleaner" than an alternative approach of allowing a
public setter methods for setEndDate and setState and having complex validation to ensure that
whenever the state is modified (by calling code), that the endDate is set.

Implement getLifecycleState

You must implemented a getLifecycleState method, as required by the Lifecycle interface:
/ * %

* {@nheritDoc}
*/
publ i ¢ MYLI FECYCLEENTI TYSTATEEntry getLifecycleState() {
return MYLI FECYCLEENTI TYSTATEEntry. get(getDtls().state);
}

Figure 136: Implementing getLifecycleState

Create a map to hold the permitted states
Each state will be represented by an instance of the State helper class.

You must create a map to hold your entity's State instances:

© Merative US L.P. 2012, 2024

1 Developing with the Persistence Infrastructure 99

/ * %
* A map of the states for this entity
*/
private final Map<MYLI FECYCLEENTI TYSTATEEntry,
St at e<MYLI FECYCLEENTI TYSTATEEntry>> states =
new HashMap<MYL|I FECYCLEENTI TYSTATEEnt ry,
St at e<MYLI FECYCLEENTI TYSTATEEnt ry>>() ;

Figure 137: A map of permitted states

Create an object for each state

Each permitted state for your class is represented by an instance of the State> helper class. Here
you'll use the CodetableState> helper class:
/ * %
* Actively conducting business with the agency.
*/
private final State<MYLI FECYCLEENTI TYSTATEEntry> OPEN =

new Codet abl eSt at e<MyLlI FECYCLEENTI TYSTATEENt r y>(
states, MrLI FECYCLEENTI TYSTATEEntry. OPEN, true, true) {
s

/ * %
* Busi ness has been suspended pendi ng i nvestigati on.
*/
private final State<MyLlI FECYCLEENTI TYSTATEEntry> SUSPENDED =
new Codet abl eSt at e<MYLI FECYCLEENTI TYSTATEENt r y>(
states, MYLI FECYCLEENTI TYSTATEEnt ry. SUSPENDED, true, fal se)

{
s

/**

* No | onger conducting business with the agency.
*/
private final State<MYLI FECYCLEENTI TYSTATEEntry> CLOSED =
new Codet abl eSt at e<MYLI FECYCLEENTI TYSTATEENt r y>(
states, MYLI FECYCLEENTI TYSTATEEntry. CLOSED, fal se, false) {

b

Figure 138: Creating an object for each permitted state

Each State object is an anonymous class, constructed with:

1. the map to which the object will be added (states);

2. the value used to identify the state object in the map (typically, the code table entry value);
3. whether the entity may be modified when in this state; and

4. whether the entity may be removed when in this state.

© Merative US L.P. 2012, 2024

Curam 8.1.2 100

Note: There is no automatic processing surrounding the use of the "entity may be modified/
removed" values.

If you require to prevent modifications or removals when your entity is in a particular
state, you must override the modify and/or remove methods as appropriate, and in
them put validation logic which may make use of calls to State.isModifyAllowed or
State.isRemoveAllowed as appropriate.

See Override the modify method (if required) on page 104 below.

Create an object for each permitted transition

Each permitted transition between states is represented by an instance of the Transition helper
class.

From the state-transition diagram, you can see that the following transitions are required:

» from open to closed,

+ from open to suspended,

» from suspended back to open; and

» from suspended to closed.

private final Transition<MYLlI FECYCLEENTI TYSTATEEnt ry>
OPEN2CLOSED =

new Transiti on<MyYLI FECYCLEENTI TYSTATEENt r y>(
OPEN, CLOSED) {
3

private final Transition<MyLI FECYCLEENTI TYSTATEENntry>
OPEN2SUSPENDED =
new Transi ti on<MYLlI FECYCLEENTI TYSTATEENt r y>(
OPEN, SUSPENDED) ({
3

private final Transition<MyLI FECYCLEENTI TYSTATEENntry>
SUSPENDED2OPEN =
new Transi ti on<MYLI FECYCLEENTI TYSTATEENt r y>(
SUSPENDED, OPEN) ({
b

private final Transition<MYLlI FECYCLEENTI TYSTATEEntry>
SUSPENDED2CLOSED =
new Transiti on<MYLlI FECYCLEENTI TYSTATEENt r y>(
SUSPENDED, CLGCSED) {
}

Figure 139: Creating an object for each permitted transition

Each Transition object is an anonymous class, constructed with:

1. the State being exited (i.e. transitioned from); and
2. the State being entered (i.e. transitioned to).

© Merative US L.P. 2012, 2024

1 Developing with the Persistence Infrastructure 101

Note: Specifying the set of permitted transitions is typically more straightforward than
crafting logic to prevent unsupported transitions from occurring.

You do not need to specify a transition to the initial state - the initial state will be specified in
setNewlInstanceDefaults (see below).

Create a private getter to retrieve the current State

This method retrieves the State object representing the entity's current state. Note that the method
is private, as the State object is not exposed outside of the entity - callers which require to know
the entity's state must use getLifecycleState instead.

The relevant State object is retrieved by looking it up in the map of states.

/**

* @eturn The State object representing the current state
of

* this entity

*/

private State<MYLlI FECYCLEENTI TYSTATEEntry> getState() {
return states.get(getlLifecycleState());

}

Figure 140: Creating a private getter to retrieve the current State

Create a private setter to set the current State

This method sets the entity's state value from a State object. Note that the method is private.
/ * %

* Sets the state codetable code field fromthe State
obj ect

* supplied.

* @param val ue

* the State supplied
*/

private void set State(

final State<MyLI FECYCLEENTI TYSTATEEntry> state) {
getDtls().state = state. getVal ue(). get Code();
}

Figure 141: Creating a private setter to set the current State

Create a private helper method to perform a state transition

You must create a helper method which performs the state transition.
/ * %

Transitions this entity to the new state specified.

*
*

* @aram newSt at e

* the state to transition to

* @aram ver si onNo

* the version nunber of this entity as previously

* retrieved

* @hrows | nformational Exception

* if validation errors occur during the
transition

© Merative US L.P. 2012, 2024

Curam 8.1.2 102

*/
private void transitionTo(
final State<MyLI FECYCLEENTI TYSTATEEntry> newSt at e,
final Integer versionNo) throws Infornmational Exception {

/1l get the current state of this entity
final State<MYLI FECYCLEENTI TYSTATEEntry> ol dState =
getState();

/] set the field which stores the state val ue
set St at e(newSt ate) ;

// validate the state transition
oldState.transitionTo(newState);

/| update the database, bypassing any pre-nodify
val i dati on

/1 in this class

super . nmodi fy(ver si onNo) ;

Figure 142: Creating a private helper method to perform a state transition

Points to note:

+ the validation of whether the transition is permitted is performed by the State.transitionTo
method (i.e. in the line oldState.transitionTo(newState); in the figure above). See below for
how to add your own validation logic; and

* your entity may have overridden the modify method to add validation to be applied when
calling code invokes modify - often this logic is inappropriate to state transitions, and so
typically the storage of a state change is accomplished by a call to super.modify (as shown in
the figure above) rather then this.modify.

Implement state transition methods

Now you can code the implementations of your specialized state transition methods:
/ * %
* {@nheritDoc}
*/
public void close(Date endDate, int versionNo)
throws I nformati onal Exception {
/'l store the date of closure
set EndDat e(endDat €) ;

/] transition to "cl osed"
transiti onTo(CLOSED, versionNo);

}
/**

* {@ nheritDoc}
*/
public void resunme(int versionNo) throws |nformational Exception

/1 blank the suspension reason
set Suspensi onReason(nul 1) ;

/] transition to "open"

© Merative US L.P. 2012, 2024

1 Developing with the Persistence Infrastructure 103

transiti onTo(OPEN, versionNo);
}
/**
* {@nheritDoc}
*/
public void suspend(String reason, int versionNo)
throws I nformati onal Exception {
/| store the suspension reason
set Suspensi onReason(reason);

[/l transition to "suspended"
transi ti onTo(SUSPENDED, versi onNo);

}

Figure 143: Implementing state transition methods

These methods are publicly visible and callable through the entity's interface. Note that in the
figure above, additional setter methods (setEndDate and setSuspensionReason) are assumed.

Specify the initial state

You must specify the initial state for new instances of your entity:
/ * %
* Defaults the state to
* {@inkplain MYLI FECYCLEENTI TYSTATEENt r y#OPEN} .
*/
public void set Newl nstanceDefaul ts() {
set St at e(OPEN) ;

Figure 144: Specifying the initial state

Note: If you find that new instances have a number of possible initial states, then consider
whether:

» calling code should be responsible for creating a new instance of your entity with a default
state, and then immediately transitioning it to the required state; or

* you are trying to force logically different concepts to be stored on the same physical entity,
and perhaps should instead consider using inheritance/polymorphism to separate out
different behavior.

Add state transition validation logic

The CodetableState and Transition helper classes provide the following standard validation to
disallow any transition which is not explicitly specified. For example, the state transition diagram
does not permit an entity instance in the closed state to transition to any other state; by default,
any attempts to.suspend() an entity instance which is currently closed will result in this error
being raised: Cannot transition from 'Closed' to 'Suspended'.

You can add logic (typically to perform validations and/or notifications) to the following places:
* in your State objects:

» onEnter - this method is called whenever a transition occurs which attempts to enter this
State;

© Merative US L.P. 2012, 2024

Curam 8.1.2 104

» onLeave - this method is called whenever a transition occurs which attempts to leave this
State; and
» onUnsupportedTransitionFrom - this method is called whenever an unsupported transition
is attempted which attempts to transition to this State from the one specified; by default, the
CodetableState helper class raises a default message, but you are free to provider your own
validation/notification logic; and
* in your Transition objects:

» onTransition - this method is called whenever this Transition occurs.
See the Javadoc for the State, CodetableState and Transition helper classes for more information.

For example, if you want your logic to send an email whenever your entity is closed (regardless
of whether it was previously open or suspended), override the onEnter method of your CLOSED
state:
/ * %

* No | onger conducting business with the agency.

*/

private final State<MYLI FECYCLEENTI TYSTATEEntry> CLOSED =
new Codet abl eSt at e<MyYLI FECYCLEENTI TYSTATEEnNt r y>(
states, MyLI FECYCLEENTI TYSTATEEntry. CLOSED, fal se, false) {

@verride

protected void onEnter() {

/'l whenever the entity is closed, send an enail
sendd osureEmai | () ;

}
s

Figure 145: Adding state transition validation logic

Override the modify method (if required)

If you require logic to prevent modifications to the entity if it is in an inappropriate state, then you
must override your entity's modify method:

/**
* {@nheritDoc}
*/
@verride

public void nodify(lnteger versi onNo)
throws I nformati onal Exception {

if (lgetState().isMdifyAlowed()) {
Val i dat i onHel per
.addVal i dati onError (
"You are not allowed to nodify this record when it is in this
state"

)
}
super. nodi fy(versi onNo) ;

}

Figure 146: Overriding the modify method

© Merative US L.P. 2012, 2024

1 Developing with the Persistence Infrastructure 105

Note: Only explicit calls to your entity's modify method (e.g. through its interface) will hit
this logic - state transitions will typically call super.modify directly and thus bypass this logic.

Putting it al

| together

Here are full listings of the entity interface and implementation example used in this chapter:

package curam nypackage;

i mpo
i mpo

rt com googl e.inject.|npl enment edBy;

rt

curam nypackage. codet abl e. i npl . MYLI FECYCLEENTI TYSTATEEnt ry;

i mpo
i mpo
i mpo
i mpo
i npo
i mpo
i mpo

/**

rt curamutil.exception.|nformtional Excepti on;

rt curamutil. persistence.|nsertable;

rt curamutil.persistence. Optim sticLockMdifiable;
rt curamutil . persistence. StandardEntity;

rt curamutil. persistence. hel per. Lifecycle;

rt curamutil.type. Date;

rt curamutil.type. Dat eRanged;

* Description of ny state-nachine entity.

*/
@ np
publ

| ement edBy(MyLi f ecycl eEntityl npl. cl ass)
ic interface M/Lifecycl eEntity extends StandardEntity,
Dat eRanged, Lifecycl e<MyLI FECYCLEENTI TYSTATEEnt ry>,

I nsertabl e,

Opti m sticLockModifiable {

/**

*

*

—
-

Q) F ok ok ok ok Xk *

*

WL

Suspends busi ness pendi ng i nvestigati on.

Transitions the state to
{ @i nkpl ai n MYLI FECYCLEENTI TYSTATEENt r y#SUSPENDED}, if it is
valid to suspend.

@ar am r eason
the reason for suspension

@ar am ver si onNo
the version nunber as previously retrieved

@hrows | nformational Exception
if the entity is not in a valid state to
nsition
to
{@inkplain
| FECYCLEENTI TYSTATEENt r y#SUSPENDED} ,
or if any other validation errors are found

*/

pu

blic void suspend(final String reason, final int versionNo)
throws | nformati onal Excepti on;

/**

© Merative US L.P. 2012, 2024

Curam 8.1.2 106

* Resunes business followi ng a suspension investigation
resulting

* in acquittal.

*

* Transitions the state to

* {@inkplain MyLI FECYCLEENTI TYSTATEEnt ry#OPEN}, if it is
valid

* to resunme business.

*

* @aram ver si onNo

* the version nunber as previously retrieved

*

* @hrows | nformati onal Exception

* if the entity is not in a valid state to
transition

* to {@inkpl ain MYLI FECYCLEENTI TYSTATEENt r y#OPEN},
or

* if any other validation errors are found

*/

public void resunme(final int versionNo)
throws | nformati onal Excepti on;

/**

* Ceases business with the agency.

*

Transitions the state to
{@inkpl ai n MYLI FECYCLEENTI TYSTATEEnt r y#CLOSED}, if it is
valid to cease conducting business.

@ar am endDat e
the date on which business with the agency was

*

*

*

*

*

*
ceased

*

* @aram ver si onNo

* the version nunber as previously retrieved

*

* @hrows | nformational Exception

* if the entity is not in a valid state to
t ransi tion

to {@inkplain
IWLI FECYCLEENTI TYSTATEENt r y#CLOSED}
or if any other validation errors are found
*/
public void close(final Date endDate, final int versionNo)
throws | nformati onal Excepti on;

}

Figure 147: Lifecycle entity interface example

package curam nypackage;

i mport java.util.HashMap;
i nport java.util.Mp;

i nport curam nypackage. codet abl e. MYLI FECYCLEENTI TYSTATEEnt ry;

i mport curam nmypackage. struct. MyLi fecycl eEntityDtls;
import curamutil.exception.|nformational Excepti on;

© Merative US L.P. 2012, 2024

1 Developing with the Persistence Infrastructure 107

i mport curamutil.exception. Uninpl ement edExcepti on;

i nport curamutil . persistence. Validati onHel per;

i mport curamutil. persistence. hel per. Codet abl eSt at €;

i mport curamutil.persistence. hel per. Singl eTabl eEntityl npl;
i mport curamutil. persistence. hel per. St at e;

i mport curamutil. persistence. hel per. Transition;

i nport curamutil.type. Date;

i mport curamutil.type. Dat eRange;

/**
* Standard inplenentation of {@inkplain M/LifecycleEntity}.
*/
public class MyLifecycl eEntitylnpl extends
Si ngl eTabl eEntityl npl <MyLi f ecycl eEntityDtl s> i npl ements
MyLi f ecycl eEntity {

protected MyLifecycleEntitylnpl () {

/*
* Protected no-arg constructor for use only by Quice
*/
}
/*
* Persistence methods
*/
/**
* {@nheritDoc}
*/
@verride

public void nmodify(lnteger versi onNo)
throws I nfornational Exception {

if (lgetState().ishMdifyAllowed()) {
Val i dati onHel per
.addVal i dati onError (
"You are not allowed to nmodify this record when it is in this
state"
);

}

super. nodi fy(versi onNo) ;

}

/*
* Cetters
*/
/**
* {@nheritDoc}
*/
publ i ¢ MyLI FECYCLEENTI TYSTATEEntry getLifecycleState() {
return MyLI FECYCLEENTI TYSTATEEntry. get(getDtl s().state);

}

publ i ¢ Dat eRange get Dat eRange() {
t hrow new Uni npl enent edExcepti on();

}
/*

© Merative US L.P. 2012, 2024

Curam 8.1.2 108

{

* Setters
*/
private void set EndDat e(final Date val ue) {
t hrow new Uni npl enment edExcepti on();

}

private void set Suspensi onReason(final String value) {

t hr ow new Uni npl ement edException();

}

voi d sendd osureEmail () {
t hrow new Uni npl enment edExcepti on();

}

/*
* State transitions
*/

/**

* {@nheritDoc}
*/
public void close(Date endDate, int versi onNo)
throws I nformati onal Exception {
/| store the date of closure
set EndDat e(endDat €) ;

// transition to "cl osed"
transiti onTo(CLOSED, versi onNo);

}
/**
* {@nheritDoc}
*/
public void resunme(int versionNo) throws |nformational Exception
/1 blank the suspension reason
set Suspensi onReason(nul 1) ;
/1 transition to "open"
transiti onTo(OPEN, versionNo);
}
/**
* {@nheritDoc}
*/

public void suspend(String reason, int versionNo)

throws I nformati onal Exception {
/1 store the suspension reason
set Suspensi onReason(reason);

/1 transition to "suspended"
transi ti onTo(SUSPENDED, versi onNo);

}

/*
* State Transitions
*/

© Merative US L.P. 2012, 2024

1 Developing with the Persistence Infrastructure 109

/ * %
* A map of the states for this entity
*/
private final Map<MYLI FECYCLEENTI TYSTATEEntry,
St at e<MYLI FECYCLEENTI TYSTATEEnt r y>>
states =
new HashMap<MYLI FECYCLEENTI TYSTATEEntry,
St at e<MYLI FECYCLEENTI TYSTATEEnt ry>>() ;

/**

* @eturn The State object representing the current state of

this
* entity

*/

private State<MYLI FECYCLEENTI TYSTATEEntry> getState() {
return states.get(getLifecycleState());

}
/**

* Sets the state codetable code field fromthe State object
* supplied.
*
* @aram val ue
* the State supplied
*/
private void set State(
final State<MrLI FECYCLEENTI TYSTATEEntry> state) {
getDtls().state = state. getVal ue(). get Code();

}

/**

* Transitions this entity to the new state specified.

*

* @aram newSt at e

* the state to transition to

* @aram ver si onNo

* the version nunber of this entity as previously
* retrieved

* @hrows | nformati onal Exception

* if validation errors occur during the transition
*/

private void transitionTo(
final State<MyLlI FECYCLEENTI TYSTATEENntry> newSt at e,
final Integer versionNo) throws Informational Exception {
/1 get the current state of this entity
final State<MrLI FECYCLEENTI TYSTATEEntry> ol dState =
getState();

/] set the field which stores the state val ue
set St at e(newSt ate) ;

/1 validate the state transition
ol dState.transiti onTo(newSt ate);

/1 update the database, bypassing any pre-nodify validation

// this class

© Merative US L.P. 2012, 2024

Curam 8.1.2 110

super. nodi fy(versi onNo) ;

}

/**

* Actively conducting business with the agency.

*/

private final State<MyYLI FECYCLEENTI TYSTATEEntry> OPEN =

new Codet abl eSt at e<MYLI FECYCLEENTI TYSTATEENt r y>(st at es,
MYLI FECYCLEENTI TYSTATEEntry. OPEN, true, true) {
i

/**
* Busi ness has been suspended pendi ng i nvestigati on.
*/
private final State<MyLI FECYCLEENTI TYSTATEEntry> SUSPENDED =
new Codet abl eSt at e<MyL| FECYCLEENTI TYSTATEEnt r y>(st at es,
MYLI FECYCLEENTI TYSTATEENt ry. SUSPENDED, true, false) {
i

/**

* No | onger conducting business with the agency.

*/

private final State<MYLI FECYCLEENTI TYSTATEEntry> CLOSED =

new Codet abl eSt at e<MYLI FECYCLEENTI TYSTATEENnt r y>(st at es,
MYLI FECYCLEENTI TYSTATEEntry. CLOSED, fal se, false) {

@verride

protected void onEnter() {
/1 whenever the entity is closed, send an enai
sendd osur eEmai | ();

}
s

private final Transition<MYLlI FECYCLEENTI TYSTATEEnt ry>
OPEN2CLOSED =

new Transi ti on<MyLI FECYCLEENTI TYSTATEENt r y>(OPEN, CLOSED)
b

private final Transition<MyLI FECYCLEENTI TYSTATEEntry>
OPEN2 SUSPENDED =

new Transi ti on<MYLI FECYCLEENTI TYSTATEENt r y>(OPEN,
SUSPENDED) {

private final Transition<MYLlI FECYCLEENTI TYSTATEENnt ry>
SUSPENDED2OPEN =

new Transi ti on<MyLlI FECYCLEENTI TYSTATEENt r y>(SUSPENDED
OPEN) {

private final Transition<MyLI FECYCLEENTI TYSTATEEntry>
SUSPENDED2CLOSED =

new Transiti on<MYLlI FECYCLEENTI TYSTATEENt r y>(SUSPENDED.
CLCSED) {

/*

© Merative US L.P. 2012, 2024

1 Developing with the Persistence Infrastructure 111

* Validation
*/
public void mandat oryFi el dvalidation() {
t hrow new Uni npl enment edExcepti on();
}

public void crossFieldvalidation() {
t hr ow new Uni npl ement edException();
}

public void crossEntityValidation() {
t hrow new Uni npl enment edExcepti on();
}

/**

* Defaults the state to
* {@inkpl ai n MYLI FECYCLEENTI TYSTATEENt r y#OPEN} .
*/
public void set New nstanceDefaul ts() {
set St at e(OPEN) ;
}

}

Figure 148: Lifecycle entity implementation example

1.9 Inheritance

The Persistence Infrastructure includes support for simple inheritance. This support allows you
to:

» specify that an entity interface extends another entity interface; and
» allows you to store the data held (in your base and concrete entity classes) in a number of
different ways.

Identifying inheritance

If you are lucky, you will be able to directly identify concepts in your requirements which fall
into a natural inheritance hierarchy. Requirements which mention phrases like “Xisa Y”/“X is a
kind of Y7/ “X is a type of Y” are likely candidates for inheritance.

Often, though, you may only discover an inheritance hierarchy during implementation, and you
should refactor accordingly. Tell-tale signs include:

+ one or more methods whose behavior differs depending on the "type" of the entity instance;
» aneed to link each row on a database table (A) to exactly one of either:

e arow on table B; or
* arow on table C (but not both);

* aneed to pass around lists of entity instances, which may be made up of instances of entities
of more than one type.

It is often a good idea to look out for refactoring opportunities during implementation to take
advantage of appropriate object-oriented design techniques.

© Merative US L.P. 2012, 2024

Curam 8.1.2 112

Entity interface inheritance

Let's take a simple example: You require to store information about Cats and Dogs. You identify
that Cats and Dogs have a number of behaviors in common, and so you identify a common
Animal interface.

You need to code three interfaces, Cat, Dog and Animal with the Cat and Dog interfaces both
extending the Animal interface.

package curam i nheritance;

import curamutil. persistence.|nsertable;

i mport curamutil.persistence. Optim sticLockMdifi abl e;
i nport curamutil. persistence. StandardEntity;

i mport curamutil. persistence. hel per. Named;

public interface Aninmal extends StandardEntity, |nsertable,
Opti m sticLockMdifiable, Naned {

public void speak();
}
Figure 149: The Animal Interface

package curam i nheritance;
public interface Cat extends Animal {
public int getNumber O Li vesRemai ni ng() ;

public void set Nunber O Li vesRenai ni ng(final int value);

}

Figure 150: The Cat Interface

package curam i nheritance;

public interface Dog extends Aninmal {
public String getFavouriteTrick();

public void setFavouriteTrick(final String val ue);

}

Figure 151: The Dog Interface

DAO interfaces

You require to:

» create new Cat instances;

e retrieve a Cat, based on its ID;

+ create new Dog instances;

* retrieve a Dog, based on its ID; and

* retrieve a generic Animal, based on its ID (and receive a concrete Cat or Dog instance as
appropriate).

© Merative US L.P. 2012, 2024

1 Developing with the Persistence Infrastructure 113

The creation and retrieval of Cat and Dog instances is straightforward - create DAO interfaces for
Cats and Dogs (you can also include other retrievals too):

package curam i nheritance;

i mport java.util. Set;

i mport curamutil. persistence. St andar dDAG,

public interface Cat DAO extends StandardDAOC<Cat > {
public Set<Cat> readAll Cats();

}

Figure 152: The DAO interface for Cat

package curam i nheritance;

i mport java.util. Set;

import curamutil. persistence. St andar dDAG,

public interface DogDAO extends Standar dDAO<Dog> {
public Set <Dog> readAl | Dogs();

}

Figure 153: The DAO interface for Dog

The DAO interface for Animal is slightly different in that callers can retrieve a generic Animal
based on its ID (and the implementation will be responsible for creating a Cat or Dog object as
appropriate), but callers cannot create an Animal (all creations must create either a concrete Cat
or a concrete Dog).

Use the ReaderDAO interface instead of StandardDAO:

package curam i nheritance;

i mport java.util. Set;

i mport curamutil . persistence. Reader DAG,

public interface Ani mal DAO ext ends Reader DAOC<Long, Ani mal > {

publ i c Set<Ani mal > readAl | Ani mal s();

}

Figure 154: The read-only DAO interface for Animal

Note: Unlike the Animal/Cat/Dog interfaces, the DAO interfaces for Animal/Cat/Dog do not
form an inheritance hierarchy.

Deciding on database storage

The Persistence Infrastructure has support for the following data storage options:

© Merative US L.P. 2012, 2024

Curam 8.1.2 114

+ one table per class;
+ one table per concrete class; and
+ one table for the whole hierarchy.

These options are described in more detail below.
The option you choose will depend on a number of factors:

+ the amount of commonality or disparity between the data storage requirements for your
classes;

+ data retrieval requirements; and

* volumetric and performance concerns.

One table per class

If you choose this option, you will create one physical database table per class (whether abstract
or concrete) in your hierarchy.

This option makes use of a disciminator value in the form of the attribute Animal.animalType.
This attribute stores a String value which will allow the implementation to determine whether
a particular Animal is a Cat or a Dog without further reads. This data is denormalized (it can
be determined by attempting to read rows on the Cat and Dog tables and seeing which one
succeeds), however processing is greatly simplified and performance increase by the use of a
discriminator.

This option also assumes that all the tables in the hierarchy share the same key value (animallD).
It is possible (though very unwieldy) to allow different key values on the tables; for this example
assume that the primary key value of an abstract Animal row is the same as its corresponding
concrete Cat or Dog row.

You must provide the following implementation classes (listed in dependency order):

* Animallmpl;

* Catlmpl;

* Doglmpl;

* CatDAOImpl;

* DogDAOImpl; and
* AnimalDAOImpl.

These classes are described in detail below. The concrete (Cat and Dog) implementation classes
are reasonably straightforward, but the abstract (Animal) classes are more complex.

Animallmpl

package curam i nheritance;

i mport curam i nheritance. Ani nal ;

i mport curaminheritance.struct. Ani mal Dt s;

i nmport curamutil. persistence. EntityAdapter;

i mport curamutil. persistence. hel per. BasePl usConcr et eTabl el npl ;
i mport curamutil.type. Deepd oneabl g;

abstract class Ani nmal | npl <CONCRETE_ENTI TY ext ends Ani mal ,
CONCRETE_CLASS DTLS STRUCT ext ends Deepd oneabl e> ext ends
BasePl usConcr et eTabl el npl <Long, CONCRETE_ENTI TY,
Ani mal Dt1's, CONCRETE_CLASS DTLS STRUCT>
i mpl ements Ani mal {

© Merative US L.P. 2012, 2024

1 Developing with the Persistence Infrastructure 115

protected Animallnpl () {
}

@verride

protected void setDiscrimnator(final String value) {
set Ani mal Type(val ue) ;

}

@verride
protected EntityAdapter<Long, AnimalDtl s>
get BaseEntityAdapter () {
return new Ani mal Adapter();
}

public String getNane() {
return getBaseRowDt | s() . nane;
}

public void setName(final String value) {
get BaseRowDt | s() . name = val ue;
}

protected void set Ani mal Type(final String value) {
get BaseRowDt | s() . ani mal Type = val ue;
}

}

Figure 155: One table per class - implementation of abstract base class

There are a number of important features of this implementation which are explained below.

Class declaration

abstract class Ani nal | npl <CONCRETE _ENTI TY ext ends Ani mal ,
CONCRETE_CLASS _DTLS _STRUCT ext ends DeepC oneabl e> ext ends
BasePl usConcr et eTabl el npl <Long, CONCRETE_ENTI TY, Animal Dtl s,

CONCRETE_CLASS DTLS STRUCT>

The implementation class extends the helper class BasePlusConcreteTableImpl, which provides
support for simple two-level class hierarchies (such as the one in this example).

BasePlusConcreteTablelmpl is parameterized with the key type, the concrete entity interface and
the Dtls structs used to store the abstract and base rows. Animallmpl can directly supply two of
these parameters (namely Long and AnimalDtls), but the name of the concrete interface and Dtls
struct must be specified by the subclass implementations, and so the Animal class takes these
types as parameters.

The class is package-protected and marked abstract. In this example the subclasses will be placed
in the same code-package; if you require some of your subclasses to be in a different package,
you will need to mark your abstract implementation class public.

The class implements the Animal interface; note that the class implements only some of the
methods required by the interface, leaving others to the subclass implementation, e.g:

* Animallmpl provides an implementation for getName and setName, as the behavior is
identical for all Animal instances; but

* Animallmpl does not provide an implementation for speak, as the behavior will differ between
Cat and Dog instances.

© Merative US L.P. 2012, 2024

Curam 8.1.2 116

Protected constructor

protected Animallnpl () {
}

Store discriminator value

@verride
protected void setDiscrinmnator(final String value) {
set Ani mal Type(val ue);

}

The class must override the BasePlusConcreteTableImpl.setDiscriminator method to store the
discriminator in an appropriate column (in this example the animal Type column). A protected
setter is used to set the column value.

Base entity adapter

@verride
protected EntityAdapter<Long, AninmalDtl s>

get BaseEntit yAdapter () {
return new Ani mal Adapter();

}

The class must override the BasePlusConcreteTableImpl.getBaseEntityAdapter method to
provider an entity adapter for retrieving and storing the database row for the base class.

Getters and Setters

The getters and setters make use of the BasePlusConcreteTableImpl.getBaseRowDtls to retrieve
the Dtls struct for the base row (in this example an AnimalDtls struct).

© Merative US L.P. 2012, 2024

1 Developing with the Persistence Infrastructure 117

Catlmpl

One table per class - implementation of concrete class

package curam.inheritance;

import curam.inheritance.Cat;

import curam.inheritance.struct.CatDtls;
import curam.test.codetable.ANIMAL TYPE;

public class CatImpl extends AnimalImpl<Cat, CatDtls>

implements Cat {

protected CatImpl () {
}

@Override

protected String getDiscriminatorValue () {
return ANIMAL_TYPE.CAT;

}

@QOverride

protected void mapBaseKeyToConcreteDtls () {
getConcreteRowDtls () .animalID = getBaseRowDtls () .animallID;

}

public int getNumberOfLivesRemaining () {
return getConcreteRowDtls () .numberOfLivesRemaining;

}

public void setNumberOfLivesRemaining(final int value) {
getConcreteRowDtls () .numberOfLivesRemaining = value;

}

public void speak() {
System.out.println ("Miaow! My name is " + getName ()
+ " and I have " + getNumberOfLivesRemaining ()
+ " lives remaining");

}

public void setNewInstanceDefaults() {// none required

}

public void crossFieldvValidation() {// none required

}

public void crossEntityValidation() {// none required

}

public void mandatoryFieldValidation() {// none required

}

Class declaration

final class CatImpl extends AnimalImpl<Cat, CatDtls>

implements Cat {

The class:

extends the Animallmpl class created above, specifying the Cat interface and CatDtls struct as

parameters; and

implements the Cat interface (which in turn extends the Animal interface).

Constructor

protected CatImpl () {

}

© Merative US L.P. 2012, 2024

Curam 8.1.2 118

The class has a protected constructor, as is the norm for the implementation classes.

Specifying the discriminator value

@Override
protected String getDiscriminatorValue () {
return ANIMAL TYPE.CAT;
}

The class must override the BasePlusConcreteTableImpl.getDiscriminatorValue method to
specify the discriminator String value which distinguishes Cat instances from other types of
Animal.

In this example a code-table constant is used to provide the String value.

Mapping the base key

@Override
protected void mapBaseKeyToConcreteDtls () {
getConcreteRowDtls () .animalID = getBaseRowDtls () .animalID;
}

The class overrides the BasePlusConcreteTablelmpl.mapBaseKeyToConcreteDtls method, which
is called when a new entity instance is stored on the database. Typically, the base row uses the
AUTO _ID facility to assign a primary key value on insert, and since (in this example) Animal
and Cat share key values, the key value assigned to the Animal.animallD column must also be
stored on the Cat.animallD column.

The method makes use of these methods from BasePlusConcreteTableIlmpl :

+ getBaseRowDtls, to access the AnimalDtls row data; and
» getConcreteRowDtls, to access the CatDtls row data.

Getters and Setters

The getters and setters make use of the BasePlusConcreteTableImpl.getConcreteRowDtls method
to access the CatDtls row data.

Implementations for the getters and setters for the Animal fields are inherited from Animallmpl.

speak

public void speak () {
System.out.println("Miaow! My name is " + getName () +
" and I have "+ getNumberOfLivesRemaining() +
" lives remaining");

This class must provide an implementation of the Animal.speak method - recall that this method
is not implemented in Animallmpl, as the logic differs between Catlmpl and Doglmpl.

Doglimpl
package curam i nheritance;
i mport curam i nheritance. Dog;

i mport curaminheritance. struct. DogDtl s;
i nport curamtest.codetabl e. ANl MAL_TYPE;

© Merative US L.P. 2012, 2024

1 Developing with the Persistence Infrastructure 119

cl ass Dog extends Ani mal <Dog, DogDt! s> inplenents Dog {

protected Dog() {
}

@verride
protected String getD scrimnatorValue() {
return ANl MAL_TYPE. DOG,

}

@verride
protected voi d mapBaseKeyToConcreteDtls() {
get ConcreteRowDt | s(). ani mal I D = get BaseRowDt | s() . ani mal | D

}

public String getFavouriteTrick() {
return getConcreteRowbDt| s().favouriteTrick;

}

public void setFavouriteTrick(final String value) {
get Concret eRowDt | s() . favouriteTrick = val ue;

}

public void speak() {
Systemout.println("Wof! M nanme is " + getName()
+ " and | like to " + getFavouriteTrick());
}

public void set Newl nstanceDefaul ts() {// none required

}

public void crossFieldvalidation() {// none required

}

public void crossEntityVvalidation() {// none required

}

public void mandat oryFi el dvalidation() {// none required

}
}

Figure 156: One table per class - implementation of another concrete class

The structure of this class is similar to Catlmpl above.
CatDAOImpl and DogDAOImpl

package curam i nheritance;

i mport java.util. Set;

i mport com googl e.inject. Singleton;

i nport curam i nheritance. Cat;

i mport curam i nheritance. Cat DAG

i mport curaminheritance.struct.CatDtl s;
i mport curamutil. persistence. Standar dDAQ npl ;

© Merative US L.P. 2012, 2024

Curam 8.1.2 120

@si ngl et on
public class Cat DAO ext ends StandardDAQ npl <Cat, CatDtl s>
i mpl ement s
Cat DAO {
private static final CatAdapter adapter = new Cat Adapter();
/**
* Protected no-arg constructor for use only by Guice
*/

protected Cat DAQ() {
super (adapter, Cat.class);

public Set<Cat> readAll Cats() {
return newSet (adapter.readAll());
}

i)ackage curam i nheritance;

i mport java.util. Set;

i mport com googl e. i nject. Singleton;
i mport curam i nheritance. Dog;

i nport curam i nheritance. DogDAQ,

i mport curam i nheritance. struct. DogDtls;
i mport curamutil. persistence. Standar dDAQ npl ;

@si ngl et on
public class DogDAO ext ends StandardDAO npl <Dog, DogDt| s>
i mpl enent s
DogDAO {
private static final DogAdapter adapter = new DogAdapter();
/**
* Protected no-arg constructor for use only by Guice
*/

protected DogDAQ() {
super (adapt er, Dog. cl ass);

public Set<Dog> readAl | Dogs() {
return newSet (adapter.readAll());
}

}

Figure 157: One table per class - DAO implementations for the concrete classes

The DAO classes for the concrete classes are straightforward DAO implementations.

CatDAOImpl and DogDAOImpl each support the creation of new instances of their respective
entities, as well as retrieval of existing instances, by making use of the StandardDAOImpl class.

AnimalDAOImpl

package curam i nheritance;

© Merative US L.P. 2012, 2024

1 Developing with the Persistence Infrastructure 121

i mport java.util.HashMap;
i nport java.util.Map;
i mport java.util. Set;

i mport com googl e.inject.|nject;
i mport com googl e. i nject. Singleton;

i mport curam i nheritance. Ani nal ;

i mport curam i nheritance. Ani mal DAG,

i mport curam i nheritance. Cat DAG

i mport curam i nheritance. DogDAG,

i mport curam i nheritance. Ani mal Dt s;

i mport curamtest. codetabl e. ANl MAL_TYPE;

i mport curamutil . persistence. BaseDAQ npl ;
i mport curamutil. persistence. Reader DAG,

i mport curamutil.persistence. Rowanager ;

@si ngl et on
public class Ani mal DAO npl extends
BaseDAQ npl <Long, Animal, Aninmal Dtls> inplenents Ani mal DAO {

private static final Aninmal Adapter adapter = new
Ani mal Adapter();

@ nj ect
privat e Cat DAO cat DAQ

@ nj ect
private DogDAO dogDAQ

/**
* Protected no-arg constructor for use only by Guice
*/
protected Ani mal DAQ() {
super (adapter, Aninal.class);

@verride
protected String getDiscrimnator(
fi nal RowMvanager <Long, Ani nal Dtl s> rowvanager) {
return rowMhnager.getDtl s(). ani mal Type;

}

@verride
protected Map<String, Reader DAO<Long, ? extends Ani nal >>
get Concr et eReader DAGs() {

final Map<String, Reader DAO<Long, ? extends Ani nal >>
concr et eReader DAGs =
new HashMap<String, Reader DAC<Long, ? extends Ani mal >>();

concr et eReader DAGs. put (ANl MAL_TYPE. CAT, cat DAO);
concr et eReader DAGs. put (ANl MAL_TYPE. DOG, dogDAO) ;
return concret eReader DAGs;

}

public Set <Ani mal > readAl | Ani na

Is() {
return newSet (adapter.readAl());

© Merative US L.P. 2012, 2024

Curam 8.1.2 122

}
}

Figure 158: One table per class - DAO implementation for the abstract class

Class declaration

final class Animal DAO npl extends
BaseDAQ npl <Long, Aninal, Animal Dtls> inplenments Ani mal DAO

The class extends the BaseDAOImpl class, which provides support for reading instances

of abstract classes (by calling back to the implementation to decide which concrete class to
instantiate). AnimalDAOImpl is responsible for retrieving a Cat or Dog instance, according to the
value of the discriminator column, i.e. Animal.animalType.

Adapter
private static final Aninmal Adapter adapter = new Ani mal Adapter();

The class contains an adapter variable, as is the norm for DAO implementations.

DAO instances

@ nj ect
private Cat DAO cat DAG,

@ nj ect
private DogDAO dogDAQG,

The class contains injected instances of the DAO interfaces for the concrete classes.

These DAOs will be used to "dish up" the appropriate concrete type when a calling requests to
read or search for Animal instances.

Protected constructor
/**
* Protected no-arg constructor for use only by Guice
*/
protected Ani nmal DAQ() {
super (adapter, Aninal.cl ass);

The class contains a protected constructor, as is the norm for DAO implementations. This
constructor passes the adapter and the entity class to the super constructor.

Get discriminator value from arow read from the database

@verride
protected String getDiscrimnator(
final RowManager <Long, Ani mal Dl s> rowiMvhanager) {
return rowvanager.getDtl s(). ani mal Type;

}

You must override the BaseDAOImpl.getDiscriminator method to return the discriminator value
from an abstract row read from the database (in this example, the value of Animal.animallD is
returned from the row read).

© Merative US L.P. 2012, 2024

1 Developing with the Persistence Infrastructure 123

Map discriminator values to DAO instances

@verri de
protected Map<String, Reader DAO<Long, ? extends Ani nal >>
get Concr et eReader DAGs() {
final Map<String, Reader DAO<Long, ? extends Ani nal >>
concr et eReader DAGCs =
new HashMap<String, Reader DAO<Long, ? extends Ani nal >>();

concr et eReader DAGs. put (ANl MAL_TYPE. CAT, cat DAO);
concr et eReader DAGs. put (ANl MAL_TYPE. DOG, dogDAO) ;
return concr et eReader DAGs;

}

You must override the BaseDAOImpl.getConcreteReaderDAOs method to return a map of DAOs
which can read the concrete instances of your entity.

The persistence infrastructure uses this map to retrieve a Cat or Dog as appropriate, depending on
the value of Animal.animallD.
One table per concrete class

If you choose this option, you will create one physical database table for each concrete class, in
this example Cat and Dog. The abstract class will have no table of its own; instead, the abstract
fields will be replicated on each of the concrete tables.

You must provide the following implementation classes (listed in dependency order):

* Animallmpl (optional);
* Catlmpl;

* Doglmpl;

* CatDAOImpl;

* DogDAOImpl; and

* AnimalDAOImpl.

These classes are described in detail below. The concrete (Cat and Dog) implementation classes
are reasonably straightforward, but the abstract (Animal) classes are more complex.

Animallmpl

package curam i nheritance;
i mport curam i nheritance. Ani nal ;
i mport curamutil.persistence. hel per. Singl eTabl eEntityl npl;
i mport curamutil.type. Deepd oneabl e;
abstract class Ani mal |l npl <DTLS_STRUCT ext ends DeepC oneabl e>
extends Singl eTabl eEntityl npl <DTLS STRUCT> i npl enents Ani nal
{

public void printNane() {
Systemout.println("My name is " + getNanme());
}

}

Figure 159: One table per concrete class - implementation of abstract base class

© Merative US L.P. 2012, 2024

Curam 8.1.2 124

You may provide this implementation if there is any common behavior between your concrete
classes which is identical.

Note: Although the behavior of attribute getters and setters for the base class is conceptually
identical for all Animal instances, technically they differ since:

« Cat instances will store their Animal attributes on the Cat table; and
* Dog instances will store their Animal attributes on the Dog table.

Hence the implementation of Animal getters and setters cannot be implemented in a central
place.

The class is parameterized with the name of the Dtls struct, to be supplied by the implementing
subclass.

The class is package-protected and marked abstract. In this example the subclasses will be placed
in the same code-package; if you require some of your subclasses to be in a different package,
you will need to mark your abstract implementation class public.

If there is no common implementation logic, you may omit this class, and instead concrete classes
will inherit from SingleTableEntityImpl (or some other suitable class) directly.

Catlmpl

package curam i nheritance;

i mport curam i nheritance. Cat;
i mport curaminheritance.struct.CatDtl s;

public class Catlnpl extends Aninmallnpl<CatDtl s> inplenents Cat {

protected Catlnpl () {
}

public int getNunber O Li vesRemai ni ng() {
return getDtl s().nunber O Li vesRenai ni ng;
}

public void set Nunber O Li vesRenai ni ng(final int value) {
getDtl s(). nunber O Li vesRenmi ni ng = val ue;

public String getName() {
return getDtls().nane;
}

public void setNane(String val ue) {
getDtls().name = val ue;

public void speak() {
Systemout.printin("Maow M nane is " + getNane()
+ " and | have " + get Nunber O Li vesRermai ni ng()
+ " lives renaining");

}

public void crossFieldVvalidation() {

© Merative US L.P. 2012, 2024

1 Developing with the Persistence Infrastructure 125

/1 none required

}

public void crossEntityValidation() {
/! none required
}

public void mandat oryFi el dvalidation() {
/1 none required
}

public void set Newl nst anceDefaul ts() {
/1 none required
}

}

Figure 160: One table per concrete class - implementation of concrete class

Class declaration
public class Catlnpl extends Animallnpl<CatDtls> inplenments Cat {
The class:

+ extends the Animallmpl class created above, specifying the CatDtls struct as a parameter; and
* implements the Cat interface (which in turn extends the Animal interface).

Protected constructor

protected Catlnpl () {
}

The class has a protected constructor, as is the norm for the implementation classes.

Getters and Setters

The getters and setters make use of the regular SingleTableEntitylmpl.getDtls method to access
the CatDtls row data.

Getters and setters are supplied for both:

* Cat -specific fields; and
+ fields common across all Animal types.

speak

public void speak() {
Systemout.printin("Maow M nane is " + getNane() +
" and | have " + get Nunmber O Li vesRerai ni ng() +
" lives renaining");

}

This class must provide an implementation of the Animal.speak method.
Doglmpl

package curam i nheritance;

i mport curam i nheritance. Dog;

© Merative US L.P. 2012, 2024

Curam 8.1.2 126

i mport curaminheritance.struct. DogDtl s;
public class Dogl npl extends Ani nmal | npl <DogDt| s> i npl ements Dog {

protected Doglnpl () {
}

public String getFavouriteTrick() {
return getDtls().favouriteTrick;

}

public void setFavouriteTrick(final String value) {
getDtls().favouriteTrick = val ue;

}

public String getNane() {
return getDtl s(). nane;

}

public void setNane(String val ue) {
getDtl s().name = val ue;

public void speak() {
Systemout.println("Wof! M name is " + get Name()
+ " and | like to " + getFavouriteTrick());
}

public void crossFieldVvalidation() {
/!l none required

}

public void crossEntityValidation() {
/1 none required

}

public void mandat oryFi el dval i dation() {
/1 none required

}

public void set Newl nstanceDefaul ts() {
/!l none required

}
}

Figure 161: One table per concrete class - implementation of another concrete class

The structure of this class is similar to Catlmpl above.
CatDAOImpl and DogDAOImpl

package curam i nheritance;
i mport java.util. Set;

i mport com googl e.inject. Singleton;

© Merative US L.P. 2012, 2024

1 Developing with the Persistence Infrastructure 127

i mport curam i nheritance. Cat;

i nport curam i nheritance. Cat DAQ

i mport curam i nheritance.struct.CatDtls;

i mport curamutil. persistence. Standar dDAQ npl ;

@51 ngl et on
public class Cat DAO npl extends StandardDAO npl <Cat, CatDtl s>
i mpl ement s Cat DAO {
private static final CatAdapter adapter = new Cat Adapter();

/**
* Protected no-arg constructor for use only by Guice
*/
protected Cat DAA nmpl () {
super (adapter, Cat.class);

public Set<Cat> readAll Cats() {
return newSet (adapter.readAl ());
}

}

package curam i nheritance;
i mport java.util. Set;
i mport com googl e.inject. Singleton;

i mport curam i nheritance. Dog;

i mport curam i nheritance. DogDAQ

i nport curami nheritance. struct. DogDtl s;

i mport curamutil. persistence. Standar dDAQ npl ;

@i ngl et on
public class DogDAO npl extends Standar dDAO npl <Dog, DogDtl s>
i mpl ement's DogDAO {
private static final DogAdapter adapter = new DogAdapter();

/**

* Protected no-arg constructor for use only by Guice
*/
prot ect ed DogDAO mpl () {

super (adapter, Dog.cl ass);

public Set<Dog> readAl | Dogs() {
return newSet (adapter.readAll());
}

}

Figure 162: One table per concrete class - DAO implementations for the concrete classes

The DAO classes for the concrete classes are straightforward DAO implementations.

CatDAOImpl and DogDAOImpl each support the creation of new instances of their respective
entities, as well as retrieval of existing instances, by making use of the StandardDAOImpl class.

© Merative US L.P. 2012, 2024

Curam 8.1.2 128

AnimalDAOImpl

package curam i nheritance;

import java.util.HashSet;
i mport java.util. Set;

i mport com googl e.inject.|nject;
i mport com googl e. i nject. Singleton;

i mport curamutil.exception. Uninpl ement edExcepti on;

@i ngl et on
public class Ani mal DAO npl inplements Ani mal DAO {
@ nj ect
private Cat DAO cat DAQ,
@ nj ect
private DogDAO dogDAQ
/**
* Protected no-arg constructor for use only by Guice
*/
protected Ani mal DAO nmpl () {
}

publ i c Set <Ani mal > readAl | Ani mal s() {

final Set<Cat> cats = cat DAO readAl |l Cats();
final Set<Dog> dogs = dogDAQO. readAl | Dogs();

final Set<Animl> ani mals = new HashSet <Ani mal >(cat s. si ze()
+ dogs. si ze());

ani mal s. addAl | (cats);

ani mal s. addAl | (dogs) ;

return ani mal s;

}

public Animal get(final Long id) {
t hrow new Uni npl enment edExcepti on();

}
}

Figure 163: One table per concrete class - DAO implementation for the abstract class

Class declaration
public class Ani mal DAQ npl i npl enents Ani mal DAO {

The class does not make use of any superclasses for its implementation.

Adapter

Unlike most DAO implementations, there is no adapter variable because there is no physical
Animal database table.

© Merative US L.P. 2012, 2024

1 Developing with the Persistence Infrastructure 129

DAO instances

@ nj ect
private Cat DAO cat DAG,
@ nj ect
private DogDAO dogDAQG,

The class contains injected instances of the DAO interfaces for the concrete classes.

These DAOs will be used to delegate searches to.

Protected constructor
| **

* Protected no-arg constructor for use only by Guice
*/

protected Ani mal DAO nmpl () {

}

The class contains a protected constructor, as is the norm for DAO implementations.
Performing a search across Animal types
public Set<Ani mal > readAl | Ani mal s() {

final Set<Cat> cats = cat DAO readAll Cats();

dogDAQ. r eadAl | Dogs();

final Set<Dog> dogs

final Set<Animal> animals =

new HashSet <Ani nmal >(cats. si ze() + dogs. size());
ani mal s. addAl | (cat s);
ani mal s. addAl | (dogs) ;

return ani mal s;

}

A search of Animal instances across the Cat and Dog tables is performed by naively delegating
the searches and combing the results.

Unsupported - retrieval of an Animal by its ID

public Animal get(final Long id) {
t hrow new Uni npl enent edExcepti on();
}

Important: It is not possible to retrieve a generic Animal by its ID. This is because the Cat
and Dog database tables maintain their own IDs - there is no concept of an animallD as such.

If you require to be able to retrieve a generic Animal by its ID, then do not choose to store your
data using this "One table per concrete class" method.

One table for the whole hierarchy

If you choose this option, you will create one physical database table to store all types in the
hierarchy. The single table, in this example Animal will store all attributes required by any type,
with default/null values stored where not applicable to a particular type.

© Merative US L.P. 2012, 2024

Curam 8.1.2 130

This option requires a disciminator value in the form of the attribute Animal.animalType. This
attribute stores a String value which will allow the implementation to determine whether a
particular Animal is a Cat or a Dog.

You must provide the following implementation classes (listed in dependency order):

* Animallmpl;

* Catlmpl;

* Doglmpl;

* CatDAOImpl;

* DogDAOImpl; and
* AnimalDAOImpl.

These classes are described in detail below. The concrete (Cat and Dog) implementation classes
are reasonably straightforward, but the abstract (Animal) classes are more complex.

Animallmpl

package curam i nheritance;

i mport curam i nheritance. Ani nal ;
i nport curaminheritance. struct. Aninmal Dtls;
i mport curamutil. persistence. hel per. Si ngl eTabl eEntityl npl;

abstract class Aninallnpl extends
Si ngl eTabl eEnti tyl npl <Ani mal Dt | s>
i npl enents Ani mal {

protected Animal I npl () {
}

public String getNane() {
return getDtls().nane;

}

public void setNane(final String value) {
getDtl s().name = val ue;

}

Figure 164: One table for the whole hierarchy - implementation of abstract base class

Class declaration

abstract class Aninallnpl extends
Si ngl eTabl eEnti tyl npl <Ani mal Dt | s>
i mpl ements Ani mal {

The implementation class extends the standard class SingleTableEntitylmpl, parameterized with
the Dtls struct from the single database table (AnimalDtls).

The class is package-protected and marked abstract. In this example the subclasses will be placed
in the same code-package; if you require some of your subclasses to be in a different package,
you will need to mark your abstract implementation class public.

The class implements the Animal interface; note that the class implements only some of the
methods required by the interface, leaving others to the subclass implementation, e.g:

© Merative US L.P. 2012, 2024

1 Developing with the Persistence Infrastructure 131

* Animallmpl provides an implementation for getName and setName, as the behavior is
identical for all Animal instances; but

* Animallmpl does not provide an implementation for speak, as the behavior will differ between
Cat and Dog instances.

Protected constructor

protected Animal lnpl () {

}

Getters and Setters

The getters and setters make use of the SingleTableEntitylmpl.getDtls to retrieve the Dtls struct
for the single row (in this example an AnimalDtls struct).

Catimpl

package curam i nheritance;

i mport
i mport
i mport
i mport
i mport

public

curam i nheritance. Cat;

curam i nheritance.struct. Aninal Dt s;

curamtest. codet abl e. ANl MAL_TYPE;

curamutil . persistence. Entitylnfo;

curam util . persistence. hel per. Si ngl eTabl eEnti tyl npl ;

class Catlnpl extends Animallnpl inplements Cat {

protected Catlnpl () {

}

/**

* {@nheritDoc}

*/

@verride
public void setEntitylnfo(

Entityl nfo<Long, SingleTableEntityl npl <Ani mal Dtl s>,
Ani mal Dt | s>
entitylnfo) {

super.setEntitylnfo(entitylnfo);

/11
/11
i f

}
}

check that this object has been constructed with an
appropriate row

(getID() !'= null
&& 'getDtl s(). ani mal Type. equal s(ANI MAL_TYPE. CAT)) {

t hrow new Runti neException("Expected to be a cat");

public int getNunmberOLivesRemaining() {
return getDtl s().nunber O Li vesRenai ni ng;

}

public void setNunber O Li vesRemai ni ng(final int value) {
getDtl s(). nunber O Li vesRenmi ni ng = val ue;

public void speak() {
Systemout.printin("Maow M nanme is " + getNane()

© Merative US L.P. 2012, 2024

Curam 8.1.2 132

+ " and | have " + get Nunmber O Li vesRemai ni ng()
+ " lives remining");

}

public void crossFieldValidation() {
/1 none required

}

public void crossEntityVvalidation() {
/1 none required

}

public void mandat oryFi el dvalidation() {
/!l none required

}

public void set Newl nst anceDefaul ts() {
getDtls().ani mal Type = ANl MAL_TYPE. CAT;

}

Figure 165: One table for the whole hierarchy - implementation of concrete class

Class declaration
public class Catlnpl extends Animallnpl inplenments Cat {
The class:

+ extends the Animallmpl class created above. As there is only a single database table, no
parameters are required; and
» implements the Cat interface (which in turn extends the Animal interface).

Protected constructor

protected Catlnpl () {
}

The class has a protected constructor, as is the norm for the implementation classes.

Confirming that the correct type has been retrieved
/ * %

* {@nheritDoc}
*/

@verride
public void setEntitylnfo(
Entityl nfo<Long, SingleTabl eEntityl npl <Animal Dtl s>,
Ani mal Dt | s>
entitylnfo) {
super.setEntitylnfo(entitylnfo);

/1 check that this object has been constructed with an
/| appropriate row
if (getID() !'= null &&
I'getDtl s(). ani mal Type. equal s(ANl MAL_TYPE. CAT)) {
t hrow new Runti neException("Expected to be a cat");

}

© Merative US L.P. 2012, 2024

1 Developing with the Persistence Infrastructure 133

}

If the CatDAO is used to retrieve a Cat instance, it is important to check that the Animal row
retrieved actually contains the correct discriminator value for a Cat, to guard against client code
trying to retrieve a Cat based on a Dog 's ID.

Getters and Setters

The getters and setters make use of the SingleTableEntitylmpl.getDtls method to access the
AnimalDtls row data.

Implementations for the getters and setters for the Animal fields are inherited from Animallmpl.

speak

public void speak() {
Systemout.printin("Maow M nane is " + getNane() +
" and | have " + get Nunber O Li vesRerai ning() +
" lives renaining");

}

This class must provide an implementation of the Animal.speak method - recall that this method
is not implemented in Animallmpl, as the logic differs between Catlmpl and Doglmpl.

Specifying the discriminator value for new instances

public void set Newl nstanceDefaul ts() {
getDtl s().ani mal Type = ANl MAL_TYPE. CAT,
}

When a new Cat is created, its discriminator value must be set. This is done in the
setNewlInstanceDefaults method.

Doglmpl

package curam i nheritance;

i nport curam i nheritance. Dogl npl ;

i mport curaminheritance.struct. Ani mal Dtl s;

i mport curamtest.codetabl e. ANl MAL_TYPE;

import curamutil. persistence. Entitylnfo;

import curamutil.persistence. hel per. Singl eTabl eEntityl npl;

public class Doglnpl extends Aninallnpl inplenents Dog {

prot ected Dogl npl () {
}

/**
* {@nheritDoc}
*/
@verride
public void setEntitylnfo(
Entityl nfo<Long, SingleTableEntitylnpl <Aninmal Dtl s>,
Ani mal Dt | s>
entitylnfo) {
super.setEntitylnfo(entitylnfo);

/1 check that this object has been constructed with an

© Merative US L.P. 2012, 2024

Curam 8.1.2 134

/| appropriate row

if (getlD) !'= null
&& !'getDtl s(). ani mal Type. equal s(ANI MAL_TYPE. DOG)) {
t hrow new Runti neException("Expected to be a dog");

}
}

public String getFavouriteTrick() {
return getDtls().favouriteTrick;
}

public void setFavouriteTrick(final String value) {
getDtls().favouriteTrick = val ue;

public void crossFieldvalidation() {
/1 none required

}

public void crossEntityVvalidation() {
/1 none required

}

public void mandat oryFi el dvalidation() {
/1 none required

}

public void speak() {
Systemout.println("Wof! M nanme is " + getNanme()
+ " and | like to " + getFavouriteTrick());
}

public void set Newl nstanceDefaul ts() {
getDtl s().ani mal Type = ANl MAL_TYPE. DCG,

}

Figure 166: One table for the whole hierarchy - implementation of another concrete class

The structure of this class is similar to Catlmpl above.
CatDAOImpl and DogDAOImpl

package curam i nheritance;
i mport java.util.Set;
i mport com googl e. i nject. Singleton;

i mport curam i nheritance. Cat;

i mport curaminheritance. Cat DAG

i mport curam i nheritance.struct. Aninmal Dt s;

i mport curamtest. codetabl e. ANl MAL_TYPE;

i nport curamutil . persistence. St andar dDAQ npl ;

@i ngl et on

public class Cat DAO npl extends StandardDAQ npl <Cat, Ani nmal Dt| s>
i mpl ement s Cat DAO {

© Merative US L.P. 2012, 2024

1 Developing with the Persistence Infrastructure 135

private static final Aninmal Adapter adapter = new
Ani mal Adapter();

/**
* Protected no-arg constructor for use only by Guice
*/
protected Cat DAO nmpl () {
super (adapter, Cat.class);

public Set<Cat> readAll Cats() {
return newSet (adapter. searchByAni mal Type(ANl MAL_TYPE. CAT)) ;
}

}

package curam i nheritance;
i mport java.util.Set;
i mport com googl e.inject. Singleton;

i mport curam i nheritance.struct. Aninmal Dt s;
i mport curamtest. codetabl e. ANl MAL_TYPE;
i mport curamutil. persistence. Standar dDAQ npl ;

@i ngl et on
public class DogDAO npl extends StandardDAQ npl <Dog, Ani mal Dt s>
i mpl ements DogDAO {
private static final Aninmal Adapter adapter = new
Ani mal Adapter () ;

/**
* Protected no-arg constructor for use only by CGuice
*/
prot ect ed DogDAO mpl () {
super (adapt er, Dog. cl ass);

public Set<Dog> readAl | Dogs() {
return newSet (adapt er. sear chByAni mal Type(ANl MAL_TYPE. DOG)) ;
}

}

Figure 167: One table for the whole hierarchy - DAO implementations for the concrete classes

The DAO classes for the concrete classes are straightforward DAO implementations.

CatDAOImpl and DogDAOImpl each support the creation of new instances of their respective
entities, as well as retrieval of existing instances, by making use of the StandardDAOImpl class
(parameterized with AnimalDtls, the single database table).

Note that the searches to retrieve e.g. all Cat instances make use of a modeled
searchByAnimalType method, as there is no Cat table from which to retrieve all rows. All
searches performed by CatDAOImpl should ensure that they return only Cat rows, otherwise an
error will be thrown from CatImpl.setEntityInfo.

© Merative US L.P. 2012, 2024

Curam 8.1.2 136

AnimalDAOImpl

package curam i nheritance;

I nport java.util.HashMap;
i nport java.util.Map;
import java.util. Set;

i mport com googl e.inject.|nject;
i nport com googl e. i nject. Singl eton;

i mport curaminheritance.struct. Ani mal Dtl s;
i mport curamtest. codetabl e. ANl MAL_TYPE;

i mport curamutil. persistence. BaseDAO npl ;
i mport curamutil . persistence. Reader DAG,

i mport curamutil. persistence. Rowwvhnager ;

@i ngl et on
public class Aninallnpl extends
BaseDAO npl <Long, Aninmal, Animal Dtls> inpl enments Ani mal DAO {
private static final Aninmal Adapter adapter = new
Ani mal Adapter();

@ nj ect
private Cat DAO cat DAQ

@ nj ect
private DogDAO dogDAQG,

/**
* Protected no-arg constructor for use only by Guice
*/
protected Aninallnpl () {
super (adapter, Animal.cl ass);

@verride

protected String getDiscrimnnator(
final RowManager <Long, Ani mal Dtl s> rowiManager) {
return rowManager.getDtl s(). ani mal Type;

}

@verride
protected Map<String, Reader DAO<Long, ? extends Ani nal >>
get Concr et eReader DAGs() {
final Map<String, Reader DAC<Long, ? extends Ani nal >>
concr et eReader DAGCs =
new HashMap<String, Reader DAC<Long, ? extends Ani mal >>();

concr et eReader DAGs. put (ANl MAL_TYPE. CAT, cat DAO);
concr et eReader DAGs. put (ANl MAL_TYPE. DOG, dogDAO) ;
return concr et eReader DAGs;

}

public Set <Ani mal > readAl | Ani nal s
return newSet (adapter.readAll ()

}

() o
).

© Merative US L.P. 2012, 2024

1 Developing with the Persistence Infrastructure 137

}

Figure 168: One table for the whole hierarchy - DAO implementation for the abstract class

Class declaration

public class Aninallnpl extends BaseDAO npl <Long, Ani mal,
Ani mal Dt | s>
i mpl ement s Ani mal DAO {

The class extends the BaseDAOImpl class, which provides support for reading instances

of abstract classes (by calling back to the implementation to decide which concrete class to
instantiate). AnimalDAOImpl is responsible for retrieving a Cat or Dog instance, according to the
value of the discriminator column, i.e. Animal.animalType.

Adapter
private static final Aninmal Adapter adapter = new Ani mal Adapter();

The class contains an adapter variable, as is the norm for DAO implementations.

DAO instances

@ nj ect
private Cat DAO cat DAG,

@ nj ect
private DogDAO dogDAQG,

The class contains injected instances of the DAO interfaces for the concrete classes.

These DAOs will be used to "dish up" the appropriate concrete type when a calling requests to
read or search for Animal instances.

Protected constructor
/**
* Protected no-arg constructor for use only by Guice
*/
protected Ani nmal DAQ() {
super (adapter, Aninal.cl ass);

The class contains a protected constructor, as is the norm for DAO implementations. This
constructor passes the adapter and the entity class to the super constructor.

Get discriminator value from arow read from the database

@verride
protected String getDiscrimnator(
final RowManager <Long, Ani mal Dl s> rowiMvhanager) {
return rowvanager.getDtl s(). ani mal Type;

}

You must override the BaseDAOImpl.getDiscriminator method to return the discriminator value
from an abstract row read from the database (in this example, the value of Animal.animallD is
returned from the row read).

© Merative US L.P. 2012, 2024

Curam 8.1.2 138

Map discriminator values to DAO instances

@verri de
protected Map<String, Reader DAO<Long, ? extends Ani nal >>

get Concr et eReader DAGs() {

final Map<String, Reader DAO<Long, ? extends Ani nal >>
concr et eReader DAGCs =
new HashMap<String, Reader DAO<Long, ? extends Ani nal >>();

concr et eReader DAGs. put (ANl MAL_TYPE. CAT, cat DAO);
concr et eReader DAGs. put (ANl MAL_TYPE. DOG, dogDAO) ;
return concr et eReader DAGs;

}

You must override the BaseDAOImpl.getConcreteReaderDAOs method to return a map of DAOs
which can read the concrete instances of your entity.

The persistence infrastructure uses this map to retrieve a Cat or Dog as appropriate, depending on
the value of Animal.animallD.

1.10 Adding New Searches to Existing Entities

Curam ships with a number of entities which have service layers implemented using the
Persistence Infrastructure.

Curam recognizes that in certain circumstances, customers may wish to add additional read SQL
(select statements) to the Ctiram-shipped database entities behind PI-based service layer code, to
retrieve data in new ways using existing Ciram-shipped database columns and/or columns on a
custom database table.

Curam supports a choice of approaches that allow you to implement new searches, described
below.

Important: Cuaram does not support the addition of write SQL (insert/update/delete
statements) to the Caram-shipped database entities behind PI-based service layer code (as the
invocation of such SQL would bypass the very service layer code that exists to protect the
integrity of such data).

Approach 1

In the custom model package structure, model an extension entity which extends the Curam-
shipped entity (if such an extension does not already exist).

In the extension entity, model a stereotyped retrieval operation (read/readmulti/nsread/nsmulti/
ns). The retrieval operation must return the full generated Dtls struct for the Curam-shipped entity
(or the corresponding DtlsList struct for multi operations); moreover, any hand-crafted SQL for
the operation must correctly populate every field in the return struct, including versionNo (if
present). Note that hand-crafted is free to join to custom database tables if necessary to filter
results (but not to return data from custom database tables).

In the custom code package structure, create a hand-crafted custom DAO interface/
implementation to house the new search operations. Note that unlike standard DAO interface/
implementations, your hand-crafted classes will not extend PI-supplied infrastructure classes.

© Merative US L.P. 2012, 2024

1 Developing with the Persistence Infrastructure 139

In your custom DAO interface, declare your new search methods.

In your custom DAO implementation, implement your new search methods. The methods will
delegate to the generated code for your custom entity extension. Note that there is no generated
adapter support for operations contributed by extension classes, and so your implementation
will need to provide the exception wrapping and struct mapping traditionally performed by the
generated adapters.

In your client code which requires to execute your custom search, inject an instance of your
new custom DAO interface and use your new search methods to return instances of the Curam-
shipped interface for the entity's service layer class. You may access the entity's data via the
accessor (getter) methods on the service layer class, including any derived data, and access any
side-saddle tables using the entity's context, just as you would for instances returned by the
Curam-shipped DAO interface.

(Optional) If you find that your client code ends up having to inject instances of both the
Curam-shipped DAO interface and your new custom DAO interface, you might consider
mimicking some or all of the Curam-shipped DAO methods on your new custom interface.
The implementation of these mimicked methods may delegate to the Curam-shipped DAO
implementation. Curam does not recommend that you allow your new custom DAO interface
to extend the Curam-shipped DAO interface, nor that you allow your new custom DAO
implementation to subclass the Curam-shipped DAO implementation, as to do so may present
future upgrade difficulties.

Approach 2

In the custom model package structure, model an extension entity which extends the Curam-
shipped entity (if such an extension does not already exist).

In the extension entity, model a stereotyped retrieval operation (read/readmulti/nsread/nsmulti/
ns). The retrieval operation is free to return any data that it requires, including data joined from
custom database tables, and to use any suitable return struct (i.e. the restrictions in Approach 1 do
not apply here)..

In your client code which requires to execute your custom search, invoke the generated DAL
code directly. Note that:

* you must not invoke any database write methods directly from your client code;

» derived data which might ordinarily be provided by a service-layer class will not be available;
and

+ data held on custom side-saddle table will only be available via a separate call to the generated
DAL code for that custom side-saddle table.

© Merative US L.P. 2012, 2024

Curam 8.1.2 140

© Merative US L.P. 2012, 2024

Notices

Permissions for the use of these publications are granted subject to the following terms and
conditions.

Applicability
These terms and conditions are in addition to any terms of use for the Merative website.
Personal use

You may reproduce these publications for your personal, noncommercial use provided that all
proprietary notices are preserved. You may not distribute, display or make derivative work of
these publications, or any portion thereof, without the express consent of Merative

Commercial use

You may reproduce, distribute and display these publications solely within your enterprise
provided that all proprietary notices are preserved. You may not make derivative works of these
publications, or reproduce, distribute or display these publications or any portion thereof outside
your enterprise, without the express consent of Merative.

Rights

Except as expressly granted in this permission, no other permissions, licenses or rights are
granted, either express or implied, to the publications or any information, data, software or other
intellectual property contained therein.

Merative reserves the right to withdraw the permissions granted herein whenever, in its
discretion, the use of the publications is detrimental to its interest or, as determined by Merative,
the above instructions are not being properly followed.

You may not download, export or re-export this information except in full compliance with all
applicable laws and regulations, including all United States export laws and regulations.

MERATIVE MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE
PUBLICATIONS. THE PUBLICATIONS ARE PROVIDED "AS-IS" AND WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT
LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT,
AND FITNESS FOR A PARTICULAR PURPOSE.

Merative or its licensors may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this documentation does not grant you any license
to these patents.

Information concerning non-Merative products was obtained from the suppliers of those products,
their published announcements or other publicly available sources. Merative has not tested those
products and cannot confirm the accuracy of performance, compatibility or any other claims
related to non-Merative products. Questions on the capabilities of non-Merative products should
be addressed to the suppliers of those products.

Any references in this information to non-Merative websites are provided for convenience only
and do not in any manner serve as an endorsement of those websites. The materials at those
websites are not part of the materials for this Merative product and use of those websites is at
your own risk.

© Merative US L.P. 2012, 2024

This information contains examples of data and reports used in daily business operations.

To illustrate them as completely as possible, the examples include the names of individuals,
companies, brands, and products. All of these names are fictitious and any similarity to actual
people or business enterprises is entirely coincidental.

The licensed program described in this document and all licensed material available for it are
provided by Merative under terms of the Merative Client Agreement.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate
programming techniques on various operating platforms. You may copy, modify, and distribute
these sample programs in any form without payment to Merative, for the purposes of developing,
using, marketing or distributing application programs conforming to the application programming
interface for the operating platform for which the sample programs are written. These examples
have not been thoroughly tested under all conditions. Merative, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample programs are provided
"AS IS", without warranty of any kind. Merative shall not be liable for any damages arising out of
your use of the sample programs.

Privacy policy

The Merative privacy policy is available at https://www.merative.com/privacy.

Trademarks

Merative ™ and the Merative ™ logo are trademarks of Merative US L.P. in the United States and
other countries.

IBM®, the IBM® logo, and ibm.com® are trademarks or registered trademarks of International
Business Machines Corp., registered in many jurisdictions worldwide.

Adobe™, the Adobe™ logo, PostScript™, and the PostScript™ logo are either registered
trademarks or trademarks of Adobe™ Systems Incorporated in the United States, and/or other
countries.

Oracle and Java are registered trademarks of Oracle and/or its affiliates.

The registered trademark Linux® is used pursuant to a sublicense from the Linux Foundation, the
exclusive licensee of Linus Torvalds, owner of the mark on a worldwide basis.

Microsoft™, Windows™, and the Windows™ logo are trademarks of Microsoft™ Corporation in
the United States, other countries, or both.

UNIX™ is a registered trademark of The Open Group in the United States and other countries.

Other company, product, and service names may be trademarks or service marks of others.

© Merative US L.P. 2012, 2024

https://www.merative.com/privacy

	Note
	Edition
	Notices
	Privacy policy
	Trademarks

	Contents
	1 Developing with the Persistence Infrastructure
	1.1 Introduction
	Intended Audience
	Background
	Further Reading
	Structure of this document

	1.2 Making calls to service-layer APIs
	You want to read some data from a database table
	The problem
	The solution

	You want to insert a new row onto a database table
	The problem
	The solution
	Putting it all together

	You want to modify a row on a database table
	The problem
	The solution
	Putting it all together

	You want to remove (physically delete) a row from a database table
	The problem
	The solution
	Putting it all together

	You want to cancel (logically delete) a row on a database table
	The problem
	The solution
	Putting it all together

	You want to list all rows of a database table
	The problem
	The solution
	Putting it all together

	You want to list all child rows of a database table belonging to some parent row (on another table)
	The problem
	The solution
	Putting it all together

	Summary

	1.3 Coding service-layer APIs
	You want to start writing the API for a new database table
	The problem
	The solution

	You want to add getters and setters to your entity interface
	The problem
	The solution
	Putting it all together

	You want to add persistence methods to your entity interface
	The problem
	The solution
	Putting it all together

	You want to specify searches on your entity
	The problem
	The solution

	Summary

	1.4 Coding service-layer implementations
	You want to start implementing your entity API
	The problem
	The solution
	Create an implementation for your entity DAO interface
	Create an implementation for your entity interface

	You want to implement getters
	The problem
	The solution
	Putting it all together

	You want to implement new row defaults
	The problem
	The solution

	You want to implement setters
	The problem
	The solution
	Putting it all together

	You want to implement single-field validation
	The problem
	The solution
	Putting it all together

	You want to implement mandatory-field validation
	The problem
	The solution

	You want to implement cross-field validation
	The problem
	The solution

	You want to implement cross-entity validation
	The problem
	The solution

	1.5 Creating a Guice module
	Create a class extending AbstractModule
	Store a row on ModuleClassName

	1.6 Events
	Identify where an event must be raised
	Define the Event interface
	Create an EventDispatcherFactory
	Raise events
	Create an event listener
	Configure Guice
	Writing listeners for automatic persistence events
	Design Considerations with Events
	Backward compatibility

	1.7 Using Entity Context
	The Problem
	The Solution
	Customising Inserts using entity context
	Customising Reads using entity context
	Customising other operations using entity context

	1.8 State Transitions
	The problem
	The solution
	Specify states
	Specify storage mechanism for the state value
	Identify transition methods
	Implement getLifecycleState
	Create a map to hold the permitted states
	Create an object for each state
	Create an object for each permitted transition
	Create a private getter to retrieve the current State
	Create a private setter to set the current State
	Create a private helper method to perform a state transition
	Implement state transition methods
	Specify the initial state
	Add state transition validation logic
	Override the modify method (if required)

	Putting it all together

	1.9 Inheritance
	Identifying inheritance
	Entity interface inheritance
	DAO interfaces
	Deciding on database storage
	One table per class
	AnimalImpl
	CatImpl
	DogImpl
	CatDAOImpl and DogDAOImpl
	AnimalDAOImpl

	One table per concrete class
	CatImpl
	DogImpl
	CatDAOImpl and DogDAOImpl
	AnimalDAOImpl

	One table for the whole hierarchy
	AnimalImpl
	CatImpl
	DogImpl
	CatDAOImpl and DogDAOImpl
	AnimalDAOImpl

	1.10 Adding New Searches to Existing Entities
	Approach 1
	Approach 2

