A
MerATive

Curam 8.1.2

Case Audits Developer's Guide

Note

Before using this information and the product it supports, read the information in Notices on page
25

© Merative US L.P. 2012, 2024

© Merative US L.P. 2012, 2024

Edition
This edition applies to Curam 8.1, 8.1.1, and 8.1.2.

© Merative US L.P. 2012, 2024

Merative and the Merative Logo are trademarks of Merative US L.P. in the United States and
other countries.

© Merative US L.P. 2012, 2024

© Merative US L.P. 2012, 2024

Contents vii

Contents
L0 PP i
=T 11 o o PP S SURPPUPPPPRRRR Y
1 Developing With CaS@ AUITS......uiiiiiiiiiiiiee e 9
O @ V=T = PSPPI 9
e (T (=T 8T (= 9
SeCtioNS iN thiS GUILE.......cco e 9
1.2 Registering a New AlgOrithm........coouiiiiii e e e e e e e e e e e e eeenes 9
OV BIVIBW. .. ————— 10
Creating a New AlgOrithm..........o 10
1.3 Utilizing Dynamic Selection QUETIES.oiuuuiiiiiiieeeeisiie et e e 13
What is @ Dynamic SeleCtion QUEIY?...... ... e aaeaanaeanssaneanneannennnes 13
Why use a Dynamic Selection QUEIY?......uu oo e ee et s e e e e e e et e e e e e e e eaenaa s 13
Implementing a Dynamic Selection QUETY.........c.uuiiiiiiiiiiiiiiie e 13
The Case Audit Query Management APluuuuiiiiiiiiiiiiiiiriierreeeeeereeereeeeeereeeerreererrreereeeeee 14
Example: Implementing a Dynamic Selection QUEIY.......ccoieiiiirieiiiiiin e e e e 15
Using Dynamic Selection Queries for Manual Case Selection...........cccccveeveevieiiieeee. 22
1.4 Configuring SeleCtioN QUEKIES.t i e e e e e e et e e e e e e e e e e e s e e e e e e eeenerannnns 22
DynamiC SeleCtion QUETIES.c.uiiiiiiiie ettt e et e e e e e e r e e e e e e e nnneee s 22
FiXed SEIECHON QUETIES.........eeeiiieeie ettt et e e e e e e e e e e e e e e e e ee it e e e e e e e e eesaaaannns 23
(1T 1] g [o = WS T=] (=T ox 1 To T LU= oY 2 23
Validating @ SeleCtion QUETY........uiiiiiiiiiiiiie ittt e e e e e e s eeeeas 24
Publishing @ Selection QUETY.........couiiiiiiiiiiiieiieeeeeee ettt 24
1.5 Case AUAILS WED SEIVICE......c.cviiiiiiiiiiiiiieei ettt e aaaaaees 24
N[0 o =PRI 25
PIIVACY POIICY ..ttt ettt e e e e ettt e e e e e et e et e e e e e e e a b brn e e e e e e e 26
L= 10 [0P 1 26

© Merative US L.P. 2012, 2024

Curam 8.1.2 viii

© Merative US L.P. 2012, 2024

1 Developing with Case Audits 9

1 Developing with Case Audits

Learn how to record new algorithms for producing random samples of cases for audit. Dynamic
selection queries can be used to generate a list of cases for audit. There are a number of options
available for selection queries. Case data from external sources can be used to generate a list of
cases for audit.

1.1 Overview

The purpose of this guide is to outline the available customization options for the Case Audits
component and to provide instructions on how to implement these customizations.

This guide is intended for developers and architects that intend to implement an auditing solution
by customizing Case Audits.

Prerequisites

Before reading this guide the reader should be familiar with the Cir am Case Audits
CGui de.

The reader should also be familiar with Google Guice.

Sections in this Guide

The following list describes the sections within the guide:

* Registering a New Algorithm
The section describes how to add a new algorithm, which provides a new method of producing
a random sample of cases for audit.

+ Utilizing Dynamic Selection Queries
The section describes how to use Dynamic Selection Queries to generate a list of cases for
audit.

* Configuring Selection Queries
The section describes the configuration options available for Selection Queries.

» Case Audits Web Service
The section provides a brief overview on how case data from external sources can be used to
generate a list of cases for audit.

1.2 Registering a New Algorithm

You must provide an implementation, which implements the SamplingStrategy interface to
register a new algorithm. Use Guice bindings to map the algorithm to the correct algorithm
implementation.

© Merative US L.P. 2012, 2024

http://code.google.com/p/google-guice/

Curam 8.1.2 10

Overview

The sample algorithm that is provided with Ctiram uses a starting point and an interval to
determine the list of cases to be included in the case audit.

Creating a New Algorithm

An organization can add a new algorithm if the sample algorithm is not suitable, ensuring that a
different method is used when a random sample of cases for audit is produced.

The following example outlines how to add an algorithm 'Every Nth Case', which adds every nth
case to the list of cases to be included in the audit. N is a parameter that is specified by the audit
coordinator. 1.3 Utilizing Dynamic Selection Queries on page 13 describes how to include
algorithm parameters in case audit generation. The following sections describe in detail the steps
required to create a new algorithm and add it to the application. The steps that are required:

* Administratively Define the New Algorithm
* Provide an Implementation for the Algorithm
* Add a Binding to the New Algorithm Implementation

Administratively Define the New Algorithm
Add a custom entry to CT_SamplingStrategy.ctx called Every Nth Case.

<code
defaul t="fal se"
java_identifier="EVERYNTHCASE"
st at us=" ENABLED"
val ue=" SAMPLEVALUE"
>
<l ocal e
| anguage="en"
sort_order="0"
>

<descri pti on>Every Nth Case</descri ption>
<annot ati on/ >
</l ocal e>
</ code>

Figure 1: Defining the Algorithm

Provide an Implementation for the Algorithm
The next step that is required to register a new algorithm is to provide the implementation for the
algorithm.

This implementation must implement the SamplingStrategy Interface. The
SamplingStrategy Interface has one method getRandomSample. This method takes a list of
case identifiers and applies a sampling strategy to the list to generate a random case sample for
audit. It accepts three parameters:

» masterList - the main list of cases that the sample is to be created from
* sampleSize - the number of cases that are to be included in the sample

» properties - a map of algorithm or configuration parameters that can be used in the filtering
process.

The samplingStrategy Interface can be found in the package curam.samplingstrategy.impl

© Merative US L.P. 2012, 2024

1 Developing with Case Audits 11

/*

* Copyright 2011 Curam Software Ltd.

* Al rights reserved.

*

* This software is the confidential and

* proprietary information of Curam Software, Ltd.
* ("Confidential Information"). You shall not

* disclose such Confidential Information and shal
* use it only in accordance with the terns of the
* |license agreenment you entered into with Curam Software.
*/

package curam sanplingstrategy.inpl;

i nport java.util.ArraylList;
i mport java.util.List;
i mport java.util.Mp;

i mport curamutil.exception. AppException
inmport curamutil.exception.|nfornmational Exception

public class EveryNt hCase inpl enents SanplingStrategy {

public List<Long> get Randontanpl e(Li st<Long> masterLi st,
i nt sanpl eSi ze, Map<String, Object> properties)
throws AppException, |nfornmational Exception {

Li st <Long> randontanpl eLi st = new ArraylLi st <Long>();
I nteger n (I nteger) properties.get("n");
i nt i ndex 0;

if (n <= masterlList.size()) {

whi I e (randonBanpl eLi st. size() < sanpl eSize) {
if (index + n < masterlList.size()) {
i ndex = index + n;

/1 1f the el enent has been returned already,
[l try the next elenment until one that hasn't
/'l been returned is found
whi | e (randonfanpl eLi st. cont ai ns(

nmast er Li st. get (i ndex))) {

if (index < masterList.size() - 1) {

i ndex++;
} else {
i ndex = O;
}
}
randonanpl eLi st . add(mast er Li st. get (i ndex));
} else {

/1 Run out of elenents, |oop back to the

/'l start of the I|ist

int elementsToStart OFLi st = masterlList.size() - index;
index = n - elementsToStart O Li st;

/1 1f the el enent has been returned already,
/1 try the next elenment until one that hasn't

© Merative US L.P. 2012, 2024

Curam 8.1.2 12

/1 been returned is found
whi | e (randonBanpl eLi st. cont ai ns(
nmast er Li st. get (i ndex))) {
if (index < masterList.size() - 1) {
i ndex++;
} else {
i ndex = O;
}

}

randonmSanpl eLi st . add(nast er Li st. get (i ndex));
}}
1eturn randonBanpl eLi st ;
}}

Figure 2: Algorithm Implementation

Add a Binding to the New Algorithm Implementation
Guice bindings are used to map the algorithm to the correct algorithm implementation.

/
Copyright 2011 Curam Software Ltd.
Al'l rights reserved.

This software is the confidential and proprietary

i nformati on of Curam Software, Ltd.

("Confidential Information"). You shall not

di scl ose such Confidential Information and shall

use it only in accordance with the terns of the

| icense agreenment you entered into with Curam Software.

* ok ok ok ok * * % ¥

*

*/
package curam sanplingstrategy.inpl;

i nport com googl e. i nj ect. Abstract Modul e;
i mport com googl e.inject. nultibindings. MapBi nder;
i mport curam codet abl e. i npl . SAMPLI NGSTRATEGYEnt ry;

/**

* @uice nodul e for binding Sanpling Strategies.

*

*/
public class Mdul e extends Abstract Modul e {
@verride

public void configure() {

/'l register sanpling strategies
final MapBi nder <SAMPLI NGSTRATEGYEnt ry, Sanpl i ngStrat egy>
sanpl i ngStrat egi es = MapBi nder. newiapBi nder (bi nder (),
SAMPLI NGSTRATEGYEnt ry. cl ass, SanplingStrategy. cl ass);

sanpl i ngStr at egi es. addBi ndi ng(
SAMPLI NGSTRATEGYENt r y. EVERYNTHCASE) . t o(Ever yNt hCase. cl ass) ;

© Merative US L.P. 2012, 2024

1 Developing with Case Audits 13

}

Figure 3: Binding the Algorithm

The new algorithm is now ready to be associated with a Case Audit Configuration in the
Administration Application. For more information on Case Audit Configuration, see the Cliir am
Case Audits Business Cuide.

1.3 Utilizing Dynamic Selection Queries

You can generate a random sample of cases with dynamic selection queries. Dynamic selection
queries require a UIM page that allows an audit coordinator to enter selection criteria values. The
case audit query management API is a public API used to run selection queries.

What is a Dynamic Selection Query?

Dynamic Selection Queries are used to generate a random sample of cases and contain the
selection criteria that are used to search for and produce the list of cases. They allow the audit
coordinator to enter any combination of selection criteria to be used when a list of cases is
produced.

Why use a Dynamic Selection Query?

Four sample queries are provided for each of the standard case types: Integrated Case, Benefit
Product Delivery, Liability Product Delivery, and Investigation Case. If these queries do not
contain sufficient criteria, custom selection queries can be created.

Important: Complex queries are not suited to Dynamic Selection Queries as they do not
perform. If a complex query needs to be created consider by using standard practices that are
followed in the application instead of using a Dynamic Selection Query. The sample queries
are implemented in this way as they are complex.

Implementing a Dynamic Selection Query

For new dynamic selection queries a UIM page must be created so that an audit coordinator can
enter values for the new selection criteria. Similarly, if a new algorithm that requires parameters is
to be used, then this input screen must be developed.

See Example: Implementing a Dynamic Selection Query on page 15 for an example by using
the 'Every Nth Case' algorithm. The following outlines the steps that are required to use a custom
Dynamic Selection Query.

* Create a UIM that contains the required selection criteria. The name of this UIM must match
the name that the systems administrator enters for the Random Generation page name when
selection queries are configured.

* Any other required input screens must also be developed, such as screens for entering
algorithm parameters, entering the number of cases to be returned and so on. If multiple

© Merative US L.P. 2012, 2024

Curam 8.1.2 14

screens are used they should be developed as a wizard. For more information on wizards,
consult the Ciram Wb Cl i ent Reference Manual .

* Create the necessary struct to cater for the selection criteria.

* Create and implement a new facade method that is responsible for generating the list of cases
for audit. Note that a Case Audit Query Management API is available to help generate this list
of cases.

* The systems administrator must create, validate, and publish a new Selection Query with the
SQL required to retrieve the data and the selection criteria that are associated with it. The
selection query must then be associated with the relevant case audit configuration.

An example of these steps is provided in Example: Implementing a Dynamic Selection Query on
page 15

The Case Audit Query Management API

The Case Audit Query Management API is a public API used to run selection queries. To use this
API, a new Dynamic Selection Query must be created in the systems administration application.

The Selection Query contains the SQL that is required to perform the search. For example, if
a new search that contains a status is required, a dynamic selection query must be entered that
contains the selection criteria page name, along with the following SQL -

SELECT caselD INTO :caseID FROM CaseHeader WHERE statusCode = :statusCode

The Case Audit Query Management API contains one main method of interest
runDynamicQueryCaseSearch. This method takes two arguments a selection query identifier and
a map of selection criteria (as entered by the audit coordinator). The selection query is retrieved
and the selection criteria that are entered by the audit coordinator are substituted into the SQL.
The query is then run against the database and a list of CaseHeader records is returned.

/**

* Executes a Case Audit dynam c sel ection query

* and returns a list of case header records

* that match the criteria specified in the

* dynami c query.

*

* @param sel ectionQueryl D the unique identifier of the
dynami ¢

* sel ection query

*

* @aram paraneterMap Map of all paraneters

* in nane val ue pairs.

* @eturn A list of Case Header records that satisfy the

* selection criteria

* @hrows AppException

* @hrows | nformati onal Exception

*

/

publ i ¢ Li st<CaseHeader > runDynam cQuer yCaseSear ch(
final 1ong selectionQuerylD,

final HashMap<String, String> paraneterMap)

t hrows AppException, Informational Exception

Figure 4: The Case Audit Query Management API

© Merative US L.P. 2012, 2024

1 Developing with Case Audits 15

Example: Implementing a Dynamic Selection Query
Step 1: Create a UIM that contains the required selection criteria.

This screen allows the audit coordinator to enter selection criteria that relate to the dynamic
query.

<PAGE
PACE_I| D="exanpl eSel ectionCriteria"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schema- i nst ance"
Xsi : noNanmespaceSchenmaLocati on="fil e:// Curam U MSchenma. xsd"

<PAGE_TI TLE>
<CONNECT
<SOURCE
NANVE=" TEXT"
PROPERTY="PageTitle. Title"
/>
</ CONNECT>
</ PACE_TI TLE>

<SERVER | NTERFACE
CLASS=" Exanpl eFacade"
NAME=" ACTI ON"
OPERATI ON="val i dateCustonCriteri a"
PHASE=" ACTI ON'
/>

<PAGE_PARAMETER NAME="audit Pl anl D'/ >
<PAGE_PARAMETER NAME="queryl D'/ >

<ACTI ON_SET
AL| GNVENT=" CENTER"
TOP="f al se"

<ACTI ON_CONTRCL
LABEL="Acti onControl . Label . Cancel "
ALl GNVENT="LEFT"/ >

<ACTI ON_CONTRCL
DEFAULT="tr ue"
| MAGE=" Next But t on"
LABEL="Acti onControl . Label . Next"
TYPE="SUBM T"
>
<Ll NK
SAVE LI NK="f al se"
DI SM SS_MODAL="f al se"
PAGE_| D="exanpl eSel ect Anount "
>
<CONNECT>
<SQURCE
NAVE=" PAGE"
PROPERTY="audi t Pl anl D'
/>
<TARGET
NAMVE=" PAGE"

© Merative US L.P. 2012, 2024

Curam 8.1.2 16

PROPERTY="audi t Pl anl D'
/>
</ CONNECT>
<CONNECT>
<SOURCE
NANVE=" ACTI ON'
PROPERTY="r esul t $st at us"
/>
<TARGET
NAVE=" PAGE"
PROPERTY=" st at us"
/>
</ CONNECT>
<CONNECT>
<SOURCE
NA'\E:II PA "
PROPERTY="queryl D'
/>
<TARGET
NAMVE=" PAGE"
PROPERTY="queryl D"
/>
</ CONNECT>
</ LI NK>
</ ACTI ON_CONTROL>
</ ACTI ON_SET>

<CLUSTER LABEL_ W DTH="30">
<FI ELD
LABEL="Fi el d. Label . St at us"
USE BLANK="t r ue"
USE DEFAULT="f al se">
<CONNECT>
<TARGET
NAME=" ACTI ON"
PROPERTY="key$st at us"
/>
</ CONNECT>
</ FI ELD>
</ CLUSTER>
</ PAGE>

Figure 5: UIM to allow the audit coordinator to enter selection criteria

Step 2: If required, create a screen to allow the audit coordinator enter the number of cases to
audit.

<PAGE

PAGE | D="exanpl eSel ect Anount "

xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schema- i nst ance"

xsi : noNamespaceSchenmaLocati on="fil e:// Curanf U Mscherma. xsd"
>

<PAGE_TI TLE>
<CONNECT>
<SCOURCE
NANVE=" TEXT"
PROPERTY="PageTitle. Titl e"
/>

© Merative US L.P. 2012, 2024

</ CONNECT>
</ PACE_TI TLE>

<SERVER | NTERFACE
CLASS=" Exanpl eFacade"
NAME=" ACT| ON"
OPERATI ON="val i dat eNunber OF Cases”
PHASE=" ACTI ON'
/>

<PAGE_PARAMETER NAME="audit Pl anl D'/ >
<PAGE_PARAMETER NAME="st at us"/ >
<PAGE_PARAMETER NAME="queryl D'/ >

<CLUSTER
DESCRI PTI ON="Cl ust er. Descri pti on. Text"
LABEL_W DTH="30" >

<FI ELD LABEL="Fi el d. Label . Nunber ">
<CONNECT>
<TARGET
NAME=" ACTI ON"
PROPERTY="key$nunber Of Cases"
/>
</ CONNECT>
</ Fl ELD>
</ CLUSTER>

<ACTI ON_SET
TOP="f al se"
>
<ACTI ON_CONTRCL
LABEL="Acti onControl . Label . Cancel "
ALI GNMVENT=" LEFT"/ >
<ACTI ON_CONTRCL
DEFAULT="true"
| MAGE=" Next But t on"
LABEL="Acti onControl . Label . Next"
TYPE="SUBM T"

<LI NK
SAVE_LI NK="f al se"
DI SM SS_MODAL="f al se"
PAGE_| D="exanpl eConf i gur eAl gorit hni

<CONNECT>
<SOURCE
NAME=" PAGE"
PROPERTY="audi t Pl anl D'
/>
<TARGET
NAME=" PAGE"
PROPERTY="audi t Pl anl D'
/>
</ CONNECT>
<CONNECT>
<SOURCE

1 Developing with Case Audits 17

© Merative US L.P. 2012, 2024

Curam 8.1.2 18

NAME=" PAGE"
PROPERTY=" st at us"
/>
<TARGET
NAME=" PAGE"
PROPERTY=" st at us"
/>
</ CONNECT>
<CONNECT>
<SOURCE
NAME=" ACTI ON'
PROPERTY="r esul t $nunmber O Cases"
/>
<TARGET
NAME=" PAGE"
PROPERTY="nunber O Cases"
/>
</ CONNECT>
<CONNECT>
<SOURCE
NANME=" PAGE"
PROPERTY="queryl D'
/>
<TARGET
NAME=" PAGE"
PROPERTY="queryl D"
/>
</ CONNECT>
</ LI NK>
</ ACTI ON_CONTROL>
</ ACTI ON_SET>
</ PAGE>

Figure 6: UIM to allow the audit coordinator choose how much of the generated case sample to audit

If required, create a screen to allow the audit coordinator enter algorithm parameters.

<PAGE
PACE_I| D="exanpl eConfi gur eAl gori t hnt

xm ns: xsi ="http://ww.w3. org/ 2001/ XM_Schema- i nst ance”
xsi : noNanmespaceSchemaLocati on="fil e:// Curam U MSchema. xsd"

<PAGE_TI TLE>
<CONNECT>
<SOURCE
NAVE=" TEXT"
PROPERTY="PageTitle. Titl e"
/>
</ CONNECT>
</ PAGE_TI TLE>

<SERVER | NTERFACE
CLASS=" Exanpl eFacade"
NAME=" ACTI ON"
OPERATI ON="gener at eExanpl eCaseli st ™"
PHASE=" ACTI ON'
/>

© Merative US L.P. 2012, 2024

1 Developing with Case Audits 19

<PAGE_PARAMETER NAME="audit Pl anl D'/ >
<PAGE_PARAMETER NAME="st at us"/ >
<PAGE_PARAMETER NAME="nunber Of Cases"/ >
<PAGE_PARAMETER NAME="queryl D'/ >

<CONNECT>
<SOURCE
NAVE=" PAGE"
PROPERTY="audi t Pl anl D"
/>
<TARGET
NAME=" ACT| ON"
PROPERTY="key%$audi t Pl anl D'
/>
</ CONNECT>
<CONNECT>
<SOURCE
NAVE=" PAGE"
PROPERTY="st at us"
/>
<TARCGET
NAME=" ACTI ON"
PROPERTY="key$st at us"
/>
</ CONNECT>
<CONNECT>
<SOURCE
NAVE=" PAGE"
PROPERTY=" nunber O Cases"
/>
<TARCGET
NAME=" ACTI ON"
PROPERTY="key$nunmber Cf Cases”
/>
</ CONNECT>
<CONNECT>
<SOURCE
NAVE=" PAGE"
PROPERTY="queryl D'
/>
<TARCGET
NAVE=" ACTI ON"
PROPERTY="key$sel ecti onQueryl D'
/>
</ CONNECT>

<CLUSTER LABEL_ W DTH="30">
<FI ELD LABEL="Fi el d. Label . I nterval ">
<CONNECT>
<TARGET
NAME=" ACT| ON"
PROPERTY="key$i nt erval "
/>
</ CONNECT>
</ FI ELD>
</ CLUSTER>

© Merative US L.P. 2012, 2024

Curam 8.1.2 20

<ACTI ON_SET
TOP="f al se"
>
<ACTI ON_CONTRCL
LABEL="Acti onControl . Label . Cancel "
ALl GNVENT=" LEFT"/ >
<ACTI ON_CONTRCL
| MAGE="Fi ni shButt on"
LABEL="Acti onControl . Label . Fi ni sh"

TYPE="SUBM T"
/>
</ ACTI ON_SET>
</ PAGE>

Figure 7: UIM to allow the audit coordinator to specify configurable parameters for the algorithm

Step 3: Create the necessary struct to cater for the selection criteria.

This struct contains all selection criteria available for the selection query along with any other
required parameters.

ExampleSelectionCriteria

* long auditPlanID

* long selectionQueryID
* int numberOfCases

* int interval

» String status

Step 4: Create and implement a new fagade method that is responsible for generating the list of
cases for audit.

This method uses the Case Audit Query Management API to run the dynamic query, by using the
supplied selection criteria. This dynamic query returns the list of cases that match the selection
criteria. The relevant algorithm is then started to filter the case list. Finally, case audit records are
created for each case in the remaining list.

/1 1nject the map
@ nj ect
private Map<SAMPLI NGSTRATEGYEntry, SanplingStrategy>
sanpl i ngSt r at egi es;

/**
* Cenerates the sanple list of cases for audit based on the
* supplied selection criteria. This nmethod filters the Ii st
* using the algorithmassociated with the case type for this
* audit plan. The nunber of cases returned in the list is

al so
* restricted by the nunber of cases specified by the user.

*

* @aram key The selection criteria, selection query
* identifier, the audit plan identifier,
* the nunber of cases to generate and any
* al gori thm par aneters.

*

* @hrows AppException

* @hrows | nformati onal Exception

*/

public voi d generat eExanpl eCaseli st (

© Merative US L.P. 2012, 2024

1 Developing with Case Audits 21

Exanpl eSel ectionCriteria key)
t hrows AppException, |Informational Exception {

Audi t Pl an audi t Pl an = audi t Pl anDAQ. get (key. audi t Pl anl D) ;

CaseAudi t Quer yManagenent caseAudi t Quer yManagenent =
new CaseAudi t Quer yManagenent () ;

/1 Add all selection criteria to the map
HashMap<String, String> paraneterMp =

new HashMap<String, String>();
par anet er Map. put (": st at usCode", key. status);

[l Call the Case Audit Query Managenent API
/1 to run the selection query
Li st <curam pi wr apper. caseheader . i npl . CaseHeader > caselLi st =
caseAudi t Quer yManagenent . r unDynam cQuer yCaseSear ch(
key. sel ecti onQueryl D, paranet er Map);

/1l Get the algorithm sanpling strategy configured
/'l for this case type
final SanplingStrategy sanplingStrategy =
sanpl i ngStrat egi es. get (
audi t Pl an. get Audi t CaseConfig().get AuditAl gorithm));

Li st<Long> casel DLi st = new Arrayli st<Long>();

for (CaseHeader caseHeader : caseList) {
casel DLi st. add(caseHeader. get 1 D());

}

/1 Set up the algorithm paraneters
Map<String, Object> paranms = new TreeMap<String, Object>();
parans. put ("n", new | nteger(key.interval));

/1 Invoke algorithmto generate case sanple,
/1l passing in the list of cases,
/1 the number of cases to return and the algorithm paraneters
Li st<Long> casel Ds = sanpli ngStrat egy. get RandonSanpl e(
casel DLi st, key. nunber O Cases, parans);

curam core. facade.intf.CaseAudit caseAudithj =
curam core. facade. fact. CaseAudi t Fact ory. newl nst ance();

[/ for each case, create a case audit
for (int i =0; i < caselDs.size(); i++) {

CaseAuditDetails caseAuditDetails = new CaseAuditDetail s();
caseAuditDetails.dtls.auditPlanl D = key. audi t Pl anl D;
caseAuditDetails.dtls.caselD = casel Ds. get (i);

caseAudi t Qbj . creat eCaseAudi t (caseAudi tDetail s);

}

Figure 8: Generating the list of cases for audit

© Merative US L.P. 2012, 2024

Curam 8.1.2 22

Step 5: The systems administrator must create, validate, and publish a new Selection Query with
the SQL required to retrieve the relevant data and the selection criteria that are associated with it.

Important: Appropriate database indexing is provided for any custom dynamic selection
queries. Also, if a significant case load is expected to be returned from the selection query, it
would be advisable to consider by using Deferred Processing to generate the random sample of
cases. For more information on Deferred Processing, see the Cir am Ser ver Devel oper
Gui de.

Using Dynamic Selection Queries for Manual Case Selection

Dynamic selection queries can also be used for manual case selection. A similar process to the
one described above can be used. A new UIM must be created that contains the required selection
criteria.

Note, this new UIM must be created because the resulting case list must be included in the page.
The UIM allows the audit coordinator to manually select from the list of cases. The name of this
UIM must match the name that the systems administrator who is entered for the Manual Search
page name in the Selection Query configuration. The Case Audit Query Management API can
again be used to run the query.

1.4 Configuring Selection Queries

You can configure selection queries. Two types of selection query exist: dynamic queries and
fixed queries. Selection queries must be published in order to be associated with a case audit
configuration.

Selection Queries are used to generate a sample of cases and contain the selection criteria that are
used to search for and produce the list of cases.

Dynamic Selection Queries

A dynamic selection query, when configured for audit, presents a page that contains selection
criteria. An audit coordinator must enter values for the criteria which returns a case sample.
The audit coordinator can enter the parameters for one criterion, or has the flexibility to enter
parameters for any logical combination of parameters.

For example, to return all open cases for males that start 1-6 January, the audit coordinator would
enter values as follows: case status of open; case start date range of 1-6 January; and gender of
male.

© Merative US L.P. 2012, 2024

1 Developing with Case Audits 23

Fixed Selection Queries

A fixed selection query provides a predefined set of selection criteria that is defined through the
entry of an SQL statement. The fixed selection query when created by a systems administrator
contains the values for the selection criteria such as case status of open and so forth.

However, an audit coordinator has the option to select this fixed query when creating a case
sample, no audit coordinator entry of selection criteria is required as they are already input as part
of the query.

CAUTION: There is no OOTB front-end for the fixed selection query functionality. While
fixed selection queries might be valuable to some customers, any customer that utilizes the
functionality would need to consider the security trade-off that it brings. Responsibility falls to
the customer to:

» construct the front-end page
 ensure that no malicious content can be passed in and executed
« ensure that the SQL stored in the database is correct

Creating a Selection Query

Creating a selection query is a two step process; the first step allows the addition of the basic
selection query details, such as name and the query type, along with the SQL. The second step
allows the entry of the selection criteria that are associated with the selection query.

The 'Name' of the selection query is what is displayed to the administrator when configuring
a case audit and to the audit coordinator when generating a random case sample, so it has a
meaningful and descriptive name.

'Query' represents the type of objects that the selection query impacts. In this initial release, there
is one type of object, Case. More functionality is envisaged in this area so that selection queries
can be captured for any object. An example usage of this might be participants, where an agency
might want to poll all employers to determine information on employee working patterns.

The 'Query Type' should be chosen depending on the type of selection query that is required,
Dynamic or Fixed. If the selection query is 'Dynamic', the 'Random Generation' and 'Manual
Search' page names must be entered. The page names that are entered must match the name of the
custom UIM that is used to enter the selection criteria.

The SQL text is the SQL statement that is used to run the selection query. Every field on the
custom selection criteria selection screen is part of the WHERE clause. Take the example that is
outlined in 1.3 Utilizing Dynamic Selection Queries on page 13. A UIM is created to allow

the audit coordinator to select a status, the SQL necessary for this query would be -

SELECT caselD INTO :caseID FROM CaseHeader WHERE statusCode = :statusCode

Adding Selection Criteria
The next step is to enter the attribute names and values to be used in the SQL query. These can be
added by using the 'Add Criteria' link on the second page of the wizard.

For dynamic selection queries the values is used only for validation purposes. Validation of
a selection query will be discussed in the next section. For fixed selection queries the values
entered is the actual values used when running the query as the audit coordinator does not

© Merative US L.P. 2012, 2024

Curam 8.1.2 24

have the option to enter their own values. "Name' contains the attribute as it appears in the
WHERE clause of the SQL statement. The 'Display Name' and 'Display Value' is acceptable
representations of 'Name' and 'Value' that can be displayed to an audit coordinator.

Validating a Selection Query

Once a selection query is created it can then be validated. The validation performed checks that
the SQL query is valid and that the statement is attempting only to read data.

Note, database integrity must be maintained so the SQL statement does not modify or remove
data. To minimize this risk, the SELECT and INTO clauses are defaulted. As validation errors can
be quite complex, ensure that the SQL query that is provided adheres to these guidelines.

Publishing a Selection Query

A selection query must be published to make it available to administrators to associate with a case
audit configuration. This ensures that a query is validated before being made available for use to
an administrator.

Finally, before the selection query can be used by an audit coordinator as part of an audit plan, it
needs to be associated to a case audit configuration by the administrator.

1.5 Case Audits Web Service

A Case Audits Web Service is provided to allow case data from external sources to be audited.
The Web Service can be invoked on by any capable Web Service client, including tools such as
the Business Intelligence and Reporting Tools (BIRT) reporting tool.

The Web Service receives a list of case identifiers to be used in an audit along with an
associated name to identify the data set, from an external source. This data is stored in the
ExternalCaseAuditData and ExternalCaseAuditDataltem tables, ready to be included in an audit
plan. The audit coordinator can select case data from this source. If any of the cases do not exist
on the system, no data is saved and a response indicating an error has occurred is returned. The
Case Audit Web Service can be found at curam.core.ws.convert.bs.impl.ExternalCaseAuditData

© Merative US L.P. 2012, 2024

Notices

Permissions for the use of these publications are granted subject to the following terms and
conditions.

Applicability
These terms and conditions are in addition to any terms of use for the Merative website.
Personal use

You may reproduce these publications for your personal, noncommercial use provided that all
proprietary notices are preserved. You may not distribute, display or make derivative work of
these publications, or any portion thereof, without the express consent of Merative

Commercial use

You may reproduce, distribute and display these publications solely within your enterprise
provided that all proprietary notices are preserved. You may not make derivative works of these
publications, or reproduce, distribute or display these publications or any portion thereof outside
your enterprise, without the express consent of Merative.

Rights

Except as expressly granted in this permission, no other permissions, licenses or rights are
granted, either express or implied, to the publications or any information, data, software or other
intellectual property contained therein.

Merative reserves the right to withdraw the permissions granted herein whenever, in its
discretion, the use of the publications is detrimental to its interest or, as determined by Merative,
the above instructions are not being properly followed.

You may not download, export or re-export this information except in full compliance with all
applicable laws and regulations, including all United States export laws and regulations.

MERATIVE MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE
PUBLICATIONS. THE PUBLICATIONS ARE PROVIDED "AS-IS" AND WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT
LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT,
AND FITNESS FOR A PARTICULAR PURPOSE.

Merative or its licensors may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this documentation does not grant you any license
to these patents.

Information concerning non-Merative products was obtained from the suppliers of those products,
their published announcements or other publicly available sources. Merative has not tested those
products and cannot confirm the accuracy of performance, compatibility or any other claims
related to non-Merative products. Questions on the capabilities of non-Merative products should
be addressed to the suppliers of those products.

Any references in this information to non-Merative websites are provided for convenience only
and do not in any manner serve as an endorsement of those websites. The materials at those
websites are not part of the materials for this Merative product and use of those websites is at
your own risk.

© Merative US L.P. 2012, 2024

This information contains examples of data and reports used in daily business operations.

To illustrate them as completely as possible, the examples include the names of individuals,
companies, brands, and products. All of these names are fictitious and any similarity to actual
people or business enterprises is entirely coincidental.

The licensed program described in this document and all licensed material available for it are
provided by Merative under terms of the Merative Client Agreement.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate
programming techniques on various operating platforms. You may copy, modify, and distribute
these sample programs in any form without payment to Merative, for the purposes of developing,
using, marketing or distributing application programs conforming to the application programming
interface for the operating platform for which the sample programs are written. These examples
have not been thoroughly tested under all conditions. Merative, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample programs are provided
"AS IS", without warranty of any kind. Merative shall not be liable for any damages arising out of
your use of the sample programs.

Privacy policy

The Merative privacy policy is available at https://www.merative.com/privacy.

Trademarks

Merative ™ and the Merative ™ logo are trademarks of Merative US L.P. in the United States and
other countries.

IBM®, the IBM® logo, and ibm.com® are trademarks or registered trademarks of International
Business Machines Corp., registered in many jurisdictions worldwide.

Adobe™, the Adobe™ logo, PostScript™, and the PostScript™ logo are either registered
trademarks or trademarks of Adobe™ Systems Incorporated in the United States, and/or other
countries.

Oracle and Java are registered trademarks of Oracle and/or its affiliates.

The registered trademark Linux® is used pursuant to a sublicense from the Linux Foundation, the
exclusive licensee of Linus Torvalds, owner of the mark on a worldwide basis.

Microsoft™, Windows™, and the Windows™ logo are trademarks of Microsoft™ Corporation in
the United States, other countries, or both.

UNIX™ is a registered trademark of The Open Group in the United States and other countries.

Other company, product, and service names may be trademarks or service marks of others.

© Merative US L.P. 2012, 2024

https://www.merative.com/privacy

	Note
	Edition
	Notices
	Privacy policy
	Trademarks

	Contents
	1 Developing with Case Audits
	1.1 Overview
	Prerequisites
	Sections in this Guide

	1.2 Registering a New Algorithm
	Overview
	Creating a New Algorithm
	Administratively Define the New Algorithm
	Provide an Implementation for the Algorithm
	Add a Binding to the New Algorithm Implementation

	1.3 Utilizing Dynamic Selection Queries
	What is a Dynamic Selection Query?
	Why use a Dynamic Selection Query?
	Implementing a Dynamic Selection Query
	The Case Audit Query Management API
	Example: Implementing a Dynamic Selection Query
	Using Dynamic Selection Queries for Manual Case Selection

	1.4 Configuring Selection Queries
	Dynamic Selection Queries
	Fixed Selection Queries
	Creating a Selection Query
	Adding Selection Criteria

	Validating a Selection Query
	Publishing a Selection Query

	1.5 Case Audits Web Service

