
Cúram 8.1.2
Development Compliancy Guide





Note
Before using this information and the product it supports, read the information in Notices on page
25

© Merative US L.P. 2012, 2024



© Merative US L.P. 2012, 2024



Edition
This edition applies to Cúram 8.1, 8.1.1, and 8.1.2.

© Merative US L.P. 2012, 2024

Merative and the Merative Logo are trademarks of Merative US L.P. in the United States and
other countries.

© Merative US L.P. 2012, 2024



© Merative US L.P. 2012, 2024



Contents vii

Contents

Note................................................................................................................ iii

Edition............................................................................................................. v
1 Compliant development with Cúram............................................................................ 9
1.1 Starting a new project............................................................................................................... 9

Review the client and server development directory structure................................................. 9

1.2 Compliancy for server development........................................................................................10
Avoiding common server compliancy issues.......................................................................... 10
Overview of compliant server development artifact changes..................................................13
Java APIs.................................................................................................................................13
Source code.............................................................................................................................14
Changing server source artifacts............................................................................................ 14
Server extension mechanisms................................................................................................ 15

1.3 Compliancy for client development......................................................................................... 21

1.4 Compliancy for individual components....................................................................................21

1.5 Compliancy for deprecated functionality................................................................................. 23

Notices.......................................................................................................... 25
Privacy policy................................................................................................................................. 26

Trademarks.................................................................................................................................... 26

© Merative US L.P. 2012, 2024



Cúram 8.1.2 viii

© Merative US L.P. 2012, 2024



1 Compliant development with Cúram 9

1 Compliant development with Cúram

When you develop Cúram applications, you must comply with certain guidelines to ensure that
you can easily upgrade to future versions without affecting your custom functionality. Complying
with these guidelines is essential to ensure that the support team can better support your custom
implementation.

1.1 Starting a new project

When you start a new project, it is important to review the development directory structure and
place the appropriate files under source code control so that you can track all changes.

When the files are under source code control, tag all development artifacts. Ensure that the tag
reflects to the version of the application. At any point, you can then produce a report to identify
all files that were added or changed by using file comparison tools. This report is useful when you
are upgrading the application.

Review the client and server development directory structure

Review the development directory structure to understand where development artifacts are
located, how they are organized, and where to store changes to these artifacts.

The client and server development artifacts are installed in the following directories:

• Client development artifacts are installed into the webclient directory.
• Server development artifacts are installed into the EJBServer directory.

Within both the webclient directory and the EJBServer directory, there is a components
subdirectory, which has a further subdirectory called custom. The custom subdirectory is
where all project-specific development artifacts should be placed. The other components
subdirectories contain all of the application development artifacts that are delivered with the
product.

Important: The custom folder contains a starter structure for first usage and is referred
to throughout developer documentation as the area in which all artifacts are developed. This
convention is not mandatory and it is a project choice to develop within this component or
create a new named component appropriate for your project.

Within the EJBServer\components\custom\model directory, there is a starter model file
and some model fragments.

Related information

© Merative US L.P. 2012, 2024



Cúram 8.1.2 10

1.2 Compliancy for server development

Learn how to avoid common server compliancy issues, and how to develop server applications in
a compliant manner.

Avoiding common server compliancy issues

Follow the guidelines to avoid these common compliance issues. Following these guidelines
from the early stages of a project is relatively easy. However, if you do not, it can result in serious
disruptions later and fixing these disruptions can be both costly and difficult.

Use project-specific prefixes in custom artifact names
Avoid naming collisions when you upgrade by ensuring that you always name new, custom
artifacts with a consistent prefix for your project. Naming collisions can be difficult to fix
afterward. Prefix all new source artifact names with a relevant acronym or abbreviated word
to prevent naming collisions from occurring between your custom artifacts and artifacts that
Merative ™ might add over time.

Use the same acronym or abbreviated word throughout. As the project progresses, this prefix
makes project additions to core artifacts more obvious. This distinction becomes more useful
as the development effort grows. Most projects are described by some kind of acronym and this
acronym is a good candidate to use as the prefix.

Project-specific prefixes might not apply when you override some application artifacts. Where
supported, override mechanisms typically require the custom artifacts to have the same name as
the default artifacts that they override, but some exceptions exist.

Some further considerations are as follows:

• There are many different types of identifiers. For example, a file name, an XML ID, a Java
class name, or a combination of identifiers.

• A short prefix is advisable because there might be restrictions on name lengths. For example,
some types of database identifiers have length restrictions.

Note: In addition to source artifacts, it is also important to consider identifier values that
might conflict with values that are used by Merative ™.

Some artifact types have more than one identifier. Remember this when you name your custom
artifacts. The following list describes examples of common development artifacts that can cause
naming collisions when you take on a new release.

• Database fields
New database fields can be delivered in fix packs. Use project prefixes for database fields to
prevent duplicating the names delivered in the fix packs.

• Application code table items
New application code table items can be delivered in fix packs. Use a project prefix when you
name custom code table items to prevent duplicating the names delivered in the fix packs.
Custom code table items have a value and a Java identifier, and both share a flat namespace
with application items in the same code table.

© Merative US L.P. 2012, 2024



1 Compliant development with Cúram 11

• Entity classes

Custom Entity classes have a table name that shares the flat namespace and database schema
with application tables and must have a unique table name within that namespace. It also
has a Java class name, which shares a hierarchical namespace and package structure with
application Java classes. Use project-specific prefixes for custom entity classes to prevent
duplication of the names of the new entity classes.

• Identifier values that conflict with values used by Merative ™
Consider identifier values that might conflict with values used by Merative ™.
For example, the TransactionInfo.setFacadeScopeObject and
TransactionInfo.getFacadeScopeObject APIs enable developers to access
objects that are associated with the current transaction. When you use these APIs, use a String
as your object identifier and prefix this string with an appropriate project-specific word to
ensure that your data for the transaction does not conflict with Merative ™ data.

Use numeric identifiers in custom initial and demo data
Pre-defined initial data and demo data is loaded into an application database using DMX
files. This data is installed into the database when a system is first set up, or when a system is
upgraded. You might also want or need to add your own initial data or demo data.

Reserved ranges for unique identifiers for primary keys

To avoid clashes with the initial and demo data that is included in the application and with data
created by the runtime system, it is important that the identifiers (for example, primary keys)
for your initial and demo data are drawn from reserved ranges. A set of ranges is reserved for
customer use.

• Non-human readable primary keys:

• 45,000 - 49,999 (inclusive)
• 900,000 - 949,999 (inclusive)

• Human readable primary keys: 11,521 - 12,799 (inclusive)
• Rule sets: 4,500 - 4,999 (inclusive)

Large data sets

Instead of using keys from the allocated ranges, use the key server to generate the key values
required. If this data is to be imported into a pre-built database, extract the final value of the key
set and load it into the key set table, replacing the initial key set value supplied in the application.
If you have any questions about this process, contact Cúram Support for further information.

To request a product enhancement, see the Merative ™ Ideas Portal .

Avoid directly modifying application files in place
Continuous delivery, Fix Pack, and iFix releases must be able to safely move, restructure,
or overwrite application files. If the included application files are modified, upgrades might
overwrite them without notice and the changes might not be compatible with the modifications.
Reapplying the in-place changes afterward might not be possible.
Client and Server: Exceptions for in-place modifications
A list of the small number of exceptions to the in-place modifications rule for client and server
development.

• EJBServer

© Merative US L.P. 2012, 2024

https://merative.ideas.aha.io/


Cúram 8.1.2 12

• /project/config/datamanager_config.xml

• /project/config/deployment_packaging.xml

• /project/properties/Bootstrap.properties

• .classpath

• .project

• Webclient

• /JavaSource/curam/omega3/ApplicationConfiguration.properties

• /JavaSource/curam/omega3/il8n/CDEJResources.properties

• .classpath

• .project

Never create dependencies on sample or demo artifacts
Never create dependencies on sample or demo artifacts. Never rely on dependencies or references
to sample or demo artifacts from custom code. Sample or demo artifacts are subject to change
without notice

Different product areas in Cúram take different approaches to marking artifacts as Internal,
Sample, or Demo, so this information cannot give a concise statement of how to identify them.
However, there are a few instances where they can be identified. These instances are artifacts
whose name, code package, model package, or file path contain the words Internal, Sample, or
Demo, or obvious derivatives of those words. If in doubt, contact Cúram Support.

To request a product enhancement, see the Merative ™ Ideas Portal .

Related information

The CPMSample folder
The CPMSample folder is internal; all code and artifacts within this folder can change without
any notice. If customers want to use functionality in the CPMSample folder, they must duplicate
it in their code base.

Apply changes to dynamic artifact types back to the development system
If you modify dynamic artifact types on production or test systems, always ensure that these
modifications are applied to the development system.

Various 'Dynamic' development artifacts exist in the application that can be modified at
runtime on a production or test system (for example, code tables and workflows). Runtime
changes to these artifacts should always be synchronized back to the development codebase
so that concurrent development changes can be integrated with these runtime changes prior to
deployment.

Concurrent changes to these artifacts may happen during routine project milestone development,
or when taking on Fix Packs or other upgrades. In every case, there must be one central place
where concurrent changes are merged and validated and this is the development codebase. The
system of record for these artifacts is the development codebase.

© Merative US L.P. 2012, 2024

https://merative.ideas.aha.io/


1 Compliant development with Cúram 13

Overview of compliant server development artifact changes

In addition to your custom code, you can customize the default application by adding message
files, code tables, events, and so on.

The following table summarizes the range of compliant changes you can make to development
artifacts.

Table 1: Cúram Development Artifact Compliant Changes

Type of Change Compliant Changes

Change or remove an existing message file
or add additional locale (language) support to
an existing message.

Message file (externalized server informational, warning,
and error messages - .xml files in the message directory).
For more information,.

Change an existing code table display name
or description, add a code table item into an
existing code table, or enable or disable an
existing code table item.

Code Table file (code value pairs - .ctx files in the
codetable directory). For more information, .

Add an event registration (to augment initial
Cúram functionality, or disable an existing
event handler.

Event Definition file (.evx files in the events
directory) and Event Handler Registration file
(handler_config.xml in the events directory). For
more information, .

Override an existing user preference. User Preference file (DefaultPreferences.xml file in
the userpreferences directory).

Customizing workflow process definition files. For more information, .

Override an existing application property. You cannot override an application property directly. For
information about how to customize properties, .

Application Property File (Application.prx file in the
properties directory).

Add initial demo or test data (rows) to an
existing database table.

DMX File (script for populating the database with data -
.dmx files in the relevant data subdirectory).

Java APIs

Java class operations are marked as Internal, Restricted, or External by annotations. By default,
classes with no annotations are internal. External operations are the official Java API, which you
are encouraged to use and call from your own code.

Internal APIs

Internal APIs are annotated with @Accesslevel(INTERNAL) or have no annotation.
Do not reference internal APIs in custom code. Restricted APIs are annotated with
@Accesslevel(RESTRICTED), never reference a restricted API in custom code.

If you reference restricted or internal APIs in code, restricted APIs produce Eclipse errors and
unsupported APIs produce Eclipse warnings.

© Merative US L.P. 2012, 2024



Cúram 8.1.2 14

External APIs

External APIs are annotated with @Accesslevel(EXTERNAL) and you can reference them
directly from custom code. Javadoc is provided for all external APIs on a per-component basis.
Do not reference any classes that do not have Javadoc.

The Javadoc for each component is in components\<component name>\doc\api.zip.
Some components might not have external APIs so have no Javadoc.

External APIs can evolve over time, while remaining compatible with previous versions. If you
need some capability that you cannot fulfill through a combination of external APIs and allowed
extension mechanisms, contact Cúram Support. If appropriate, a new API, customization hook,
strategy pattern or configuration-based approach might be made available. In some circumstances
an internal API might be re-designated as external.

Source code

All application Java functionality is distributed as JAR files. If required by the use of customer
extension mechanisms, you can regenerate and rebuild applications in a customer installation.

The customer build process does not need to rebuild the entire Java source code base; only
project-specific source code and any dependent regenerated Java source code needs to be rebuilt.

Java source code is not delivered for a limited number of key functional areas. Source code for
the remainder of the application is included as sample code for documentation purposes only
and is not directly involved in the build process. This sample source code is distributed in JAR
files on a per-component basis as follows: components\<component name>\sample
\src.zip The built versions of each component can be found in the following location:
components\<component name>\lib\<component name>.jar

Changing server source artifacts

There are many types of server artifacts, including application classes. Some of these artifacts are
represented in an application model. Other Java interfaces are "handcrafted". While it is possible
to change limited aspects of a modeled interface by changing the model and regenerating code, it
is not possible to change a handcrafted interface.

It is important to be able to distinguish between the application implementations of both
categories of class.

• Modeled interfaces
Appear in the application UML model

• Handcrafted interfaces

• Do not appear in the application UML model
• Appear in the component directories of your development environment
• Cannot be customized
• Contain the @ImplementedBy Google Guice annotation to indicate the application

implementation class

Some components can contain interfaces that do not fall into either of these categories, and these
interfaces are described in component-specific documentation. Both modeled and handcrafted
application interfaces can have implementations that can be customized. You must look at an
implemented interface to determine its category.

© Merative US L.P. 2012, 2024

https://merative.my.site.com/mysupport/s/


1 Compliant development with Cúram 15

Related information

Source code for new methods and classes
Create new source files for all new code, including classes that wrap existing classes. Put all new
source files in the source subdirectory of the EJBServer\components\custom directory.

For modeled classes, the generated class hierarchy dictates the package structure of the new
source files.

For handcrafted implementations, you can choose how to package the new class. You can use
Google Guice to configure new subclasses.

Related information

Changing CER rule sets
The CER Editor stores its rule sets on the database rather than in the file system. Do not
customize rule sets that are included in the core component.

For more information about rule sets, see the CER Rule Sets Included with the Application related
link.

Related information

Extending code tables
Some code tables are safe to extend and some are restricted. If you want to customize a restricted
code table you must request a product enhancement.

You can use the Cúram Analysis Documentation Tooling (CADT) to help you to identify
restricted code tables. The Cúram Analysis Documentation Tooling (CADT) is available for
download from Cúram Support.

A list of restricted code tables is provided in the project documentation folder structure for every
installation, in a folder called RestrictedCodeTables. You must not customize these code
tables without specific guidance from Cúram Support.

To request a product enhancement, see the Merative ™ Ideas Portal .

For more information about code tables, see the Code tables and the Configuring Code Tables
related links.

Related concepts

Use project-specific prefixes in custom artifact names on page 10
Avoid naming collisions when you upgrade by ensuring that you always name new, custom
artifacts with a consistent prefix for your project. Naming collisions can be difficult to fix
afterward. Prefix all new source artifact names with a relevant acronym or abbreviated word
to prevent naming collisions from occurring between your custom artifacts and artifacts that
Merative ™ might add over time.

Related information

Server extension mechanisms

While the default Cúram server application includes some sample source code, customers do not
have the source code for most other areas of key functionality, and in addition a large number

© Merative US L.P. 2012, 2024

https://merative.my.site.com/mysupport/s/
https://merative.ideas.aha.io/


Cúram 8.1.2 16

of APIs are marked as Internal. However, you can apply certain customization or alter existing
application behavior according to the permitted extension practices for customer projects.

These extension mechanisms apply to extending or altering default server application artifacts
only. With customer-defined classes, you can use all extension mechanisms, such as subclass-
with-replace, and all the artifacts can be external in nature, and invoked from any other part of a
customer implementation.

Summary Guidance
Summary guidance for referencing or customizing application classes.

Where you want to reference an application class in your custom code:

• If the class is External, you are allowed to reference it.
• If the class is Internal, you do not reference it in your code.
• If the class is Access Restricted, you are not supported in referencing it.

Where you want to customize an application class:

• If the class is modeled, follow the detailed guidance for allowed customization.
• If the class is non-modeled, refer to its Javadoc or any configuration or development guide for

its parent component for details of customization points.

Entity classes
Direct customer use and modification of application Entity classes is not allowed. In many cases,
application Entity class operations have direct Facade-layer equivalents, which are marked as
External, and can be used by customers.

However, the addition of stereotyped and non-stereotyped operations to application Entities is
allowed, as is the setting of a number of Entity options.

Customers that want to add data to application screens should add new customer-specific Entity
classes, and wrap external application maintenance operations in their own process classes to
maintain both tables atomically. Application screens can then be changed to point to the new
process classes.

Table 2:

Action Model Option Extension class Subclass With
Replace

Subclass Without
Replace

Comments

Add a stereotyped
entity Operation
(for example,
<<ns>>,
<<nsreadmulti>>)

N/A No No Yes Addition of new
operations to an
existing entity.

Add a non-
stereotyped Entity
operation

N/A No No Yes Addition of new
operations to an
existing entity.

Change an Entity
operation option

Auto ID Field

Auto ID Key

No Generated SQL

Optimistic Locking

Order By

SQL

Where

No No No

© Merative US L.P. 2012, 2024



1 Compliant development with Cúram 17

Action Model Option Extension class Subclass With
Replace

Subclass Without
Replace

Comments

Database Table-
level Auditing

No No No Use runtime
properties to set
this option.

On Fail Operation

Post Data Access
Operation

Pre Data Access
Operation

Treat Readmulti
Max as
Informational

Exception

Readmulti Max
Records Returned

No No No

Change an Entity
class option

Enable Validation No No No

Abstract

Allow Optimistic
Locking

No Generated SQL

No No No

Audit Fields

Last Updated Field

Yes No No

Add an Entity
attribute

N/A No No No

Change an Entity
attribute option

Allow Nulls No No No

Struct classes
Application struct classes are all essentially external in nature, in that they can be referenced in
customer-specific functionality.

Customers must not directly create aggregations from application structs to any other struct
because they don't have full visibility on where these application structs are being used. However,
customers can continue to use aggregation to include application structs in their own project-
specific structs.

© Merative US L.P. 2012, 2024



Cúram 8.1.2 18

Table 3:

Action Model Option Extension class Subclass With
Replace

Subclass Without
Replace

Comments

Add an attribute to
a struct

N/A No No No Create a new
project-specific
struct, and
aggregate the
application struct
from the project-
specific struct to
the application
struct (not the
other way around).

Use the new
'composite'
struct in required
customer-specific
functionality.

Change a struct
attribute

N/A No No No Addition of new
operations to an
existing entity.

Change a struct
option

Audit Fields Yes No No If you feel you
have a valid need
to change an
attribute of an
application struct,
raise a Support
case. Refer to
the related link
for a description
of how to make
an enhancement
request.

Other modeled classes
For other modeled classes in the application, such as Process, Facade, and WSInbound, no
extensions mechanisms are allowed.

Similar to Entity classes, customers should instead model and code their own Process, Facade or
WSInbound classes, either wrapping existing external APIs, or implementing new functionality.
For Facade operations, you can point affected UIM pages at the new Facade operations.

Domain definitions
In general, customer use and the overriding of application domain definitions is allowed.
However, changing the fundamental type of a domain definition is not allowed, nor are some
code table related options.

Table 4: Overriding Domain Definitions

Extension Action Model Option Allowed

Change a Domain Definition option Code table Name

Code table Root

No

© Merative US L.P. 2012, 2024



1 Compliant development with Cúram 19

Extension Action Model Option Allowed

Compress Embedded Spaces

Convert to Uppercase

Custom Validation Function Name

Default

Maximum Value

Minimum Size

Minimum Value

Pattern Match

Remove Leading Spaces

Remove Trailing Spaces

Storage Type

Yes

Maximum Size Yes

Allowed for increasing the size only.
If you want to decrease the size of
an application Domain Definition,
raise a Support case. Refer to the
related link for a description of how
to make an enhancement request.

Do not use to change the maximum
size of the USERNAME Domain
Definition.

Change the Type of a Domain
Definition

N/A No

Create a Domain Definition with the
appropriate Type, and wrap it in
your own processing.

Customers are not allowed to
change the fundamental types of
application Domain Definitions.

Create a Domain Definition based
on an application Domain Definition

N/A Yes

Non-modeled classes
Some components contain non-modeled classes. For these classes, the use of each External
interface or class is described in the Javadoc information for the class.

Some non-modeled classes come with Eclipse access restrictions in place to provide customers
with guidance in relation to which APIs they can and cannot call or customize. Certain
classes and packages are marked as restricted; these classes must not be used as they are
internal classes that can change over time. Access restrictions should not be removed from the
Eclipse.classpath file because it might result in the consumption of restricted classes,
which can cause problems during upgrades.

Some non-modeled components contain package protected classes; these classes should not be
used in custom code. Customers must not place any custom code in the same package structure to
call or reference package protected classes.

Many non-modeled APIs are not directly customizable. Only interfaces or classes that are tagged
with the @Implementable annotation can be extended or implemented. Refer to Javadoc
information detailing how to customize or implement such classes. Non-modeled classes that
are not tagged with the @Implementable annotation must not be extended or implemented
because new operations might be added over time, which might cause upgrade impact.

© Merative US L.P. 2012, 2024



Cúram 8.1.2 20

For classes tagged with the @Implementable annotation, the typical customization
mechanisms for these types of class are events and strategies.

Events allow customers to add custom logic at various points in the application. For details on
how to add event listeners, please refer to the Developing with the Persistence Infrastructure
related link. Event classes are typically named 'xxxEvent', so they can be easily identified.

Strategy patterns allow customers to change the default behavior of certain functions within
the application. Each strategy class has a default implementation provided; however customers
can choose to override the default implementation of any of the strategy operations through the
use of Guice bindings. Strategy classes are typically named 'xxxStrategy', so they can be easily
identified.

Related information

Relationships
Extension mechanisms for relationships.

Table 5: Assignable Relationships

Action Supported

Make a customer-supplied struct assignable to an application
struct or entity.

Yes

Make an application struct that is assignable to another
application struct or entity.

No

Table 6: Aggregation Relationships

Action Supported

Aggregate an application struct in a customer-supplied struct.
That is, create a customer struct that 'contains' an application
struct.

Yes

Aggregate a customer-supplied or application struct in an
application struct. That is, add any struct to an application
struct by aggregation.

No

Table 7: Foreign Key Relationships

Action Supported

Create a foreign key where a customer-supplied Entity is the
child

Yes

Create a foreign key where an application Entity is the child No

Table 8: Indexe Relationships

Action Supported

Create an index on either an application or customer-
supplied entity by using a customer-supplied struct.

Yes

Create an index on either an application or customer-
supplied entity by using an application struct.

No

© Merative US L.P. 2012, 2024



1 Compliant development with Cúram 21

Table 9: Unique Index Relationships

Action Supported

Create a unique index on an application entity. No

Create a unique index on a customer-supplied entity by using
an application struct.

No

1.3 Compliancy for client development

You customizeaCúram  web client application without modifying the original components or their
artifacts. Custom data conversion and sorting allows most aspects of the management of data in
the presentationlayer ofCúram  applications to be customized.

For more information, .

1.4 Compliancy for individual components

Read the following compliance information for individual components. Unless otherwise
indicated, a number of general compliance statements apply to all components.

Where you want to reference an application class in your custom code:

• If the class is External, you are allowed to reference it.
• If the class is Internal, do not reference it in new code. You are supported for existing

references in your code but they are discouraged.
• If the class is Access Restricted, you are not supported in referencing it.

Where you want to customize an application class in your custom code:

• If the class is Modeled, follow the detailed guidance for supported customizations.
• If the class is Non-Modeled, refer to its Javadoc or any configuration or development guide for

its parent component for details of customization points.

The following table lists some examples of compliancy information for specific components.
Ensure that you check the component documentation for each component that you work with.

Table 10: Specific compliancy guidance for individual components

Component Details

Client Development Environment
(CDEJ)

Files from the CuramCDEJ folder are copied to temporary build folders during the
application build process. The presence of these files outside of the CuramCDEJ
folder does not make them available for customization.

For more information, see the 1.3 Compliancy for client development on page
21.

© Merative US L.P. 2012, 2024



Cúram 8.1.2 22

Component Details

Server Development Environment
(SDEJ) Important: Cúram's cryptographic functionality is not supported for customer

use beyond the documented usage in the Cúram Server Developer's Guide
and Cúram Security Handbook.

The bin directory of this component contains Apache Ant build scripts that must
not be modified directly. You can update these scripts by creating new custom Ant
scripts that use the Ant inheritance functionality.

The drivers folder of this component contains database drivers for the application
database. If necessary, you can replace these drivers can be replaced with
the relevant driver for the database that you use, provided the database is a
supported database version.

Note: If a problem arises with a driver that was not included in the application,
that is, was not tested and verified for use with the application, the customer
might be requested to replace the driver with a tested version, while the
specific issue is raised with the third-party vendor.

Files from the CuramSDEJ folder are copied to temporary build folders during the
application build process. The presence of these files outside of the CuramSDEJ
folder does not make them available for customization.

Persistence Infrastructure The Persistence Infrastructure cannot be customized. Customers must not
place any custom code in the Persistence Infrastructure code packages
(curam.util.persistence and all subpackages). For more information about how to
use these APIs, .

CER Infrastructure CER entities are considered internal and subject to change, and customers must
not update them or query them except through the CER public API or DMX files.

For more information about compliance for CER infrastructure, .

Dependency Manager The Dependency Manager cannot be customized in any way. All Dependency
Manager APIs are for internal development use only.

The Dependency Manager includes all server artifacts in the curam.dependency
code package and all its subpackages.

The following components contribute to the Dependency Manager code package:

• The CER Infrastructure
• The core application

For more information, .

Eligibility and Entitlement Engine API For more information,.

Funded Program Management For more information about how to customize this component, and the component
Javadoc.

Cúram Incidents For more information about how to customize any Incident Entities or replacing
any Incident implementation, and the component Javadoc.

Cúram Citizen Context Viewer For more information about how to customize this component, and the component
Javadoc.

Inbox For more information about how to configure and customize this component, .

Cúram Waitlists For more information about how to customize this component, and the component
Javadoc.

Cúram Business Intelligence and
Analytics

For more information about how to customize this component,see .

Cúram Social Enterprise Collaboration SocialEnterpriseCollaboration are the server components that are delivered with
Social Enterprise Collaboration. For more information,.

© Merative US L.P. 2012, 2024



1 Compliant development with Cúram 23

Component Details

Merative ™ Cúram Universal Access Universal Access consists of the , CitizenWorkspace, CitizenWorkspaceAdmin,
and WorkspaceServices components.

For more information about customization, .

For more information about customizing the classic Universal Access application,
see the Cúram Universal Access Customization Guide and the component
Javadoc.

Cúram Provider Management For more information, and the component Javadoc.

Related information

1.5 Compliancy for deprecated functionality

Planned deprecation is used to reduce the impact of change on custom applications. During your
development, review and remove any dependencies on deprecated functionality where practical.

For more information about deprecation, .

© Merative US L.P. 2012, 2024



Cúram 8.1.2 24

© Merative US L.P. 2012, 2024



Notices

Permissions for the use of these publications are granted subject to the following terms and
conditions.

Applicability

These terms and conditions are in addition to any terms of use for the Merative website.

Personal use

You may reproduce these publications for your personal, noncommercial use provided that all
proprietary notices are preserved. You may not distribute, display or make derivative work of
these publications, or any portion thereof, without the express consent of Merative

Commercial use

You may reproduce, distribute and display these publications solely within your enterprise
provided that all proprietary notices are preserved. You may not make derivative works of these
publications, or reproduce, distribute or display these publications or any portion thereof outside
your enterprise, without the express consent of Merative.

Rights

Except as expressly granted in this permission, no other permissions, licenses or rights are
granted, either express or implied, to the publications or any information, data, software or other
intellectual property contained therein.

Merative reserves the right to withdraw the permissions granted herein whenever, in its
discretion, the use of the publications is detrimental to its interest or, as determined by Merative,
the above instructions are not being properly followed.

You may not download, export or re-export this information except in full compliance with all
applicable laws and regulations, including all United States export laws and regulations.

MERATIVE MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE
PUBLICATIONS. THE PUBLICATIONS ARE PROVIDED "AS-IS" AND WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT
LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT,
AND FITNESS FOR A PARTICULAR PURPOSE.

Merative or its licensors may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this documentation does not grant you any license
to these patents.

Information concerning non-Merative products was obtained from the suppliers of those products,
their published announcements or other publicly available sources. Merative has not tested those
products and cannot confirm the accuracy of performance, compatibility or any other claims
related to non-Merative products. Questions on the capabilities of non-Merative products should
be addressed to the suppliers of those products.

Any references in this information to non-Merative websites are provided for convenience only
and do not in any manner serve as an endorsement of those websites. The materials at those
websites are not part of the materials for this Merative product and use of those websites is at
your own risk.

© Merative US L.P. 2012, 2024



This information contains examples of data and reports used in daily business operations.
To illustrate them as completely as possible, the examples include the names of individuals,
companies, brands, and products. All of these names are fictitious and any similarity to actual
people or business enterprises is entirely coincidental.

The licensed program described in this document and all licensed material available for it are
provided by Merative under terms of the Merative Client Agreement.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate
programming techniques on various operating platforms. You may copy, modify, and distribute
these sample programs in any form without payment to Merative, for the purposes of developing,
using, marketing or distributing application programs conforming to the application programming
interface for the operating platform for which the sample programs are written. These examples
have not been thoroughly tested under all conditions. Merative, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample programs are provided
"AS IS", without warranty of any kind. Merative shall not be liable for any damages arising out of
your use of the sample programs.

Privacy policy
The Merative privacy policy is available at https://www.merative.com/privacy.

Trademarks

Merative ™ and the Merative ™ logo are trademarks of Merative US L.P. in the United States and
other countries.

IBM®, the IBM® logo, and ibm.com® are trademarks or registered trademarks of International
Business Machines Corp., registered in many jurisdictions worldwide.

Adobe™, the Adobe™ logo, PostScript™, and the PostScript™ logo are either registered
trademarks or trademarks of Adobe™ Systems Incorporated in the United States, and/or other
countries.

Oracle and Java are registered trademarks of Oracle and/or its affiliates.

The registered trademark Linux® is used pursuant to a sublicense from the Linux Foundation, the
exclusive licensee of Linus Torvalds, owner of the mark on a worldwide basis.

Microsoft™, Windows™, and the Windows™ logo are trademarks of Microsoft™ Corporation in
the United States, other countries, or both.

UNIX™ is a registered trademark of The Open Group in the United States and other countries.

Other company, product, and service names may be trademarks or service marks of others.

© Merative US L.P. 2012, 2024

https://www.merative.com/privacy

	Note
	Edition
	Notices
	Privacy policy
	Trademarks

	Contents
	1 Compliant development with Cúram
	1.1 Starting a new project
	Review the client and server development directory structure

	1.2 Compliancy for server development
	Avoiding common server compliancy issues
	Use project-specific prefixes in custom artifact names
	Use numeric identifiers in custom initial and demo data
	Avoid directly modifying application files in place
	Client and Server: Exceptions for in-place modifications

	Never create dependencies on sample or demo artifacts
	The CPMSample folder

	Apply changes to dynamic artifact types back to the development system

	Overview of compliant server development artifact changes
	Java APIs
	Source code
	Changing server source artifacts
	Source code for new methods and classes
	Changing CER rule sets
	Extending code tables

	Server extension mechanisms
	Summary Guidance
	Entity classes
	Struct classes
	Other modeled classes
	Domain definitions
	Non-modeled classes
	Relationships


	1.3 Compliancy for client development
	1.4 Compliancy for individual components
	1.5 Compliancy for deprecated functionality


