
Cúram 8.1.2
Cúram on Kubernetes

Note
Before using this information and the product it supports, read the information in Notices on page
39

© Merative US L.P. 2012, 2024

© Merative US L.P. 2012, 2024

Edition
This edition applies to Cúram 8.1, 8.1.1, and 8.1.2.

© Merative US L.P. 2012, 2024

Merative and the Merative Logo are trademarks of Merative US L.P. in the United States and
other countries.

© Merative US L.P. 2012, 2024

© Merative US L.P. 2012, 2024

Contents vii

Contents

Note.. iii

Edition... v
1 Cúram on Kubernetes.. 9
2 Kubernetes architecture...11
2.1 Transaction isolation..13

2.2 Messaging architecture..16

2.3 Elasticity...18
3 Deploying on WebSphere® Application Server Liberty...21
3.1 Installing prerequisite and additional software.. 21

3.2 Managing deployment properties.. 22

3.3 Configuring WebSphere® Liberty.. 24

3.4 Configuring a web server plug-in.. 26

3.5 Configuring security...28

Default configuration for WebSphere® Liberty.. 28
Changing the JMS password.. 29
Logging the authentication process.. 31
Configuring Single Sign On...31

3.6 Building EAR files..31

3.7 Deploying applications...34

3.8 Pre-compiling JSPs... 35

3.9 Testing the deployment by logging in to the application... 35

3.10 Debugging Cúram... 36

3.11 Known issues and limitations..37

Notices.. 39
Privacy policy... 40

Trademarks.. 40

© Merative US L.P. 2012, 2024

Cúram 8.1.2 viii

© Merative US L.P. 2012, 2024

1 Cúram on Kubernetes 9

1 Cúram on Kubernetes

You can build Cúram as a containerized application by using WebSphere® Application Server
Liberty, IBM® MQ Long Term Support (IBM® MQ LTS), and Docker®. You can then deploy
the containerized application by using Helm charts and IBM® Cloud Kubernetes Service. The
Cúram on Kubernetes Runbook provides instructions about how to containerize Cúram and is
accompanied by an open source git repository that contains sample Helm charts, Docker® files,
and other assets.

As human services organizations adapt to meet citizens needs, the complexity of their IT systems
can grow. This can be challenging, especially when trying to manage the addition of new features
for case workers, enacting new changes in legislation, or preparing for increases in demand for
Universal Access application renewals.

To support cloud native architectures, Cúram has been enhanced to support the technologies that
are described in the following list from version 7.0.10.0.

WebSphere® Application Server Liberty

Cúram supports WebSphere® Application Server Liberty only when it is containerized and
deployed on IBM® Cloud Kubernetes Service.

The architecture of WebSphere® Application Server Liberty provides a low-overhead Java™

runtime environment that is suited for hosting cloud applications. WebSphere® Application
Server Liberty has been designed to optimize ease of development and the minimization of
operational costs. From a development perspective, it supports many programming frameworks
such as Sprint and Tapestry, and provides easy integration with Docker®, Chef, Jenkins,
Node.js®, Java™ Platform, Enterprise Edition (Java™ EE), and Linux®.

IBM® Cloud Kubernetes Service

Cúram supports IBM® Cloud Kubernetes Service only when containerized with WebSphere®

Application Server Liberty .

IBM® Cloud Kubernetes Service is a managed container service that is built on the open source
Kubernetes system for automating the deployment, scaling, and management of containerized
applications, while adding in IBM-specific capabilities. IBM® Cloud Kubernetes Service
provides scheduling capabilities, self-healing, horizontal scaling, service discovery and load
balancing, automated rollouts and rollbacks, and secret and configuration management.
The Kubernetes service also has advanced capabilities that are related to simplified cluster
management, container security and isolation policies, the ability to design your own cluster, and
integrated operational tools for consistency in deployment.

Docker®

Cúram supports Docker® for packaging Cúram for deployment on IBM® Cloud Kubernetes
Service.

Docker® is an open platform that enables organizations to package, develop, run, and ship
applications in environments called containers. A container is a unit of software that includes the

© Merative US L.P. 2012, 2024

https://merative.github.io/spm-kubernetes
https://github.com/Merative/spm-kubernetes

Cúram 8.1.2 10

dependencies, libraries, and configuration files that are needed to run the application in a docker
container image.

Developers can now package a Cúram application in containers for deployment on IBM® Cloud
Kubernetes Service, and include all the dependencies, libraries, and configuration files that are
needed to run the application in a container image. The newly created container images can be
downloaded from the container registry and installed in all stages of your environment, therefore
simplifying deployments.

Helm

Helm is a package manager that helps you to find, share, and use software that is built for
Kubernetes . Helm streamlines the installation and management of Kubernetes applications.

Kubernetes can become complex, and developers need to consider services, ConfigMaps, pods,
and persistent volumes, in addition to managing the number of releases. Helm provides an easier
way to package everything into one application and to advertize what can be configured.

Cúram supports Helm for deploying Cúram containers on IBM® Cloud Kubernetes Service.

IBM® MQ Long Term Support

IBM® MQ LTS offers proven, enterprise-grade messaging capabilities that safely move
information between applications.

Cúram requires IBM® MQ Long Term Support when containerized and deployed on IBM® Cloud
Kubernetes Service .

Technology updates

WebSphere® Application Server Liberty , IBM® Cloud Kubernetes Service, Docker®, Helm,
and IBM® MQ Long Term Support updates occur throughout the year. Cúram will be updated
frequently to adopt newer versions of the previous technologies. For more information about the
exact supported versions, see the system prerequisites report.

Up next...

In the subsequent topics in this section, you can read more about the architectural differences
in WebSphere® Application Server Liberty that impact Cúram, and about how to deploy to
WebSphere® Application Server Liberty in a native, single-server environment.

© Merative US L.P. 2012, 2024

https://www.ibm.com/support/pages/ibm-c%C3%BAram-social-program-management-supported-prerequisites

2 Kubernetes architecture 11

2 Kubernetes architecture

Cúram was enhanced in version 7.0.10.0 to enable it for deployment into cloud native hosting
platforms. While previously Cúram could be cloud-hosted in an IaaS cloud delivery model, it was
not possible to leverage the benefits of flexibility, elasticity, efficiency, and the strategic value
offered by cloud native architecture.

Cúram can be built as a containerized application by using WebSphere® Application Server
Liberty, packaged as Docker® containers, orchestrated by Kubernetes, and then run on IBM®

Cloud Kubernetes Service. Note that database support and IBM® MQ support remain on VMs as
part of the initial offering.

© Merative US L.P. 2012, 2024

Cúram 8.1.2 12

Figure 1: Cúram on IBM® Cloud Kubernetes Service

© Merative US L.P. 2012, 2024

2 Kubernetes architecture 13

Containerization makes it easier for developers to develop, deploy, and operate applications
by simplifying the packaging and deployment process. For information that includes the steps,
sample Helm charts, and Docker® files that are required to containerize your Cúram application,
see the Cúram on Kubernetes Runbook.

To support containerized cloud native architectures, fundamental architectural changes were
required. The following section documents the changes, which apply only when Cúram runs on
IBM® Cloud Kubernetes Service.

2.1 Transaction isolation

In relation to Cúram, the following two fundamental differences exist between traditional IBM®

WebSphere® Application Server, Oracle WebLogic Server, and WebSphere® Application Server
Liberty:

• Traditional WebSphere® Application Server and Oracle WebLogic Server enables the creation
of multiple thread pools within the same JVM. However, WebSphere® Application Server
Liberty has a single thread pool, which is named the default executor, that is used to run all
application threads.

• WebSphere® Application Server Liberty aligns with the EJB specifications, which declare that
EJB remote interfaces use pass-by-value, and that EJB local interfaces use pass-by-reference.
While traditional IBM® WebSphere® Application Server and Oracle WebLogic Server provide
an optimization to use pass-by-reference with EJB remote interfaces when the clients of the
interfaces are collocated in the same JVM, WebSphere® Liberty doesn't provide such an
optimization.

The previous differences introduced a risk of thread exhaustion in the runtime application. To
mitigate against the risk, the following multi-faceted solution was developed:

1. Isolate the client HTTP initiated transactions and the JMS initiated transactions.
2. Introduce EJB session bean local interfaces.

Thread isolation

In traditional IBM® WebSphere® Application Server, the WebContainer thread pool is set up
to process HTTP requests, and the SIBJMSRAThreadPool is set up to process JMS messages.
Therefore, the client HTTP initiated transactions and the JMS initiated transactions can be
isolated on the same JVM. A similar concept applies to Oracle WebLogic Server. However,
HTTP and JMS initiated transactions cannot be isolated inWebSphere® Application Server
Liberty because it has one single thread pool, which is named the default executor, that runs all
application and JMS processing.

To mitigate against the risk of thread exhaustion, the client HTTP initiated transactions and the
JMS initiated transactions run on different WebSphere® Application Server Liberty instances,
integrated through an IBM® MQ messaging engine. The Application/EAR file that is
responsible for processing client HTTP initiated transactions is called the JMS Producer.
The JMS Producer has no JMS message consumption because the EJB message driven beans
(MDBs) are disabled. The Application/EAR file that is responsible for processing JMS
initiated transactions is called the JMS Consumer. The JMS Consumer has JMS message
consumption because the EJB MDBs are enabled. See the following diagram:

© Merative US L.P. 2012, 2024

https://merative.github.io/spm-kubernetes/

Cúram 8.1.2 14

Figure 2: Kubernetes cluster with JMS Producer and JMS Consumer replicas

© Merative US L.P. 2012, 2024

2 Kubernetes architecture 15

Note the following important points about the JMS Producer and the JMS Consumer:

• Queue manager
Cúram allows only one dedicated queue manager per set of JMS Producer replicas. Also,
Cúram allows only one set of JMS Consumer replicas per queue manager. Finally, Cúram
allows only one queue manager per Cúram application.

• JMS message processing
JMS Producer does not process any JMS message except the cache invalidation messages.
The JMS Consumer does not have the Cúram web interface available. After Cúram puts a
JMS message on the queue manager, all further processing is handled by the JMS Consumer,
which can also put subsequent messages on the queue manager.

• Independent scaling
A benefit of the split is that the JMS Producer and the JMS Consumer can scale
independently. For example, if a significant increase in backend processing is expected
because of eligibility and entitlement calculations, the JMS Consumer can scale up
independently of the JMS Producer. After the backend processing is completed, the JMS
Consumer can scale down to the normal operational architecture.

• Server code split
The solution was facilitated by splitting the server code. For more information about the server
code split, see 3.6 Building EAR files on page 31.

EJB local interfaces

When an EJB session bean remote interface is started by using the pass-by-reference optimization
in traditional IBM® WebSphere® Application Server and in Oracle WebLogic Server, the call
is made on the same thread. However, WebSphere® Application Server Liberty aligns with the
EJB specifications, which declare that EJB remote interfaces use pass-by-value and EJB local
interfaces use pass-by-reference. As a result, every EJB session bean remote interface invocation
results in the use of a new thread from the default executor thread pool.

The existing remote interfaces have been preserved for traditional IBM® WebSphere®

Application Server and Oracle WebLogic Server. An EJB local interface has been added to the
following session beans:

• EJBMethodBean
• LoginBean
• AsyncMethodBean
• SLMTimerBean
• JDETimerBean

Also, a new JAR file that is named coreinf-ejb-interfaces.jar has been created,
which is a consolidation of all the duplicate interface classes in Cúram. In WebSphere®

Application Server Liberty, the coreinf-ejb-interfaces.jar file has been added to a
shared resources directory. Therefore, the JAR file is available for each Application/EAR
file. In traditional deployments such as traditional IBM® WebSphere® Application Server and
Oracle WebLogic Server, each Application/EAR file has been updated to include the new
JAR file within its library path.

For developers, the addition of the new JAR file requires an update to the Eclipse class path,
which will be done automatically if the build createClasspaths build target is started as
part of a build. For more information, see the Eclipse .classpath file section.

© Merative US L.P. 2012, 2024

../ServerDeveloper/r_SERDEV_Eclipse1ClasspathFile1.html

Cúram 8.1.2 16

The following classes have been added to the new CuramSDEJ/lib/coreinf-ejb-
interfaces.jar file:

• AsyncMethod.class
• AsyncMethodLocal.class
• Authentication.class
• AuthenticationBase.class
• AuthenticationLocal.class
• Method.class
• MethodImpl.class
• MethodLocal.class
• SvrRemoteException.class
• TimerMethod.class
• TimerMethodBase.class
• TimerMethodLocal.class

The following classes have been removed from the CuramSDEJ/lib/jde-commons.jar
file, and added to the CuramSDEJ/lib/coreinf-ejb-interfaces.jar file:

• AsyncMethod.class
• Authentication.class
• Method.class

The following classes have been removed from the CuramSDEJ/lib/coreinf.jar file, and
added to the CuramSDEJ/lib/coreinf-ejb-interfaces.jar file:

• Authentication.class
• Method.class
• TimerMethod.class

Related information
Performance tuning

2.2 Messaging architecture

When Cúram is containerized on Kubernetes, it uses IBM® MQ to manage JMS messages for
Cúram Deferred Processes and Cúram Workflows.

Each Cúram application, such as Cúram, Citizen Portal, Rest, and so on, must have its own
dedicated queue manager. The following reference diagram illustrates the JMS-based messaging
architecture:

Figure 3: JMS-based messaging architecture

© Merative US L.P. 2012, 2024

https://merative.github.io/spm-performance-tuning/

2 Kubernetes architecture 17

© Merative US L.P. 2012, 2024

Cúram 8.1.2 18

For more information about the Cúram JMS Producer, see the Transaction Isolation topic.

Note: Cúram supports IBM® MQ LTS on VMs only. IBM® MQ CD is supported only as a
container on Red Hat® OpenShift®. IBM® MQ on Kubernetes, IBM® MQ as a service, and
other message engines have not been verified with Cúram.

Multi-instance queue manager support

For IBM® MQ Cluster, Cúram supports only multi-instance queue managers, with one active/
primary queue manager, and one standby/secondary queue manager. Multi-instance queue
managers are instances of the same queue manager that are configured on different servers. One
instance of the queue manager is defined as the active instance, and another instance is defined
as the standby instance. If the active instance fails, the multi-instance queue manager restarts
automatically on the standby server.

For more information about multi-instance queue managers, see the IBM® MQ product
documentation.

IBM® MQ and queue managers for Cúram

The cardinality between queue managers and IBM® MQ servers is flexible. You can configure all
queue managers on one IBM® MQ cluster, or you can configure one queue manager per IBM®

MQ cluster. For example, you can configure some queue managers for an internal application in
one IBM® MQ cluster, and some queue managers for external applications in another IBM® MQ
cluster. The same cardinality applies to the remote data storage. The configuration depends on the
level of fault tolerance and security isolation that is required by the application in production.

2.3 Elasticity

In Kubernetes, you can implement elastic replicas. Elasticity is the ability to scale up or down
pods and nodes to adjust to the load to meet the end user demand.

Kubernetes cluster architecture with elasticity

Unlike middleware managed clusters like traditional IBM® WebSphere® Application Server
Network Deployment, in WebSphere® Application Server Liberty on Kubernetes, each Cúram
application is independent, and a middleware-managed cluster does not exist. The multiple
replicas of the same application are independent, and the management of the replicas is delegated
to Kubernetes. Because the replicas are independent from each other, they can be elastic and scale
up or down as required. Figure 1 illustrates the architecture:

© Merative US L.P. 2012, 2024

https://www.ibm.com/support/knowledgecenter/SSFKSJ_9.1.0/com.ibm.mq.con.doc/q018140_.htm

2 Kubernetes architecture 19

Figure 4: Kubernetes cluster architecture with elasticity implemented through elastic replicas

© Merative US L.P. 2012, 2024

Cúram 8.1.2 20

You can configure the target database and table name to store the session in the WebSphere®

Liberty server.xml file.

WebSphere® Liberty collectives support

Cúram does not support WebSphere® Application Server Liberty collectives on Kubernetes.

Related concepts
Configuring security on page 28
The default security configuration for WebSphere® Liberty, provided by the Ant configure
target, is a basic configuration and must not be used without modification. Your in-house security
team should review this basic security configuration to reflect your security requirements and
modify as needed.

© Merative US L.P. 2012, 2024

3 Deploying on WebSphere® Application Server Liberty 21

3 Deploying on WebSphere® Application Server Liberty

Because you can now deploy and run Cúram on WebSphere® Liberty, you can benefit by
deploying Cúram on stand-alone WebSphere® Liberty instances for the purposes of testing and
development. For a successful deployment on WebSphere® Liberty, you must install the required
software, configure WebSphere® Liberty for security and deployment, build your application
EAR (Enterprise ARchive) files, and then install your application EAR files.

3.1 Installing prerequisite and additional software

Install the prerequisite software, including Java™ and WebSphere® Liberty from the IBM®

installation media by using IBM® Installation Manager. Then, create system environment
variables and add paths for software packages such as WebSphere® Liberty, Java™, and Apache
Ant.

Prerequisite software

Before you can use Cúram, you must install and configure the following software on one of the
supported platforms, see the Cúram Supported Prerequisites:

• Install Cúram. For more information, see Installing a development environment.
• WebSphere® Application Server Liberty. For more information, see WebSphere® Application

Server Liberty.
• Java™ Platform, Enterprise Edition 8. Liberty Profile requires the full Java™ Platform,

Enterprise Edition 8. For more information on installing Java™, see Installing, updating, and
uninstalling IBM® SDK, Java™ Technology Edition.

• Apache Ant, see Installing and configuring Apache Ant. For version information, see the
Cúram Supported Prerequisites.

• For more information on minimum hardware requirements, see Hardware requirements for
Cúram Development and Test Environments.

Additional software
For some functions you might need additional software, depending on your site requirements as
follows:

• Databases - You can use Oracle or IBM® Db2® for LUW Family (Linux/Unix/Windows)
database servers. For more information, see Installing Db2®. You cannot configure
WebSphere® Liberty to use the open source H2 database (supplied with Cúram) however, you
can use it for development. For example, you can use it with the Ant database target to run
JUnit tests.

• Web servers - For web browser access you can use the original WebSphere® Liberty
support or you can install IBM® HTTP Server. For more information, see Adding a plug-in
configuration to a web server.

© Merative US L.P. 2012, 2024

https://www.ibm.com/support/pages/ibm-c%C3%BAram-social-program-management-supported-prerequisites
https://www.ibm.com/support/knowledgecenter/SS8S5A_7.0.8/com.ibm.curam.content.doc/common/t_ctr_install.html
https://www.ibm.com/support/knowledgecenter/SSEQTP_liberty/com.ibm.websphere.wlp.nd.multiplatform.doc/ae/twlp_inst_top.html
https://www.ibm.com/support/knowledgecenter/SSEQTP_liberty/com.ibm.websphere.wlp.nd.multiplatform.doc/ae/twlp_inst_top.html
https://www.ibm.com/support/knowledgecenter/SSEQTP_liberty/com.ibm.websphere.wlp.doc/ae/twlp_ins_installation_jdk.html
https://www.ibm.com/support/knowledgecenter/SSEQTP_liberty/com.ibm.websphere.wlp.doc/ae/twlp_ins_installation_jdk.html
https://www.ibm.com/support/knowledgecenter/SS8S5A_8.0.0/com.ibm.curam.content.doc/install_DevelopmentEnvironment/t_install_apache_ant.html
https://www.ibm.com/support/pages/ibm-c%C3%BAram-social-program-management-supported-prerequisites
https://www.ibm.com/support/pages/ibm-c%C3%BAram-social-program-management-supported-prerequisites
https://www-01.ibm.com/support/docview.wss?uid=swg21996306
https://www-01.ibm.com/support/docview.wss?uid=swg21996306
https://www.ibm.com/support/knowledgecenter/en/SSEPGG_10.5.0/com.ibm.db2.luw.qb.server.doc/doc/c0060076.html
https://www-01.ibm.com/support/knowledgecenter/SSEQTP_liberty/com.ibm.websphere.wlp.nd.multiplatform.doc/ae/twlp_admin_webserver_plugin.html
https://www-01.ibm.com/support/knowledgecenter/SSEQTP_liberty/com.ibm.websphere.wlp.nd.multiplatform.doc/ae/twlp_admin_webserver_plugin.html

Cúram 8.1.2 22

Note: For JMS, you can use the Liberty-embedded JMS or IBM® MQ 9.1 and its associated
resource adapter for WebSphere® Liberty. For more information, see Installing IBM® MQ.
However, you cannot use Liberty-embedded JMS in a production environment.

Create environment variables and add paths

After you install the prerequisite software, create the following environment variables:

• ANT_HOME system environment variable with the value set to the Apache Ant installation
directory. For example, ANT_HOME=/Ant<version>

• ANT_OPTS system environment variable with the value set to -Xmx1400m:

ANT_OPTS=-Xmx1400m -Dcmp.maxmemory=1400m

• WLP_HOME system environment variable with the value set to the WebSphere® Liberty
installation directory. For example, WLP_HOME=/opt/IBM/WebSphere/Liberty

• JAVA_HOME system environment variable with the value set to the Java SE Development
Kit installation directory, not the Java™ Runtime Environment (JRE) software. For example,
JAVA_HOME=/Java<version>

Add paths for the following software:

• Add the Ant bin folder to the system PATH environment variable. For example,
$ANT_HOME/bin

• Add the WebSphere® Liberty bin folder to the system PATH environment variable. For
example, $WLP_HOME/bin

• Add the Java™ bin folder to the system PATH environment variable. For example,
$JAVA_HOME/bin

3.2 Managing deployment properties

Create two properties files, Bootstrap.properties and AppServer.properties. The
properties that you define in these files are used to deploy and customize Cúram WebSphere®

Liberty. Then, verify your property files and environment by running the configtest target.

Bootstrap.properties

Bootstrap.properties contains the properties that are needed to connect to the database.

Create a Bootstrap.properties and place it in the $SERVER_DIR/project/
properties directory.

Bootstrap.properties is packed in the Enterprise Archive (EAR) when the EAR file is
built. When packed in the EAR file, Bootstrap.properties is edited to contain a subset
of properties of the source Bootstrap.properties file and is extended with relevant
properties from AppServer.properties.

WebSphere® Liberty has its own bootstrap.properties (note the lowercase "b") that
contains the properties for WebSphere® Liberty runtime. For more information, see Specifying
Liberty bootstrap properties.

© Merative US L.P. 2012, 2024

https://www.ibm.com/support/knowledgecenter/en/SSFKSJ_9.0.0/com.ibm.mq.ins.doc/q008250_.htm
https://www.ibm.com/support/knowledgecenter/en/SSEQTP_liberty/com.ibm.websphere.wlp.doc/ae/twlp_inst_bootstrap.html
https://www.ibm.com/support/knowledgecenter/en/SSEQTP_liberty/com.ibm.websphere.wlp.doc/ae/twlp_inst_bootstrap.html

3 Deploying on WebSphere® Application Server Liberty 23

Sample Bootstrap.properties

Tnameserv Port
curam.environment.tnameserv.port=900
curam.environment.bindings.location=C:/Bindings

curam.db.username=db2admin
curam.db.password=wWw5UTMnFOe1SeCBEQy/Zg==
curam.db.type=DB2
curam.db.name=CURAM
curam.db.serverport=50000
curam.db.servername=localhost

property to specify Oracle service name.
curam.db.oracle.servicename=orcl.<host_name>

For remote mode also specify:
curam.db.serverport=9092
curam.db.servername=localhost

Lock Time Out in ms. Default is 1000, i.e. 1 second. (Optional)
curam.db.h2.locktimeout=20000

Property to disable MVCC. Default: true. (Optional)
curam.db.h2.mvcc=true

AppServer.properties
AppServer.properties is used to specify properties relevant to your application server
environment.

Create an AppServer.properties file and place it in the $SERVER_DIR/project/
properties directory.

The user that is defined by the security.username and security.password properties is assigned to
the WebSphere® Liberty administrator role by the Ant configure target. This role provides
access to the WebSphere® Liberty JMX methods and MBeans by using its REST connector.

Sample AppServer.properties

Property to indicate that WebSphere Liberty is installed
as.vendor=WLP

The username and password for the administrator role
security.username=websphere
Encrypt the plain-text password using 'build encrypt -Dpassword=<password>'
Below is the encryption for the default password ("websphere")
security.password=XOVRjjVTebM8gV953LGMLQ==

The name of the server on which the application will be hosted
curam.server.name=CuramServer

The Curam client HTTP port
curam.client.httpport=10101

The Curam web service port
curam.webservices.httpport=10102

curam.server.port=2809
curam.db.auth.alias=databaseAlias

Check your settings

When you create the properties files, check your settings by running the Ant configtest
target:

cd $SERVER_DIR
./build.sh configtest

© Merative US L.P. 2012, 2024

Cúram 8.1.2 24

Review the output for any errors or warnings and resolve them.

3.3 Configuring WebSphere® Liberty

Configure WebSphere® Liberty to reflect your tuning needs and organizational requirements. Use
the properties that you defined in the .properties files to configure the database, security
settings, and default JMS. For more information, see 3.2 Managing deployment properties
on page 22. Then, customize the server.xml and the files that it includes to reflect your
implementation of Cúram.

Configure a WebSphere® Liberty server

Run the Ant configure target from the $SERVER_DIR directory:

./build.sh configure

The Ant configure target configures a WebSphere® Liberty server for Cúram by using the
properties that you defined in AppServer.properties and Bootstrap.properties.
Configuration items include the database configuration, security settings, and default JMS
configuration.

Note: AppServer.properties and Bootstrap.properties are in the
$SERVER_DIR/project/properties directory. You can override the default location
for the properties files by specifying -Dprop.file.location=<new location>
when you run the configure target.

WebSphere® Liberty configuration files that change when you run the Ant
configure target
The Ant configure target changes the $WLP_HOME/usr/servers/CuramServer/
server.xml file and the files that it includes so that they contain WebSphere® Liberty features
and configurations to support Cúram. The configuration files are placed in $WLP_HOME/usr/
servers/CuramServer/adc_conf/. Table 1 lists all the changed files and describes the
role of each file.

Table 1: List of XML files and descriptions

List of XML configurations and descriptions for each.

XML file Description

server_endpoints.xml Specifies the application port configuration (based on
AppServer.properties).

server_logging.xml Specifies the WebSphere® Liberty logging configuration.

server_resources_jdbc_DB2.xml or
server_resources_jdbc_ORA.xml

Specifies the required Cúram database configuration. The file
that is used is determined by your database configuration in
Bootstrap.properties.

server_resources_messaging.xml Specifies the embedded JMS configuration that is required by
Cúram.

server_resources_tx.xml Specifies WebSphere® Liberty transaction settings.

© Merative US L.P. 2012, 2024

3 Deploying on WebSphere® Application Server Liberty 25

XML file Description

server_security.xml Specifies a basic security configuration.

When you run the installapp or uninstallapp targets the following files are modified. For more
information, see 3.7 Deploying applications on page 34:

server_applications.xml Specifies global application settings for the WebSphere®

Liberty server and includes an application-specific file for each
installed application EAR file.

application_*.xml One file for each installed application EAR file is created.
For example, installing Curam.ear generates an
application_Curam.xml file.

Customizing the Cúram WebSphere® Liberty server configuration
You can customize the server.xml and the files that it includes as described in the Liberty
product documentation to meet your requirements, however, note the following restrictions:

• Make your changes by changing your Bootstrap.properties and
AppServer.properties files and running the Ant configure target. For more
information, see 3.2 Managing deployment properties on page 22.

• You must track and document all custom changes for your own records.

You can integrate your configuration changes with the Cúram WebSphere® Liberty server in one
of the following ways:

• By changing the adc_conf/server_extra_config.xml file.
• By using a custom Ant script to make WebSphere® Liberty configuration changes.

The following sections describe the steps that are required to manage customizations.

Changing the adc_conf/server_extra_config.xml file

When the server is configured by the Ant configure target, it places a functionally empty
server_extra_config.xml configuration file in the following server directory:

${server.config.dir}/adc_conf

This file is intended for your customizations. You can edit or replace the contents of
server_extra_config.xml. The changes that you make take effect when you restart the
server.

You can combine editing server_extra_config.xml and a customized Ant script, by
using the Ant script to modify:

${server.config.dir}/adc_conf/server_extra_config.xml

as described in the following section.

© Merative US L.P. 2012, 2024

https://www.ibm.com/support/knowledgecenter/SSEQTP_liberty/as_ditamaps/was900_welcome_liberty.html
https://www.ibm.com/support/knowledgecenter/SSEQTP_liberty/as_ditamaps/was900_welcome_liberty.html

Cúram 8.1.2 26

Using a custom Ant script to make Liberty custom configuration changes

You can extend the Ant configure target by creating a custom Ant script named
extra_wlp_configuration.xml. Place the script in $CURAMSDEJ/bin with the
following contents:

<?xml version="1.0" encoding="UTF-8"?>
<project name="extra_wlp_configuration" default="setup" basedir=".">
<property name="do.extra.file" value="extra_wlp_configuration."/>
<!-- ************************* -->
<!-- *** D O . E X T R A *** -->
<!-- ************************* -->
 <target name="do.extra" description="Customization of the Liberty configuration for
 Curam.">

 <!-- Your custom Ant script code. -->

 </target>
</project>

Replace the <!-- Your custom Ant script code. --> with your custom script code. For
example, you might use your extra_wlp_configuration.xml script to modify.

${server.config.dir}/adc_conf/server_extra_config.xml

to include your custom WebSphere® Liberty configuration for Cúram.

The Ant script in $CURAMSDEJ/bin/extra_wlp_configuration.xml can also be
started independently of the Ant configure target by using the do.extra target:

./build.sh do.extra

3.4 Configuring a web server plug-in

Run the Ant configurewebserverplugin target to configure the web server plug-in
to work with IBM® HTTP Server and Cúram deployed on WebSphere® Liberty. Also, for
information about how to configure the web server's HTTP verb permissions to mitigate verb
tampering, see Enabling HTTP verb permissions.

The Ant configurewebserverplugin target is suitable for internal development and
testing purposes only. It uses generated, self-signed certificates that are not appropriate for public
access. For more information, see Configuring a web server plug-in for Liberty.

Ensure that the following paths and commands are available in your environment:

• The WebSphere® Liberty server must be running.
• The plug-in path must be available. This path defaults to /opt/IBM/WebSphere/

Plugins. If this default is not appropriate for your environment, you must override
plugin.home on the command line when you start the target.

• The openssl command must be available in the environment by using the PATH (available
on most platforms, or can be added as a separate activity).

• The keytool command must be available in the environment by using the PATH (available
using the Java installation).

• The gskcmd command must be available in the environment by using the PATH (available in
the IBM HTTP Server bin folder).

© Merative US L.P. 2012, 2024

../Security/t_SECHAND_httpverbperms.html
https://www.ibm.com/support/knowledgecenter/en/SSEQTP_liberty/com.ibm.websphere.wlp.nd.multiplatform.doc/ae/twlp_admin_conf_webserver_plugin.html

3 Deploying on WebSphere® Application Server Liberty 27

• The WebSphere® Liberty pluginUtility command must be available in the environment
by using the PATH.

Running the Ant configurewebserverplugin target

Running the Ant configurewebserverplugin target requires properties that are passed on
the command line and provides other optional property overrides. You must specify the following
non-defaulting property overrides:

• -Dcertificate.password= - specifies the password that you require for the
WebSphere® Liberty and plug-in certificate files.

• -Dsubject.string= - specifies a subject string for the generated self-signed certificate,
for example:

-Dsubject.string="/CN=`hostname -f`/O=MyOrg/OU=MyOrgUnit/L=MyLocation/
ST=MyLocationState/C=IE"

Table 1 lists the optional property overrides available for use with the target.

Table 2: Property overrides and their default values

Property Name Maps To Default

certificate.location All openssl output
arguments

Defaults to: $WLP_HOME/usr/servers/
${curam.server.name}/resources/
security

subject.string -subj argument of openssl No default, the property must be specified

certificate.days -days argument of openssl Defaults to: 3650

key.length numbits value of openssl Defaults to: 2048

certificate.password All certificate files and or
stores

No default, must be specified; this
password is encoded in adc_conf/
server_security.xml

server.name Liberty file system folder
names

No default, can be specified in
AppServer.properties (the same as
curam.server.name)

curam.webserver.name The plug-in file system Defaults to: ihs_`hostname -s`. If
your environment does not support
the hostname command with the -s
argument, you must provide an override for
curam.webserver.name on the command
line.

Note: When you run the configure
target, the same requirement exists,
that is, if hostname -s is not available,
the webserver name defaults to
webserver1 as configured in adc_conf/
server_endpoints.xml.

© Merative US L.P. 2012, 2024

Cúram 8.1.2 28

Run the Ant configurewebserverplugin target in the $SERVER_DIR directory. An
example, minimal invocation is as follows:

cd $SERVER_DIR
./build.sh configurewebserverplugin -Dcertificate.password=MyPassword -
Dsubject.string="/CN=`hostname
-f`/O=MyOrg/OU=MyOrgUnit/L=MyLocation/ST=MyLocationState/C=IE"

When the Ant configurewebserverplugin target completes, you must restart the
WebSphere® Liberty server.

Note: The Ant configurewebserverplugin target is not supported in a Windows
environment.

3.5 Configuring security

The default security configuration for WebSphere® Liberty, provided by the Ant configure
target, is a basic configuration and must not be used without modification. Your in-house security
team should review this basic security configuration to reflect your security requirements and
modify as needed.

The security configuration that is provided by the Cúram configured adc_conf/
server_security.xml file and consists of the following elements:

• The configuration for the Cúram system login module, CuramLoginModule, is defined by
various elements and this is required configuration.

• A <basicRegistry> element to support default users and users that are not secured by the
Cúram system login module. This element is configured to support the WebSphere® Liberty
administrator and Cúram JMS users.

• An <orb> element to support LTPA authentication.
• A web client <ssl> element, which is provided as an example to get you started with Cúram

in WebSphere® Liberty.

Input to this basic security configuration is provided by credentials in the
AppServer.properties file that you must set before you run the Ant configure target.

There are many other security options and settings that are provided by WebSphere® Liberty that
you can use, provided they are compatible with the default Cúram security requirements such as
the system login module. For more information see, Securing Liberty and its applications.

Related concepts
Elasticity on page 18
In Kubernetes, you can implement elastic replicas. Elasticity is the ability to scale up or down
pods and nodes to adjust to the load to meet the end user demand.

Default configuration for WebSphere® Liberty

The Cúram Java Authentication and Authorization Service (JAAS) login module is configured
as a JAAS login module in WebSphere® Liberty. The default, scripted security configuration

© Merative US L.P. 2012, 2024

https://www.ibm.com/support/knowledgecenter/SSEQTP_liberty/com.ibm.websphere.wlp.nd.multiplatform.doc/ae/twlp_sec.html

3 Deploying on WebSphere® Application Server Liberty 29

provided by Curam for WebSphere® Liberty configures the Cúram custom JAAS login module
and the basicRegistry for non-application users.

Multiple JAAS login contexts exist for WebSphere® Liberty. The Cúram JAAS login module is
configured for the DEFAULT and WEB_INBOUND configurations. The same login module is
used for all three configurations. WebSphere® Liberty utilizes these contexts as follows:

• DEFAULT

The Cúram JAAS login module specified for the DEFAULT context is utilized for web services
and JMS invocations.

• WEB_INBOUND

The Cúram JAAS login module specified for the WEB_INBOUND context is used for
authentication of web requests

• RMI_INBOUND

The login modules that are specified for the RMI_INBOUND configuration are used for
authentication of Java clients.

The Cúram JAAS login module is within a chain of login modules that are set up in WebSphere®

Liberty. It is expected that at least one of these login modules be responsible for adding
credentials for the user. By default, the Cúram login module adds credentials for an authenticated
Cúram application user. Therefore, Cúram users should not normally be added to the WebSphere®

Liberty basicRegistry.

As part of the security configuration the users specified by the security.username and
curam.security.credentials.async.username properties in AppServer.properties are
excluded from authentication by the Cúram JAAS login module and are specified in the
WebSphere® Liberty basicRegistry. The security.username user is classified as an administrative
user and is not an application user.

Note: The security.username user is automatically added to the WebSphere® Liberty
basicRegistry by the Social Program Management-provided configuration scripts. If an
alternative, custom security configuration is in place it should take this user into account.

Changing the JMS password

After you have deployed the Cúram application, change the JMS user password. The JMS user is
the user under which JMS messages are run.

Before you begin

Change the JMS password during a period of no activity on the application server. Otherwise,
JMS message processing might fail while the change is in process, until the application server
is restarted. Ensure that the WebSphere® Liberty server is started and the Cúram application is
running.

Overview of the steps to change the user password

To change the JMS user password for deployed applications, take the following steps.

1. Change the password in AppServer.properties.
2. Change the password in the WebSphere® Liberty configuration.

© Merative US L.P. 2012, 2024

Cúram 8.1.2 30

3. Change the password in the Cúram administration system.

The following sections describe how to make each change.

Change the password in AppServer.properties

To change the password, update the security.credentials.async.password property in the
AppServer.properties file.

The password must be encrypted by using the Ant encrypt target, for example:

cd $CURAMSDEJ/bin
./build.sh encrypt -Dpassword=<The password to be encrypted>

For more information, see Cipher-Encrypted Passwords.

Change the password in the WebSphere® Liberty configuration

To change the JMS user password in the WebSphere® Liberty configuration, you must modify
the ${server.config.dir}/adc_conf/server_security.xml file and the
${server.config.dir}/adc_conf/application_*.xml files, there is one
application_*.xml for each deployed application.

To change the password, encrypt the new password before you replace it in the configuration
files. Use the WebSphere® Liberty securityUtility encode command to
get the encrypted value for the new password. The encrypted password value of the
curam.security.credentials.async.password property in AppServer.properties differs from
the encrypted password value in the WebSphere® Liberty configuration files due to different
encryption techniques. Run the securityUtility command as follows:

securityUtility encode mypassword

The configurations that must be changed in the WebSphere® Liberty configuration are for
example:

• ${server.config.dir}/adc_conf/application_*.xml: <run-as
userid="SYSTEM" password=...

• ${server.config.dir}/adc_conf/server_security.xml: <user name="SYSTEM"
password=...

Change the password in the administration system

Change the JMS password by using the administration user interface as follows:

1. Log in to Cúram with the admin user.
2. Under Quick Links, click Search for a user...
3. Enter system in the Last name field and click Search.
4. Click the SYSTEM user link that is returned.
5. Click the Edit... menu option and set the following fields:

• Specify a First Name
• Set Sensistivity: 1. Otherwise, an error occurs: This user cannot have a

greater sensitivity value than you.

• Set the fields New Password and Confirm Password.

© Merative US L.P. 2012, 2024

https://www.ibm.com/support/knowledgecenter/SS8S5A_7.0.8/com.ibm.curam.content.doc/Security/c_SECHAND_CryptoCipheredPasswords.html

3 Deploying on WebSphere® Application Server Liberty 31

6. Click Save.
7. Restart WebSphere® Liberty.

Logging the authentication process

The CuramLoginModule authentication process can be logged in console.log and
messages.log files.

Trace entries of the CuramLoginModule authentication process can be generated in the
console.log and messages.log files, which can be helpful for debugging.

To generate the log entries, add the following entry to AppServer.properties before
running the Ant configure target:

curam.security.login.trace=true

For a previously configured server modify the adc_conf/server_security.xml file to
change the login_trace attribute values from "false" to "true" and restart the WebSphere® Liberty
server.

Note: To enable extensive authentication logging, add the following logging configuration to
the server.xml file:

<logging traceFileName="stdout" consoleLogLevel="INFO"

 traceSpecification="com.ibm.ws.security.*=all:com.ibm.ws.webcontainer.security.*=all:
 com.ibm.ws.session.*=all" />

Configuring Single Sign On (SSO)

Federated SSO that uses SAML 2.0 browser profile, using either an IdP-initiated HTTP POST
binding or an SP-initiated HTTP POST binding, can be implemented through the Cúram
application.

For more information on configuring SSO, see .

3.6 Building EAR files

Cúram is composed of several applications that you must build into EAR files before deployment.
These application EAR files incorporate client and server components.

Building the Cúram EAR files

Build the Cúram application EAR files by using the Ant libertyEAR target.

Before you run this target, a fully built application must be available. For more information, see .

The Ant libertyEAR target takes the output from the previously built application, such as the
generated Java™ classes that represent the model, deployment descriptors, and packages them up
into EAR files.

© Merative US L.P. 2012, 2024

Cúram 8.1.2 32

This target creates installable EAR files in the following directory:

$SERVER_DIR/build/ear/WLP/$SERVER_MODEL_NAME.ear

The environment variables $SERVER_DIR and $SERVER_MODEL_NAME specify the name of
root directory of the project and the model in the project.

Run the Ant libertyEAR target from the root directory of the server project to build the
application EAR files for WebSphere® Application Server Liberty:

./build.sh libertyEAR

The EAR files include the following structure and contents:

• META-INF Directory:

• application.xml: A generated file that lists the mapping of EJB modules to JAR files
that are in the application.

• ibm-application-bnd.xmi: A generated Liberty-specific extension file.
• MANIFEST.MF: A manifest file that details the contents of the EAR files.

• JAR files: Curam.ear/lib contains Cúram-specific JAR files, including
application.jar, codetable.jar, events.jar, struct.jar,
messages.jar, implementation.jar, and properties.jar. The
properties.jar file contains the Bootstrap.properties file.

Building an EAR file that contains either the web application or the server
application

The libertyEAR target builds EAR files that contain both the web client and application
components. Alternatively, you can build EAR files that contain only the web client or only the
server components, which can support alternative topologies where the web client and server
applications are installed on separate servers. For example, to support secure access to the
Cúram application for external users, a new web client application might be developed. This web
application might be deployed on its own WebSphere® Liberty server and use existing Cúram
server application components that are deployed on a different WebSphere® Liberty server. For
more information on splitting EAR file components, see Multiple EAR files.

Use the following command to build EAR files that contain only the web client application:

./build.sh libertyEAR -Dclient.only=true

Use the following command to build EAR files that contain only the server applications:

./build.sh libertyEAR -Dserver.only=true

Server code split

As part of the migration to WebSphere® Application Server Liberty and container enablement,
splitting the server and client code within the Cúram EAR file provides an optimum and flexible
deployment model for Kubernetes.

The server code is common across all EAR files. However, the client code is different depending
on the EAR file. The main benefit of splitting the server code EAR file in containers is that it is
reused across all client components such as the main client EAR file, the Citizen Portal EAR file.

© Merative US L.P. 2012, 2024

https://www.ibm.com/support/knowledgecenter/SS8S5A_7.0.8/com.ibm.curam.content.doc/Deployment_WebsphereApplicationServer/c_WEBSPHAPS_Building2MultipleEarFiles1.html

3 Deploying on WebSphere® Application Server Liberty 33

The benefit of a single CuramServerCode.ear, is that it can be deployed in a container, with
any other EAR file without the need to build all EAR files with the server and client code, thus
reducing both build and deployment times. This also increases deployment model flexibility.
Also, separating the client and server code helps in the mitigation of thread pool starvation
in WebSphere® Liberty deployments. The new architecture involved the separation of JMS
processing.

The Application EAR responsible for processing JMS-initiated transactions is called the JMS
Consumer and consumes JMS messages through EJB MDBs enabled. The ability to split and
deploy the server and client is pre-existing when you deploy to traditional IBM® WebSphere®

Application Server or WebLogic Server clusters and is expanded to include the Cúram EAR file.
When the Cúram EAR is split, it contains client-only code, and it must be packaged with the
CuramServerCode.ear, as must all additional EAR files, for example Citizen Portal EAR,
and Rest EAR. To package with CuramServerCode.ear, take the following steps:

1. Modify deployment_packaging.xml in the following location $SERVER_DIR/
project/properties/

2. Set requireServer="false" for Curam.ear
3. Build WebSphere® Liberty as normal
4. Run the following command:

build.sh libertyEAR -Dserver.only=true -Dear.name=CuramServerCode -
DSERVER_MODEL_NAME=CuramServerCode
-Dcuram.ejbserver.app.name=CuramServerCode

Building the web services application EAR file

Build the Cúram web services EAR file by using the Ant libertyWebServices target.

Before you run the Ant libertyWebServices target, a fully built Cúram application must be
available.

The libertyWebServices target takes the previously generated Java™ files and deployment
descriptors and packages them into a ready to install EAR file in the following directory:

$SERVER_DIR/build/ear/WLP/${SERVER_MODEL_NAME}WebServices.ear

The environment variables $SERVER_DIR and $SERVER_MODEL_NAME specify the name of
root directory of the project and the model in the project.

Run the Ant libertyWebServices target from the $SERVER_DIR directory of the project
to build the web services EAR file:

./build.sh libertyWebServices

Java™ files and deployment descriptors are generated during the build process based on the
web service components that are defined in the model. For more information, see Building and
configuring a Cúram application. BPO classes are mapped to server components with a stereotype
of web service for this generation to occur. Any server component with a stereotype of web
service is treated as if it also had a stereotype of ejb because web service interfaces are wrappers
on publicly available BPOs. For more information, see Business Process Objects for details on
assigning BPOs to server components.

© Merative US L.P. 2012, 2024

https://www.ibm.com/support/knowledgecenter/SS8S5A_7.0.8/com.ibm.curam.content.doc/ServerDeveloper/c_BuildConfigCuramApplication.html
https://www.ibm.com/support/knowledgecenter/SS8S5A_7.0.8/com.ibm.curam.content.doc/ServerDeveloper/c_BuildConfigCuramApplication.html
https://www.ibm.com/support/knowledgecenter/SS8S5A_7.0.8/com.ibm.curam.content.doc/ServerModelling/r_SERMOD_Process1BusinessProcessObjects1.html

Cúram 8.1.2 34

When deployed, Cúram web services expose their own WSDL. For example, if there is a web
service, MyTestService, the WSDL can be derived by using a URL of this format: http://
localhost:10102/CuramWS/services/MyTestService?wsdl

The general URL format for starting a Cúram web service from a web service client
such as SoapUI is as follows:http://<web-server>:<port-number>/
<ServerModelName>WS/services/<BPO-name>

3.7 Deploying applications

Deploy the packaged Cúram application and web services application in EAR files to the
application server.

Targets for installing and uninstalling applications

The installapp and uninstallapp targets install and uninstall applications
on WebSphere® Liberty. The installapp and uninstallapp targets need the
AppServer.properties file to be configured correctly. For more information, see 3.2
Managing deployment properties on page 22.

Install applications

Use the Ant installapp target to install an application EAR file. installapp requires the
following options:

• -Dserver.name The name of the server to install the application on.
• -Dear.file The fully qualified name of the EAR file to install.
• -Dapplication.name The name of the application.

An example command is as follows:

./build.sh installapp -Dserver.name=CuramServer -Dear.file=$SERVER_DIR/build/ear/WLP/
Curam.ear -Dapplication.name=Curam

For client-only EAR files, there must be a corresponding EAR file with the server module in the
environment.

You must restart the server after you install the application.

Note: If you are installing BIRT, add the biapp.configure.birtviewer attribute to the
installapp target.

The Ant libertyEAR and libertyWebServices targets create several application EAR
files in the $SERVER_DIR/build/ear/WLP folder. Apply the property specifications, -
Dear.file= and -Dapplication.name=, as is appropriate for the applications relevant to your
environment.

Uninstall applications

Use the Ant uninstallapp target to uninstall an application by using the following options:

• -Dserver.name The name of the server the application is installed on.
• -Dapplication.name The name of the application to uninstall.

© Merative US L.P. 2012, 2024

3 Deploying on WebSphere® Application Server Liberty 35

An example command is as follows:

./build.sh uninstallapp -Dserver.name=CuramServer -Dapplication.name=Curam

The Ant uninstallapp target stops the WebSphere® Liberty server, so you must start it after
you run the target.

Starting and stopping WebSphere® Liberty

To start a server, enter the following command:

./build.sh startserver -Dserver.name=CuramServer

To stop a server, enter the following command:

./build.sh stopserver -Dserver.name=CuramServer

3.8 Pre-compiling JSPs

During deployment, use the Ant precompilejsp target to pre-compile the JSPs of a client
EAR before installing the EAR file. Pre-compiling the JSPs before installation speeds up the
display of a page in the web browser the first time it is accessed.

The options for the precompilejsp target are:

• -Dear.file

The fully qualified name of the EAR file to be pre-compiled.

 ./build.sh precompilejsp -Dear.file=$SERVER_DIR/build/
ear/WLP/Curam.ear

Figure 5: Example of Usage

3.9 Testing the deployment by logging in to the application

When the application is deployed, log in to display the application landing page to verify the
basic functions of the application.

Ensure that the relevant server is started and enter the application URL in a web browser, for
example:

https://<some.machine.com>:<port>/<context-root>

To obtain the application URL, search the WebSphere® Liberty logs for the CWWKT0016I
message that identifies the application of interest. For example, enter the following command:

grep CWWKT0016I $WLP_HOME/usr/servers/CuramServer/logs/console.log

© Merative US L.P. 2012, 2024

Cúram 8.1.2 36

For the Cúram application, the command returns:

[AUDIT] CWWKT0016I: Web application available (client_host): https://
your.hostname.com:10101/Curam/

Use the returned URL to access your application. When the application is deployed and the
server is started, log in to display the application landing page to verify the basic functions of the
application.

Some applications, like the CitizenPortal context root, don't require an explicit login and the
landing page is entered directly. For more information about Citizen Portal, see Universal Access.

3.10 Debugging WebSphere® Liberty

Use resources such as the messages.log file to monitor and debug Cúram applications.

WebSphere® Liberty logs

WebSphere® Liberty logs are in the $WLP_HOME/usr/server/<server_name>/logs
directory. The following list outlines the most important logs:

• messages.log
Equivalent to SystemOut.log and SystemErr.log in traditional WebSphere®

Application Server.
• trace.log

Detailed WebSphere® Liberty trace data is logged here. For more information, see Set up trace
and get a full dump for WebSphere® Liberty.

• ./ffdc
Similar content to traditional WebSphere® Application Server.

Remote debugging applications in WebSphere® Liberty
Use the following .xml file to control logging behavior:

$WLP_HOME/usr/server/<server_name>/adc_conf/server_logging.xml

Perform remote debugging with Eclipse by specifying the normal options in jvm.options, for
example:

-Xrunjdwp:transport=dt_socket,address=8787,server=y

You must restart the server by using the WebSphere® Liberty server debug command, for
example:

server debug CuramServer

You must specify the appropriate Eclipse Remote Java™ Applications configuration and
breakpoints, or the equivalent for your debugging environment.

Reviewing Java™ Management Extensions (JMX) statistics

The statistics that are generated by the JMX infrastructure can help you to review and debug
application performance. For more information, see

© Merative US L.P. 2012, 2024

https://www.ibm.com/support/knowledgecenter/SS8S5A_7.0.8/com.ibm.curam.universalaccess.doc/CitizenEngagement/ctr_CitizenEngagementApplication.html
http://www-01.ibm.com/support/docview.wss?uid=swg21596714
http://www-01.ibm.com/support/docview.wss?uid=swg21596714

3 Deploying on WebSphere® Application Server Liberty 37

JMX and Developing with Cúram JMX

3.11 Known issues and limitations

Some known issues and limitations can occur when you deploy WebSphere® Liberty. Where
possible, workarounds are provided.

• WebSphere® Liberty on premises
Cúram does not support deployments to WebSphere® Liberty collectives.

• Authentication alias warning: J2CA8050I

When you start a WebSphere® Liberty server, the following warning occurs:

J2CA8050I: An authentication alias should be used instead of
 defining a user name and password on dataSource[curamdb]

In WebSphere® Liberty, the authentication aliases can be used for container-managed and
XA recovery data sources. Cúram uses component-managed data sources extensively, so this
warning message can be safely ignored.

• The logs can be filled by repetitions of the ICWWKS4001I message
The following log extract shows an example of the ICWWKS4001I message:

[1/22/19 8:48:18:272 GMT] 000000ba
 com.ibm.ws.security.token.internal.TokenManagerImpl
 ICWWKS4001I: The security token cannot be validated. This can
 be for the following reasons
1. The security token was generated on another server using
 different keys.
2. The token configuration or the security keys of the token
 service which created the token has been changed.
3. The token service which created the token is no longer
 available.

The root cause is users not clearing the browser cache after the application is redeployed.
Users might have old, local cookie files. However, after a redeployment or an upgrade, the
application does not recognize the cookies that are presented to it by the machine, which
causes the error messages in the logs.

The solution is to ensure that all users clear their browser caches.

Alternatively, add the message CWWKS4001I to the WebSphere® Liberty ignore list by
editing $WLP_HOME/usr/server/<server_name>/bootstrap.properties
and adding the line:

com.ibm.ws.logging.hideMessage=CWWKS4001I

For more information, see Specifying Liberty bootstrap properties.
• WebSphere® Liberty dropins folder

The WebSphere® Liberty dropins folder cannot be used because it is incompatible with the
Cúram application EAR files.

© Merative US L.P. 2012, 2024

https://www.ibm.com/support/knowledgecenter/SS8S5A_8.0.0/com.ibm.curam.content.doc/ServerDeveloper/c_SERDEV_ConfigParam8.html
https://www.ibm.com/support/knowledgecenter/SS8S5A_7.0.8/com.ibm.curam.content.doc/JMXDeveloper/ctr_CuramJMXDevelopersGuide.html
https://www.ibm.com/support/knowledgecenter/en/SSEQTP_liberty/com.ibm.websphere.wlp.doc/ae/twlp_inst_bootstrap.html

Cúram 8.1.2 38

© Merative US L.P. 2012, 2024

Notices

Permissions for the use of these publications are granted subject to the following terms and
conditions.

Applicability

These terms and conditions are in addition to any terms of use for the Merative website.

Personal use

You may reproduce these publications for your personal, noncommercial use provided that all
proprietary notices are preserved. You may not distribute, display or make derivative work of
these publications, or any portion thereof, without the express consent of Merative

Commercial use

You may reproduce, distribute and display these publications solely within your enterprise
provided that all proprietary notices are preserved. You may not make derivative works of these
publications, or reproduce, distribute or display these publications or any portion thereof outside
your enterprise, without the express consent of Merative.

Rights

Except as expressly granted in this permission, no other permissions, licenses or rights are
granted, either express or implied, to the publications or any information, data, software or other
intellectual property contained therein.

Merative reserves the right to withdraw the permissions granted herein whenever, in its
discretion, the use of the publications is detrimental to its interest or, as determined by Merative,
the above instructions are not being properly followed.

You may not download, export or re-export this information except in full compliance with all
applicable laws and regulations, including all United States export laws and regulations.

MERATIVE MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE
PUBLICATIONS. THE PUBLICATIONS ARE PROVIDED "AS-IS" AND WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT
LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT,
AND FITNESS FOR A PARTICULAR PURPOSE.

Merative or its licensors may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this documentation does not grant you any license
to these patents.

Information concerning non-Merative products was obtained from the suppliers of those products,
their published announcements or other publicly available sources. Merative has not tested those
products and cannot confirm the accuracy of performance, compatibility or any other claims
related to non-Merative products. Questions on the capabilities of non-Merative products should
be addressed to the suppliers of those products.

Any references in this information to non-Merative websites are provided for convenience only
and do not in any manner serve as an endorsement of those websites. The materials at those
websites are not part of the materials for this Merative product and use of those websites is at
your own risk.

© Merative US L.P. 2012, 2024

This information contains examples of data and reports used in daily business operations.
To illustrate them as completely as possible, the examples include the names of individuals,
companies, brands, and products. All of these names are fictitious and any similarity to actual
people or business enterprises is entirely coincidental.

The licensed program described in this document and all licensed material available for it are
provided by Merative under terms of the Merative Client Agreement.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate
programming techniques on various operating platforms. You may copy, modify, and distribute
these sample programs in any form without payment to Merative, for the purposes of developing,
using, marketing or distributing application programs conforming to the application programming
interface for the operating platform for which the sample programs are written. These examples
have not been thoroughly tested under all conditions. Merative, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample programs are provided
"AS IS", without warranty of any kind. Merative shall not be liable for any damages arising out of
your use of the sample programs.

Privacy policy
The Merative privacy policy is available at https://www.merative.com/privacy.

Trademarks

Merative ™ and the Merative ™ logo are trademarks of Merative US L.P. in the United States and
other countries.

IBM®, the IBM® logo, and ibm.com® are trademarks or registered trademarks of International
Business Machines Corp., registered in many jurisdictions worldwide.

Adobe™, the Adobe™ logo, PostScript™, and the PostScript™ logo are either registered
trademarks or trademarks of Adobe™ Systems Incorporated in the United States, and/or other
countries.

Oracle and Java are registered trademarks of Oracle and/or its affiliates.

The registered trademark Linux® is used pursuant to a sublicense from the Linux Foundation, the
exclusive licensee of Linus Torvalds, owner of the mark on a worldwide basis.

Microsoft™, Windows™, and the Windows™ logo are trademarks of Microsoft™ Corporation in
the United States, other countries, or both.

UNIX™ is a registered trademark of The Open Group in the United States and other countries.

Other company, product, and service names may be trademarks or service marks of others.

© Merative US L.P. 2012, 2024

https://www.merative.com/privacy

	Note
	Edition
	Notices
	Privacy policy
	Trademarks

	Contents
	1 Cúram on Kubernetes
	2 Kubernetes architecture
	2.1 Transaction isolation
	2.2 Messaging architecture
	2.3 Elasticity

	3 Deploying on WebSphere® Application Server Liberty
	3.1 Installing prerequisite and additional software
	3.2 Managing deployment properties
	3.3 Configuring WebSphere® Liberty
	3.4 Configuring a web server plug-in
	3.5 Configuring security
	Default configuration for WebSphere® Liberty
	Changing the JMS password
	Logging the authentication process
	Configuring Single Sign On

	3.6 Building EAR files
	3.7 Deploying applications
	3.8 Pre-compiling JSPs
	3.9 Testing the deployment by logging in to the application
	3.10 Debugging Cúram
	3.11 Known issues and limitations

