A
MerATive

Curam 8.1.2

Creating Datastore Schemas Guide






Note

Before using this information and the product it supports, read the information in Notices on page
15

© Merative US L.P. 2012, 2024



© Merative US L.P. 2012, 2024



Edition
This edition applies to Curam 8.1, 8.1.1, and 8.1.2.

© Merative US L.P. 2012, 2024

Merative and the Merative Logo are trademarks of Merative US L.P. in the United States and
other countries.

© Merative US L.P. 2012, 2024



© Merative US L.P. 2012, 2024



Contents vii

Contents
L0 PP i
=T 11 o o PP S SURPPUPPPPRRRR Y
1 Creating DatastOore SCREMAS........cooiiiiiiiiiiiiii e 9
1.1 Important Information Before Creating Datastore SChemas...........ccccccvccuvinviiiiiiiniinnieeniinnnn, 9
The PUrpoSE Of DAtaSIOrES......uuuiiiiieiiiieiiiiie it ee e e e e e et s e e e e e e e e ee b e e e e e e e e eeernann s 9
HOW tO Properly ACCESS DAtaSTOrES. .......cceuiiiuuriiiiiieeeeiiiiiiee ittt e e e a e e e 9
1.2 Creating a Datastore SChemMa.........coooo oo e e e 9
Datastore SChemMa OVEIVIEW.........ccco e 9
I =T 0[S 0 T= Lo S 10
I F= 1= 114 1 P 10
Entity and Attribute DefiNitiONS.........c.uiriiiiiie e 12
Identity CONSIFAINTS..........cooviiiiiiiec e 13
1.3 Compliancy for datastore SCNEMEAS. ........cuuiiiiiiiiiiiiiie e e e 14
0 o) o PP 14
[0 L= 01112 TV Tt T A = 14
OULSIAE T AP 14
N[0 o =PRI 15
PEIVACY POICY . .cetiieiiiit ettt ettt e e e e ettt e e e e e e e e et e e e e e e n bbb e e e e e e e 16
L= 10 [ 0P 17 16

© Merative US L.P. 2012, 2024



Curam 8.1.2 viii

© Merative US L.P. 2012, 2024



1 Creating Datastore Schemas 9

1 Creating Datastore Schemas

Use this information to create Datastore schemas. The datastore stores data that is collected
from citizens during intake. A datastore schema defines the entities across which intake data
is shredded, the fields or attributes of those entities, and any relationships between entity
definitions.

1.1 Important Information Before Creating Datastore Schemas

The Purpose of Datastores

The Datastore stores data that is collected from citizens during online screening and intake of
applications. The contents of the datastore are dynamically definable by way of a datastore
schema definition. Other dynamically definable components depend on the Datastore Schema,
in particular screening and intake scripts, and screening rules, so the datastore contents must be
kept compatible with these. In particular, these other components might depend on certain fixed
elements of Datastore definitions, which must therefore exist in order for these components to
operate properly.

Data on the Datastore is stored in XML format. For reasons of efficiency, the data for a single
application is shredded across multiple database rows so that updates to an application during
intake do not result in large amounts of inefficient LOB I/O every time a page of an intake

script is traversed. Each type of shredded row content is called a datastore entity. The datastore
schema definition conforms to the World Wide Web Consortium (W3C) XML Schema Definition
Language. In addition to having to conform to the W3C specification, a datastore schema must
follow certain datastore-specific rules. These rules are described in 1.2 Creating a Datastore
Schema on page 9.

How to Properly Access Datastores

The datastore is accessed through an API defined in the Java® package
curam.datastore.impl. This package allows for opening a datastore by locating its schema
definition, and accessing its data.

For further details, see the Javadoc information for the API package. Note that other
curam.datastore. * packages do not form part of the API (even where classes and methods are
public) and are not be used.

1.2 Creating a Datastore Schema

Datastore Schema Overview

A datastore schema defines the following:

© Merative US L.P. 2012, 2024



Curam 8.1.2 10

* The entities across which screening and intake data are shredded - These are created as XML
complexType definitions.

* The fields or attributes of those entities - These are created as XML attribute definitions.

* The simple datatypes, called domains, which define the allowable types of entity attributes -
These are created as XML simpleType definitions.

* Any key relationships between entity definitions - These are created as XML key and keyref
definitions.

Namespaces

A datastore schema must be defined in a single XML namespace, or in no namespace. It cannot
be split across multiple namespaces.

The schema may be split across multiple schema fragments that include each other. Schema
definitions contain no XML import elements other than importing the base domains namespace
http://www.curamsoftware.com/BaseDomains, but they might contain include elements.

Datatypes

The attributes in a datastore schema definition cannot directly be of W3C XML built-in datatypes.
Instead, they must be valid Ctram domain definitions.

This means that they must be of a simple type that is defined in the XML namespace http://
www.curamsoftware.com/BaseDomains, or a simple type that is defined in the datastore
schema, which inherits from one of those types. In the example above, DECEASED IND is
such a domain definition. The built-in domain definitions in http://www.curamsoftware.com/
BaseDomains are:

Table 1: Built-in Domain Definitions

Base Domain Built-in XML Type Remarks

SVR_BOOLEAN Boolean

SVR_INT8 Byte

SVR_INT16 Short

SVR_INT32 Int

SVR_INT64 Long

SVR_KEY Long

SVR_FLOAT Float

SVR_DOUBLE Double

SVR_DATE Date

SVR_DATETIME dateTime

SVR_MONEY Decimal fractionDigits value="2"

SVR_STRING String

SVR_CHAR String minLength value="1", maxLength
value="1"

CODETABLE_CODE String minLength value="1", maxLength
value="10"

© Merative US L.P. 2012, 2024




1 Creating Datastore Schemas 11

Base Domain Built-in XML Type Remarks

SHORT_CODETABLE_CODE String minLength value="1", maxLength
value="10"

When defining new domains, their names cannot conflict with domains that are modeled in the
application as they might potentially be displayed with the wrong renderer.

Domain definitions support a limited number of value constraints. The following XML
constraints are permitted:

* minLength
* maxLength
e minlnclusive
* maxInclusive

In addition to the supported XML constraints, there are a number of Ctram-specific constraints
that can be specified by using XML annotations, as follows:

<xsd: si npl eType nane="SOVE_DOVAI N' >
<xsd: annot at i on>
<xsd: appi nf o>
<d: opti ons>
<d: opti on name="nin-size">3</d: opti on>
</ d: opti ons>
</ xsd: appi nf 0>
</ xsd: annot ati on>
<xsd:restriction base="d: SVR STRI NG'/ >
</ xsd: si npl eType>

The list of supported annotation-based constraints is as follows:

Table 2: Supported Annotation-based Constraints

Annotation Option Remark

min-size Same as XML minLength

max-size Same as XML maxLength

minimum Same as XML mininclusive

maximum Same as XML maxInclusive

default Default value

compress Reduce embedded runs of spaces to a single space

to-upper Convert text to uppercase

trim-leading Trim leading space

trim-trailing Trim trailing spaces

code-table-name Name of a Cliram code table that is used to
translate code value

code-table-root Do not use this option in user domain definitions.

Note that domain constraints have no effect on processing in the datastore when the datastore is
accessed programmatically. They exist purely to provide metadata to screen processing facilities
such as Ctram Intelligent Evidence Gathering(IEG), which can use the metadata to constrain user
input.

© Merative US L.P. 2012, 2024



Curam 8.1.2 12

Entity and Attribute Definitions

Entities in the Datastore are defined as elements with complexType definitions. Each entity's
definition must appear at global level in the schema. If an entity incorporates another entity as
part of its definition, the incorporated entity must still be defined at global level and referred to by
the incorporating entity.

In the example below, the Appl i cat i on entity incorporates the Per son entity, which in turn
incorporates the Addr ess entity. All three entities are defined at global level and use element ref
to refer to the definitions of other entities.

<xs: el emrent nane="Application">
<xs: conpl exType>
<xs: sequence mi nCccurs="0">
<xs: el ement ref="Person" ni nCccurs="0"
maxQccur s="unbounded” />
</ Xs: sequence>
</ xs: conpl exType>
</ xs: el enent >

<xs: el enent nane="Person">
<xs: conpl exType>
<xs: sequence m nCccurs="0">
<xs: el ement ref="Address"
m nCccur s="0"
maxCccur s="1" />

</xs;ééquence>
<xs:attribute nanme="firstNane" type="D: SVR _STRI NG' />

</ xs: conpl exType>
</ xs: el enent >

<xs: el enment nanme="Addr ess" >

</ xs: el ement >

There are other restrictions on entities. All complex type compositors must be sequences, that
is, you can use the “sequence” compositor but not “all” or “choice”. All sequences must have a
“minOccurs” of zero, and all elements must have a “minOccurs” of zero. There is no restriction
on the value of the “maxQOccurs” constraint.

Attributes of entities must be of “domain” types, that is, they must be simpleType definitions that
are defined elsewhere in the schema. An attribute can have a default value, which (unlike the
“default” annotation on domains) does directly affect the values that get stored on the Datastore if
the attribute value is not explicitly set.

The datastore definition usually consists of many simpleType (domain) and complexType (entity)
definitions. All of these must appear at global level, that is, they cannot be nested inside each
other.

<xs:schema xm ns: xs="http://ww.w3. org/ 2001/ XM_Schema"

xm ns: D="http://ww. curansof t war e. com BaseDorai ns"
>

<xs:inport

© Merative US L.P. 2012, 2024



1 Creating Datastore Schemas 13

namespace="http://ww. cur ansof t war e. conl BaseDomai ns" />

<xs: si npl eType name="DECEASED | ND" >
<xs:restriction base="D: SVR BOOLEAN'/ >
</ xs: si nmpl eType>

<xs: el erent nane="Person">
<xs: conpl exType>
<xs:attribute name="firstNane" type="D: SVR_STRI NG' />
<xs:attribute nane="middl elnitial"
type="D: SVR_STRING' />
<xs:attribute nane="| ast Name" type="D. SVR STRING' />
<xs:attribute nane="deceased" type="DECEASED |ND' />
</ xs: conpl exType>
</ xs: el enent >

</ xs: schema>

Identity Constraints

Consider the example that is shown here. It models a Per son that can have an Addr ess, and
zero or more Rel at i onshi ps to other Per sons. A Rel ati onshi p does not “contain” a
Per son. Rather, it has a reference to a Per son.

How do you ensure that one entity uniquely refers to another entity? You use XML identity
constraints. These constraints are well-described in the relevant XML specifications and
no elaborations are required, other than to point out more restrictions on the use of identity
constraints in a Datastore Schema.

<xs: el emrent nane="Person">
<xs: conpl exType>
<xs: sequence m nCccurs="0">
<xs: el ement ref="Address"
m nCccur s="0"
maxCccurs="1" />
<xs: el ement ref="Relationship" m nQccurs="0"
maxQccur s="unbounded"/ >
</ Xxs: sequence>
<xs:attribute nane="personl D'
type="D: SVR_KEY"/ >
<xs:attribute nane="firstNanme"
type="D: SVR STRING' />
<xs:attribute nane="mddlelnitial"
type="D: SVR_STRING' />
<xs:attribute nanme="I| ast Name" type="D: SVR_STRING' />
</ xs: conpl exType>
<xs: key nanme="Per sonKey" >
<xs:sel ector xpath="./Person"/>
<xs:field xpat h="@ersonl D'/ >
</ xs: key>
<xs: keyref nanme="Rel ati onshi pRef" refer="PersonKey">
<xs: sel ector xpath="./Person/Rel ationship"/>
<xs:field xpath="@ersonl D'/ >
</ xs: keyref >
</ xs: el enent >
<xs: el emrent nane="Addr ess" >

© Merative US L.P. 2012, 2024



Curam 8.1.2 14

<xs: conpl exType>
<xs:attribute nane="streetl" type="D: SVR STRING' />
<xs:attribute nane="street2" type="D: SVR STRING' />
<xs:attribute nane="city" type="D: SVR_STRING' />
<xs:attribute nane="state" type="D: SVR STRING' />
<xs:attribute nane="zi pCode" type="D: SVR | NT32" />
</ xs: conpl exType>
</ xs: el enent >
<xs: el emrent nane="Rel ati onshi p">
<xs: conpl exType>
<xs:attribute nane="type" type="D: SVR_STRI NG'/ >
<xs:attribute nane="personl D' type="D: SVR KEY"/ >
</ xs: conpl exType>
</ xs: el enent >

An attribute referred to in a key or keyref'identity constraint must be defined to be of the base
domain type SVR_KEY. Conversely, every attribute of type SVR_KEY must be referred to by
some key/ or keyref definition. Key attributes have their values that are automatically populated
upon insertion into the Datastore. They are set to a numeric value that is unique across all entities
on the Datastore.

1.3 Compliancy for datastore schemas

This section explains how to develop datastore schemas in a compliant manner. By following
these considerations, customers will also find it easier to upgrade to future versions of Caram.

Public API

The Datastore has a public API which you may use in your application code. This public API
does not have any components that are changed or removed without following Ctram standards
for handling customer impact.

ldentifying the API

The JavaDoc that is included is the sole means of identifying which public classes, interfaces, and
methods form the public API.

Outside the API

The Datastore also contains some public classes, interfaces, and methods, which do not form part
of the API.

Important: To be compliant, dependencies on any class or interface cannot be made. No
methods are called other than those described in the Javadoc information.

Classes, interfaces, and methods outside of the public API are subject to change or removal
without notice. Unless otherwise stated in the JavaDoc, you must not place any of your own
classes or interfaces in the same package as the Datastore.

© Merative US L.P. 2012, 2024




Notices

Permissions for the use of these publications are granted subject to the following terms and
conditions.

Applicability
These terms and conditions are in addition to any terms of use for the Merative website.
Personal use

You may reproduce these publications for your personal, noncommercial use provided that all
proprietary notices are preserved. You may not distribute, display or make derivative work of
these publications, or any portion thereof, without the express consent of Merative

Commercial use

You may reproduce, distribute and display these publications solely within your enterprise
provided that all proprietary notices are preserved. You may not make derivative works of these
publications, or reproduce, distribute or display these publications or any portion thereof outside
your enterprise, without the express consent of Merative.

Rights

Except as expressly granted in this permission, no other permissions, licenses or rights are
granted, either express or implied, to the publications or any information, data, software or other
intellectual property contained therein.

Merative reserves the right to withdraw the permissions granted herein whenever, in its
discretion, the use of the publications is detrimental to its interest or, as determined by Merative,
the above instructions are not being properly followed.

You may not download, export or re-export this information except in full compliance with all
applicable laws and regulations, including all United States export laws and regulations.

MERATIVE MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE
PUBLICATIONS. THE PUBLICATIONS ARE PROVIDED "AS-IS" AND WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT
LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT,
AND FITNESS FOR A PARTICULAR PURPOSE.

Merative or its licensors may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this documentation does not grant you any license
to these patents.

Information concerning non-Merative products was obtained from the suppliers of those products,
their published announcements or other publicly available sources. Merative has not tested those
products and cannot confirm the accuracy of performance, compatibility or any other claims
related to non-Merative products. Questions on the capabilities of non-Merative products should
be addressed to the suppliers of those products.

Any references in this information to non-Merative websites are provided for convenience only
and do not in any manner serve as an endorsement of those websites. The materials at those
websites are not part of the materials for this Merative product and use of those websites is at
your own risk.

© Merative US L.P. 2012, 2024



This information contains examples of data and reports used in daily business operations.

To illustrate them as completely as possible, the examples include the names of individuals,
companies, brands, and products. All of these names are fictitious and any similarity to actual
people or business enterprises is entirely coincidental.

The licensed program described in this document and all licensed material available for it are
provided by Merative under terms of the Merative Client Agreement.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate
programming techniques on various operating platforms. You may copy, modify, and distribute
these sample programs in any form without payment to Merative, for the purposes of developing,
using, marketing or distributing application programs conforming to the application programming
interface for the operating platform for which the sample programs are written. These examples
have not been thoroughly tested under all conditions. Merative, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample programs are provided
"AS IS", without warranty of any kind. Merative shall not be liable for any damages arising out of
your use of the sample programs.

Privacy policy

The Merative privacy policy is available at https://www.merative.com/privacy.

Trademarks

Merative ™ and the Merative ™ logo are trademarks of Merative US L.P. in the United States and
other countries.

IBM®, the IBM® logo, and ibm.com® are trademarks or registered trademarks of International
Business Machines Corp., registered in many jurisdictions worldwide.

Adobe™, the Adobe™ logo, PostScript™, and the PostScript™ logo are either registered
trademarks or trademarks of Adobe™ Systems Incorporated in the United States, and/or other
countries.

Oracle and Java are registered trademarks of Oracle and/or its affiliates.

The registered trademark Linux® is used pursuant to a sublicense from the Linux Foundation, the
exclusive licensee of Linus Torvalds, owner of the mark on a worldwide basis.

Microsoft™, Windows™, and the Windows™ logo are trademarks of Microsoft™ Corporation in
the United States, other countries, or both.

UNIX™ is a registered trademark of The Open Group in the United States and other countries.

Other company, product, and service names may be trademarks or service marks of others.

© Merative US L.P. 2012, 2024


https://www.merative.com/privacy

	Note
	Edition
	Notices
	Privacy policy
	Trademarks

	Contents
	1 Creating Datastore Schemas
	1.1 Important Information Before Creating Datastore Schemas
	The Purpose of Datastores
	How to Properly Access Datastores

	1.2 Creating a Datastore Schema
	Datastore Schema Overview
	Namespaces
	Datatypes
	Entity and Attribute Definitions
	Identity Constraints

	1.3 Compliancy for datastore schemas
	Public API
	Identifying the API
	Outside the API



