
Cúram 8.1.2
Business Object Module Development Guide

Note
Before using this information and the product it supports, read the information in Notices on page
49

© Merative US L.P. 2012, 2024

© Merative US L.P. 2012, 2024

Edition
This edition applies to Cúram 8.1, 8.1.1, and 8.1.2.

© Merative US L.P. 2012, 2024

Merative and the Merative Logo are trademarks of Merative US L.P. in the United States and
other countries.

© Merative US L.P. 2012, 2024

© Merative US L.P. 2012, 2024

Contents vii

Contents

Note.. iii

Edition... v
1 Developing Business Object Modules for Configuration Transport Manager...........9
1.1 Overview.. 9

Prerequisites.. 9
Terminology... 9

1.2 BOM Overview.. 10
Implementing BOMs.. 10
CTM Core Process Flow...11
BOM Infrastructure.. 13
The Range Aware Key Server.. 13
Runtime Data...14

1.3 Developing BOMs..14
The Example Application...14
BOM Development Methodology...21
Analyzing Business Object Types...21
Analyzing the Folder Business Object Type... 23
Analyzing the User Business Object Type..27
Implementing BOMs.. 32
Testing the transport of Business Object Types... 43

1.4 Assumptions on the availability of classes..45
Availability of Facade APIs for managing user operations..45
Availability of Adapter classes...46
Availability of Data Access Object classes... 46
Availability of classes generated from Code Tables... 47

1.5 Customizing the construction of revert Change Set..47

1.6 Reference guides.. 48

Notices.. 49
Privacy policy... 50

Trademarks.. 50

© Merative US L.P. 2012, 2024

Cúram 8.1.2 viii

© Merative US L.P. 2012, 2024

1 Developing Business Object Modules for Configuration Transport Manager 9

1 Developing Business Object Modules for
Configuration Transport Manager

Use this information to learn how to transport business objects between systems. A business
object type is a logical grouping of administrative data that defines and governs a particular set
of functions. A business object module is a piece of code responsible for performing the bespoke
processing that is required to transport instances a particular business object type.

1.1 Overview

This document provides details of the development activities that are necessary in order to enable
the transport of administrative Business Objects from one system to another via CTM.

The document is intended to be used by any development community that wants to enable the
transport of the administrative Business Objects that they have developed between different
application systems using Configuration Transport Manager (CTM).

Prerequisites

The document assumes that the reader is familiar with the following components.

See the following guides for more details:

•
•
•
• Google Guice 2

Terminology

This section defines some of the key terms that are used throughout the document.

Business Object Type
A Business Object Type is a logical grouping of administrative data that defines and governs a
particular set of functionality. Each Business Object Type consists of the collection of data (that
is, entities) that are required to configure the system to use and/or act on the functionality that it
represents.

For example, the set of administrative data related to a Benefit Product involves grouping the
entities related to Benefit Product such as Product, ProductDeliveryPattern, ProductCategory,
etc. Therefore, Benefit Product is a Business Object Type. For further examples, .

Business Object
A Business Object is an instance of a Business Object Type.

For example, it's possible that there are multiple Benefit Product configurations available on the
system. Each such configuration is a Business Object.

© Merative US L.P. 2012, 2024

http://code.google.com/p/google-guice

Cúram 8.1.2 10

Business Object Modules
A Business Object Module (BOM) is a piece of code responsible for performing the bespoke
processing that is required in order to transport instances a particular Business Object Type.
Several types of BOM must be implemented for every transportable Business Object Type, with
each type of BOM being responsible for a different part of the flow involved in transporting the
Business Object.

1.2 BOM Overview

This section provides an overview of the responsibilities of the various BOM types, describes
the supporting infrastructure available to assist in providing the required functionality, and
summarizes the other activities involved in making a Business Object Type transportable.

The core CTM Infrastructure is responsible for executing the transport operations that are
common to all Business Object Types. It co-ordinates the overall flow involved in the transport
of a Business Object, delegating to other components where necessary. In particular, the CTM
infrastructure delegates to the BOMs for the specific Business Object Types that are being
transported at points in the flow where Business Object – specific activities must be performed.
For example, when an XML document containing the content of a particular Business Object is
required, the CTM infrastructure will invoke on the BOM responsible for producing the XML
document for the Business Object.

Implementing BOMs

In concrete terms, developing a BOM involves providing an implementation of the BOM
interfaces appropriate to the Business Object Type that is being made transportable. There are in
total eleven different types of BOM that may need to be implemented for each Business Object
type. However, note that it is not generally necessary to provide implementations of all of the
BOM types. Out-of-the-box implementations are provided for five of the BOM types, and,
provided these are suitable, bespoke BOMs do not need to be provided for these.

The different BOM types are illustrated in the following table:

S.No Interface Responsibility OOTB Implementation Available

1 AuthorisationBOM Determine whether or not the user
is authorized to act on a Business
Object.

Y – OOTB implementation uses
SecurityBOM to determine
authorisation.

2 DeleteBOM Delete a Business Object. N

3 DependentBOM Provide a list of other Business
Objects upon which a Business
Object is dependent.

N

4 ExistenceBOM Determine whether or not there is a
Business Object already present on
the target system.

N

5 InformationalBOM Provide various information about
the Business Object

N

6 PostCommitActionBOM Perform a Business Object -
specific activity after the transaction
applying a Change Set has been
committed.

Y – No-Op OOTB implementation
provided.

© Merative US L.P. 2012, 2024

1 Developing Business Object Modules for Configuration Transport Manager 11

S.No Interface Responsibility OOTB Implementation Available

7 PreCommitActionBOM Perform a Business Object -
specific activity immediately before
the transaction applying a Change
Set is committed.

Y - No-Op OOTB implementation
provided.

8 PreCommitAction TypeBOM Perform a Business Object Type -
specific activity immediately before
the transaction applying a Change
Set is committed.

Y - No-Op OOTB implementation
provided.

9 RevertChangeSetConstruction
HandlerBOM

Add extra Business Objects to a
Change Set being created for revert
purposes.

Y - No-Op OOTB implementation
provided.

10 ReadAndUpsertBOM Create an XML document with
the content of a Business Object;
Populate the database with the
content of the XML document.

N

11 SecurityBOM Provide the SIDs that a user is
required to have in order to read
and write the Business Object.

N – but if an AuthorisationBOM is
provided, then a SecurityBOM does
not need to be implemented.

Details on how the BOMs are used are provided in the next section (CTM Core Process
Flow on page 11), which describes the CTM Core Process Flow. Additionally, for more
detailed technical information on each of the BOM types, please refer to the Javadoc of the
interfaces, which are all contained in the curam.util.ctm.bom package. Finally, further details on
implementing the BOM interfaces are provided in the next chapter, 1.3 Developing BOMs on
page 14

CTM Core Process Flow

To illustrate where the BOM Infrastructure APIs are used and invoked, the two core CTM
flows which involve BOMs are now described. These are the Release operation and the Apply
operation.

The Release Operation
The Release operation captures and freezes the content of the Business Objects contained in a
Change Set.

The operation starts by performing a check to see whether or not a user is permitted to read the
relevant Business Objects. It then collects all of the Business Object contents and converts them
into XML fragments. It gathers the fragments into a single Change Set XML document, and
then saves the Change Set XML document to a release area. All of these activities take place in a
single transaction.

As part of the operation, BOMs are used as follows:

• AuthorisationBOM (if provided) or SecurityBOM : Check that the user has the appropriate
permissions to read each Business Object in the Change Set

• ReadAndUpsertBOM : Read the Business Object contents from the data store, and convert to
an XML document.

Apply Operation
The Apply operation provides the functionality to make a Released Change Set "live".

The actions that occur during the Apply operation broadly fall into three categories:

© Merative US L.P. 2012, 2024

Cúram 8.1.2 12

• Pre Apply Phase
• Apply Phase
• Post Apply Phase

Both the Pre-Apply Phase and the Apply-Phase take place in the same transaction. The Post-
Apply phase takes place in a separate transaction, after the Pre-Apply / Apply transaction has
been committed. The phases are now described in more detail.

Pre Apply Phase
The first step of the Pre-Apply phase is to validate the content of the Change Set to see if the
Change Set is eligible to be applied. As the Apply operation involves both database read and
write operations, the user performing the operation must have the appropriate read and write
permissions for each Business Object defined in the Change Set. If the user does not have the
appropriate permissions, then the Apply process is terminated.

Next, the infrastructure creates a revert Change Set for undo purposes. It does so by capturing
the current state of the database with respect to each of the Business Objects in the Change Set.
That is, for each Business Object defined in the Change Set, the infrastructure will identify if the
Business Object already exists in the target database. Since the business logic for determining
the existence of a Business Object is very specific to the Business Object type, the infrastructure
delegates the call to the ExistenceBOM in order to get the desired results.

As part of this phase, BOMs are used as follows:

• AuthorisationBOM (if provided) or SecurityBOM : Check that the user has the appropriate
permissions to read and write each Business Object in the Change Set

• ExistenceBOM : Determine whether or not an instance of each Business Object already exists
on the target system.

Apply Phase
Once the Pre-Apply phase has successfully completed, processing proceeds to the Apply Phase.

In this phase, the infrastructure will iterate over each Business Object and then invoke either
an upsert or delete operation, depending on whether the Business Object is to be upserted
or deleted1. To perform these operations, either the ReadAndUpsertBOM or DeleteBOM are
invoked as appropriate. After all Business Objects in the Change Set have been upserted or
deleted, the PreCommitActionBOM for each Business Object is invoked. This is in order to
perform any pre-commit activities that are required for the Business Object. Following this, the
PreCommitActionTypeBOM is invoked for every Business Object Type which has at least one
Business Object instance in the Change Set.

As part of this phase, BOMs are used as follows:

• ReadAndUpsertBOM : Add or update the Business Object in the target system database.
• DeleteBOM : Delete the Business Object from the target system database.
• PreCommitActionBOM : Perform any pre-commit actions for the Business Object.
• PreCommitActionTypeBOM : Perform any pre-commit actions for the Business Object Type.

1 Note that deletion of Business Objects is currently only supported in the revert Change Sets that are
automatically created for Undo purposes

© Merative US L.P. 2012, 2024

1 Developing Business Object Modules for Configuration Transport Manager 13

Post-Apply Phase
Once the Apply Phase has successfully completed, the transaction will be committed and the post
apply phase will be executed.

The post-apply phase involves invoking on the PostCommitActionBOM for each Business Object
in the Change Set. This BOM can perform any activities that are required after a Change Set has
been committed.

As part of this phase, BOMs are used as follows

• PostCommitActionBOM : Perform any post-commit actions for the Business Object.

BOM Infrastructure

A set of infrastructural classes, known as the BOM Infrastructure, are provided to assist in
implementing BOMs. This infrastructure provides default implementations for some of the most
common operations.

The main classes provided are as follows:

AbstractEntityBOBuilder
Classes known as Entity Business Object Builders need to be implemented for the entities in a
Business Object Type. These produce XML fragments for the entity and also perform the low-
level CRUD actions involved in upserting the entity's content.

The AbstractEntityBOBuilder class provides capabilities that are helpful in implementing the
ReadAndUpsertBOM. Essentially, it provides two pieces of functionality:

• It is used to build entity instance information from XML fragments
• It acts as a wrapper, hiding the low level CRUD operations for an entity.

For more details, please refer the javadoc for curam.ctm.bom.util.impl.AbstractEntityBOBuilder.
Additionally, more detail on using this class is provided in the 1.3 Developing BOMs on page
14.

Abstract BOM
The AbstractBOM class provides functionality for a number of the BOM types. A Business
Object Module can extend from AbstractBOM to gain access to this common functionality.

For further information, please refer the javadoc for curam.ctm.bom.util.impl.AbstractBOM.
Additionally, more detail on using this class is provided in the 1.3 Developing BOMs on page
14.

The Range Aware Key Server

Another important piece of infrastructure used in integrating Business Object Types with CTM is
the Range Aware Key Server (RAKS). The standard Key Server generates keys that are unique
within a particular system, but which may be duplicated across different systems. The RAKS
is a new Key Server implementation that is responsible for providing identifiers (for example,
primary keys) that are unique across the set of systems that form a System Landscape (that is, the
set of systems between which Business Objects may be transported).

© Merative US L.P. 2012, 2024

Cúram 8.1.2 14

Entities that are part of transportable Business Objects must use primary keys generated by the
RAKS instead of the standard Key Server. This is to ensure that there are no key clashes when a
Business Object is transported and applied on a target system. It's worth noting that entities that
already use the standard Key Server can be changed to use the RAKS.

Runtime Data

An important point to note is that Business Object Types should not contain entities that consist
of runtime data. To avoid this scenario, entities should be designed to either contain runtime data
or administrative (configuration) data. The former (runtime entities) should not be transported
via CTM, and so should use primary keys generated by the standard Key Server; that is, they
should not use primary keys generated by the RAKS. The latter (administrative entities) can be
transported, and so must use primary keys generated by the RAKS.

1.3 Developing BOMs

This section describes how to develop the BOMs for a Business Object Type from scratch. To
illustrate the process of developing a BOM, this chapter uses an artificial example application that
manages some pieces of configuration information. Using this example application, the various
steps involved in analyzing the configuration entities are explained. Then, the content of the
Business Object Types is determined. Next, the BOMs for the Business Object Types identified
are implemented. Finally, the steps involved in testing the transport of the Business Objects are
explored.

The Example Application

Let us assume that there is a user interface for an application that mimics a traditional Personal
Information Management (PIM) application. Also, let us assume that this functionality is
available in the pim component. Usually, a PIM application provides facilities to manage personal
information about a user. Since managing personal information is quite complex and what we will
be discussing here is just for illustration purposes, we will not be covering the complex details
that are involved in standard PIM application.

Also let us assume that this application provides the following higher level functionality:

• The application manages personal information about a user. This involves creating, editing
and destroying user information.

• The application also supports managing related personal information such as to-do and note
items.

• It is possible from the application to link user to multiple to-do and note items.
• Furthermore, while creating notes, it is possible to associate them with particular folders.
• Folders can be separately managed and it is possible to assign multiple permissions to a

folder.

Imagine that the application has two separate screens to manage the above configuration
information:

• Folder Screen
• User Screen

© Merative US L.P. 2012, 2024

1 Developing Business Object Modules for Configuration Transport Manager 15

Folder Screen

The following actions can be performed via the Folder Screen:

• Managing folder information – e.g. creation, modification and removal of folders.
• Managing permissions related to a folder – e.g. adding and removing the permissions

associated with a particular folder.

Let us imagine that the equivalent home page for folder is developed and available in a UIM file
named Folder_home.uim. This page accepts a mandatory page parameter named folderID, whose
value is used to identify and show the relevant folder information in the home page.

Entities

For managing folder and its related permission functionalities, let us assume that the following
entities are involved:

• Folder
• FolderPermission
• FolderPermissionLink

The following diagram represents the entity relationship model for the folder entities through
UML.

Figure 1: UML representation for folder screen entities

© Merative US L.P. 2012, 2024

Cúram 8.1.2 16

The following sections describe the low level details of these entities – e.g. the set of attributes,
the code table associations, and the primary and foreign key details.

Folder

The entity Folder represents a standard folder object. The table below lists the various attributes
that make up the Folder object. Note that the attributes type and statusCode have code table
relationships to FolderType and RecordStatus respectively.

Column Name Primary Key Column Foreign Key Details Code Table Association

folderID Y

name

description

type FolderType

statusCode RecordStatus

FolderPermission

The entity FolderPermission represents a permission object that can be assigned to a folder. For
simplicity, other than the primary key attribute, this entity has only one attribute, name, which
stores the name of the permission. Also note that this attribute has a soft relationship with the
code table FolderPermissionName.

Column Name Primary Key Column Foreign Key Details Code Table Association

folderPermissionID Y

name FolderPermission Name

FolderPermissionLink

Since it is possible for a folder to have multiple permissions associated with it, the association
between a folder and its permissions are captured in this entity.

Column Name Primary Key Column Foreign Key Details Code Table Association

folderPermissionLinkID Y

folderID Folder.folderID

folderPermissionID FolderPermission.
folderPermissionID

Code Tables
The Folder screen entities have dependencies on code tables.

This section lists the set of dependent code tables:

Code Table Name Code Description

FolderType FT_PR Private

FT_PU Public

FolderPermissionName FPN_FC Full Control

© Merative US L.P. 2012, 2024

1 Developing Business Object Modules for Configuration Transport Manager 17

Code Table Name Code Description

FPN_READ Read

FPN_WRITE Write

User Screen

The User Screen provides functionality for the following tasks:

• Managing user information – e.g. creation, modification and removal of users.
• Managing to-do and note items for users - i.e. creation, modification and removal of to-do and

note items.
• Associating to-do and note items with users.
• Assigning notes to folder objects.

Let us imagine that the equivalent home page for user is developed and available in the UIM file
User_home.uim. This page accepts a mandatory page parameter by the name userID, whose value
is used to identify and show the relevant user information in the home page

Entities

The following entities are used to manage user and the related functionality:

• User
• ToDo
• UserToDoLink
• Note
• UserNoteLink
• Category

The following diagram represents the entity relationship model for the user entities through UML.

© Merative US L.P. 2012, 2024

Cúram 8.1.2 18

Figure 2: UML representation for user screen entities

The following sections describe the low level details of these entities – e.g. the set of attributes,
the code table associations, and the primary and foreign key details.

User

The User entity represents the user whose personal information is being managed by the
application. The following table provides further details about this entity:

Column Name Primary Key Column Foreign Key Details Code Table Association

userID Y

username

© Merative US L.P. 2012, 2024

1 Developing Business Object Modules for Configuration Transport Manager 19

Column Name Primary Key Column Foreign Key Details Code Table Association

displayName

statusCode RecordStatus

ToDo

The ToDo entity represents the information that forms a to-do. For simplicity, this entity contains
the following information:

Column Name Primary Key Column Foreign Key Details Code Table
Association

toDoID Y

description

startDate

endDate

categoryId Category. categoryID

percentageComplete

statusCode RecordStatus

groupName GroupName

Note that the attribute categoryID has a foreign key relationship with the entity Category. Also,
note that the columns statusCode and groupName have associations with the RecordStatus and
GroupName code tables respectively.

UserToDoLink

This link entity provides association between User and ToDo entities. Since there exists a one-to-
many relationship between a user and to-do items, the association between them is captured in
this entity:

Column Name Primary Key Column Foreign Key Details Code Table
Association

userToDoLinkID Y

userID User.userID

toDoID ToDo.toDoID

The Note entity represents the standard note that contains information such as subject,
description, etc. The table below provides more information about this entity:

Column Name Primary Key Column Foreign Key Details Code Table
Association

noteID Y

© Merative US L.P. 2012, 2024

Cúram 8.1.2 20

Column Name Primary Key Column Foreign Key Details Code Table
Association

subject

description

folderID Folder.folderID

statusCode RecordStatus

Also, it is possible to associate a note with a folder. This is implemented via a foreign key
relationship with the Folder entity, using the folderID attribute.

UserNoteLink

Since it is possible for a user to have many linked note items, the UserNoteLink entity is
introduced in order to maintain an association between the User and Note entities:

Column Name Primary Key Column Foreign Key Details Code Table
Association

userNoteLinkID Y

userID User.userID

noteID Note.noteID

Category

The ToDo, entity has a foreign key relationship with the Category entity through the attribute
categoryID. The following table lists the information available on the Category entity:

Column Name Primary Key Column Foreign Key Details Code Table
Association

categoryID Y

name CategoryName

displayName

description

Code Tables
The User screen entities have dependencies on code tables.

This section lists these code tables:

Code Table Name Code Description

CategoryName CN_BIZ Business

CN_PERS Personal

CN_HOLI Holiday

© Merative US L.P. 2012, 2024

1 Developing Business Object Modules for Configuration Transport Manager 21

Code Table Name Code Description

GroupName GN_PRIV Private

GN_SHARED Shared

BOM Development Methodology

This section describes the general steps involved in implementing BOMs.

In broad terms, this involves the following activities:

• Analyzing Business Object Types
• Implementing BOMs
• Testing BOMs

Analyzing Business Object Types

As part of analysis, the set of configuration entities have to be identified and then grouped into
logically separate Business Object Types.

This process involves the following steps:

• Identifying the Configuration Entities
• Group entities into Business Object Types
• Define Business Object Identifiers
• Ensure that the Configuration Entities use RAKS generated identifiers

Identifying the Configuration Entities
The aim of CTM is to transport configuration data. Therefore, the development group must be
able to identify all of the entities that constitute configuration information in an application.
Because CTM is not designed to support runtime data, caution has to be exercised in order to
ensure that the configuration entities don't have dependencies upon runtime entities. That is,
as part of the analysis, the configuration entities have to be checked to ensure that there are no
foreign key constraints or any form of soft dependent relationship on runtime entities. If any such
cases are encountered, then the recommendation is to refactor the entity design so that separate
entities are used for configuration and runtime purposes.

That is, one set of entities to hold only configuration data and the other set of entities to hold the
runtime data. Note that the runtime entities can depend on configuration data, but the reverse is
not possible. Returning to the example PIM application, all of the entities that make up the Folder
and User screens are configuration information.

Group Entities into Business Objects Types
A Business Object Type represents a logical grouping of related configuration data. In the
example application, it is clear that there are two concrete pieces of information.

They are as follows:

• Information pertaining to a folder and their related permissions
• Information specific to a user and its associated relative types such as to-do and note items.

© Merative US L.P. 2012, 2024

Cúram 8.1.2 22

Hence, the entities that make up the PIM application can be logically grouped into two categories
– in other words, two Business Object Types. One is the Folder Business Object Type, which
contains information specific to folders and their related permissions. The other is the User
Business Object Type, which carries information about users and other related details.

Define Business Object Identifiers
Each Business Object must have a unique identifier. This is required by CTM in order to uniquely
identify a Business Object within the system landscape.

The Business Object Identifier is comprised of the following elements:

• Business Object Type Identifier
• Business Object Key

Business Object Type Identifier
This is the identifier used by Business Object Modules to determine the type of the Business
Object. Therefore, it must be unique for each Business Object Type and it must be possible for
a Business Object Module implementation to identify the type of the Business Object from the
identifier. It is important to ensure that this type name does not collide with any other Business
Object Types available in the system, for example, it should not collide with the names of
the Business Object Types provided out-of-the-box, or with any other Business Object Types
developed by customer organizations. To guarantee this, it is recommended that Business Object
Type names developed externally to the application are prefixed with a short abbreviation or
name identifying the organization.

So, for an organization called "Sample Organization", the Business Object Type Identifier for the
Folder Business Object Type could be "so.Folder". Similarly, for the User Business Object Type;
it could be "so.User".

Business Object Key
This is the key used by Business Object Modules to uniquely identify an instance of a Business
Object of a particular type. Where the Business Object supports versioning, the key should
identify a particular version of a Business Object. It must be unique within a Business Object
Type, and it must be possible for a Business Object Module to uniquely identify a Business
Object in persistent storage using the key. To identify the Business Object Key for a Business
Object, the implementation can choose to provide a combined value representing the primary key
attributes of the Initial Entity. The Initial Entity is the root entity of a Business Object Type.

For further information, please refer to Analyzing the Folder Business Object Type on page
23.

The primary key attribute of the Folder Business Object Type's Initial Entity is folderID. So,
the value of the folderID attribute can be used as the Business Object Key for Folder Business
Objects. Similarly, the primary key attribute of the User Business Object Type's Initial Entity
User is userID. So, the value of this attribute can be used as the Business Object Key for User
Business Objects.

Note that it is also possible for an Initial Entity to have multiple primary key attributes. For
example, take the example of a Locale Business Object Type with Initial Entity Locale. The
Locale Entity includes the attributes language, country, and variant. To uniquely identify
a particular Locale, the combined value of the attributes language, country and variant are
required. So, the Business Object Key for the Locale Business Object must contain the values of
these three attributes.

© Merative US L.P. 2012, 2024

1 Developing Business Object Modules for Configuration Transport Manager 23

Ensure that the Configuration Entities use RAKS generated identifiers
As has been noted previously, it is mandatory for all configuration entities that form part of
transportable Business Object Types to make use of the new Range Aware Key Server (RAKS)
for the purposes of generating primary keys.

The Making Configuration Entities RAKS enabled on page 33 provides details of how the
RAKS is used.

Analyzing the Folder Business Object Type

This section details the various steps involved in analyzing the configuration information for the
Folder Business Object Type.

Identifying the Configuration Entities
The configuration entities that form the Folder Business Object Type are as follows:

• Folder
• FolderPermission
• FolderPermissionLink

Identifying the Initial Entity
The Initial Entity is the root entity of the Business Object Type. In other words, through this
Initial Entity, it will be possible to identify all of the other entities in the logical grouping. For
the Folder Business Object Type, the Folder entity is the Initial Entity. This is because from this
entity, it is possible to identify the other entities in the Business Object, such as FolderPermission
and FolderPermissionLink.
Identifying the Child Entities
All other entities in the logical grouping, excluding the Initial Entity are Child Entities. Hence,
the entities FolderPermission and FolderPermissionLink become the Child Entities.
Identifying the Relative Entities
A Relative Entity refers to an entity whose information needs to be processed before processing a
Child Entity. In this specific case, there are no Relative entities identified for the Folder Business
Object Type.

Identifying dependencies
This section illustrates the varying level of dependencies that need to be identified as part of
analysis for a Business Object Type.

The dependencies generally fall into two categories:

• Type-Level dependencies
• Instance-Level dependencies

Type-Level dependencies
Type-Level dependencies are applicable to relationships that arise after considering the possible
set of values that a particular data field can contain. There is no need to examine the state of the
data that comprise a Business Object in order to identify this level of dependency.

For example, consider the type attribute defined on the Folder entity. The value for this attribute
comes from an entity called CodeTableItem which belongs to CodeTable Business Object Type.
Hence, there exists a static dependency between the Folder and the CodeTable Business Object
Types. The following diagram represents this type level dependency in UML.

© Merative US L.P. 2012, 2024

Cúram 8.1.2 24

Figure 3: Type-level relationship between Folder BOM and CodeTable BOM

Another form of type-level dependency can be identified by examining the attributes of all
entities in the Business Object Type. If any of the attributes have a foreign key relationship with
the Initial Entity of another Business Object Type, then there is a type-level dependency on that
Business Object Type. For example, assume that there is a Business Object Type called File.
The Initial Entity of this Business Object Type is the File entity, which in turn has an attribute
folderID with a foreign key relationship with the entity Folder. So, naturally, the File Business
Object Type is related to the Folder Business Object Type. In other words, File has a type-level
dependency on the Folder Business Object Type.Refer the following diagram that represents this
relationship in UML

Figure 4: Type-level relationship between File BOM and Folder BOM

Instance-Level dependencies
Instance-Level dependencies are identified by examining the content of the Business Object.

This is best explained using examples:

Example 1

Consider a folder Business Object instance 'Documents/1' with the following content:

Folder(1, 'Documents', 'Contains all documents', 'FT_PR, 'RST1')

FolderPermission(1, 'FPN_READ')

FolderPermissionLink(1,1,1)

After examining the data in each attribute, it is obvious that there are attributes that have instance
relationships with CodeTable Business Objects. These are illustrated in the following table:

Attribute Name Attribute Value Dependent Business Object
Instance

Folder.type FT_PR CodeTable/FolderType

© Merative US L.P. 2012, 2024

1 Developing Business Object Modules for Configuration Transport Manager 25

Attribute Name Attribute Value Dependent Business Object
Instance

Folder.statusCode RST1 CodeTable/RecordStatus

FolderPermission.name FPN_READ CodeTable/
FolderPermissionName

The equivalent UML representation is shown in the following diagram.

Figure 5: Instance-level relationships between Folder BOM and CodeTable BOM

Example 2

Consider a folder Business Object instance 'Pictures/2' with the following contents:

Folder(2, 'Pictures', 'Contains all pictures', 'FT_PU, 'RST1')

FolderPermission(2, 'FPN_FC')

FolderPermissionLink(2,2,2)

© Merative US L.P. 2012, 2024

Cúram 8.1.2 26

After examining the data in each attribute, it is obvious that there are attributes that have instance
relationships with CodeTable Business Objects. These are illustrated in the following table:

Attribute Name Attribute Value Dependent Business Object
Instance

Folder.type FT_PU CodeTable/FolderType

Folder.statusCode RST1 CodeTable/RecordStatus

FolderPermission.name FPN_FC CodeTable/
FolderPermissionName

The equivalent UML representation is shown in the following diagram.

Figure 6: Instance-level relationships between Folder BOM and CodeTable BOM

Note that based on the content of the Business Object, the dependency information varies.
Therefore, such dependencies are termed Instance-Level dependencies.

© Merative US L.P. 2012, 2024

1 Developing Business Object Modules for Configuration Transport Manager 27

Identifying the Mode of Deletion
The Mode of Deletion refers to whether the Business Object Type is logically deleted or
physically deleted. This is identified from the Mode of Deletion that is supported by the Initial
Entity. In this case, the mode of deletion supported by the Folder entity is logical deletion; hence,
the Folder Business Object Type supports logical deletion.

Analyzing the User Business Object Type

This section details the various steps that are involved in analyzing the configuration information
for the User Business Object Type.

Identifying the configuration entities

The following configuration entities form the User Business Object Type:

• User
• ToDo
• UserToDoLink
• Note
• UserNoteLink

Identifying the Initial Entity
The entity User is the Initial Entity. This is because, starting with this entity, it is possible to
identify both the ToDo and Note entities and the UserToDoLink and UserNoteLink link entities.
Identifying the Child Entities
All of the other entities in the logical grouping are child entities. Therefore, the entities ToDo,
Note, UserToDoLink and UserNoteLink are all Child Entities.
Identifying the Relative Entities
A Relative Entity refers to an entity whose information needs to be processed before processing a
child entity.

Identifying Relative Entities involves the following steps:

• Examine all attributes in all child entities for foreign key constraints.
• Determine the other entity upon which there is a constraint. This entity is known as the parent

entity.
• Determine if the parent entity is a Relative Entity as follows:

• If the parent entity is included in the same Business Object Type as the original entity, then
identification of the Relative Entity can be ignored. This is because the parent entity will be
processed in any case as part of the Business Object Type.

• If the parent entity is not in the same Business Object Type as the original entity:

• If the parent entity is the Initial Entity of another Business Object Type, then it is not
a Relative Entity. Instead, the other Business Object Type has to be made a dependent
Business Object Type.

• If the parent entity is a Child Entity or a Relative Entity in another Business Object
Type, then it should be considered a Relative Entity.

In the example application, working through the above steps, it is clear that there is only one
Relative Entity for the User Business Object Type. This Relative Entity is Category. This is
because the attribute ToDo.categoryID has a foreign key relation to the entity Category. However,
let's imagine that there is a Category Business Object Type which has Category as the Initial

© Merative US L.P. 2012, 2024

Cúram 8.1.2 28

Entity; in this case, instead of Category being a Relative Entity, the User Business Object Type
should declare the Category Business Object Type as a dependent Business Object Type.

Identifying dependencies
This section illustrates the dependencies that need to be identified when analyzing the User
Business Object Type.
Type-Level dependencies
After studying the attributes of all of the entities and relationships, it is clear that the Business
Object Type is dependent on the CodeTable and Folder Business Object Types.

The following table summarizes this information:

Attribute Name Relationship Type Dependent on

User.statusCode CodeTable RecordStatus

ToDo.statusCode CodeTable RecordStatus

ToDo.groupName CodeTable GroupName

Note.folderID Foreign Key Constraint Folder.folderID

ToDo.categoryID Foreign Key Constraint Category.categoryID

The following diagram shows the equivalent UML representation.

© Merative US L.P. 2012, 2024

1 Developing Business Object Modules for Configuration Transport Manager 29

Figure 7: Type-level relationships for User BOM

Instance-Level dependencies
Instance-Level dependencies are identified by examining the content of the Business Object.

This is best explained using examples:

Example 1

Consider a user Business Object instance 'Admin/1', with the following contents:

User(1, 'Admin', 'Admin', 'RST1')

Category(1, 'CN_BIZ', 'Category denoting mail items')

ToDo(1, 'Approve mails', '2011-11-11', '2011-12-12', 1, '45',
 'RST1', 'GN_PRIV')

UserToDoLink(1, 1, 1)

Note(1, 'Send follow up mail', 'Send follow up mail', 1, 'RST1')

UserNoteLink(1, 1, 1)

After examining the data in each attribute, it is obvious that there are relationships with
CodeTable and Folder Business Objects. These are listed in the following table:

© Merative US L.P. 2012, 2024

Cúram 8.1.2 30

Attribute Name Attribute Value Dependent Business Object
Type/Identifier

User.statusCode RST1 CodeTable/RecordStatus

Category.name CN_BIZ CodeTable/CategoryName

ToDo.statusCode RST1 CodeTable/RecordStatus

ToDo.groupName GN_PRIV CodeTable/GroupName

Note.folderID 1 Folder/1

The equivalent UML representation is shown in the following diagram.

Figure 8: Instance-level relationships for User BOM

Example 2

Consider a folder Business Object instance, 'SuperAdmin/2', with the following contents.

User(2, 'SuperAdmin', 'SuperAdmin, 'RST1')

© Merative US L.P. 2012, 2024

1 Developing Business Object Modules for Configuration Transport Manager 31

ToDo(2, 'Approve mails', '2011-11-11', '2011-12-12', null, '45',
 'RST1', 'GN_PRIV')

UserToDoLink(2, 2, 2)

Note(2, 'Send follow up mail', 'Send follow up mail', null,
 'RST1')

UserNoteLink(2, 2, 2)

In this case, there is a single instance level relationship, with a CodeTable Business Object.
Observe that for the Note entity, the value of the attribute folderID is set to NULL. Therefore, in
this case, the 'SuperAdmin/1' Business Object is not related to the Folder Business Object.

Attribute Name Attribute Value Dependent Business Object
Type/Identifier

User.statusCode RST1 CodeTable / RecordStatus

Category.name CN_BIZ CodeTable / CategoryName

ToDo.statusCode RST1 CodeTable / RecordStatus

ToDo.groupName GN_PRIV CodeTable / GroupName

The equivalent UML representation is shown in the following diagram.

© Merative US L.P. 2012, 2024

Cúram 8.1.2 32

Figure 9: Instance-level relationships for User BOM

Identifying the Mode of Deletion
The Mode of Deletion refers to whether the Business Object Type is logically deleted or
physically deleted. This is identified from the Mode of Deletion that is supported by the Initial
Entity. In this case, the mode of deletion supported by the User entity is logical deletion; hence
the User Business Object Type supports logical deletion.

Implementing BOMs

This section describes the steps involved in implementing the BOMs for a Business Object Type.
The example User Business Object Type that was discussed in the previous sections is used to
illustrated the process.

Broadly speaking, implementing BOMs involves the following:

• Making Configuration Entities RAKS enabled
• Writing the Entity Business Object Builders for all the entities
• Writing the BOM implementation

© Merative US L.P. 2012, 2024

1 Developing Business Object Modules for Configuration Transport Manager 33

• Registering the BOM implementation(s) with the BOM registry

Making Configuration Entities RAKS enabled
Entities that form part of transportable Business Object Types must use primary keys generated
by the Range Aware Key Server (RAKS).

The basic mechanism is to define a new Key Set for the Business Object Type, to configure the
Key Set to supply keys generated by the RAKS, and then to move all entities in the Business
Object Type to use keys from the Key Set. These keys will be generated using the RAKS.

Further details on the steps involved are provided in the following subsections. Again, the User
Business Object Type that forms part of the example pim component is used to illustrate the
process.

Creating New Key Set Configuration
Create a new file called KeyServer.dmx in the location EJBServer\components\pim\data\initial
containing the key set definition for the Business Object Type.

Sample content for this file is provided below:

<row>
 <attribute name="strategy">
 <value>KB1002</value>
 </attribute>

 <attribute name="keySetCode">
 <value>UserBOMKS</value>
 </attribute>

 <attribute name="nextUniqueIdBlock">
 <value>0</value>
 </attribute>

 <attribute name="humanReadable">
 <value>1</value>
 </attribute>

 <attribute name="lastUpdated">
 <value>SYSTIME</value>
 </attribute>

 <attribute name="Annotation">
 <value>Key set for entities used in User BOM </value>
 </attribute>

</row>

There are several things to be noted in the Key Set definition:

• The property strategy with the value KB1002 indicates to the Key Server that the RAKS
implementation should be used to generate key values.

• The property keySetCode specifies the name of the Key Set. In order that the corresponding
Business Object Type can be identified, it is recommended that this name is based on the
Business Object Type name. So, in the example, the Key Set for the User BOM is named
UserBOMKS

• The property Annotation is used to provide a description of the purpose of the Key Set
configuration.

© Merative US L.P. 2012, 2024

Cúram 8.1.2 34

• Other properties such as nextUniqueIdBlock, humanReadable and lastUpdated are provided
with sensible default values.

Ensure Entities use the new Key Set
All of the entities that form part of the Business Object Type must use keys generated using the
new Key Set. This includes the Initial Entity, the Child Entities and the Relative Entities. So, in
the example, all of the entities that constitute the User Business object must use keys generated
using the UserBOMKS key set. This mechanism for achieving this depends on whether the entity
uses Auto ID Generation, or invokes the Key Server directly.

Auto ID Generation

Most entities use the key server implicitly – that is, keys are generated automatically when insert
operations are invoked. This is known as Auto ID generation. In order to configure these entities
to use the RAKS, use the following procedure:

• Within the Rational® Software Architect modeling environment, identify all of the insert
operations on the relevant entities. That is, identify the operations with the insert stereotype.

• For each insert operation, perform the following steps:

• Go to Properties; navigate to the Curam tab. Populate the property Auto ID Field with the
name of the primary key attribute. For example, for the sample entity the value for the
Auto ID Field will be userID.

• Following this, populate the property Auto ID Key with the name of the Key Set for the
Business Object Type. So, in the sample application, the field value will be UserBOMKS.

Code that invokes the Key Server directly

The Key Server can also be invoked directly, in code. This is achieved by directly invoking on the
one of the curam.util.type.UniqueID class' static methods – usually the nextUniqueID() method.
Typically, code that invokes the standard Key Server will be along the following lines:

ToDoDtls toDoDtls = new ToDoDtls();
toDoDtls.toDoID = UniqueID.nextUniqueID();

In order to use the RAKS, this code should be changed as follows:

UniqueIDKeySet uniqueIDKeySet = new UniqueIDKeySet();
uniqueIDKeySet.keySetName = "UserBOMKS";

ToDoDtls toDoDtls = new ToDoDtls();
toDoDtls.toDoId = UniqueID.getNextIDFromKeySet(uniqueIDKeySet);

Business Object Classes
The following sub-sections of this document include several code snippets. These snippets
assume that the certain classes are available for the Business Object Type – for example. façade
classes, DAO classes, and so on.

For full details of these classes, please refer 1.4 Assumptions on the availability of classes on
page 45

Developing Entity Business Object Builder classes for the entities

This section describes the steps involved in writing the Entity Business Object Builder classes for
all of the entities in the example User Business Object Type. Please refer to BOM Infrastructure
on page 13 for information on the purpose of Entity Business Object Builder classes.

© Merative US L.P. 2012, 2024

1 Developing Business Object Modules for Configuration Transport Manager 35

Category Entity Business Object Builder
The implementation of Entity Business Object Builder for the Category entity is reasonable
straightforward.

Class declaration

The class must extend from curam.ctm.bom.util.impl.AbstractEntityBOBuilder. The primary key
data type and the entity's Dtls data type are Long and CategoryDtls respectively. Therefore, these
types must be specified in the class declaration as follows:

class CategoryEntityBOBuilder
 extends AbstractEntityBOBuilder<Long, CategoryDtls>{
}

getName() : Returning the name of the entity

The method getName() has to be overridden to return the name of the entity that is unique across
the system - i.e. in this case, the string Category can be returned.

getEntityAdapter() : Returning the Entity Adapter instance

The method getEntityAdapter() will be called by the infrastructure in order to obtain the entity's
Adapter class to perform various operations on the entity. Hence this method has to be overridden
to return an instance of CategoryAdapter class.

Note Entity Business Object Builder

Class declaration

The class must extend from AbstractEntityBOBuilder. The primary key data type and the entity's
Dtls data type are Long and NoteDtls respectively. Hence, these types must be specified in the
class declaration as follows,

class NoteEntityBOBuilder extends
 AbstractEntityBOBuilder<Long, NoteDtls>{
}

getName() : Returning the name of the entity

The method getName() has to be overridden to return the name of the entity that is unique across
the system - i.e. in this case, the string Note can be returned.

getEntityAdapter() : Returning the Entity Adapter instance

The method getEntityAdapter() has to be overridden in order to return an instance of the adapter
class - i.e. NoteAdapter.

User Note Link Entity Business Object Builder

Class declaration

The class must extend from AbstractEntityBOBuilder. The primary key data type and the entity's
Dtls data type are Long and UserNoteLinkDtls respectively. Hence these types must be specified
in the class declaration as follows:

class UserNoteLinkEntityBOBuilder

© Merative US L.P. 2012, 2024

Cúram 8.1.2 36

 extends AbstractEntityBOBuilder<Long, UserNoteLinkDtls>{
}

getName() : Returning the name of the entity

The method getName() has to be overridden to return the name of the entity that is unique across
the system - i.e. in this case, the string UserNoteLink can be returned.

getEntityAdapter() : Returning the Entity Adapter instance

The method getEntityAdapter() has to be overridden to return an instance of the adapter class -
i.e. UserNoteLinkAdapter.

ToDo Entity Business Object Builder

Class declaration

The class must extend from AbstractEntityBOBuilder. The primary key data type and the entity's
Dtls data type are Long and ToDoDtls respectively. Hence these types must be specified in the
class declaration as follows,

class ToDoEntityBOBuilder extends
 AbstractEntityBOBuilder<Long, ToDoDtls>{
}

getName() : Returning the name of the entity

The method getName() has to be overridden to return the name of the entity that is unique across
the system - i.e. in this case, the string ToDo can be returned.

getEntityAdapter() : Returning the Entity Adapter instance

The method getEntityAdapter() has to be overridden to return an instance of the adapter class -
i.e. ToDoAdapter.

User ToDo Link Entity Business Object Builder

Class declaration

The class must extend AbstractEntityBOBuilder. The primary key data type and the entity's Dtls
data type are Long and UserToDoLinkDtls respectively. Hence, these types must be specified in
the class declaration as follows:

class UserToDoLinkEntityBOBuilder extends
 AbstractEntityBOBuilder<Long, UserToDoLinkDtls>{
}

getName() : Returning the name of the entity

The method getName() has to be overridden in order to return the name of the entity that is
unique across the system - i.e. in this case, the string UserToDoLink can be returned.

getEntityAdapter() : Returning the Entity Adapter instance

The method getEntityAdapter() has to be overridden to return an instance of the adapter class, i.e.
UserToDoLinkAdapter.

© Merative US L.P. 2012, 2024

1 Developing Business Object Modules for Configuration Transport Manager 37

User Entity Business Object Builder

Details of the implementation of Entity Business Object Builder for the User entity are provided
below:

Class declaration

The class must extend from AbstractEntityBOBuilder. The primary key data type and the entity's
Dtls data type are Long and UserDtls respectively. Hence these types must be specified in the
class declaration as follows,

class UserEntityBOBuilder extends
 AbstractEntityBOBuilder<Long, UserDtls>{
}

getName() : Returning the name of the entity

The method getName() has to be overridden to return the name of the entity that is unique across
the system - i.e. in this case, the string User can be returned.

getEntityAdapter() : Returning the Entity Adapter instance

The method getEntityAdapter() has to be overridden to return an instance of the adapter class, i.e.
UserAdapter.

Implementing the BOMs
This section describes the steps involved in implementing the various BOMs for a Business
Object Type. The most straightforward mechanism is to develop a single BOM class for all of
the BOM interfaces that are required for the Business Object Type. That is, the class implements
all of the required BOM interfaces. The recommended means of doing this is to extend the
BOM Infrastructure class curam.ctm.bom.util.impl.AbstractBOM, which implements the BOM
interfaces, and provides out-of-the-box implementations of several of the methods.

Note, however, that it is also possible to implement all of the BOM interfaces directly if desired.

The process of implementing the BOM is now described through example, using the sample User
Business Object Type described above. In the example, the recommended strategy of providing a
single BOM implementation class is followed.

Extend AbstractBOM

The first step is to extend the curam.ctm.bom.util.impl.AbstractBOM class:

public class UserBOM extends AbstractBOM {

// Provide BOM implementation methods

}

Singleton BOMs
An important factor to bear in mind when developing the class is that BOM implementations
are singletons. That is, a single BOM instance will be created and used for all processing of
a Business Object Type. So, if two Change Sets containing instances if the same Business
Object Type are being processed at the same time, the same BOM instance will be used. BOM
implementations must therefore be capable of being used by multiple threads simultaneously, that

© Merative US L.P. 2012, 2024

Cúram 8.1.2 38

is, must be thread-safe. The best mechanism for achieving this is to avoid storing Business Object
(instance) -specific state in BOM implementations.

AbstractBOM Method Implementations
The next step is to implement the BOM methods. Details on how to do this are provided. Note
also that the Javadoc for the BOM interfaces provides more information on each of the methods.
These interfaces are all members of the package curam.util.ctm.bom.

getName() : Retrieving the name of the Business Object Type

The method getName() should return the name of the Business Object Type. This name will be
displayed in the User Interface while searching for the set of Business Object Types available on
a system. For example, the implementation for User BOMs could return the BOM name User.

getInitialBO() : Provide the Entity Business Object Builder for the Initial Entity

The get InitialBO() method implementation should provide the Entity Business Object Builder for
the Initial Entity of the Business Object Type. For the sample User Business Object Type, this is
the User entity. The following code snippet illustrates the process:

protected AbstractBOBuilder getInitialBO(
 final BusinessObjectIdentifier boIdentifier) {

 final UserEntityBOBuilder userEntityBOBuilder
 = userEntityBOBuilderProvider.get();

 userEntityBOBuilder.setID(Long.parseLong(
 boIdentifier.getBusinessObjectKey().get()));

 return userEntityBOBuilder;

}

In the code snippet, a new instance of UserEntityBOBuilder is created and initiated with the
identifier obtained from the incoming BusinessObjectIdentifier. This instance is then returned.

The BOTraits annotation: Specifying the Mode of Deletion

The class level annotation curam.util.ctm.bom.annotation.BOTraits is used to indicate the
Mode of Deletion supported by this Business Object Type. It needs to be specified on the
implementation of the curam.util.ctm.bom.InformationalBOM interface. In the UserBOM
example, a common implementation class is being developed for all BOMs (i.e. the UserBOM
class). So the annotation is specified on this class. This is illustrated on the following code
snippet:

@BOTraits(deletionMode = DeletionMode.LOGICAL)
public class UserBOM extends AbstractBOM{

}

The annotation in the example declares that the User Business Object Type supports logical
deletion. However, note that if the BOTraits annotation is not specified, the infrastructure
assumes that the Business Object Type uses Logical deletion. Hence for a Business Object Type
that uses Logical deletion, it is not mandatory to provide this annotation. However, Business
Object Types that are physically deleted must specify the annotation, using the deletion mode
DeletionMode.PHYSICAL.

© Merative US L.P. 2012, 2024

1 Developing Business Object Modules for Configuration Transport Manager 39

getDependentBusinessObjectIdentifiers() : Fetching the Dependent Business
Object identifiers

The getDependentBusinessObjectIdentifiers() method implementation should return the set of
Business Object identifiers on which the Business Object is dependent (if any). The following
code snippet illustrates the process:

public Set<BusinessObjectIdentifier>
 getDependentBusinessObjectIdentifiers(
 final BusinessObjectIdentifier boIdentifier){

 final Set<BusinessObjectIdentifier> setOfDependantBOs
 = new HashSet<BusinessObjectIdentifier>();

 // Adding CodeTable dependencies.
 addCodeTableBusinessTypeDependency(
 setOfDependantBOs, RECORDSTATUSEntry.TABLENAME);
 addCodeTableBusinessTypeDependency(
 setOfDependantBOs, GroupNameEntry.TABLENAME);
 addCodeTableBusinessTypeDependency(
 setOfDependantBOs, CategoryName.TABLENAME);

 // Add Folder dependencies
 final User user = userDAO.get(Long.parseLong(
 boIdentifier.getBusinessObjectKey().get()));

 for (final Note note : userDAO.searchAllNotes(user)){

 final Folder folder = note.getFolder();

 setOfDependantBOs.add(
 BusinessObjectIdentifierFactoryImpl.get().
 createBusinessObjectIdentifier(
 FolderBOMConstants.kFolderBusinessObjectType.
 get(), String.valueOf(folder.getID())));

 }
 return setOfDependantBOs;

}

As previously noted, during the Business Object Type analysis, it was identified that the User
Business Object is dependent on the CodeTable and Folder Business Objects. Therefore, the code
snippet above adds the relevant CodeTable Business Objects as dependencies. This is achieved
by calling the method addCodeTableBusinessTypeDependency(). Additionally, because the User
entity can be related to the Folder entity through Note entity, the code calls searchAllNotes() to
retrieve the set of Note entities related to a user. Then, for each Note, the corresponding Folder
Business Object is identified and added to the set to be returned.

getReadSecurityIdentifier() : Retrieving the Read Security identifiers

The getReadSecurityIdentifier() method implementation has to return all of the security identifiers
(SIDs) required to read the Business Object content. This is used to assess whether or not an
administrative user using CTM has the required read permissions for the Business Object. An
example code snippet is provided below:

public public Set<String> getReadSecurityIdentifier() {

© Merative US L.P. 2012, 2024

Cúram 8.1.2 40

 final Set<String> readSecurityIdentifiers
 = new HashSet<String>();

 readSecurityIdentifiers.add("UserManager.readUser");
 readSecurityIdentifiers.add("UserManager.readAllNotes");
 readSecurityIdentifiers.add("UserManager.readAllToDos");
 readSecurityIdentifiers.add("UserManager.readAllToDos");
 readSecurityIdentifiers.add("NoteManager.readNote");
 readSecurityIdentifiers.add("ToDoManager.readToDo");

 return readSecurityIdentifiers;

 }

The above implementation gathers together all of the read operation SIDs from the relevant
Façade APIs. Refer to 1.4 Assumptions on the availability of classes on page 45 for more
details.

getWriteSecurityIdentifier() : Retrieving the Write Security identifiers

Similarly, the method getWriteSecurityIdentifier() needs to specify all of the security identifies
(SIDs) required to write the Business Object content. An example code snippet is provided
below:

public Set<String> getWriteSecurityIdentifier() {

 final Set<String> writeSecurityIdentifiers
 = new HashSet<String>();

 writeSecurityIdentifiers.add("UserManager.createUser");
 writeSecurityIdentifiers.add("UserManager.editUser");
 writeSecurityIdentifiers.add("UserManager.deleteUser");
 writeSecurityIdentifiers.add("UserManager.associateNotes");
 writeSecurityIdentifiers.add("UserManager.disassociateNotes");
 writeSecurityIdentifiers.add("UserManager.associateToDos");
 writeSecurityIdentifiers.add("UserManager.disassociateToDos");

 writeSecurityIdentifiers.add("NoteManager.createNote");
 writeSecurityIdentifiers.add("NoteManager.editNote");
 writeSecurityIdentifiers.add("NoteManager.deleteNote");

 writeSecurityIdentifiers.add("ToDoManager.createToDo");
 writeSecurityIdentifiers.add("ToDoManager.editToDo");
 writeSecurityIdentifiers.add("ToDoManager.deleteToDo");

 return writeSecurityIdentifiers;
}

The above implementation gathers together all of the write operation SIDs from the relevant
Façade APIs. Refer to 1.4 Assumptions on the availability of classes on page 45 for more
details.

Registering the BOM implementation
The next step is to register the BOM implementation(s) with the BOM registry. The BOM
registry, implemented using Guice, acts as a central access point for the CTM Infrastructure to

© Merative US L.P. 2012, 2024

1 Developing Business Object Modules for Configuration Transport Manager 41

obtain BOM implementations. So, the User BOM implementation has to be registered with the
BOM registry. The following sections detail the steps involved in registering BOMs.

Again, the process is illustrated by example, using the sample UserBOM:

Create a new Guice Module class

Create a new Guice Module called UserBOMModule that extends from
com.google.inject.AbstractModule and provide an implementation of the configure() method as
follows,

protected void configure() {

 final Multibinder<ReadAndUpsertBOM> readAndUpsertBOMBinder
 = Multibinder.newSetBinder(binder(),
 ReadAndUpsertBOM.class);
 readAndUpsertBOMBinder.addBinding().to(UserBOM.class);

 final Multibinder<InformationalBOM> informationalBOMBinder
 = Multibinder.newSetBinder(binder(),
 InformationalBOM.class);
 informationalBOMBinder.addBinding().to(UserBOM.class);

 final Multibinder<SecurityBOM> securityBOMBinder
 = Multibinder.newSetBinder(binder(),
 SecurityBOM.class);
 securityBOMBinder.addBinding().to(UserBOM.class);

 final Multibinder<DeleteBOM> deleteBOMBinder
 = Multibinder.newSetBinder(binder(),
 DeleteBOM.class);
 deleteBOMBinder.addBinding().to(UserBOM.class);

 final Multibinder<DependentBOM> dependentBOMBinder
 = Multibinder.newSetBinder(binder(),
 DependentBOM.class);
 dependentBOMBinder.addBinding().to(UserBOM.class);

 final Multibinder<ExistenceBOM> existenceBOMBinder
 = Multibinder.newSetBinder(binder(),
 ExistenceBOM.class);
 existenceBOMBinder.addBinding().to(UserBOM.class);

}

Note that in the above code snippet, a new com.google.inject.multibindings.Multibinder
instance is created in order to hold multiple implementations of the
curam.util.ctm.bom.ReadAndUpsertBOM interface. An object of type UserBOM is bound
to this binder using the standard addBinding() method. The process is repeated with
binders for all of the other BOM types - i.e. for curam.util.ctm.bom.InformationalBOM,
curam.util.ctm.bom.SecurityBOM, curam.util.ctm.bom.DeleteBOM,
curam.util.ctm.bom.DependentBOM and curam.util.ctm.bom.ExistenceBOM interfaces. Note that
as a single implementation is used for all of the BOM types, the same class is bound to each of
the binders (i.e. UserBOM).

© Merative US L.P. 2012, 2024

Cúram 8.1.2 42

Update the new Module class in the MODULECLASSNAME DMX file
Each component can have a MODULECLASSNAME.dmx DMX file containing the configuration
information for the component's Module classes (if any). The fully-qualified class name of the
Module registering the BOMs must be placed in this file.

For the pim component, the file path of the DMX file will be EJBServer\components\pim\data
\initial\MODULECLASSNAME.dmx. This file will need to contain the following information:

<row>
 <attribute name="moduleClassName">
 <value>sample.package.UserBOMModule</value>
 </attribute>
</row>

In the code snippet above, the value of the child element value must be the fully qualified name of
the Module class - i.e. sample.package.USERBOMModule in this case.

Optional BOM types
This section covers the optional BOM types and briefly explains their purpose. Any optional
BOMs required for a Business Object Type should be implemented, adhering to the appropriate
contract described in the BOM Javadoc.

The implementations should then be registered with the BOM registry, using the same pattern
documented above, that is, in the Registering the BOM implementation on page 40.

Pre Commit Action BOM
This BOM is used to perform any pre-processing actions on a Business Object during an Apply
operation before the Change Set is committed to the database. An example of an activity that
could be implemented in this BOM is validating the Business Object contents against other
Business Objects that may have been in the Change Set. This BOM can be implemented by
providing an implementation of the interface curam.util.ctm.bom.PreCommitActionBOM.

Please refer to the Javadoc for curam.util.ctm.bom.PreCommitActionBOM for further
information.

Pre Commit Action Type BOM
This BOM is used for pre-processing actions required at a Business Object Type – level during an
Apply operation before the Change Set is committed to the database. This means that irrespective
of the number of the Business Object instances available for a particular Business Object Type in
a Change Set, the BOM implementation will be called only once. This BOM can be implemented
by providing an implementation of the interface curam.util.ctm.bom.PreCommitActionTypeBOM.

Please refer to the Javadoc for curam.util.ctm.bom.PreCommitActionTypeBOM for further
information.

Post Commit Action BOM
A BOM for performing any post processing actions after the transaction for an Apply operation
has been committed. This BOM can be implemented by providing an implementation of the
interface curam.util.ctm.bom.PostCommitActionBOM. Note that unlike the other BOMs, a
separate transaction is used for curam.util.ctm.bom.PostCommitActionBOM implementations,
and that the BOMs are invoked after the Apply transaction has been committed. Therefore, again,
unlike the other BOMs, implementations of this BOM cannot terminate the Apply process by
rolling back the transaction.

© Merative US L.P. 2012, 2024

1 Developing Business Object Modules for Configuration Transport Manager 43

Please refer to the Javadoc for curam.util.ctm.bom.PostCommitActionBOM for further
information on this BOM.

Revert Change Set Construction Handler BOM
Business Object Types that need to customize the process of constructing a
revert Change Set can achieve this by providing an implementation of this BOM.
This BOM can be implemented by providing an implementation of the interface
curam.util.ctm.bom.RevertChangeSetConstructionHandlerBOM.

Please refer to both the 1.5 Customizing the construction of revert
Change Set on page 47 in the Appendix and to the Javadoc for
curam.util.ctm.bom.RevertChangeSetConstructionHandlerBOM for more details.

Authorisation BOM
In order to verify whether or not an administrative user can access a Business Object, it is
generally sufficient to check that a user has the SIDs that are required to read and write instances
of the Business Object Type. As noted above, the SIDs required for a particular Business Object
are provided to CTM by implementing the curam.util.ctm.bom.SecurityBOM.

However, some Business Object Types may have more advanced security requirements,
involving custom programmatic security checks. These checks can be implemented
in curam.util.ctm.bom.AuthorisationBOM for the Business Object Type. If
curam.util.ctm.bom.AuthorisationBOM is provided for a Business Object Type, it will be used
instead of the curam.util.ctm.bom.SecurityBOM to verify whether or not a user can read or write
instances of the Business Object Type.

This BOM can be implemented by providing an implementation of the interface
curam.util.ctm.bom.AuthorisationBOM. Please refer to the Javadoc for
curam.util.ctm.bom.AuthorisationBOM for further information.

Testing the transport of Business Object Types

This section discusses the common testing scenarios that are applicable to most Business Object
Types.

Pre-requisites

The following should be setup before testing commences:

• The source and the target systems should both be available, and should both be configured to
be in the same system landscape.

• The target system should be configured as a destination system for transport purposes within
the source system.

• Configuration data should be available for all of the entities that form the Business Object
Type being tested.

© Merative US L.P. 2012, 2024

Cúram 8.1.2 44

Testing the User Business Object Type via the Administrative User
Interface
It is important to carefully test the BOM implementations. In order to do this, a comprehensive
set of unit tests should be developed for the BOM implementations, and the functionality should
be thoroughly tested via the user interface.

The process of testing Business Object Types via the Administrative User Interface is described
in the following sub-sections. Again, the procedure is illustrated using the example User Business
Object Type.

Listing all active User objects
Create a new Change Set, locate the User Business Object Type and search for the available
Business Objects. The screen should only list the User objects that are active.
Checking the dependent Business Objects
Populate a new Change Set with sample User Business Objects. Expand the Change Set and
select any of the User Business Objects. Select the option Add Related Business Object. A pop-
up window showing the Related Business Objects will open and it should contain CodeTable/
RecordStatus, CodeTable/GroupName and CodeTable/CategoryName items. If the selected
Business Object has any dependency on a Folder Business Object, then the Folder Business
Object instance must also be listed.
Releasing the Change Set
Select the Release option for the Change Set. Ensure that the Release operation completes
successfully, that is, without any errors.
Exporting the Change Set
Select the Export option on the released Change Set. This export option will convert the contents
of all of the Business Objects in the Change Set into XML format. The Export operation must
successfully complete without any errors.
Transporting the Change Set
Select the Transport option of the release Change Set. Specify the target machine as the
destination to which the Change Set should be transported. The Transport operation must
successfully complete without any errors. Navigate to the target system's CTM screens to verify
that the transported Change Set is available.
Apply the Change Set
Select the Apply option on the released Change Set on the target system. This operation will
commit the content of the Business Objects from the Change Set to the target system. To check
the availability of the Business Objects, navigate to the home page of Folder and User to check if
the Business Objects transported from the source machine are listed.
Undoing the Change Set
Select the newly applied Change Set on the target system. Choose the Undo operation. This
operation will "undo" the Change Set, that is, the content of the Business Objects that were
previously applied will instead be reverted to their old values, or deleted if they were not already
present on the target system. The delete will either be a logical delete or a physical delete,
as appropriate to the Business Object Type. To verify the correctness of the Undo operation,
navigate to the home page of Folder and User to check if the Business Objects are in the Inactive
state, that is, have been logically deleted.

© Merative US L.P. 2012, 2024

1 Developing Business Object Modules for Configuration Transport Manager 45

1.4 Assumptions on the availability of classes

The examples in code assume that the following classes are available for the Business Object
type:

Availability of Facade APIs for managing user operations

It is assumed that there are Facade APIs which provide CRUD operations for the user entity,
and provide functionalities for associating/disassociating to-do and note entities from users.
Equivalent Facade APIs are also available for to-do and note objects.

The table below provides details of the operations:

Facade Name Operation Name Description

UserManager createUser Creates a new user

editUser Modify details on existing user

readUser Reads and returns user
information

deleteUser Removes the user from the
system

associateNotes Associates note items to a user

disassociateNotes Dis-associates note items from a
user

readAllNotes Fetches all the notes for a user

associateToDos Associates to-do items with a user

disassociateToDos Disassociates to-do items from a
user

readAllToDos Fetches all the to-do items for a
user

NoteManager createNote Creates a new note

editNote Edits information from existing
note

deleteNote Removes the note

readNote Reads and returns note
information

ToDoManager createToDo Creates a new to-do

editToDo Edits information from existing to-
do

deleteToDo Removes the to-do

© Merative US L.P. 2012, 2024

Cúram 8.1.2 46

Facade Name Operation Name Description

readToDo Reads and returns to-do
information

Availability of Adapter classes

It is assumed that the PI Adapter classes are generated and available for the Initial Entity, Child
Entities and Relative Entities.

This means that for the User BOM, the adapter classes described below are available:

• UserAdapter
• NoteAdapter
• UserNoteLinkAdapter
• ToDoAdapter
• UserToDoLinkAdapter
• CategoryAdapter

Availability of Data Access Object classes

In most cases, Adapter classes are sufficient to perform database related operations. However, it
is possible that there are entities related to other entities through foreign key associations and, in
such cases, it is desirable to provide Data Access Classes to facilitate fetching data from multiple
entities.

For instance, for the User Business Object Type, at least one Data Access Object class is
required:

• UserDAO, to fetch related information for a user from to-do and note items

DAO Class name Operation Name Description

UserDAO searchAllUsers Searches all the users in the
system

searchAllToDos Search all the related to-do items
for a user

searchAllToDoLinks Search all the related to-do item
links for a user

searchAllNotes Search all the related note items
for a user

searchAllNoteLinks Search all the related note item
links for a user

searchAllCategories Search all the related categories
for notes that are associated with
a user

© Merative US L.P. 2012, 2024

1 Developing Business Object Modules for Configuration Transport Manager 47

Availability of classes generated from Code Tables

The entities that form the User Business Object Type are dependent on several code tables.
Hence, it is assumed that the equivalent Java® classes for these code tables are also available.

Refer to the table below for details of these classes:

Code Table Name Java Identifier

GroupName GroupNameEntry

CategoryName CategoryNameEntry

1.5 Customizing the construction of revert Change Set

You might want to customize the content of a revert Change Set. To illustrate a scenario when
would be necessary, assume that there can be only one active User entity in the system. This
means that when a new User is applied to the system, the previously active User entity becomes
inactive, and the current one becomes active.

As an example, consider a Change Set containing a new Business Object User/X. Also, assume
that in the database, there is already an active User Business Object instance, User/A. While
applying the Change Set, the infrastructure creates a corresponding revert Change Set. This revert
Change Set contains a Delete instruction for the newly added User. When the original Change Set
is applied, User/X will be active, and User/A is inactive.

Now, when applied, the revert Change Set should ideally de-activate User/X (as this was newly
created through the Change Set) and reactivate User/A (as this was previously active). However,
this is only possible if the revert Change Set contains the following instructions:

• User/X-Delete
• User/A-Add

While the revert Change Set automatically contains the instruction User/X-Delete (as it is newly
created by applying the original Change Set), it does not contain the instruction User/A-Add. This
is because this Business Object was not in the original Change Set, and is not directly related to
the User/X Business Object in the original Change Set. So, the implementer of the BOMs for
User has to identify the unrelated Business Object(s) (that is, User-A in this case), and ensure that
it is placed in the revert Change Set.

To provide this functionality, an implementation of
curam.util.ctm.bom.RevertChangeSetConstructionHandlerBOM must be developed. This BOM
requires an implementation of the constructBusinessObjectIdentifiers() method that returns the
identifiers of unrelated Business Object that are required for revert purposes.

Note that there is no need for the implementation to specify the instruction type of the unrelated
Business Object(s), because the infrastructure knows how to identify the instruction type for a
specific Business Object identifier

The code snippet here illustrates the implementation of the
curam.util.ctm.bom.RevertChangeSetConstructionHandlerBOM 's
constructBusinessObjectIdentifiers() for the User Business Object Type:

public final Set<BusinessObjectIdentifier>

© Merative US L.P. 2012, 2024

Cúram 8.1.2 48

 constructBusinessObjectIdentifiers(
 BusinessObjectIdentifier boIdentifier,
 Document boDocument) {

 Set<BusinessObjectIdentifier> boIdentifiers
 = new HashSet<BusinessObjectIdentifier>();
 BusinessObjectIdentifier activeBO
 = getActiveBusinessObjectIdentifier();

 if (activeBO!= null) {

 // If the identified active Business Object is equal
 // to the incoming Business Object identifier, then
 // we should not have to include it, because this
 // Business Object identifier would have
 // already undergone processing by the framework.

 if (!activeBO.equals(boIdentifier)) {

 // Active Business Object exists in the
 // database. This needs to be included
 // in the revert Change Set XML.

 boIdentifiers.add(activeBO);
 }
 }
 return boIdentifiers;

}

1.6 Reference guides
•
•
•
• Google Guice 2

© Merative US L.P. 2012, 2024

http://code.google.com/p/google-guice

Notices

Permissions for the use of these publications are granted subject to the following terms and
conditions.

Applicability

These terms and conditions are in addition to any terms of use for the Merative website.

Personal use

You may reproduce these publications for your personal, noncommercial use provided that all
proprietary notices are preserved. You may not distribute, display or make derivative work of
these publications, or any portion thereof, without the express consent of Merative

Commercial use

You may reproduce, distribute and display these publications solely within your enterprise
provided that all proprietary notices are preserved. You may not make derivative works of these
publications, or reproduce, distribute or display these publications or any portion thereof outside
your enterprise, without the express consent of Merative.

Rights

Except as expressly granted in this permission, no other permissions, licenses or rights are
granted, either express or implied, to the publications or any information, data, software or other
intellectual property contained therein.

Merative reserves the right to withdraw the permissions granted herein whenever, in its
discretion, the use of the publications is detrimental to its interest or, as determined by Merative,
the above instructions are not being properly followed.

You may not download, export or re-export this information except in full compliance with all
applicable laws and regulations, including all United States export laws and regulations.

MERATIVE MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE
PUBLICATIONS. THE PUBLICATIONS ARE PROVIDED "AS-IS" AND WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT
LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT,
AND FITNESS FOR A PARTICULAR PURPOSE.

Merative or its licensors may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this documentation does not grant you any license
to these patents.

Information concerning non-Merative products was obtained from the suppliers of those products,
their published announcements or other publicly available sources. Merative has not tested those
products and cannot confirm the accuracy of performance, compatibility or any other claims
related to non-Merative products. Questions on the capabilities of non-Merative products should
be addressed to the suppliers of those products.

Any references in this information to non-Merative websites are provided for convenience only
and do not in any manner serve as an endorsement of those websites. The materials at those
websites are not part of the materials for this Merative product and use of those websites is at
your own risk.

© Merative US L.P. 2012, 2024

This information contains examples of data and reports used in daily business operations.
To illustrate them as completely as possible, the examples include the names of individuals,
companies, brands, and products. All of these names are fictitious and any similarity to actual
people or business enterprises is entirely coincidental.

The licensed program described in this document and all licensed material available for it are
provided by Merative under terms of the Merative Client Agreement.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate
programming techniques on various operating platforms. You may copy, modify, and distribute
these sample programs in any form without payment to Merative, for the purposes of developing,
using, marketing or distributing application programs conforming to the application programming
interface for the operating platform for which the sample programs are written. These examples
have not been thoroughly tested under all conditions. Merative, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample programs are provided
"AS IS", without warranty of any kind. Merative shall not be liable for any damages arising out of
your use of the sample programs.

Privacy policy
The Merative privacy policy is available at https://www.merative.com/privacy.

Trademarks

Merative ™ and the Merative ™ logo are trademarks of Merative US L.P. in the United States and
other countries.

IBM®, the IBM® logo, and ibm.com® are trademarks or registered trademarks of International
Business Machines Corp., registered in many jurisdictions worldwide.

Adobe™, the Adobe™ logo, PostScript™, and the PostScript™ logo are either registered
trademarks or trademarks of Adobe™ Systems Incorporated in the United States, and/or other
countries.

Oracle and Java are registered trademarks of Oracle and/or its affiliates.

The registered trademark Linux® is used pursuant to a sublicense from the Linux Foundation, the
exclusive licensee of Linus Torvalds, owner of the mark on a worldwide basis.

Microsoft™, Windows™, and the Windows™ logo are trademarks of Microsoft™ Corporation in
the United States, other countries, or both.

UNIX™ is a registered trademark of The Open Group in the United States and other countries.

Other company, product, and service names may be trademarks or service marks of others.

© Merative US L.P. 2012, 2024

https://www.merative.com/privacy

	Note
	Edition
	Notices
	Privacy policy
	Trademarks

	Contents
	1 Developing Business Object Modules for Configuration Transport Manager
	1.1 Overview
	Prerequisites
	Terminology
	Business Object Type
	Business Object
	Business Object Modules

	1.2 BOM Overview
	Implementing BOMs
	CTM Core Process Flow
	The Release Operation
	Apply Operation
	Pre Apply Phase
	Apply Phase
	Post-Apply Phase

	BOM Infrastructure
	AbstractEntityBOBuilder
	Abstract BOM

	The Range Aware Key Server
	Runtime Data

	1.3 Developing BOMs
	The Example Application
	Folder Screen
	Entities
	Code Tables

	User Screen
	Entities
	Code Tables

	BOM Development Methodology
	Analyzing Business Object Types
	Identifying the Configuration Entities
	Group Entities into Business Objects Types
	Define Business Object Identifiers
	Business Object Type Identifier
	Business Object Key

	Ensure that the Configuration Entities use RAKS generated identifiers

	Analyzing the Folder Business Object Type
	Identifying the Configuration Entities
	Identifying the Initial Entity
	Identifying the Child Entities
	Identifying the Relative Entities

	Identifying dependencies
	Type-Level dependencies
	Instance-Level dependencies
	Example 1
	Example 2

	Identifying the Mode of Deletion

	Analyzing the User Business Object Type
	Identifying the configuration entities
	Identifying the Initial Entity
	Identifying the Child Entities
	Identifying the Relative Entities

	Identifying dependencies
	Type-Level dependencies
	Instance-Level dependencies
	Example 1
	Example 2

	Identifying the Mode of Deletion

	Implementing BOMs
	Making Configuration Entities RAKS enabled
	Creating New Key Set Configuration
	Ensure Entities use the new Key Set

	Business Object Classes
	Developing Entity Business Object Builder classes for the entities
	Category Entity Business Object Builder
	Note Entity Business Object Builder
	User Note Link Entity Business Object Builder
	ToDo Entity Business Object Builder
	User ToDo Link Entity Business Object Builder
	User Entity Business Object Builder

	Implementing the BOMs
	Extend AbstractBOM
	Singleton BOMs
	AbstractBOM Method Implementations

	Registering the BOM implementation
	Create a new Guice Module class
	Update the new Module class in the MODULECLASSNAME DMX file

	Optional BOM types
	Pre Commit Action BOM
	Pre Commit Action Type BOM
	Post Commit Action BOM
	Revert Change Set Construction Handler BOM
	Authorisation BOM

	Testing the transport of Business Object Types
	Pre-requisites
	Testing the User Business Object Type via the Administrative User Interface
	Listing all active User objects
	Checking the dependent Business Objects
	Releasing the Change Set
	Exporting the Change Set
	Transporting the Change Set
	Apply the Change Set
	Undoing the Change Set

	1.4 Assumptions on the availability of classes
	Availability of Facade APIs for managing user operations
	Availability of Adapter classes
	Availability of Data Access Object classes
	Availability of classes generated from Code Tables

	1.5 Customizing the construction of revert Change Set
	1.6 Reference guides

