A
MerATive

Curam 8.1.2

Citizen Context Viewer Developer Guide

Note

Before using this information and the product it supports, read the information in Notices on page
19

© Merative US L.P. 2012, 2024

© Merative US L.P. 2012, 2024

Edition
This edition applies to Curam 8.1, 8.1.1, and 8.1.2.

© Merative US L.P. 2012, 2024

Merative and the Merative Logo are trademarks of Merative US L.P. in the United States and
other countries.

© Merative US L.P. 2012, 2024

© Merative US L.P. 2012, 2024

Contents vii

Contents
L0 PP i
=T 11 o o PP S SURPPUPPPPRRRR Y
1 Developing with the Citizen ConteXt VIEWETcoooiiiiiiiiiiiiiiiiiiieeeieeeeee e 9
O @ V=T = PSPPI 9
e (T (=T 8T (= 9
SeCtioNS iN thiS GUILE.......cco e 9
1.2 Adding Links to Launch the Citizen ConteXt VIBWENccciivvuiiiiiiiiieeeeeeeie e 9
EXAMIPIE. ..ottt e e et e e e e e e e e e as 10
1.3 Customizing the Citizen CONtEXt VIBWETccoieiiiiiiiii e e et e e e e e e 10
INjection POINtS IN The CCV ... et e et e e e e anae 10
WIHEING @ LOAAE......ccoiiiiiiieiee e, 11
WIHING @ CaSE HANAIET ..o e e et e e e e e e et s e e e e e e eeaaeneaaaas 13
1.4 Adding Node Types and Right-click Menu Options............cccceeeiiii 14
F Yo Lo g To N Lo To L= T Y7 o 1= 3 15
Adding Right-CliCk MENU OPLIONS......ciiiiiiiiiiiiiie et 15
1.5 Localizing Citizen Context VIeWer Data.........cccouieeieiiiiiiiiiiii et eee e e e e e eeneenanns 16
1.6 Compliancy for the Citizen CONEXE VIEWENueviieiiieeiiieiieeieeeieee e eeeeeee e ee e e e e e e e e eeeeeeeaeeaaeees 17
0 o) o Y SRRSO 17
1eNtifyiNg The AP e e e e e e e e e ae s 17
OULSIAE TE AP .o e e e e e s et e e e e e e s e et e e e e e e s snbbaaeeeeeeeeeaans 17
N[0 1 o] = OSSR 19
PrIVACY POLICY ...t e —————————————— 20
LI = 10 [10T U2 20

© Merative US L.P. 2012, 2024

Curam 8.1.2 viii

© Merative US L.P. 2012, 2024

1 Developing with the Citizen Context Viewer 9

1 Developing with the Citizen Context Viewer

Use this information to learn how to create custom UIM pages that launch the Citizen Context
Viewer. Injection points for customizing the Citizen Context Viewer exist. Custom loaders and
case handlers can be written. Node types and custom right-click menu options for the Citizen
Context Viewer elements can be added.

1.1 Overview

The purpose of this guide is to provide instructions on how to customize the Citizen Context
Viewer (CCV). It includes information on adding links to launch the CCV, on adding new
elements to the CCV, and on localizing the CCV.

This guide is intended for developers responsible for integrating the CCV into specific
components. Business analysts may find the guide useful in understanding the aspects of the CCV
that can be customized to meet business requirements.

Prerequisites

There are two additional guides on the CCV: the Caram Ci ti zen Cont ext Vi ewer
Gui de and the Ciram Ci ti zen Context Viewer Confi gurati on guide.

Sections in this Guide

The following list describes the sections within this guide:

* Adding Links to Launch the Citizen Context Viewer
This section describes how to add links to custom uim pages that can launch the CCV.

+ Customizing the Citizen Context Viewer
This section describes the injection points for customizing the CCV and provides instructions
on writing loaders and case handlers.

* Adding Node Types and Right-click Menu Options
This section describes how a node type is defined for each element in the CCV tree and how to
add right-click menu options for the CCV elements.

* Localizing Citizen Context Viewer Data
This section provides information on localizing the data that appears as text in the CCV.

1.2 Adding Links to Launch the Citizen Context Viewer

It may be necessary to launch the CCV from customized pages. This can be achieved by creating
links in the customized uims which reference the CCV javascript.

© Merative US L.P. 2012, 2024

Curam 8.1.2 10

Example

The following code snippet outlines the link that specifies the CCV to be opened. The SOURCE
should contain the field that holds the concern role ID for the person to be displayed in the CCV.

The TARGET should be as specified below:

<SCRI PT EVENT="ONCLI CK"
ACTI ON=" openCont ext Vi ewer (t hi s, event)"
SCRI PT_FI LE=" Cont ext Vi ewer Popup. js"/ >

<LINK URI="../flex/Citizen_resolveCtizenViewer.jsp">
<CONNECT>

<SOURCE NAME="DI SPLAY" PROPERTY="concernRol el D'/ >
<TARGET NAME="PACE" PROPERTY="concernRol el D'/ >

</ CONNECT>

</ LI NK>

1.3 Customizing the Citizen Context Viewer

This section provides instructions on customizing the Citizen Context Viewer (CCV). The
CCV interfaces define default implementations that can be replaced by injecting a custom
implementation for that interface.

Injection Points in the CCV

Customization of the Citizen Context Viewer is facilitated via events and listeners. The
following sections describe the areas where listeners might be implemented to carry out certain
customizations of the CCV.

ContextNodeRootEvent

A listener to the ContextNodeRootEvent can add an implementation of the ContextCategory
interface that will be used to populate the data displayed in the CCV. A implementation of the
ContextCategory interface will allow loaders to be defined to show information in the CCV.

ContextCaseHandlerEvent

Cases that are displayed in the CCV can be created by a number of different components.
Retrieval of information for these cases may therefore need variations depending on the type of
case being read. The IContextCaseHandler interface describes case handlers for specific case
types. These case handlers will know the specific retrieval methods for getting information such
as the case name. A default case handler exists that will get the case name from the case header
table.

If the case type is not known by the OOTB CCYV, then the default case handler will be used to
read information for that case. If the default details for the case shown in the CCV are not specific
enough then a customized case handler can be written. This case handler must implement the

© Merative US L.P. 2012, 2024

1 Developing with the Citizen Context Viewer 11

IContextCaseHandler interface and can be added by listening for the ContextCaseHandlerEvent
setContextCaseHandlers method.

Writing a Loader

As previously mentioned, a loader class provides information that can be displayed in the CCV.
Typically, a loader is written for each leaf node of the root node in the CCV.

For example, there are specific loaders for each of the leaf node categories including, Care
And Protection, Communities, Family, and Dealings. These loaders gather all of the data for
these categories. All loader classes must extend the ContextNode abstract class. A listener
of ContextNodeRootEvent can be implemented to add new loaders to the existing set of
CCYV loaders via the method setChildNodesForContextType(Map<CONTEXT TYPEEntry,
ContextCategory> contextCategory)

Example
This loader example shows how a loader might be defined that reads Core interactions and sets up
the data to be displayed in the CCV.

Comments are denoted by /** **/,

class Contextlnteracti onLoader extends ContextNode {
/** The | oad nethod nust be inplenmented by all | oader
cl asses. This
is what is called when the CCV is opened. **/ public
Cont ext Node
| oad(Context I D contextlD) throws AppException
I nf ormat i onal Exception { /**Set up and read the list of
i nteractions
fromcore for the context id, the context id in this
i nstance is the
concern role id for the citizen being displayed **/
Clientlnteraction clientlnteracti onCoj =
CientlnteractionFactory. new nstance();
ClientlnteractionKey
clientlnteractionKey = new ClientlnteractionKey();
CientlnteractionDtls clientlnteractionbDtls;
Li stInteracti onKey
listlnteractionKey = new ListlnteractionKey();
l'istlnteractionKey.concernRolelD =
context| D. cont ext i d;
InteractionDetail sList interactionDetailsList =
clientlnteractionQoj.list(listlnteractionKey); /** If
sensitivity
settings do not allowthis citizen to be shown then
i ndi cate that no
i nteractions can be displayed **/ if
(!'ContextUtil.checkUserAut hori zati onFor Parti ci pant (
contextI D.context _id)) { setLabel Al |l Not Shown(

Context Util . get Text For Local e(BPOCONTEXTI NTERACTI ON. ROOT) ,
interactionDetail sList.dtls.size()); return this; } /**
Calling the
set Label | ncl udi ngChildren will display the Interaction
| abel as

© Merative US L.P. 2012, 2024

Curam 8.1.2 12

defined in the interaction nessage file and the nunber
of
i nteractions **/ setLabel I ncl udi ngChi |l dren(

Context Util . get Text For Local e(BPOCONTEXTI NTERACTI ON. ROOT) ,

interactionDetailsList.dtls.size()); /** Set the node
type. Node

types define certain characteristics, including the
menu that will

appear on right click **/ /** See Chapters 3 & 4 for
nor e

i nformati on on Node Types and Menus **/

set NodeType(CONTEXTNODETYPE. DEFAULTNCDE) ; /** Set the
context ID. If

a context IDis set then this will be used when
carrying out a

specific action. **/ [** Such as opening an new page
froma nenu

itemclick **/ setContextID(0); if

(interactionDetailsList.dtls.size() == 0) {

set Label I ncl udi ngChi | dr en(

Context Util . get Text For Local e(BPOCONTEXTI NTERACTI ON. ROOT) ,

interactionDetailsList.dtls.size()); /** if there are
no

interactions then add an enpty child **/
addDef aul t Chi | d(new

Cont ext Label Loader (),
ContextUtil.getLocalisabl eStringForLocal e((

BPOCONTEXT. EMPTY)) .arg(ContextUtil . get Text ForLocal e(

BPOCONTEXTI NTERACTI ON. ROOT)) . get Message()); return
this; } else {

Iterator interactionslter =
interactionDetailsList.dtls.iterator();

InteractionDetails interactionDetails = new
InteractionDetail s();

while (interactionslter.hasNext()) { interactionDetails

(InteractionDetails) interactionslter.next();

Cont ext | nteracti onLoader contextlnteractionChild = new

Cont ext | nteracti onLoader () ;
contextInteractionChild. setLabel (

curamutil.type. CodeTabl e. get Onel t en(| NTERACTI ONTYPE. TABLENAME

interactionDetails.interactionTypeCode));

clientlnteractionKey.clientlnteractionlD =

interactionDetails.clientlnteractionl D
clientlnteractionDtls =

clientlnteracti onQoj.read(clientlnteractionKey); if

(clientlnteractionDtls.rel atedType. equal s(

cur am codet abl e. RELATEDI NTERACTI ONTYPE. COVMUNI CATI ON))
{ /** This is

a communi cation interaction so set the correspondi ng
node type and

menu **/ [/** See Chapters 3 & 4 for nore information on
node

types and menus **/
contextlnteractionChil d. set NodeType(

© Merative US L.P. 2012, 2024

1 Developing with the Citizen Context Viewer 13

CONTEXTNODETYPE. COVWM | NTERACTI ON_NCDE) ; /** Set the
context id for

this child node to be the interaction relatedlD. This
will be used

when opening any interaction pages froma CCV
i nteraction nenu **/

contextlnteractionChil d. set Context| X

clientlnteractionDils.relatedlD); } else if

(clientlnteractionDtls.rel at edType. equal s(

curam codet abl e. RELATEDI NTERACTI ONTYPE. PAYMENT)) { /**
This is a

paynent interaction so set the correspondi ng node type
and menu **/

[** See Chapters 3 & 4 for nore infornmation on node
types and

menus **/ contextlnteractionChild.set NodeType(

CONTEXTNODETYPE. PAY_| NTERACTI ON_NCDE) ; /** Set the
context id for

this child node to be the interaction relatedl D. This
will be used

when opening any interaction pages froma CCV
interaction menu **/

contextInteractionChild. set Context!| D(

clientlInteractionDtls.relatedlD); } else {

contextlnteracti onChil d. set NodeType(CONTEXTNCODETYPE. DEFAUL TNCDE)
contextInteractionChild.setContextID(Q); } /** Add the
child to the
| oader **/ addChild(contextlnteractionChild); } }
return this;

}

Writing a Case Handler

A case handler can be used to get the name of a case where the retrieval of the case details
is not covered by the CCV default case handler. The case handler can also be used to check
property settings defined for a given case type. All case handlers must extend the abstract
ContextCaseHandler class.

Example
This example outlines how a case handler might be defined for Integrated cases.

Comments are denoted by /** **/.

cl ass | ntegratedCaseHandl er extends
Cont ext CaseHandl er { @nject private

Pr ovi der <Cont ext Cor e>
cont ext CoreProvider; public String getCaseNane(l ong

casel D) throws
AppException, Informational Exception { return
CodeTabl e. get Onel t em(PRODUCTCATEGORY. TABLENANE
this.readType(caselD)); } protected String

get ShowAl | St at uses() {
/** check to see if CCV is configured to display all IC

case

© Merative US L.P. 2012, 2024

Curam 8.1.2 14

statuses **/ return
| SEConfigurationUtility. getProperty(

EnvVars. ENV_CCV_CASE_SHOW ALL_| C_STATUSES,

EnvVars. ENV_CCV_CASE_SHOW ALL_| C_STATUSES DEFAULT); }
prot ect ed

String get ShowAl | Types() { /** check to see if CCV is
configured to

display all integrated case types **/ return

| SEConfi gurationUtility.getProperty(

EnvVars. ENV_CCV_CASE_SHOW ALL_| C _TYPES,

EnvVars. ENV_CCV_CASE_SHOW ALL | C_ TYPES DEFAULT); }
prot ect ed

ArrayList<String> |istAcceptabl eCaseStatuses() { return

| SEConfigurationUtility. getListPropertyVal ues(

EnvVars. ENV_CCV_| C_CASE_STATUSES_TO DI SPLAY,

EnvVars. ENV_CCV_| C_CASE_STATUSES _TO DI SPLAY_DEFAULT); }
prot ect ed

ArrayLi st<String> |istAcceptabl eTypes() { return

| SEConfigurationUtility. getListPropertyVal ues(

EnvVars. ENV_CCV_| C_CASE _TYPES _TO DI SPLAY,

EnvVars. ENV_CCV_| C_CASE_TYPES TO DI SPLAY_DEFAULT); }
protected

String readType(l ong casel D) throws AppException,

I nformat i onal Exception { /** read the case type, how
this is done

can be specific to the case type **/ ContextCore
context Core =

cont ext CoreProvi der. get(); CaseHeaderDils
caseHeaderDtls =

cont ext Cor e. r eadCaseHeader ByCasel D(casel D); return

caseHeaderDt| s. i nt egrat edCaseType; } public String

get ShowAl | CasePartici pantRol es() { return

| SEConfi gurationUtility. getProperty(

EnvVars. ENV_CCV_CASE_SHOW ALL_| C_CPRCLES,

EnvVar s. EN\/ CCV CASE SHQN ALL IC CPROLES _DEFAULT); }
pr ot ect ed

ArrayList<String> |istAcceptabl eCasePartici pant Rol es()
{

return | SEConfigurationUtility.getListPropertyVal ues(
EnvVars. ENV_CCV_| C_CPROLE_TYPES _TO DI SPLAY,
EnvVars. ENV_CCV_| C_CPROLE_TYPES TO DI SPLAY_DEFAULT); }

}

1.4 Adding Node Types and Right-click Menu Options

This section provides instructions on adding node types to the Citizen Context Viewer tree and on
adding right-click menu options for menu items in each node.

© Merative US L.P. 2012, 2024

1 Developing with the Citizen Context Viewer 15

Adding Node Types

When a loader retrieves data to be displayed by the context viewer, each element in the context
viewer tree will be assigned a node type. The node type describes the following about the element
to which it is assigned.

+ CONTEXTNODETYPE
This attribute holds the ID for the node type. The ID maps to a code table value in the
ContextNodeType code table to allow the node type to be referenced in code via its java
identifier.

* Loadable
This boolean flag allows the context viewer to decide whether expanding an element results in
a server call to retrieve additional context data.

* menulD
This is the ID for the menu to which this node type links.

* isBranch
This boolean flag allows the context viewer to decide whether the node has children. A node
can have children as a result of a read from the CCV, or as a result of a user click (which
results in a read from the CCV to get the children). If loadable and isBranch are both true then
the element will indicate that children are available, but the children will not be read until the
user clicks the element.

Example
Example of a context node type:

<?xm version="1.0" encodi ng="UTF-8"?>
<CONTEXTNODETYPE i d="CNDT101" >
<| oadabl e val ue="true"/>
<nmenul D val ue="CNMJ101"/ >
<i sBranch val ue="true"/>

</ CONTEXTNCDETYPE>

Adding Right-click Menu Options

It is possible to add menu items that will appear upon right click of an element in the context
viewer. This is done via the contextmenu dmx files loaded as initial data.

Setting Attributes for Context Menu
The following attributes can be set for a context menu:

+ CONTEXTMENU
This attribute holds the ID for the menu. This ID is referenced from a node type definition.
+ MENUITEM
There can be none, one, or many menu items and they map to one of the right-click options
displayed in the context viewer.

© Merative US L.P. 2012, 2024

Curam 8.1.2 16

« MENUITEMLINK
This attribute defines the page or url that will be opened when the right click option is
selected.

Menu item links can contain the following:

* PAGEPARAM
This defines the page parameter required by the page being opened.

*+ PAGECONFIG
This specifies the javascript window.open options when opening the page on right-click of the
menu item.

Example
Example of a context menu:

<?xm version="1.0" encodi ng="UTF-8"?>
<CONTEXTMENU i d="CNMJ103" >
<MENUI TEM val ue="Vi ew Contact Detail s">

<MENUI TEMLI NK
val ue="Mul ti di sci pl i naryTeamvenber _vi ewivbdal Page. do" >

<PAGEPARAM val ue="nul ti di sci pl i naryTeanienber| D'/ >
<PAGECONFI G
val ue="hei ght =450, wi dt h=800, t op=100,
| ef t =100, r esi zabl e=yes"/ >
</ MENUI TEMLI NK>
</ MENUI TEM>

</ CONTEXTMENU>

1.5 Localizing Citizen Context Viewer Data

Any data that is displayed by the context viewer that is not read directly from application
database tables is read via data loaded from message files.

For example, the text that is displayed when case security is set, and a case cannot be viewed
in the context viewer, comes from the Context message file. Since the content of the xml tree
displayed by the context viewer is built on the server, the localization substitution must also be
performed on the server. includes sample code where messages are read in localized form.

© Merative US L.P. 2012, 2024

1 Developing with the Citizen Context Viewer 17

1.6 Compliancy for the Citizen Context Viewer

This section explains how to develop in a compliant manner. By following these considerations,
customers will also find it easier to upgrade to future versions of Ctram.

Public API

The Citizen Context Viewer has a public API which you may use in your application code.
This public API will not have any components changed or removed without following Clram
standards for handling customer impact.

ldentifying the API

The JavaDoc shipped is the sole means of identifying which public classes, interfaces and
methods form the public API.

Outside the API

The Citizen Context Viewer also contains some public classes, interfaces and methods, which do
not form part of the API.

Important: To be compliant, dependencies on any class or interface should not be made. No
methods should be called other than those described in the JavaDoc.

Classes, interfaces and methods outside of the public API are subject to change or removal
without notice. Unless otherwise stated in the JavaDoc, you must not place any of your own
classes or interfaces in the same package as that of the Citizen Context Viewer.

© Merative US L.P. 2012, 2024

Curam 8.1.2 18

© Merative US L.P. 2012, 2024

Notices

Permissions for the use of these publications are granted subject to the following terms and
conditions.

Applicability
These terms and conditions are in addition to any terms of use for the Merative website.
Personal use

You may reproduce these publications for your personal, noncommercial use provided that all
proprietary notices are preserved. You may not distribute, display or make derivative work of
these publications, or any portion thereof, without the express consent of Merative

Commercial use

You may reproduce, distribute and display these publications solely within your enterprise
provided that all proprietary notices are preserved. You may not make derivative works of these
publications, or reproduce, distribute or display these publications or any portion thereof outside
your enterprise, without the express consent of Merative.

Rights

Except as expressly granted in this permission, no other permissions, licenses or rights are
granted, either express or implied, to the publications or any information, data, software or other
intellectual property contained therein.

Merative reserves the right to withdraw the permissions granted herein whenever, in its
discretion, the use of the publications is detrimental to its interest or, as determined by Merative,
the above instructions are not being properly followed.

You may not download, export or re-export this information except in full compliance with all
applicable laws and regulations, including all United States export laws and regulations.

MERATIVE MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE
PUBLICATIONS. THE PUBLICATIONS ARE PROVIDED "AS-IS" AND WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT
LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT,
AND FITNESS FOR A PARTICULAR PURPOSE.

Merative or its licensors may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this documentation does not grant you any license
to these patents.

Information concerning non-Merative products was obtained from the suppliers of those products,
their published announcements or other publicly available sources. Merative has not tested those
products and cannot confirm the accuracy of performance, compatibility or any other claims
related to non-Merative products. Questions on the capabilities of non-Merative products should
be addressed to the suppliers of those products.

Any references in this information to non-Merative websites are provided for convenience only
and do not in any manner serve as an endorsement of those websites. The materials at those
websites are not part of the materials for this Merative product and use of those websites is at
your own risk.

© Merative US L.P. 2012, 2024

This information contains examples of data and reports used in daily business operations.

To illustrate them as completely as possible, the examples include the names of individuals,
companies, brands, and products. All of these names are fictitious and any similarity to actual
people or business enterprises is entirely coincidental.

The licensed program described in this document and all licensed material available for it are
provided by Merative under terms of the Merative Client Agreement.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate
programming techniques on various operating platforms. You may copy, modify, and distribute
these sample programs in any form without payment to Merative, for the purposes of developing,
using, marketing or distributing application programs conforming to the application programming
interface for the operating platform for which the sample programs are written. These examples
have not been thoroughly tested under all conditions. Merative, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample programs are provided
"AS IS", without warranty of any kind. Merative shall not be liable for any damages arising out of
your use of the sample programs.

Privacy policy

The Merative privacy policy is available at https://www.merative.com/privacy.

Trademarks

Merative ™ and the Merative ™ logo are trademarks of Merative US L.P. in the United States and
other countries.

IBM®, the IBM® logo, and ibm.com® are trademarks or registered trademarks of International
Business Machines Corp., registered in many jurisdictions worldwide.

Adobe™, the Adobe™ logo, PostScript™, and the PostScript™ logo are either registered
trademarks or trademarks of Adobe™ Systems Incorporated in the United States, and/or other
countries.

Oracle and Java are registered trademarks of Oracle and/or its affiliates.

The registered trademark Linux® is used pursuant to a sublicense from the Linux Foundation, the
exclusive licensee of Linus Torvalds, owner of the mark on a worldwide basis.

Microsoft™, Windows™, and the Windows™ logo are trademarks of Microsoft™ Corporation in
the United States, other countries, or both.

UNIX™ is a registered trademark of The Open Group in the United States and other countries.

Other company, product, and service names may be trademarks or service marks of others.

© Merative US L.P. 2012, 2024

https://www.merative.com/privacy

	Note
	Edition
	Notices
	Privacy policy
	Trademarks

	Contents
	1 Developing with the Citizen Context Viewer
	1.1 Overview
	Prerequisites
	Sections in this Guide

	1.2 Adding Links to Launch the Citizen Context Viewer
	Example

	1.3 Customizing the Citizen Context Viewer
	Injection Points in the CCV
	ContextNodeRootEvent
	ContextCaseHandlerEvent

	Writing a Loader
	Example

	Writing a Case Handler
	Example

	1.4 Adding Node Types and Right-click Menu Options
	Adding Node Types
	Example

	Adding Right-click Menu Options
	Setting Attributes for Context Menu
	Example

	1.5 Localizing Citizen Context Viewer Data
	1.6 Compliancy for the Citizen Context Viewer
	Public API
	Identifying the API
	Outside the API

