
Cúram 8.1.2
IEG in the Cúram Universal Access

Responsive Web Application

Note
Before using this information and the product it supports, read the information in Notices on page
57

© Merative US L.P. 2012, 2024

© Merative US L.P. 2012, 2024

Edition
This edition applies to Cúram 8.1, 8.1.1, and 8.1.2.

© Merative US L.P. 2012, 2024

Merative and the Merative Logo are trademarks of Merative US L.P. in the United States and
other countries.

© Merative US L.P. 2012, 2024

© Merative US L.P. 2012, 2024

Contents vii

Contents

Note.. iii

Edition... v
1 IEG in the Cúram Universal Access Responsive Web Application............................9
2 IEG elements and attributes specific to the design system and Cúram

Universal Access Responsive Web Application...11
3 IEG configuration not currently supported for the Cúram Universal Access

Responsive Web Application..13
4 Customizing the Back button in IEG forms... 15
5 Configuring section navigation for forms.. 17
6 Configuring progress information for forms... 19
7 Configuring dynamic titles on forms..21
8 Configuring rich text on forms..23
8.1 Configuring external links to open in a new tab or window...23

9 Configuring hint text for forms... 25
10 Configuring explainer text for forms.. 27
11 Configuring the 'Help' label for forms.. 29
12 Configuring required or optional labels for form fields.. 31
13 Configuring input formats and constraints for form fields.....................................33
13.1 Configuring phone numbers.. 35

13.2 Configuring date formats... 36

13.3 Configuring currency symbols... 36

13.4 Configuring inputs to be obscured for privacy.. 37
14 Configuring code-table hierarchies for form fields... 39
15 Implementing a combo box for form fields..41
15.1 Implementing search functions for ComboBox components... 41

15.2 Configuring combo box scripts and schemas... 43
16 Customizing script behavior with BaseFormContainer.. 45
17 Merging clusters with the cluster element grouping-id attribute.................... 47
18 Configuring relationship pages questions...49
19 Configuring relationship starting dates on relationship summary pages............. 51
20 Configuring quick-add-list..53

Notices.. 57
Privacy policy... 58

Trademarks.. 58

© Merative US L.P. 2012, 2024

Cúram 8.1.2 viii

© Merative US L.P. 2012, 2024

1 IEG in the Cúram Universal Access Responsive Web Application 9

1 IEG in the Cúram Universal Access Responsive Web
Application

Universal Access uses forms to gather information about citizens, such as when they apply for
benefits. Merative ™ Cúram Universal Access Responsive Web Application forms that gather
data as evidence are implemented in IEG, as in the classic Universal Access citizen application.
However, forms are now rendered in the browser by the IEG React Player, rather than the IEG
Java™ player, and in some cases, the IEG behavior is different.

IEG Script designers can find information describing form design and user experience best
practices with proven patterns for forms in the IEG Form Design Guidance PDF located in the /
UA_WebApp_X.X.X/docs folder.

Due to the technology and user interface changes, your existing IEG scripts must be tested before
use, and in most cases, at least some minor changes are needed for existing scripts to work in the
new application.

The default connectivity handling in the Cúram Universal Access Responsive Web Application
helps to prevent citizens losing data in IEG forms by preventing them from leaving pages with
unsaved changes. For more information about data loss prevention in IEG, see the Universal
Access Responsive Web Application Guide.

© Merative US L.P. 2012, 2024

Cúram 8.1.2 10

© Merative US L.P. 2012, 2024

2 IEG elements and attributes specific to the design system and Cúram Universal Access Responsive Web
Application 11

2 IEG elements and attributes specific to the design
system and Cúram Universal Access Responsive Web
Application

The following IEG elements and attributes apply to the design system and Cúram Universal
Access Responsive Web Application only.

• Display elements and attributes

• The combo-box element, which is a child element of the question element.
• The explainer element, which is a child element of the cluster, question-page, and

relationship-page elements.
• The hint-text element, which is a child element of the container, list-question,

and question elements.
• The next-button-label element, which is a child element of the question-page,

relationship-page, and summary-page elements.
• The relationship-detail-header element, which is a child element of the

relationship-summary-list element.
• The quick-add-list element, which is a child element of the relationship-page

element.
• Display element attributes

• The grouping-id attribute of the cluster element.
• Flow-control element attribute

• The value 'hidden' for the loop-type attribute of the loop element.
• Meta-display elements

• The class-names element, which is a child element of the layout element.
• The date-picker value for the type child element of the layout element.

For more information about IEG elements, see the Authoring Scripts using Intelligent Evidence
Gathering Guide.

© Merative US L.P. 2012, 2024

Cúram 8.1.2 12

© Merative US L.P. 2012, 2024

3 IEG configuration not currently supported for the Cúram Universal Access Responsive Web Application 13

3 IEG configuration not currently supported for the
Cúram Universal Access Responsive Web Application

The following IEG configuration is not currently supported by the Cúram Design System or the
Universal Access Cúram Universal Access Responsive Web Application.

• Question matrices
Question matrices display a list of questions that are based on a code table and, for each of
the code table values and each entity, a check box is displayed for you to select the values that
apply to a particular entity.

• Three-field date picker
The three-field date picker is no longer supported. Dates either default to a single-field date
input field or can be configured with a date picker component by using the layout element.

• Grouping individual question help at cluster level
Cluster-level help is supported, however, the compile.cluster.help property, which
groups the help text for each of the questions in a cluster into the cluster help panel is not
supported.

• Display elements and attributes

• The custom-output element, which renders custom HTML on summary pages only.

• The show-page-elements attribute on the edit-link element for editing specific
clusters.

• The footer-field element, which displays values that are calculated from expressions in
the footer-row element of a list.

• The footer-row element, which adds an extra row at the end of a list to display total or
summary information.

• The help-text element, which displays help text, is not supported for pages.

• The icon element, which is used to add images to either the title area of a page or the
sections panel.

• The label-alignment element, which is used in the layout element for a cluster to
control the text alignment of the labels in the cluster.

• The label-width element, which is used in the layout element for a cluster to control
the width of the labels in the cluster.

• The num-cols element, which is used in the layout element for a cluster to control the
number of columns in the cluster.

• The type element, which is used in the layout element for a cluster to control the layout
of labels in relation to input controls.

• The width element, which is used in the layout element for a cluster to control the width
of the cluster on the page.

• The legislation element, which creates legislation links at page and question level to
point to relevant legislative information.

© Merative US L.P. 2012, 2024

Cúram 8.1.2 14

• The policy element, which creates policy links at page and question level to point to
relevant policy information

• The skip-field element, which enables a more flexible layout of elements within
clusters or footer rows in lists where no visible display element is needed.

• The row-help element, which specifies help for rows in a list.

• The set-focus attribute of the question-page element, which sets focus for a page.
• Meta-display elements

• The codetable-hierarchy-layout element, which is used in questions with a code
table hierarchy type to control different aspects of the layout.

• Structural, administrative, and other elements and attributes

• The hide-for-control-question attribute on the ieg-script element, which hides
the label and value of control questions for loops when the loop is entered.

• The highlight-validation attribute on the ieg-script element. Validations are now
always displayed with the failing input field.

• The show-progress-bar attribute on the ieg-script element. Progress through
sections is now indicated by text and the section title. For example, STEP 2 OF 4 ·
HOUSEHOLD.

For more information about IEG elements, see the the Authoring Scripts using Intelligent
Evidence Gathering Guide.

© Merative US L.P. 2012, 2024

4 Customizing the Back button in IEG forms 15

4 Customizing the Back button in IEG forms

You can customize the behavior of the Back button in IEG forms to suit your applications.

For the best user experience, set the behavior of the Back button in IEG according to whether you
have a single form or multiple forms in your application. Where you have multiple forms, you
typically want to navigate back to the previous form.

• Where you have a single form, always disable the Back button on the first page of the IEG
form. The Back button goes back one page in the form, not in the application, so you don't
need one on the first page. For more information about the show-back-button element, see
the Authoring Scripts using Intelligent Evidence Gathering Guide.

• Typically, an application has multiple forms. By default, a feature with two forms,
Apply and Submit is provided in the universal-access-ui package. The default
feature has two instances of BaseFormContainer, ApplicationFormContainer and
SubmissionFormContainer.

By default, the Apply form has the Back button disabled on its first page.

In Cúram Universal Access Responsive Web Application 3.0.4 or later, the Back button of
the Submit form goes to the Apply form in the SubmissionFormContainer component by
default.

If you are customizing or overriding SubmissionFormContainer component, or using an
earlier version, you must add some code to the SubmissionFormContainer component to
ensure that the Back button goes to a previous form.

• Add a function to the component logic, for example:

 handleBackForFirstPage = () => {
 const { history, submissionFormDetails } = this.props;
 const { applicationFormId } = submissionFormDetails;
 history.push({
 pathname: `${PATHS.APPLY}/${applicationFormId}`,
 });
 };

© Merative US L.P. 2012, 2024

Cúram 8.1.2 16

• Then, inside the render function, pass the function to the BaseFormContainer component
by using the onBackForFirstPage prop, for example:

 render() {
 const { submissionFormDetails, match } = this.props;

 RESTService.handleAPIFailure(this.props.createApplicationUsingFormDetailsError);
 RESTService.handleAPIFailure(this.props.createSubmissionFormError);
 RESTService.handleAPIFailure(this.props.deleteApplicationFormError);
 RESTService.handleAPIFailure(this.props.getSubmissionFormDetailsError);

 if (match.params.submissionFormId && submissionFormDetails) {
 return (
 <BaseFormContainer
 iegFormId={match.params.submissionFormId}
 iegHookBindingKey={HookBindings.SUBMISSION}
 onBackForFirstPage={this.handleBackForFirstPage}
 onExit={this.handleExit}
 onFinish={this.handleFinishScript}
 onSaveAndExit={this.handleSaveAndExit}
 title={(submissionFormDetails &&
 submissionFormDetails.applicationTitle) || ''}
 />
);
 }

 return <AppSpinner />;
 }
}

For more information about the onBackForFirstPage property, see 16 Customizing script
behavior with BaseFormContainer on page 45.

© Merative US L.P. 2012, 2024

5 Configuring section navigation for forms 17

5 Configuring section navigation for forms

If you are developing scripts in IEG, you can enable section navigation to guide people through
forms.

About this task
You can use section navigation on any forms, but it is particularly useful for longer forms. If you
enable section navigation, it is a good idea to use section summary pages so that users can review
their changes regularly.

Procedure

In your IEG script, add the show-section element to the ieg-script element.

© Merative US L.P. 2012, 2024

Cúram 8.1.2 18

© Merative US L.P. 2012, 2024

6 Configuring progress information for forms 19

6 Configuring progress information for forms

If you are developing pages in IEG, you can show progress text and the section title so citizens
can see where they are in the script, for example, STEP 2 OF 4 · HOUSEHOLD.

Add the following IEG configuration property to the ieg-config.properties file to
configure the text. The section title is added automatically.

Text progress bar indicator
progress.bar.indicator.text=Step %1s of %2s

Where %1s is the current step number and the %2s is the total number of steps on the script. The
message is calculated based on the total number of sections and the current section.

The IEGPageMetadata(JSON); component contains all of the metadata for each IEG form. The
text progress indicator is displayed if IEGPageMetadata finds the metadata['ieg-config']
['progress-indicator'] element in the JSON.

© Merative US L.P. 2012, 2024

Cúram 8.1.2 20

© Merative US L.P. 2012, 2024

7 Configuring dynamic titles on forms 21

7 Configuring dynamic titles on forms

If you are developing pages in IEG, you can configure the relationship pages with more relevant
titles that are based on the user's responses.

The relationship page title accepts an International Components for Unicode (ICU) message
template. Page titles and subtitles accept a specific formatting syntax based on ICU. It should be
used in loops and will give more context to the users.

These six keywords are defined:

• index

• innerIndex

• outerIndex

• ordinal

• innerOrdinal

• outerOrdinal

You can use index and ordinal in simple non-nested loops. If they are used in a nested loop, it
is synonymous to outerIndex and outerOrdinal.

Refer to these examples.

"Add {ordinal} member" displays Add first member, Add second member, ...

"Add the {innerOrdinal} income for the {outerOrdinal} member" displays Add
the first income for the first member ...

"{index, select, 0 {Add your {innerOrdinal} income} other {Add %1s's
{innerOrdinal} income}}" displays Add your first income or Add Jane's first income
depending on the value of index (this is equal to ordinal - 1).

"Ajouter la {ordinal}#feminine# personne" displays Ajouter la première personne.

"Ajouter la {innerOrdinal}#feminine# recette du {outerOrdinal}#
%spellout-ordinal-masculine# membre" displays Ajouter la première recette du
premier membre.

You can define the title as follows:

{index, select, 0 {Your relationships} other {{personName}'s relationships}}

The outcome of this message template on the first relationship question page is Your
relationships. On the following relationship question pages, it shows [personName]’s
relationships. The reserved word personName displays the person's first name on the title of the
page.

© Merative US L.P. 2012, 2024

Cúram 8.1.2 22

© Merative US L.P. 2012, 2024

8 Configuring rich text on forms 23

8 Configuring rich text on forms

You can configure rich text to display with a number of IEG display elements in IEG forms. You
can also configure external links in rich text to open in a new tab or window.

About this task

Rich text is supported in the following IEG display elements that support text:

• cluster title, help, and description
• container title, help, and description
• display-text

• divider

• list title, help, and description
• question label and help
• subtitle

For more information about IEG elements, see the Authoring Scripts using Intelligent Evidence
Gathering Guide.

8.1 Configuring external links to open in a new tab or window

You can configure external links to open in a new tab or window in IEG forms. By default, links
open in the current tab.

About this task

For security reasons, HTML in rich text is sanitized to remove certain attributes before display,
including the HTML target attribute. You must configure the rich text to leave the target attribute
in the sanitized content so that the link opens in a new tab or window.

For example, the my link link in rich text opens in the current tab
as intended. The my link link is intended
to open in a separate tab or window. However, because the rich text is sanitized with DOMPurify
before display, the target attribute is removed and the link opens in the current tab by default.

To configure DOMPurify to leave specific attributes, you must add dompurify to the
dependencies and specify a DOMPurify persistent configuration in any JavaScript or JSX
code that runs when the app is loaded. For example, App.js. For more information about
DOMPurify, see https://github.com/cure53/DOMPurify#persistent-configuration.

Only one active configuration at a time is allowed. After you set the configuration, any
extra configuration parameters that are passed to DOMPurify.sanitize are ignored. The
DOMPurify configuration persists until the next call to DOMPurify.setConfig, or until
DOMPurify.clearConfig is called to reset it.

Procedure

1. Add dompurify to the dependencies in the package.json file.

npm install dompurify

© Merative US L.P. 2012, 2024

https://github.com/cure53/DOMPurify#persistent-configuration

Cúram 8.1.2 24

2. To configure DOMPurify to leave the target attribute, specify the following DOMPurify
persistent configuration in any JavaScript or JSX code that runs when the app is loaded.

import DOMPurify from 'dompurify';
DOMPurify.setConfig({ ADD_ATTR: ['target'] });

© Merative US L.P. 2012, 2024

9 Configuring hint text for forms 25

9 Configuring hint text for forms

You can use short sentences of hint text to explain the expected input format or content in IEG
forms. For example, you can explain the expected format for a telephone number.

About this task

Hint text is suitable for short sentences and does not support HTML tags. If you want to add more
text or format text with HTML tags, use the help-text or explainer elements instead. For
more information, see the Authoring Scripts using Intelligent Evidence Gathering Guide.

Note: Specific globalization considerations apply to the date format when it is
used in hint text and messages. Ensure that you have the same date format in the
REACT_APP_DATE_FORMAT environment variable, and in theDateAdapter_DateFormat and
Errors_date messages in the intelligent-evidence-gathering-locales package.

Procedure

In your IEG script, you can add the hint-text element to any container, question or
list-question element.

For example:

• Container

<container show-container-help="true">
 <title id="primaryPhoneNumber">primaryPhoneNumber</title>
 <hint-text id="PhoneNumber.Hint">PhoneNumber.Hint</hint-text>
 <help-text id="PhoneNumber.Help">Telephone number must only contain numbers,
 parentheses, or dashes and be 10 digits. For example, (212) 555-0010 or
 2125550010.</help-text>
 <question id="primaryPhoneType" mandatory="true">
 <help-text id="PhoneNumber.Help">Telephone number must only contain
 numbers, parentheses, or dashes and be 10 digits. For example, (212) 555-0010 or
 2125550010.</help-text>
 <label id="PrimaryPhoneType.Label">Primary Phone Type</label>
 </question>
</container>

• Question

<question id="firstName" mandatory="true">
 <hint-text id="FirstName.Hint">FirstName.Hint</hint-text>
 <label id="FirstName.Label">First Name</label>
</question>

• List question

<list-question entity="Person" id="currentlyWorking" mandatory="false">
 <label id="CurrentlyWorking.Label">Please select the people that have a job:</
label>
 <hint-text id="CurrentlyWorking.Hint">CurrentlyWorking.Hint</hint-text>
 <item-label>
 <label-element attribute-id="firstName" />
 </item-label>
</list-question>

© Merative US L.P. 2012, 2024

Cúram 8.1.2 26

© Merative US L.P. 2012, 2024

10 Configuring explainer text for forms 27

10 Configuring explainer text for forms

You can use the explainer element to provide extra text in IEG forms that is initially hidden
and that can be expanded to show further explanation. For example, you can provide background
information that a user can choose to expand only if needed.

About this task

You can use the explainer element to provide a large amount of text without cluttering up
the form. For more information, see the Authoring Scripts using Intelligent Evidence Gathering
Guide.

Procedure

In your IEG script, add the explainer element to any cluster, question-page, or
relationship-page element.

For example:

• cluster

<cluster>
 <explainer>
 <title id="ExplainerCluster.Title">Why do we ask for your Social Security
 Number?</title>
 <description id="Explainer.Description">Your Social Security Number
 ensures that your application is unique to you and reduces processing time.</
description>
 </explainer>
 <question control-question="false" id="isSSN" mandatory="true" multi-
select="false" show-field-help="false">
 <label id="IsSSN.Label">What is your Social Security Number?</label>
 </question>
 </cluster>

• question-page

<question-page>
<explainer>
 <title id="ExplainerSSN.Title">Why do we ask for your Social Security Number?</
title>
 <description id="ExplainerSSN.Description">Your Social Security Number ensures that
 your application is unique to you and reduces processing time.</description>
 </explainer>
</question-page>

• relationship-page

<relationship-page>
<explainer>
 <title id="ExplainerSSN.Title">Why do we ask for your Social Security Number?</
title>
 <description id="ExplainerSSN.Description">Your Social Security Number ensures that
 your application is unique to you and reduces processing time.</description>
 </explainer>
</relationship-page>

© Merative US L.P. 2012, 2024

Cúram 8.1.2 28

© Merative US L.P. 2012, 2024

11 Configuring the 'Help' label for forms 29

11 Configuring the 'Help' label for forms

You can change or remove the 'Help' label from the help icon for input controls in the application
by overriding the default text. To remove the label, override the default text with a single space
character in a custom messages file.

Procedure

1. Create a src/locale/messages_en.json messages file with a single space character as
the value for the help label message ID, WidgetHelp_helpToggleText.

{
 "WidgetHelp_helpToggleText": " "
}

2. Update the src/config/intl.config.js file in the English locale to point to the custom
messages file.

// [...] {
 locale: 'en',
 displayName: 'English',
 localeData: () => {
 require('@formatjs/intl-pluralrules/locale-data/en');
 require('@formatjs/intl-relativetimeformat/locale-data/en');
 },
 messages: require('../locale/messages_en'),
 },// [...]

3. Rebuild and deploy the application to see your changes.

© Merative US L.P. 2012, 2024

Cúram 8.1.2 30

© Merative US L.P. 2012, 2024

12 Configuring required or optional labels for form fields 31

12 Configuring required or optional labels for form
fields

You can choose whether to indicate the required fields or the optional fields in IEG forms. As the
majority of questions in a typical form should be required, indicating the optional questions rather
than the required questions typically results in a less cluttered form. By default, optional fields are
highlighted in IEG forms.

About this task
By default, fields that are not configured as required in the IEG script are labeled as Optional
and required fields are not labeled. If you choose to indicate required fields instead, fields that are
configured as required in the script are labeled Required and optional fields are not labeled.

Procedure

Show labels for required questions only by adding the REACT_APP_DISPLAY_REQUIRED_LABEL
environment variable to your .env file with a value of true.
For example:

REACT_APP_DISPLAY_REQUIRED_LABEL=true

© Merative US L.P. 2012, 2024

Cúram 8.1.2 32

© Merative US L.P. 2012, 2024

13 Configuring input formats and constraints for form fields 33

13 Configuring input formats and constraints for form
fields

You can customize field inputs and constraints on IEG forms, such as phone numbers, social
security numbers (SSN), dates, currencies, and percentages. You can adjust the width of form
fields to match the length of the expected input, and choose to use a date picker for dates where
appropriate.

About this task

Where users need to type confidential information, you can obscure the input values to ensure
privacy. This configuration is done in the data store schema by setting a new data type and cannot
be used with masks. Instead of using a mask, you can also implement any extra constraints, such
as the number of characters, in the data store schema by creating a custom domain, see 13.4
Configuring inputs to be obscured for privacy on page 37.

Masked input fields increase input field readability by formatting or constraining typed data.
You can apply input masks with the IEG class-names element, which is a child element of the
layout element. The class-names element adds the content of the element to the HTML that
is generated for the component, this element accepts multiple values that are separated by a space.
For more information about the IEG layout element, see the Authoring Scripts using Intelligent
Evidence Gathering Guide.

You might need a custom mask that is not supported by the class-names element, such as
variants of the Social Security Number (SSN) or Social Insurance Number (SIN). To create a
custom mask, use the mask-format element, which is a child element of the layout element, to
set custom masks with Cleave.js format.

• Input field masks

If the class name matches any of the reserved input mask class names, that class name is
applied to the HTML control input. If the class name does not match a reserved input mask
class name, the class name is applied to the <div> element that contains the HTML element
(cluster, question, or list-question). You can use the following design system CSS
classes as input masks to format and constrain input values for questions:

• wds-js-input-mask-currency

Masks input for currencies. The character limit is 21 characters. You can also set optional
environmental variables for currency symbols, see 13.3 Configuring currency symbols on
page 36.

• wds-js-input-mask-numeral

Masks input for numerical input.
• wds-js-input-mask-yyyy-mm-dd

Masks input for the YYYY-MM-DD date format.
• wds-js-input-mask-percentage

Masks input for percentage characters.
• wds-js-input-mask-phone

© Merative US L.P. 2012, 2024

https://nosir.github.io/cleave.js/

Cúram 8.1.2 34

Masks input for phone number fields according to the defined locale for the application.
Configuring the phone number input mask requires some additional steps and you can also
set optional environmental variables for delimiters and country codes, see 13.1 Configuring
phone numbers on page 35.

• wds-js-input-mask-postal-code

Masks input for 2 groups of 3 characters that are separated by a space, XXX XXX, such as
a Canadian postal code. Alphabetic characters are converted to uppercase.

• wds-js-input-mask-sin

Masks input for 3 groups of 3 characters that are separated by spaces, XXX XXX XXX,
such as a Canadian Social Insurance Number (SIN).

• wds-js-input-mask-ssn

Masks input for digits that are separated by dashes and grouped as follows, XXX-XX-
XXXX, such as a US social security number (SSN).

• wds-js-input-layout-size--field_size

Adjusts the width of form fields to match the length of the expected input. Where
field_size is one of the following sizes:

• x-small
Use for 2 - 3 characters, such as DD, MM, or title.

• small
Use for 4 - 6 characters, such as ZIP code, postal code, or CVV number.

• medium
Use for around 8 characters, such as SSN or DD/MM/YYYY.

• large
Use for around 16 characters, such as credit card numbers.

• x-large
Use for around 24 characters, such as email addresses.

• Form field width

To avoid confusion about expected inputs, always match the width of form fields to the
expected input. For example, use a form field that matches the length of the SSN.

• Date picker

For date questions, in addition to the masked input, you can choose to add a date picker for
dates by setting the value of the type child element of the layout element to date-picker.
For those questions, you can then use the calendar or type the date. By default, date questions
are displayed with the masked input field if no layout type is specified.

Procedure

1. In your IEG script, add the appropriate CSS classes to the layout element for the question.
For example:

<question id="ssn" mandatory="true">
 <label id="SSN.Label">SSN</label>
 <layout>
 <class-names>custom-css-class1 wds-js-input-mask-ssn wds-js-input-layout-size--
medium
 </class-names>
 </layout>
</question>

© Merative US L.P. 2012, 2024

13 Configuring input formats and constraints for form fields 35

2. If you want to add a custom mask, use a mask-format element in the layout element.
Define the mask-format text value by using an XML CDATA section with a JSON object
with reference to the Cleave.js documentation,
For example,

<layout><mask-format><![CDATA[{ "delimiter": " ", "blocks": [2, 2, 2],
 "numericOnly": true }]]></mask-format><layout>

13.1 Configuring phone numbers

You can configure an input mask class name to format phone number fields in IEG forms
according to the defined locale for the application. You can also configure a phone number
delimiter or a country prefix if needed.

Procedure

1. Add cleave.js as a dependency in your package.json file.

"cleave.js": "<version>"

Where version is the version that you want to use.
2. Import the region-specific .js file in your initializing .js file.

For example:

import 'cleave.js/dist/addons/cleave-phone.[country]';

Where country is the locale that you want to use.
3. Add a REACT_APP_PHONE_MASK_FORMAT environment variable to your .env file.

REACT_APP_PHONE_MASK_FORMAT=[country]

Where country is the locale that you want to use.
4. In your IEG script, add the wds-js-input-mask-phone class name to the question. For

example:

<question id="primaryPhoneNumber" mandatory="true" show-field-help="true">
 <layout>
 <class-names>wds-js-input-mask-phone</class-names>
 </layout> <label id="PrimaryPhoneNumber.Label">Primary Phone Number</label>
</question>

5. Optional: You can set a custom delimiter for phone numbers by adding the
REACT_APP_PHONE_MASK_DELIMITER environment variable to your .env file.
For example, to convert 1 636 5600 5600 to 1-636-5600-5600, set the environment variable as
follows:

REACT_APP_PHONE_MASK_DELIMITER=-

6. Optional: You can set a fixed country code for phone numbers by adding the
REACT_APP_PHONE_MASK_LEFT_ADDON environment variable to your .env file.

© Merative US L.P. 2012, 2024

https://nosir.github.io/cleave.js/

Cúram 8.1.2 36

For example, to convert 1-636-5600-5600 to +1-636-5600-5600, set the environment variable
as follows:

REACT_APP_PHONE_MASK_LEFT_ADDON=+

13.2 Configuring date formats

You can configure the date format in IEG forms by setting the REACT_APP_DATE_FORMAT
environment variable.

About this task

By default, the date format is MM/DD/YYYY if you do not set a value for the
REACT_APP_DATE_FORMAT environment variable. If you set an invalid value, the default date
format is used.

The valid values are:

dd-mm-yyyy
mm-dd-yyyy
yyyy-mm-dd

Note: Specific globalization considerations apply to the date format when it is
used in hint text and messages. Ensure that you have the same date format in the
REACT_APP_DATE_FORMAT environment variable, and in the DateAdapter_DateFormat
and Errors_date messages in the intelligent-evidence-gathering-locales
package.

Procedure

Change the date format by adding the REACT_APP_DATE_FORMAT environment variable to your
.env file.
For example, to change the date format to DD/MM/YYYY, set the environment variable as
follows:

REACT_APP_DATE_FORMAT=dd-mm-yyyy

Note: The date display format supports the forward slash (/) date separator character only.
However, when you specify the date configuration you must use the dash (-) character. For
example, yyyy-mm-dd. The use of a custom date separator character is not supported.

13.3 Configuring currency symbols

You can configure the currency symbol that is displayed for currency fields in IEG forms.
Configure the REACT_APP_CURRENCY_MASK_ADDON environment variable to specify a currency

© Merative US L.P. 2012, 2024

13 Configuring input formats and constraints for form fields 37

symbol to display either before or after the currency amount. The alignment of the currency
symbol is based on the locale.

About this task

For more information about how the currency symbol is aligned based on locale, see the
developer.mozilla.org documentation.

The value of the REACT_APP_CURRENCY_MASK_ADDON environment variable takes
precedence over the deprecated REACT_APP_CURRENCY_MASK_LEFT_ADDON and
REACT_APP_CURRENCY_MASK_RIGHT_ADDON environment variables.

Procedure

Use the following option to configure and align the currency symbol based on the locale by
configuring the REACT_APP_CURRENCY_MASK_ADDON environment variable.
• Add the REACT_APP_CURRENCY_MASK_ADDON environment variable to your .env file.

For example, to set the currency symbol to US dollars, enter the following command:

REACT_APP_CURRENCY_MASK_ADDON=$

Use the following deprecated option to explicitly align the currency symbol on either the left side
or the right side.
•

Add a currency symbol for currency fields by adding
the REACT_APP_CURRENCY_MASK_LEFT_ADDON or
REACT_APP_CURRENCY_MASK_RIGHT_ADDON environment variables to your .env file.
For example, to set the currency symbol for US dollars, enter the following command to set
the environment variable:

REACT_APP_CURRENCY_MASK_LEFT_ADDON=$

If both environment variables are set, REACT_APP_CURRENCY_MASK_LEFT_ADDON takes
precedence.

13.4 Configuring inputs to be obscured for privacy

Where users need to type confidential information, you can obscure the input values to ensure
privacy. Users can show or hide the text as they type. The user input is obscured when they
type the confidential information, such as their Social Security Number (SSN). By default no
constraints are applied, but you can create a custom domain to apply custom constraints where
needed. For example, you can restrict the number of characters.

About this task

You can obscure inputs by setting the data type for a specified attribute of an entity to
IEG_OBSCURED in the data store schema. This configuration cannot be used with masks. Instead
of using a mask, you can also implement any extra constraints, such as the number of characters,
in the data store schema by creating a custom domain.

For more information about data types and IEG domains, see the Authoring Scripts using
Intelligent Evidence Gathering Guide.

© Merative US L.P. 2012, 2024

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Intl/NumberFormat

Cúram 8.1.2 38

For more information about data store schemas, see the Authoring Scripts using Intelligent
Evidence Gathering Guide.

Procedure

1. In the entity, identify the attributes for which you want to obscure the input.
For example, the ssn attribute for the social security number.

2. Edit the data store schema .xsd file for the IEG script and in the entity, change the type of
the attribute to IEG_OBSCURED.
For example,

<xsd:attribute name="ssn" type="IEG_OBSCURED"/>

3. Optional: To apply further input constraints to the field, create a custom domain.
For example, to constrain the user from typing more than 9 characters in the input field for an
SSN, you can create a custom domain called SSN_OBSCURED.
a) Create a custom domain like the following domain.

....
 <xsd:include schemaLocation="IEGDomains"/>
<!-- NEW TYPE BEGIN-->
 <xsd:simpleType name="SSN_OBSCURED">
 <xsd:restriction base="IEG_OBSCURED">
 <xsd:minLength value="8"/>
 <xsd:maxLength value="9"/>
 </xsd:restriction>
 </xsd:simpleType>

<!-- NEW TYPE END-->
 <xsd:element name="Application">
.....

b) Edit the data store schema .xsd file for the IEG script and change the type of the ssn
attribute to SSN_OBSCURED.
For example,

<xsd:attribute name="ssn" type="SSN_OBSCURED"/>

© Merative US L.P. 2012, 2024

14 Configuring code-table hierarchies for form fields 39

14 Configuring code-table hierarchies for form fields

You can use code-table hierarchies to add two related questions in IEG forms. When you answer
the first question, the second question is enabled.

About this task
Any question where the data type is defined as a code table hierarchy is displayed as two separate
questions in vertically aligned drop-down menus. The first question menu corresponds to the root
code table in the hierarchy, and displays the label that is specified for the question. The second
question menu corresponds to the second-level code table in the hierarchy, and displays a label
that corresponds to the code table display name. The second menu is disabled until a selection is
made in the first menu. Summary pages display both questions.

Displaying a code-table hierarchy value in a list, or the codetable-hierarchy-layout
options, are not supported.

Procedure

To ensure that the label is displayed correctly for the second question, you must ensure
that, for each code table name element, there is a corresponding locale element within the
displaynames element in your code-table definition.

For example, see the following code-table definition.

<codetables package="curam.codetable" hierarchy_name="CountyCityHierarchy">
 <!-- Parent codetable - County -->
 <codetable java_identifier="COUNTYCODE" name="CountyCode">
 <displaynames>
 <name language="en">County</name>
 <locale language="en">County</name>
 </displaynames>
 <!-- code items... -->
 </codetable>
 <!-- Child codetable - City -->
 <codetable java_identifier="CITYCODE" name="CityCode"
 parent_codetable="CountyCode">
 <displaynames>
 <name language="en">City</name>
 <locale language="en">City</name>
 </displaynames>
 <!-- code items... -->
 </codetable>
</codetables>

© Merative US L.P. 2012, 2024

Cúram 8.1.2 40

© Merative US L.P. 2012, 2024

15 Implementing a combo box for form fields 41

15 Implementing a combo box for form fields

You can implement a combo box question with an auto-complete search function to help you
to complete form fields in IEG forms as you type. For example, known address fields can be
automatically selected when you enter an address. You can implement the option to add new
items if they are not found, for example, add an address.

About this task

You must implement a search function in the Cúram Universal Access Responsive Web
Application and register the search function with IEGRegistry. The search function can point
to an internal or external search service to provide the information. Then, update the datastore
schema definition and your IEG script.

15.1 Implementing search functions for ComboBox components

You can implement the ComboBox component to search external data sources as you type in
a form field, with a built-in filter function. Implement a search function and associated error
handling, and make that search function available to the IEG form. If needed, you can implement
an Add New option so that users can add an item if it is not found.

Procedure

1. Implement the search function. A search function is a JavaScript™ function that receives
one parameter that contains the value of the ComboBox, and returns an array of items to be
displayed by the ComboBox.

The response of search-function is an array of items, {items}. Each item is an object
with the following structure:

{
 id:"key"
 value:"value"
 item: { "attribute1": "value1", "attribute2": "value2" },
}

Where:

• id is a mandatory attribute to store the ID in the data store.
• value is the value of the question to store in the data store and to render in the list of

options of the ComboBox.
• item is an optional complex object with the structure of the formData to be populated if

that element is selected in the ComboBox component.

© Merative US L.P. 2012, 2024

Cúram 8.1.2 42

The structure of the item object must match the formData of the target entity. The following
simple example populates the ResidentialAddress entity:

{
 'street1': 'street1',
 'street2': 'street2',
 'city': 'city',
 'zipCode':' zipCode',
 'state': 'state',
}

2. Register the search function with the IEGRegistry object. IEGForm has access to
IEGRegistry and all registered functions. IEGForm reads the custom functions from
IEGRegistry and stores them on its formContext so IEGForm can call custom functions.

1. Implement the JavaScript™ function in any .js file.
2. Import IEGRegistry in a JavaScript™ initial file, such as App.js, and add the custom

function to the registry. For example:

 import { IEGRegistry } from '@spm/core';
 import { searchCity, customFunction } from './examples/playground/
customFunctions';
...

const App = () => {
 IEGRegistry.registerComboBoxSearchFunctions({ searchCity, customFunction });

};

Add New option

If you want to render an Add New option in the menu that is displayed by the ComboBox, the
response of the JavaScript™ function must follow the structure:

{
 newItem: { id: '-1', label: 'Add New', value: ' ', position: 'top' },
 items,
 }

Where:

• newItem is a complex object with the definition of the Add New option.
• id is the ID of the new option.
• label is the label of the new option.
• value is the value of the new option.
• position is the position where the new option renders. The possible values are bottom and

top.

Error messages

The search function must implement its own logic to handle errors if an error needs to be
displayed on the UI, the response of the search function must be:

 {errorMessage: 'Controlled Error Message'}

The error message is displayed underneath the ComboBox.

© Merative US L.P. 2012, 2024

15 Implementing a combo box for form fields 43

15.2 Configuring combo box scripts and schemas

Add the combo-box element to a question in your IEG script and configure the combo-box
element attributes. Add a cluster after the question to display the information to the user when
they select a menu item. Update the schema definition with the appropriate elements.

About this task

The question schema type must be a string. You cannot use a question with a combo-box
child element as a control question.

You can review the design system usage guidance for the ComboBox component. In your
development environment, open the Social Program Management Design System Storybook
documentation at <path>@govhhs/govhhs-design-system-react/doc/
index.html and search for ComboBox.

For more information about the IEG combo-box element, see the Authoring Scripts using
Intelligent Evidence Gathering Guide.

Procedure

1. Add the combo-box child element to the question element. For example:

<question-page id="AboutTheApplicant_GB" read-only="false" set-focus="false" show-
back-button="false" show-exit-button="true" show-next-button="true" show-person-
tabs="false" show-save-exit-button="true" entity="Person" >

<!-- ComboBox -->
<cluster entity="SearchAddress">
 <title id="SearchAddress.Title">Your address</title>
 <question id="fullAddress" mandatory="true" show-field-help="false">
 <label id="FullAddress.Label">Search for your address</label>
 <combo-box key="id" search-function="searchAddress" target-
entity="ResidentialAddress" filter-items="true" />
</question>
</cluster>
 </question-page>

Where:

• key is the id to be stored in the data store and renders as a hidden widget on the front end.
It is mandatory and the entity must define this property in the schema definition. The key
schema type must be a string.

• search-function is the name of the JavaScript™ search function to be called on each
keydown event.

• target-entity is an optional attribute to show information to the user when they select
a combo box menu item. In target-entity, specify the cluster entity to be populated
with the value of the search-function result item attribute. Update the script to display
the cluster entity on the page, the target entity must be shown on the same page as the
combo box. If more than one cluster on the page is related to the same entity name, the first
cluster that matches the entity attribute value with the target-entity value is populated.

• filter-items is an optional attribute that, if true, filters the items as you type with the
built-in filter. By default, it is false.

© Merative US L.P. 2012, 2024

Cúram 8.1.2 44

2. Add a cluster to display the target-entity information when a user selects a menu item.

<question-page id="AboutTheApplicant_GB" read-only="false" set-focus="false" show-
back-button="false" show-exit-button="true" show-next-button="true" show-person-
tabs="false" show-save-exit-button="true" entity="Person" >

<!-- ComboBox -->
<cluster entity="SearchAddress">
 <title id="SearchAddress.Title">Your address</title>
 <question id="fullAddress" mandatory="true" show-field-help="false">
 <label id="FullAddress.Label">Search for your address</label>
 <combo-box key="id" search-function="searchAddress" target-
entity="ResidentialAddress" filter-items="true" />
</question>
</cluster>

<!-- ComboBox -->
<cluster entity="ResidentialAddress">
 <title id="Address.Title">Enter address</title>
 <help-text id="ADHelp">You must enter the address in which you physically
 reside (residential address).</help-text>
 <question control-question="false" id="street1" mandatory="true" multi-
select="false" show-field-help="false">
 <label id="Street1.Label">Street 1</label>
 </question>
 <question control-question="false" id="street2" mandatory="false" multi-
select="false" show-field-help="false">
 <label id="Street2.Label">Street 2</label>
 </question>
 <question control-question="false" id="city" mandatory="false" multi-
select="false" show-field-help="false">
 <label id="City.Label">City</label>
 </question>
 <question control-question="false" id="zipCode" mandatory="false" multi-
select="false" show-field-help="false">
 <label id="Zipcode.Label">ZIP code</label>
 </question>
</cluster>
 </question-page>

3. Edit the schema definition and add an element for the combo box and the target entity, for
example:

<!-- ComboBox -->
<xs:element name="SearchAddress">
 <xs:complexType>
 <xs:attribute name="id" type="IEG_STRING" />
 <xs:attribute name="fullAddress" type="IEG_STRING"/>
 </xs:complexType>
</xs:element>
<!-- Target Entity -->
 <xs:element name="ResidentialAddress">
 <xs:complexType>
 <xs:attribute name="street1" type="IEG_STRING"/>
 <xs:attribute name="street2" type="IEG_STRING"/>
 <xs:attribute name="city" type="IEG_STRING"/>
 <xs:attribute name="zipCode" type="IEG_STRING"/>
 </xs:complexType>
 </xs:element>
2. Associate that new element to a Person entity.
<xs:element name="Person">
 <xs:complexType>
 <xs:sequence minOccurs="0">
 <xs:element ref="SearchAddress" minOccurs="0" maxOccurs="1"/>
 <xs:element ref="ResidentialAddress" minOccurs="0" maxOccurs="unbounded"/>

 </xs:element>
</xs:complexType>

© Merative US L.P. 2012, 2024

16 Customizing script behavior with BaseFormContainer 45

16 Customizing script behavior with
BaseFormContainer

The behavior of scripts in the application is controlled by the BaseFormContainer.js
container component. Each form calls this container component, which controls script behavior
such as whether partial submission is allowed, or where to go on exiting the script. You can
customize the behavior for individual scripts by modifying BaseFormContainer properties.

About this task

The following BaseFormContainer properties are available:

• iegFormId. (Mandatory) This property corresponds to the IEG execution ID that is obtained
from one of the following options:

• An API that starts the script, by creating the execution with the necessary script ID and
data store schema.

• Existing executions that can be resumed.

Note: Later, the ID is used on the server to ensure that the current user matches the user
who is associated with the execution in the CitizenScriptInfo table. The ID also
ensures that the execution is not completed.

• title. (Mandatory) The title to be displayed in the header. You can convert the property by
using the formatMessage for react-intl.

• isLoginOrSignupAllowed. If the property is true when Save and exit is clicked and the
user is not logged in, the log-in screen is displayed. The default value is True.

• isPartialSubmissionAllowed. Specifies that partially completed scripts can be
submitted. The corresponding option must be added to the header. The default value is False.

• onExit. Specifies what happens when a user exits the script without saving. By default, it
goes to the home page.

• onFinish. Specifies what happens when the last page of the script is submitted. By default, it
goes to the home page.

• onPartialSubmission. Specifies what happens when a partial script is submitted. By
default, it saves the current page and then starts the OnFinish handler.

• onSaveAndExit. Specifies what happens when a user saves and exits the script. By default, it
saves the current page and determines what page to go to. If the user is not logged in, the log-
in page is displayed. If the user is logged in, the dashboard is displayed.

• onRef. A function that receives the instance of the current BaseFormContainer to provide
access to its defined functions and props. You can use this function to customize the default
BaseFormContainer functions. For an example of using the onRef function to customize
the behavior of Save and exit, see the SampleApplicationFormComponent in the
sampleApplication.

• onBackForFirstPage. A function that is called on the back-button click event of the first
page of a form to redirect back to another form. The function contains the code responsible
for the redirection. For example, you might want to go back to an application script from a
submission script to change something before you submit an application.

© Merative US L.P. 2012, 2024

Cúram 8.1.2 46

Procedure

To modify the behavior for an existing form feature, follow the standard steps in Reusing existing
features. For example, to customize the form that is loaded from the /eligiblity/form
URL, do the following steps:
1. Find the path variable in the node_modules/@spm/universal-access-ui/

routes/Paths.js file.
For example, search for /eligibilty/form to locate PATHS.ELIGIBILITY.FORM.

2. Search the Routes file for the path variable to find the location of the feature that it loads.
For example, in the node_modules/@spm/universal-access-ui/src/routes/
Routes.js file search for the PATHS.ELIGIBILITY.FORM path variable that you located
in the previous step. The path variable maps to the feature/Forms/Eligibility
location.

3. Copy the source code from the feature folder that you identified in the previous step to your
custom folder.
For example, copy node_modules/@spm/universal-access-ui/src/
features/Forms/Eligibility to the your-custom-app/src/features/
Forms/Eligibility folder.

4. Add a route in the your-custom-app/src/routes.js file with the same path as the
original PATHS.ELIGIBILITY.FORM feature.
a) Map the new route to your custom version of the form feature.

5. Update the properties of the form container according to your requirements.
For example, use custom functions to change the behavior of the on-exit and on-finish flows,
as shown in the following code sample:

<BaseFormContainer
 iegFormId={formId}
 iegHookBindingKey={HookBindings.SCREENING}
 onExit={this.myCustomHandleExitForm}
 onFinish={this.myCustomHandleFinishForm}
 title={myCustomTitle || ''}
 />

© Merative US L.P. 2012, 2024

17 Merging clusters with the cluster element grouping-id attribute 47

17 Merging clusters with the cluster element
grouping-id attribute

If you are developing pages in IEG, you can merge several clusters on summary pages by using
the cluster element grouping-id attribute. The grouping-id attribute is not supported
for standard Cúram web applications.

Related data fields can be defined within different clusters under the following conditions. You
can use the grouping-id attribute to merge these related data fields into a single cluster on
IEG pages.

• Data is defined within different schema entities but a single cluster can be defined for a single
entity only.

• Data is defined within a conditional cluster but it must be included in a non-conditional cluster
when the condition is met.

All clusters with a specific grouping-id attribute are merged into the first cluster with that
grouping-id attribute. Aside from the questions, the cluster elements are shown as defined
by the first cluster. Ensure that the other cluster elements in the first cluster, such as the title or
buttons, are suitable for the merged cluster.

Where possible, do not have a conditional cluster as the first cluster if you are merging
conditional and non-conditional clusters. If the first cluster is conditional and the condition is not
met, then the merged cluster is not displayed. If a conditional cluster must be positioned before
non-conditional clusters in a merged cluster, then add a non-conditional cluster with no questions
as the first cluster with the grouping-id.

© Merative US L.P. 2012, 2024

Cúram 8.1.2 48

This sample XML snippet merges three clusters into a single cluster with the grouping-id
attribute. The three clusters have data fields from three different entities and the last cluster is
conditional.

<cluster entity="ResidentialAddress" grouping-id="100">
 <title id="Address.Title">Address</title>
 <edit-link
 skip-to-summary="false"
 start-page="AboutTheApplicant_GB"
 />
 <layout>
 <type>flow</type>
 <num-cols>2</num-cols>
 <label-alignment>left</label-alignment>
 </layout>
 <question
 id="street1"
 >
 <label id="Street1.Label">Street 1:</label>
 </question>
...
</cluster>
<cluster entity="Person" grouping-id="100">
 <question
 id="applyToMailingAddress"
 >
 <label id="ApplyToMailingAddress.Label">Mail to Same Address?</label>
 </question>
</cluster>
<condition expression="Person.applyToMailingAddress=="N2OITYN2"">
 <cluster entity="MailingAddress" grouping-id="100">
 <question
 id="street1"
 >
 <label id="Street1.Label">Street 1:</label>
 </question>
 ...
</cluster>

© Merative US L.P. 2012, 2024

18 Configuring relationship pages questions 49

18 Configuring relationship pages questions

If you are developing pages in IEG, you can configure the text of the relationship questions on
relationship pages.

By default, the question label is dynamic, in the first relationship question page, it renders as
“What is [Name and Age of the Person related] to you?”. On the following relationship question
pages, it renders “What is [Name and Age of the Person related] to [Name and Age of the
Person]?

The attribute name for the start date must be startDate.

To show age in the relationship question label, you must populate the date of birth, which is
defined as the dateOfBirth attribute of the Person entity.

You can use the following IEG configuration property to configure the default text.

relationship question label on relationship page
relationship.question.label={index, select, 0 {What is %2s to you?} other {What is %2s
 to %1s?}}

The example ICU template does the following:

In the first iteration:

What is %2s to you?

Where %2s is the related person in the first iteration.

From the second iteration until the end:

What is %2s to %1s?

Where %1s is the new main person in the iteration and %2s is the related person in the iteration.

© Merative US L.P. 2012, 2024

Cúram 8.1.2 50

© Merative US L.P. 2012, 2024

19 Configuring relationship starting dates on relationship summary pages 51

19 Configuring relationship starting dates on
relationship summary pages

If you are developing pages in IEG, you can configure the start date of relationships for
relationship summary pages. For example, Married since Jun 12, 2014.

You can use the following IEG configuration property to configure the default text.

relationship type and start date label.
relationship.type.date.label=%1s since %2s

Where %1s is the relationship type and %2s is the relationship start date.

© Merative US L.P. 2012, 2024

Cúram 8.1.2 52

© Merative US L.P. 2012, 2024

20 Configuring quick-add-list 53

© Merative US L.P. 2012, 2024

Cúram 8.1.2 54

20 Configuring quick-add-list

The quick-add-list feature is enabled at the IEG script level. The quick-add-list
component receives two parameters, entity with the Entity object is managed by the component
and criteria with any specific criteria that the component might need to meet.

© Merative US L.P. 2012, 2024

20 Configuring quick-add-list 55

Common pattern

The code that follows is an example of a fully functional implementation of the quick-add-
list component in a section of an IEG script:

<section>
 <question-page id="AnyMemberPage" show-back-button="true" show-exit-button="false"
 show-save-exit-button="true" show-person-tabs="false">
 <title id="AnyMemberPage.Title">Household</title>
 <description id="AnyMemberPage.Description">Please enter details about the other
 people besides yourself who live in your home including those who are not related to
 you. Once you’re finished please check the box to confirm the number of other people
 living in your home (not including yourself).
 </description>
 <condition expression="false">
 <cluster entity="Application">
 <question id="dummy" default-value-expression="householdCount()"/>
 </cluster>
 </condition>
 <quick-add-list entity="Person" criteria="isPrimaryParticipant==false">
 <title id="HouseholdList.Title">Household members</title>
 <quick-edit-link >
 <page-title id="Edit.PageTitle">Edit %1s (%2s)<argument id="Person.firstName"/
><argument id="Person.age"/>
 </page-title>
 </quick-edit-link>
 <quick-delete-link>
 <page-title id="Delete.PageTitle">Remove %1s %2s (%3s) from the household?
<argument id="Person.firstName"/><argument id="Person.lastName"/><argument
 id="Person.age"/></page-title>
 <confirm-message id="Delete.Message">Are you sure you want to remove %1s?
<argument id="Person.firstName"/></confirm-message>
 <confirm-button id="Delete.Button">Remove %1s<argument id="Person.firstName"/
></confirm-button>
 </quick-delete-link>
 <quick-add-link>
 <page-title id="Add.PageTitle">Add new person to household</page-title>
 <title id="Add.Title">Add new member</title>
 </quick-add-link>
 <page-content id="HouseholdMember"/>
 </quick-add-list>
 <condition expression="Application.householdCount != 0">
 <cluster>
 <question id="doneEditingHousehold" mandatory="true" control-
question="true" control-question-type="IEG_BOOLEAN">
 <label id="HasOtherMembers.Label">There are %1s other people in your
 home not including yourself<argument id="Application.householdCount"/></label>
 </question>
 </cluster>
 </condition>
 <condition expression="Application.householdCount == 0">
 <cluster>
 <question id="doneEditingHousehold" mandatory="true" control-
question="true" control-question-type="IEG_BOOLEAN">
 <label id="HasOtherMembers.Label">There are no other people in your
 household, just yourself</label>
 </question>
 </cluster>
 </condition>
 </question-page>
 <loop loop-type="hidden" entity="Person" criteria="isPrimaryParticipant==false">
 <question-page id="HouseholdMember">
 <title id="HouseholdMember.Title">Household</title>
 <cluster>
 <title id="HouseholdMember.Cluster.Title">Personal details</title>
 <question id="firstName" mandatory="true">
 <label id="FirstName.Label">First Name</label>
 </question>
 <question id="lastName" mandatory="true">
 <label id="lastName.Label">Last Name</label>
 </question>
 <question id="dateOfBirth" mandatory="true">
 <label id="DateOfBirth.Label">Date of birth</label>
 </question>
 </cluster>
 </question-page>
 </loop>
</section>

© Merative US L.P. 2012, 2024

Cúram 8.1.2 56

The quick-add-list component uses a custom function householdCount that updates the
number of household members. The logic for that custom function can be written as follows:

 public Adaptor getAdaptorValue(final RulesParameters rulesParameters)
 throws AppException, InformationalException {

 final IEG2Context ieg2Context = (IEG2Context) rulesParameters;
 final long executionID = ieg2Context.getExecutionID();
 final long rootEntityID = ieg2Context.getRootEntityID();

 final IEGScriptExecution scriptExecution = IEGScriptExecutionFactory
 .getInstance().getScriptExecutionObject(executionID);
 Datastore ds = null;
 try {
 ds = DatastoreFactory.newInstance()
 .openDatastore(scriptExecution.getSchemaName());
 } catch (final NoSuchSchemaException e) {
 throw new AppException(IEG.ID_SCHEMA_NOT_FOUND);
 }

 final Entity rootEntity = ds.readEntity(rootEntityID);

 final Entity[] personEntities =
 rootEntity.getChildEntities(ds.getEntityType("Person"));

 rootEntity.setTypedAttribute("householdCount", personEntities.length - 1);
 rootEntity.update();

 return AdaptorFactory.getBooleanAdaptor(true);
 }

© Merative US L.P. 2012, 2024

Notices

Permissions for the use of these publications are granted subject to the following terms and
conditions.

Applicability

These terms and conditions are in addition to any terms of use for the Merative website.

Personal use

You may reproduce these publications for your personal, noncommercial use provided that all
proprietary notices are preserved. You may not distribute, display or make derivative work of
these publications, or any portion thereof, without the express consent of Merative

Commercial use

You may reproduce, distribute and display these publications solely within your enterprise
provided that all proprietary notices are preserved. You may not make derivative works of these
publications, or reproduce, distribute or display these publications or any portion thereof outside
your enterprise, without the express consent of Merative.

Rights

Except as expressly granted in this permission, no other permissions, licenses or rights are
granted, either express or implied, to the publications or any information, data, software or other
intellectual property contained therein.

Merative reserves the right to withdraw the permissions granted herein whenever, in its
discretion, the use of the publications is detrimental to its interest or, as determined by Merative,
the above instructions are not being properly followed.

You may not download, export or re-export this information except in full compliance with all
applicable laws and regulations, including all United States export laws and regulations.

MERATIVE MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE
PUBLICATIONS. THE PUBLICATIONS ARE PROVIDED "AS-IS" AND WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT
LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT,
AND FITNESS FOR A PARTICULAR PURPOSE.

Merative or its licensors may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this documentation does not grant you any license
to these patents.

Information concerning non-Merative products was obtained from the suppliers of those products,
their published announcements or other publicly available sources. Merative has not tested those
products and cannot confirm the accuracy of performance, compatibility or any other claims
related to non-Merative products. Questions on the capabilities of non-Merative products should
be addressed to the suppliers of those products.

Any references in this information to non-Merative websites are provided for convenience only
and do not in any manner serve as an endorsement of those websites. The materials at those
websites are not part of the materials for this Merative product and use of those websites is at
your own risk.

© Merative US L.P. 2012, 2024

This information contains examples of data and reports used in daily business operations.
To illustrate them as completely as possible, the examples include the names of individuals,
companies, brands, and products. All of these names are fictitious and any similarity to actual
people or business enterprises is entirely coincidental.

The licensed program described in this document and all licensed material available for it are
provided by Merative under terms of the Merative Client Agreement.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate
programming techniques on various operating platforms. You may copy, modify, and distribute
these sample programs in any form without payment to Merative, for the purposes of developing,
using, marketing or distributing application programs conforming to the application programming
interface for the operating platform for which the sample programs are written. These examples
have not been thoroughly tested under all conditions. Merative, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample programs are provided
"AS IS", without warranty of any kind. Merative shall not be liable for any damages arising out of
your use of the sample programs.

Privacy policy
The Merative privacy policy is available at https://www.merative.com/privacy.

Trademarks

Merative ™ and the Merative ™ logo are trademarks of Merative US L.P. in the United States and
other countries.

IBM®, the IBM® logo, and ibm.com® are trademarks or registered trademarks of International
Business Machines Corp., registered in many jurisdictions worldwide.

Adobe™, the Adobe™ logo, PostScript™, and the PostScript™ logo are either registered
trademarks or trademarks of Adobe™ Systems Incorporated in the United States, and/or other
countries.

Oracle and Java are registered trademarks of Oracle and/or its affiliates.

The registered trademark Linux® is used pursuant to a sublicense from the Linux Foundation, the
exclusive licensee of Linus Torvalds, owner of the mark on a worldwide basis.

Microsoft™, Windows™, and the Windows™ logo are trademarks of Microsoft™ Corporation in
the United States, other countries, or both.

UNIX™ is a registered trademark of The Open Group in the United States and other countries.

Other company, product, and service names may be trademarks or service marks of others.

© Merative US L.P. 2012, 2024

https://www.merative.com/privacy

	Note
	Edition
	Notices
	Privacy policy
	Trademarks

	Contents
	1 IEG in the Cúram Universal Access Responsive Web Application
	2 IEG elements and attributes specific to the design system and Cúram Universal Access Responsive Web Application
	3 IEG configuration not currently supported for the Cúram Universal Access Responsive Web Application
	4 Customizing the Back button in IEG forms
	5 Configuring section navigation for forms
	6 Configuring progress information for forms
	7 Configuring dynamic titles on forms
	8 Configuring rich text on forms
	8.1 Configuring external links to open in a new tab or window

	9 Configuring hint text for forms
	10 Configuring explainer text for forms
	11 Configuring the 'Help' label for forms
	12 Configuring required or optional labels for form fields
	13 Configuring input formats and constraints for form fields
	13.1 Configuring phone numbers
	13.2 Configuring date formats
	13.3 Configuring currency symbols
	13.4 Configuring inputs to be obscured for privacy

	14 Configuring code-table hierarchies for form fields
	15 Implementing a combo box for form fields
	15.1 Implementing search functions for ComboBox components
	15.2 Configuring combo box scripts and schemas

	16 Customizing script behavior with BaseFormContainer
	17 Merging clusters with the cluster element grouping-id attribute
	18 Configuring relationship pages questions
	19 Configuring relationship starting dates on relationship summary pages
	20 Configuring quick-add-list

