A
MerATive

Curam 8.1.2

Working with Intelligent Evidence Gathering (IEG) Guide

Note

Before using this information and the product it supports, read the information in Notices on page
85

© Merative US L.P. 2012, 2024

© Merative US L.P. 2012, 2024

Edition
This edition applies to Curam 8.1, 8.1.1, and 8.1.2.

© Merative US L.P. 2012, 2024

Merative and the Merative Logo are trademarks of Merative US L.P. in the United States and
other countries.

© Merative US L.P. 2012, 2024

© Merative US L.P. 2012, 2024

Contents vii

Contents
0) i
o 114 T] PSSP Y
1 Working with Intelligent Evidence Gathering........cccccoviiiiiiiiiiiiiiiiiiieeeeeee e 11
A C 1= S = 1 (=T FS PO PPTSPP 13
D Y o To T | A 1 = TP 13
D= 1=] (T <I9S 13
RESOUICE StOrE (RS) .o iii i, 14
S o] o] S 1 0T (1] =PSRN 14
2.2 Evaluating the USE OF IEG.......ccoiiiiiiiiiiiii ettt e e e e e e e 15
G T I TS = = T [P 15
Create @ SCREBMA........uiiii i et e e e e e e e e e ettt e e e e e e e e e eessbt s e eeeeeeeeesenns 15
(O =T= L (= BT od o PP 17
Adding a Summary Page to an [EG SCriPt.......cciii i e e e e eennees 19
B = TSl] o ST PPP PP 21
3 Capturing Client INfOrmMatioN.........oii oo aanes 23
3.1 Families and HOUSENOIAS.........cooi oo e e e e e 23
A o Lo U ET=T o o] o I 2 =T Fo o] 4 1S o 1T o PP 26
3.3 Summarizing Clent INFOrMALION...........iiiiiiiii e e e e 27
4 Capturing Related Data...........coiiiiiiiiiiii e 29
4.1 Capturing COMPOSITE Dat8........cceiiiieiiiiiie e e e e e e e e e e e e e e e e e eerr e e eeeeees 29
4.2 Displaying Composite Data 0n @ SUMMAIY...........ccoooiiiiiiiiiic e, 30
4.3 Capturing ASSOCIALEA DALA.cciieeiiiiiiiiiiiie e e e e e e e s aaeeeas 30
4.4 Displaying Associated Data 0n @ SUMMANY..........uuuiiiiieeerieeiiiinne e ee e e et e e s e e eeerrn e eees 32
4.5 Deleting ASSOCIATEA DaAlA.......uuuuuiiiiiiiiiiiiiiiiiieiieeereeieeerrerereererereer ettt 32
5 Efficient Ways of Capturing Data..........ccccuuuiiiiiiiiiiiii e 35
5.1 LISt QUESTIONS.ttt et e et e e e e e e e e e e e ettt e e e e e eeeees bbb e e eeeeeesesstaaaaaaeeeaeeeenes 35
1| L=t Y= 1= o 36
5.2 COUE-ADIE QUESTIONS.eiiiiieeiiiiiie ittt e e e e e e e e e et e e e e e e e e reeees 36
5.3 Conditional EIBMENTS........cooviiiiii e e e e e 38
%0l g lo 11 o] F= ST =Tt 110] o F TSRS 38
(@] a0 11T aT= U == To =T3PPSR 39
(70 gl 11 0T F= 1IN O 1111 (= 39
5.4 QUESHION MaAIICES. .. . i ettt ettt e e e e e e et e ee et e e e e e e e eeesa b e e eeeeseeesbaraneaaeeess 41
5.5 Fast Path NAVIGALION..........uiiiiiiiiiiiiite e e e e e s r e e e e e e s st e e e e e e e e aannes 42
(I @ LU =T aTo g o A/ a o Jr= W I Yo o PP 42
L [To 1 o111 Y2 X 1 (= 4 = VR 43

© Merative US L.P. 2012, 2024

Curam 8.1.2 viii

Fast Path ConditioNS...........cooviiiiiiiii e, 44

Condition in Fast Path LOOP........cooiiviiiiiii 45
5.6 IMPLICIE DEIBTE. ...ceiiiiiiiieeeeiee et e e e e e e bbbt e e e e e e e bbb b e e e e e e e e e nnnneees 46
5.7 Three Field Date PiCKeT s nnsnnnnnne 46
6 Other Script Development CoNSIiderationsS...........coovvvviiiiiiiiiiiie e 49
6.1 Displaying Data as REaAU-ONIY...........uuuuiiiiiiiiiiiiiiiieiriereeerreerreeeererreereerreee—————————————————————————.—. 49
6.2 Invoking external functionality by using expressions and custom functions............cccccceeeee... 50
6.3 REUSING SCIIPES. ...ttt iie ettt ettt e e e et e e e e e e e bbbt e e e e e e e s bbb e e e e e e e e e e nnnneneeeeeas 53
6.4 Source Control and VerSIONING.......ccoiiiiiiiiiiiiieieiec i aae e aaaeaaaeaneeaereraseaserarrsnnees 54
6.5 Rendering Custom HTML 0N @ SUMMArY Page.........ccooiiiiiiiiiiiieiiiiiiiiieeee e 55

How to use the CUuStOM-OULPUL EIEMENT..........oiiii i 56

Guidelines for using the custom-output ElemeENt.............ouiiiiiiiiiiii e 58

Sample code for rendering CUSIOM HTML.........ouiiiiiiiiiiiiiiiieieieeeeeeeeereeee e e 59
7 Integrating IEG into a Caram ApPliCatioN........ccoooeiiiiiiiiiicccee e 63
7.1 Creating @ SCrPL EXECULION.uuiiiiieiiiiitite ettt e e e e e e e e e e s e eeeeas 63
7.2 Specifying a RedireCtion URL.........ccooiiiiiiiiiii e eaneannes 63
7.3 Running the IEG Player iN @ Tab.......oocuiiiiiiieeeie ettt 64
7.4 Running the IEG Player in @ Modal Didlog............ooiiuiiiiiiieiiiiiiiieee et 66

Opening the IEG Player in @ Modal DialOg.........ccuueiiiiiiiiiiiiieee e 66

Exiting a Script Execution in @ Modal Dialog............ooiuuiiiiiiieeiiiiiiiiiieee e 68
7.5 Cleaning Up AppliCation Data...........ccooiiiiiiiiii i iee s eee e nssennnnne 69
7.6 RESUMING EXECULEA SCIIPUS. .. .uuuuuueiuitiiiiiiiiiiiiiitiiitieieeeee et eneeeneeeneennesnnsennennnes 70
8 Managing Captured Data...........ccouiiiiiiiiiiiiiiiiiee e e ee e e e e e e e e e e e e e e aaa e 71
8.1 Retrieving Captured Data.............ooooeiiiiiiiiii e —————— 71
8.2 Pre-Populating Scripts with Captured Data..............ccoiiiiiiiiiiiiiiieeeeeiiii e 71
O USING the RESOUICE STOME...uiiiiiiiiii it e e e e e e e e eees 75
LS IR0 I 1= 1 To = | =S 0T o == 75
9.2 UpIOAdiNg @ NEW RESOUICE......ceiiiiiiiiiiiiiee e e ettt et e e e e e e sttt e e e e e e as st aeeaeeessanseeseeeeaeeeaannns 75
9.3 RemoVving an EXIStING RESOUICE..........cuviiiiiiiiiiiiiiiiieee ettt ettt e et e e e e e e e e e e e e e aaaaeees 76
9.4 Updating an EXiStiNg RESOUICE.........ccoeii e 76
9.5 Downloading an EXIStING RESOUICE.uuuuiiiieeiiiiiiiiiieee e e e e eiitieeee e e e e s s ee e e e e s e s annneeeeeeeeeas 76
LS BN [0 [T T N T 0= o =PRI 76
LS B A O =Yg T [To] = o = PP 77
9.8 Changing the Default File ENCOUING.........ciiitiiiiiiie e e e 77
10 Using IBM Rational AppScan to scan IEG..........ooooiiiiiiiiiiiiiiiiiieeeeeeeeee e 79
O R o (=T o =T = 4o] OO PPP R TPPPPPPI 79
10.2 RelAtiONSNIP PAgES......eiiiiiiiiiiitei ettt e et 79
OISR Yor= Ta I @10 1T [V r= L1 To] o PPN 79
L0.4 TESE POIICY . ..eeeiieeiiitee ettt e ettt e e e e e ettt e e e e e et e e e e e e e e e 80
10.5 EXPIOTE OPLIONS.ueieiiieeeiiiitte ettt et e e e e e et e e e e e e e r et e e e e e e r e e e e s 80
10.6 COMMUNICAtIONS ANG PrOXY s aaaa s aa s aaaesaaesanssansssnesnsssnnsnnnennnes 80

© Merative US L.P. 2012, 2024

Contents ix

L0.7 TESE OPTIONS. ...eeeeeieeeie ittt e ettt e e e e e e bbbttt e e e e e s s e bbb ettt e e e e e e aassnbb s et e e e e e e e s nnbbbsreeeeeeeaann 81
10.8 MUILI-STEP OPEIALIONS.eeeeeieeeiiiiiitee ettt e e e e e et e e e e e e e et e e e e e s ann b b e e eeeeeeeaannes 81
10.9 Exclude Paths and FileS........coooiiiiiiiiiciccce e annannnnnnes 81
O KOO0 441 o] =3 =TT U PPPPPPPPP 82
10.11 RUNNING ThE SCAN.....eitiiiiiii et e e e e e e e e e s e e eeas 82
11 Runtime processing iN TEG........ouuiiiiiiiii e 83
11.1 Loss of network connectivity during an IEG SESSION............uuuuuuuuuuiiiuiiiiiiiiiiinieinernneenn. 83
N[0 o =PRI 85
PrIVACY POLICY ... e ——————————— 86
THAAEIMAIKS. ...ccetiiiei ettt et e e e e e e et ettt et e eeeeee e ettt e eseeeseeeetabaaseeeeeeeessbbaanaaaaeeseenrrres 86

© Merative US L.P. 2012, 2024

Curam 8.1.2 x

© Merative US L.P. 2012, 2024

1 Working with Intelligent Evidence Gathering 11

1 Working with Intelligent Evidence Gathering

Use this information to learn how to define and maintain IEG scripts and the associated data store
schemas for use in internal or external applications.

IEG can capture data as part of an internal or external application. Typically, the data is client-
related data and is required as part of an application for a program or to determine potential
eligibility. All such information comes under the general heading of evidence in Caram.

This information outlines some technical considerations when creating an IEG script and Data
Store schema and provides information about maintaining scripts.

Note: Script designers can find information describing form design and user experience best
practices with proven patterns for forms in the IEG Form Design Guidance PDF located in the
docs folder of the Universal Access Responsive Web Application asset zip file.

© Merative US L.P. 2012, 2024

Curam 8.1.2 12

© Merative US L.P. 2012, 2024

2 Get started 13

2 Get started

Read about the basic principles of [EG and its dependency on the Datastore (DS) and the
Resource Store (RS). You are guided through creating a simple IEG script to gather information
about a client.

2.1 About IEG

IEG is an efficient alternative to traditional information gathering processes. With IEG,
information is gathered interactively by displaying a script of questions that a user can provide
answers to.

Questions are only displayed if they are consistent with the user's previous answers so that the
user is only required to provide answers relevant to his or her needs and situation. This creates a
user-friendly environment that can be effectively implemented for a range of processes including
client information intake, benefit assessment triage, online eligibility assessment, and so forth.

In contrast to traditional information gathering processes, IEG cuts down on the organization's
administrative work by creating the potential for several routes through the same question script.
This eliminates the necessity to develop many scripts for gathering information from different
types of users.

A further advantage of IEG is the flexibility of its implementation and the range of its potential
users. The IEG runtime environment can be set up for access from any UIM page. This means
that IEG can be accessed directly from an organization application or remotely by an online user.

The two main components of IEG are the Engine and the Player. IEG scripts are defined in XML
and the Engine interprets the script definitions at runtime and evaluates the answers supplied

by the user to determine the flow of execution. The Engine determines which pages should be
displayed to the user and how many times they should be displayed. The Player presents the
pages, questions and other controls to the user. [EG also builds on other elements of the Caram
Application Suite such as the Datastore (DS) and the Resource Store (RS).

Datastore (DS)

The data supplied by a user during script execution is not directly persisted by IEG itself. This
task is delegated to the Datastore (DS). The DS is a configurable database.

Just as the questions and question pages that are to be displayed to the user are determined by an
IEG script, the data that can be stored in the DS is dynamically determined by an XML schema.
The schema describes the structure of the information you want to store and any relationships
between the data. Data is stored in the DS in XML format and conforms to the W3C XML
Schema Definition Language. More details on the DS and how it works can be found in the
Creating Datastore Schemas guide.

An IEG script and a DS schema are very closely linked. An IEG script is defined with references
to the elements contained in a schema and for that reason a schema must be supplied when
editing a script. The same schema is also required when executing a script. Schemas may by

© Merative US L.P. 2012, 2024

Curam 8.1.2 14

reused to edit and execute multiple scripts so the same data structures can be used in different
circumstances.

Resource Store (RS)

An IEG script can contain references to images that will be displayed to the user when a script is
executed, for example icons representing sections and question pages. The images are stored in
the Resource Store (RS).

An [EG script also contains a number of different textual elements, for example page headings,
question labels and help text. IEG allows you to enter all the text for your script for the default
locale directly into the script definition.

When an IEG script is uploaded into the system via the IEG admin screens, all the text contained
within it is automatically extracted into an appropriately named properties files for the script.
These properties files are also stored in the RS. The properties files are stored with no locale
associated with them (so that they act as the fall-back properties if no properties exist for the
locale in which you are running). The RS allows properties files for multiple locales to be
uploaded making the localization of scripts a straightforward task. At runtime, the properties files
are retrieved for the appropriate locale and presented to the user in the [EG Player.

Script Structure

In its simplest form, an IEG script consists of pages which include questions to be posed to users
of IEG. The structure of the IEG script is a logical grouping of these pages so that answers to the
questions can be captured effectively.

Sequences of pages can be grouped into logical sections. The purpose of these sections is to give
users a higher level view of the kind of information captured by the IEG script.

In addition to including a variable number of pages, each section should contain one summary
page. This page is used to give feedback to the user on the information entered on the pages in a
section. Summary pages typically contain clusters and lists displaying read-only versions of the
answers to questions asked. The summary page will always be the last page displayed within a
section and will also be displayed whenever a user clicks on the link for that section in the sidebar
of the IEG Player.

To summarize, IEG scripts consist of a hierarchy of elements structured something like this:
* Script
+ Section
* Page
* Cluster

¢ Question
* Summary Page

© Merative US L.P. 2012, 2024

2 Get started 15

2.2 Evaluating the Use of IEG

There are some key questions to ask when evaluating the use of IEG in any application:

* What information is being captured?

* What is the source of that information?

* How is this information to be used?

* How long will this information live in the application?

Many of the current uses of IEG stem from the need to support an application for products and
services offered by agencies either externally or internally. The information captured is generally
client related information, such as client personal details, their family or household details and
details of their needs.

Often agencies already have data about a client; therefore they can source the information from
another system using some key pieces of information like a social security number. This allows
them to verify the client information being entered or retrieve to assist with the application.

Some applications are complex and require information from many sources. Clients may have to
enter information that is not close to hand. For example, the required information may be held
by their employer. They may need the ability to store what they have entered and return to the
application at a later time once they have all the required data.

Clients may be exposed to simple screening applications that inform them of their entitlements
under current or new legislation. This information is often unreliable and temporary data must be
removed from the system after the client logs out or within a set period of time.

These requirements drive the use of IEG and provide important information on the use of the data
over its lifetime.

So, let's start with the basics: we want to capture and store information about a client.

2.3 The Basics

Create a Schema

The first step in capturing data about a client is to create a DS schema. This section provides an
example of how to create a basic schema that defines the capture of some general client data.

The DS stores data collected from users during online screening and intake of applications. The
contents of the DS are dynamically definable by way of a schema definition. The requirements
for capturing and storing any data about a client can be complex but with appropriate schema
design, this data can be efficiently managed over its lifetime.

For the purposes of this example, the requirement is to capture the following:

Table 1: Client Data to Capture

Attributes Type
First name String
Middle name String

© Merative US L.P. 2012, 2024

Curam 8.1.2 16

Attributes Type

Last name/Family name String
Gender Male/Female
Date of Birth Date

There is a minimum set of definitions required in a schema. For a schema to be used in IEG, the
following is required:

e Inclusion of Base Domains
* Inclusion of IEG Domains
* A root entity

For more information on the minimum set of definitions required, see the Cr eat i ng
Dat ast ore Schemas guide

The schema would look something like this before adding new content such as the Person entity
described above:

<xsd: schema xm ns: xs="http://ww. w3. org/ 2001/ XM_Schema"
xm ns: d="http://ww. curansof t war e. com BaseDonai ns" >
<xsd: i nport nanespace="http://ww. curansoftware.com
BaseDonmai ns"/ >
<xsd: i nclude schemaLocati on="1EGomai ns"/ >
<xsd: el enent name="Application">
<xsd: conpl exType>
<xsd: sequence m nCccurs="0">
</ xsd: sequence>
</ xsd: conpl exType>
</ xsd: el ement >
</ xsd: schema>

Figure 1: Starting Schema

The content of the schema indicates that it is an XMLSchema that imports BaseDomains schema
and includes the ITEGDomains schema. The first element called Appl i cat i on is the root entity
for the schema. TEG requires that the root entity is always called Appl i cati on.

The IEGDomains schema contains the domains required to define the attributes of entities to be
used with IEG. The types of the attributes must be derived from the IEG Domains rather than the
base domains. A Person entity can be defined to represent a client as follows:

<xsd: el enent name="Per son" >
<xsd: conpl exType>
<xsd:attribute name="firstNane" type="1EG STRING'/>
<xsd: attribute name="m ddl eNane" type="|EG STRI NG'/ >
<xsd: attribute name="I ast Nane" type="1EG STRI NG'/ >
<xsd:attribute name="gender" type="|1EG GENDER'/ >
<xsd:attribute nane="dateOBirth" type="1EG DATE"/ >
</ xsd: conpl exType>
</ xsd: el ement >

Figure 2: Person Entity
There are a couple of things to note about the above addition for an entity like person:

» Like relational database tables, an ID field is required and a key is defined for this table using
this unique ID.
» The person entity is added as a child entity of the root entity.

© Merative US L.P. 2012, 2024

2 Get started 17

The schema to capture basic information about a person can be defined as follows:

<xsd: el enment name="Application">
<xsd: conpl exType>
<xsd: sequence m nCccurs="0">
<xsd: el enent ref="Person" m nCccurs="0"
maxQccur s="unbounded"/ >
</ xsd: sequence>
</ xsd: conpl exType>
</ xsd: el enent >
<xsd: el enent name="Person">
<xsd: conpl exType>
<xsd: attri bute name="personl D' type="d: SVR KEY"/ >
<xsd:attribute name="firstNanme" type="1EG STRI NG'/>
<xsd: attribute name="m ddl eNane" type="1EG STRI NG'/ >
<xsd: attribute name="I ast Nane" type="1EG STRI NG'/ >
<xsd:attribute nanme="gender" type="|EG CGENDER'/ >
<xsd:attribute name="dateO'Birth" type="1EG DATE"/ >
</ xsd: conpl exType>
<xsd: key nanme="Per son_Key" >
<xsd: sel ector xpath="./Person"/>
<xsd: field xpat h="@ersonl D'/ >
</ xsd: key>
</ xsd: el enent >

Figure 3: Basic Schema

Once the schema has been defined you can then create a script to use the schema.

Create a Script

IEG allows you to create dynamic scripts for collecting data. IEG scripts can contain sections,
question pages, questions and conditional logic which allows you to decide what information to
capture, what pages to display and how many times they are displayed.

Please read the Aut horing Scripts using Intelligent Evidence Gathering
(1 EG guide for details on how to define each element of an IEG script.

For the requirements above, where there is a need to capture information about a person, you
must define the script and decide how the pages are arranged to capture the information.

A new script can be created in the admin application and the editor can be used to add elements to
this script. The content of a newly created script will be similar to the following:

<?xm version="1.0" encodi ng="UTF-8"?>
<i eg-script xmns:xsi="http://ww.w3. org/ 2001/ XM_Schema- i nst ance"
xsi : noNamespaceSchemaLocat i on="i eg- schema. xsd" >
<identifier id="WrkingWthlEG scriptversionnunber="V1"
type="1nt ake" />
</ieg-script>

Figure 4: New Script

The | D, Type and Ver si on supplied when creating the script are combined to create a script
identifier to uniquely identify the script definition.

Once a new script is created, elements such as sections, question pages and summary pages can
be added to the script. The examples in the next two sections will show you how to add a section
and a question page to a script as well as how to add a summary page that displays information

© Merative US L.P. 2012, 2024

Curam 8.1.2 18

back to the user. Summary pages allow the user to confirm that the data they entered is correct
before proceeding and they can also provide the user with the ability to modify the data.

Adding a Section and a Question Page to an IEG Script
A section and a question page need to be added. A section can be used to group related pages
together to allow the user to flow through the screens in a logical manner.

Sections can also help to convey to the user their progress through a script. Both the section and
the question page can have a title and the question page can optionally have a description.

The following code sample shows a section containing a question page, added to a script:

<?xm version="1.0" encodi ng="UTF-8"?>
<ieg-script xmns:xsi="http://ww.w3. org/ 2001/ XM_.Schena-in
st ance”
xsi : noNanespaceSchemalLocati on="i eg- schena. xsd" >
<identifier id="WrkingWthlEG' scriptversionnunber="V1"
type="1nt ake" />
<section>
<title id="About YouSection. Title">
<! [CDATA[About You]] >
</title>
<questi on- page i d="About YouPage" entity="Person">
<title id="PrinmaryPersonPage. Title">
<! [CDATA[About You]] >
</title>
<descri ption id="Pri maryPer sonPage. Descri pti on">
<! [CDATA[Pl ease enter sone information about yourself]]>
</ descri pti on>
</ questi on- page>
</ section>
</ieg-script>

Figure 5: New Section

The question page requires the appropriate questions to capture the data. Any data to be stored
in the DS has to be associated with an attribute of an entity in the DS schema to be used with
this script. If all the questions on a page relate to the same entity, the page can be mapped to that
entity type. In the above example the page is mapped to the Person entity.

To add questions to a page, a cluster is required. Clusters help control the layout of the questions
on the page. A page can contain many clusters to allow you to logically group questions on the
page. Clusters may also contain a title and a description.

In our example below, there are two clusters, one just to display some informational text to the
user and another to contain the questions for personal details. Questions and display text can

be added to each cluster. Questions must be given an ID which must correspond to one of the
attributes of the entity type the page is mapped to. If an answer must be supplied to a question
the mandatory indicator of the question can be set to t r ue. The script snippet below contains the
questions to capture the required data outlined in our example.

<guesti on- page ...
<cl uster>
<di spl ay-text id="RequiredFields. Text">
<! [CDATA[
* indicates a required field]]>
</ di spl ay-t ext >
</cl uster>

© Merative US L.P. 2012, 2024

2 Get started 19

<cl uster>
<title id="DetailsCluster.Title">
<! [CDATA[Personal Details]]>
</title>
<description id="Detail sC uster. Description">
<![CDATA[Enter your details here]]>
</ description>
<question id="firstNane" nandatory="true">
<l abel id="FirstNane.Label ">
<![CDATA[Fi rst Name:]]>
</ | abel >
</ questi on>
<question id="m ddl eNane" >
<l abel id="M ddl eName. Label ">
<! [CDATA| M ddl e Nanme:]]>
</ | abel >
</ questi on>
<question id="I ast Nane">
<l abel id="1|astName. Label ">
<! [CDATA[Last Nane:]]>
</ | abel >
</ questi on>
<question id="gender" mandatory="true">
<l abel id="Gender. Label ">
<! [CDATA[Gender:]]>
</ | abel >
</ questi on>
<question id="dateOBirth" mandatory="true">
<l abel id="DateOBirth.Label">
<I[CDATA[Date O Birth:]]>
</ | abel >
</ questi on>
</cl uster>
</ questi on- page>

Figure 6: Clusters, Questions and Display Text

Please note there are more properties of scripts, sections, question pages, clusters, questions and
display texts than are covered here. These properties are covered in the Aut horing Scri pts
using Intelligent Evidence Gathering (I EG guide some of which will be
discussed later in this guide.

Adding a Summary Page to an IEG Script

The final step of this basic example is to display a summary of the information captured.
Generally each section will have a summary page.

A summary page is used to display the most important data back to the user in order for them to
verify data was captured or calculated correctly. A summary page can display data captured on
multiple question pages. A summary page does not have to contain all the information captured in
the section as this could be very large making it less useful.

Obviously if the data displayed on a summary page is incorrect the user will more than likely
want to modify it. Users may navigate backwards in the script execution by pressing the Back
button in the IEG Player until they reach the page where the data was entered, update the data,
then proceed forward through the script again. Alternatively you can add edit links to the clusters

© Merative US L.P. 2012, 2024

Curam 8.1.2 20

on the summary page. When the user clicks on an edit link on a summary page the question page
specified in the edit link is displayed to the user in the IEG Player. The user can then change

the data and depending on whether the changed data is referenced elsewhere in the script, the
summary page will be displayed again when the user presses the Next button in the IEG Player.

The summary page in this case will be very simple and similar to the question page previously
added. And similar to a question page, if all the attributes referred to on the page relate to the
same entity the summary page can be mapped to that entity type, as follows:

<section>

<summary- page i d="About YouSurmary" entity="Person">
<title id="About YouSunmary. Title">
<!'[CDATA[| nfor mati on about you]]>
</title>
<descri ption id="About YouSumrary. Descri pti on">
<! [CDATA
[Here's the information you' ve entered about yourself]]>
</ descri ption>
<cl uster>
<title id="DetailsCluster.Title">
<! [CDATA[Person Detail s]]>
</title>
<description id="Detail sC uster. Description">
<| [CDATA[Enter the details for this person here]]>
</ descri ption>
<edit-link start-page="About YouPage" />
<question id="firstNane">
<l abel id="FirstNane.Label ">
<I[CDATA[First Name:]]>
</ | abel >
</ questi on>
<question id="m ddl eNane" >
<l abel id="M ddl eNane. Label ">
<![CDATA| M ddl e Nane:]]>
</ | abel >
</ questi on>
<question id="I| ast Nane">
<l abel id="IastNane. Label ">
<! [CDATA[Last Nane:]]>
</ | abel >
</ questi on>
<question id="gender">
<l abel id="Gender. Label ">
<! [CDATA[Gender:]]>
</ | abel >
</ questi on>
<question id="dateOFBirth">
<l abel id="DateOBirth.Label">
<I[CDATA[Date O Birth:]]>
</ | abel >
</ questi on>
</cluster>
</ summary- page>
</ section>

Figure 7: Summary Page

© Merative US L.P. 2012, 2024

2 Get started 21

This basic script and schema to capture information about a person and display a summary page
is now complete and can be run.

Run a Script

In order to run an IEG script the script definition and the associated schema definition must be
uploaded into the system. There are a number of ways this can be done which will be covered
later in this guide.

The most straightforward way to upload the definitions is via the administration screens in the
Intelligent Evidence Gathering section of the Administration Workspace.

To gain access to the IEG administration screens, you will need to log in as an admin user. Once
logged in, you will see a section in your shortcuts panel called Intelligent Evidence Gathering and
when you click on it you will see a menu for 'IEG' which contains a link called 'Scripts'. If you
click on this, you will see a page that contains a list of the IEG scripts currently in the system and
various links to allow you to perform activities on these scripts.

At the top of the 'Scripts' page is an 'Import' link which lets you upload, or import, a new IEG
script definition.

Similarly, if you click on the 'Datastore Schemas' link of the menu for 'IEG' you will see a
page that contains a list of the DS schemas currently in the system. At the top of the 'Datastore
Schemas' page, there is also an 'Import' link which lets you upload, or import, a new schema
definition.

For convenience, IEG provides a type of test harness that allows IEG scripts to be tested without
having to integrate them into the Ciram application. The test harness does have some limitations
but it allows most scripts to be tested as soon as they are uploaded into the system. IEG scripts
may be run either in a tab or in a modal window via the admin screens.

A script can be run using either the 'Run' or 'Run in Modal' options for the script from the 'Scripts'
page. As there is no explicit association between an IEG script and a DS schema, when you select
the option to run a script you will then be asked to select a schema from a dropdown with which
to execute the script. Clicking on the 'Run Script' button will cause the IEG Player to launch and
you will be presented with the first page of the script.

Validating a Script
When a script is executed via the admin screens in this way, the script is validated before it is
executed.

You may also choose the 'Validate' option for the script from the 'Scripts' page. All scripts should
be validated before they are executed. If the script fails validation, a list of validation errors

will be displayed. The validation errors must be addressed before the script can be run from the
'Scripts' page.

Fill in some sample data on the first page of the script and select the Next button. Now this same
sample data should be displayed on the summary page. The answers are not modifiable but an
edit link is provided to jump back to the page where that data was entered.

Please note, pressing the Next button in the IEG Player on the summary page of the script that
has been implemented in this example will cause an error to be displayed. This is because not all
the properties of the script have been defined. The required properties will be covered later in this
guide.

© Merative US L.P. 2012, 2024

Curam 8.1.2 22

© Merative US L.P. 2012, 2024

3 Capturing Client Information 23

3 Capturing Client Information

The previous section outlined a basic example of how IEG can be used to capture data for a
client. Some application forms for benefits and services can be complex and the information
required about applicants can be very detailed. We build on the initial example covered in the
previous section by considering a household, where we captured some initial data about a primary
member and now want to add details for the other household members.

3.1 Families and Households

We currently have a straightforward script, relating to one person. Often applications need more
information about the client's circumstance, starting with their living situation.

In general, information is requested about the primary person and this is followed by a simple
question that will allow the client to skip to another area of the application. For example, after
entering personal details, the client is asked 'Do you live alone?'. If the answer is yes then the
person can be treated as single individual who is not living within a household of family or other
individuals. Most clients want to get through the application process as quickly as possible,
therefore questions such as these provide a good way to move to more relevant parts of the
application.

If the client is living with other people, then questions about each person may need to be asked.
Loops are used to capture information from each person and depending on how the script author
wants to present these questions, they have a choice of loop types: for, while and for-each loop.

IEG also features a Person Tab that allows the client to see who these questions relate to while
entering the data. This will appear automatically for a Person entity in the Datastore. Each Person

will be represented by an icon (based on the gender and age) and a name. The current Person will
be highlighted.

Let's take a scenario for handling family/household data as an extension of the requirements in
the basic sample. Here the client is asked if how many people are in the household including the
client. Some new question pages need to be added to capture this information.

The first question page will ask about the living situation. For this example there is only one
question to ask, as follows: How many people are in the family (excluding yourself)?

<questi on- page i d="Househol dPage" progress="10">
<title id="LoopControl Page. Title">
<! [CDATA[Househol d Detail s]]>
</title>
<descri ption i d="LoopControl Page. Descri pti on">
<I'[CDATA[Pl ease tell us sone information about your
househol d]] >
</ descri pti on>
<i con i mage="sanpl e_title_househol d" />
<cl uster>
<title id="DetailsCluster.Title">
<! [CDATA[Det ai | s]]>
</title>
<question id="nunPeopl e" control - question="true"
control -question-type="1EG_| NT32"

© Merative US L.P. 2012, 2024

Curam 8.1.2 24

mandat ory="true" >

<| abel id="NunPeopl e. Label ">
<! [CDATA[How many ot her people are in your
househol d?]] >

</ | abel >

</ questi on>
</cl uster>
</ questi on- page>

Figure 8: Obtaining household size

This question is a control question, i.e. a question used to control the size of a loop and not for
data collection purposes. Control questions are not stored in the Datastore schema. It will used in
the loop expression of the 'for' loop in the next question page.

The family members question page is within a 'for' loop that will iterate over the number of
family members.

<l oop | oop-type="for" | oop-expressi on="nunPeopl e"
entity="Person" criteria="isPrinmary==fal se">
<questi on- page i d="Per sonDet ai | sPage"

show person-tabs="true"
progress="20">
<title id="PersonDetail sPage. Title">
<! [CDATA[Househol d Menber Detail s]]>
</title>
<descri ption id="PersonDet ai |l sPage. Descri ption">
<! [CDATA[Pl ease enter the details for the
next person in your househol d]]>
</ descri ption>
<i con image="sanpl e_title_househol d" />
<cl uster>
<title id="DetailsCluster.Title">
<! [CDATA[Person Detail s]]>
</title>
<description id="Detail sCl uster.Description">
<I[CDATA[Enter the details for this person
bel ow]] >
</ description>
<question id="firstNane" nandatory="true">
<l abel id="FirstNane.Label ">
<! [CDATA[Fi rst Name:]]>
</ | abel >
</ questi on>
<question id="I ast Nane">
<l abel id="1|astName. Label ">
<! [CDATA[Last Nane:]]>
</ | abel >
</ questi on>
<question id="gender" mandatory="true">
<| abel id="CGender. Label">
<! [CDATA[Gender:]]>
</ | abel >
</ questi on>
</cluster>
</ questi on- page>
</ | oop>

Figure 9: Using 'for' loop to collect household members

© Merative US L.P. 2012, 2024

3 Capturing Client Information 25

The above is an example of how the client enters the number of family members. But the question
could have been asked a different way, for example: 'Do you live with your family?' In this case

a condition element in the script can be used to check the value of that question. This would
display the family member page if they do live with their family. On this question page, a control
question is asked to determine if they would like to capture another family member's details.

This control question would be used in a 'while' loop around the family member question page, as
follows:

<questi on- page i d="Househol dPage" progress="10">
<title id="LoopControl Page. Title">
<! [CDATA[Househol d Detail s]]>
</title>
<description i d="LoopControl Page. Descri ption">
<! [CDATA[Pl ease tell us some information about your
househol d]] >
</ descri pti on>
<icon inmage="sanple_title_household" />
<cl uster>
<title id="DetailsCluster.Title">
<![CDATA[Det ai | s]]>
</title>
<question id="livesWthFam |ly" control-question="true"
control -question-type="1 EG BOOLEAN'
mandat ory="true" >
<l abel id="NunPeopl e. Label ">
<I[CDATA[Do you live with your famly?]]>
</ | abel >
</ questi on>
</cl uster>
</ questi on- page>

Figure 10: Using ‘while' loop to collect household members

Using this approach, the control question is a boolean type, as it is used in a condition expression
that indicates whether or not the while loop should be entered. The loop, once entered, is iterated
over until details of all the household members have been gathered, as follows:

<condi tion expression="livesWthFam|y==true">
<l oop | oop-type="while" | oop-expression="
anot her Menber ==t r ue"
entity="Person">
<questi on- page i d="Per sonDet ai | sPage"
show person-tabs="true"
progress="20">
<title id="PersonDetail sPage. Title">
<! [CDATA[Househol d Menber Detail s]]>
</title>
<descri ption id="PersonDet ai | sPage. Descri pti on">
<I [CDATA[Pl ease enter the details for
t he next person in your househol d]]>
</ descri pti on>
<i con i mage="sanple_title_househol d" />
<cluster>
<title id="Detail sCluster.Title">
<! [CDATA[Person Details]]>
</[title>
<description id="Detail sCl uster.Description">

© Merative US L.P. 2012, 2024

Curam 8.1.2 26

<! [CDATA[Enter the details for this
person bel ow]] >
</ descri ption>
<question id="firstName" nmandatory="true">
<l abel id="FirstNane. Label ">
<I[CDATA[First Nane:]]>
</| abel >
</ questi on>
<question id="I| ast Nane" >
<l abel id="Iast Nane. Label ">
<! [CDATA[Last Nane:]]>
</ | abel >
</ questi on>
<question id="gender" mandatory="true">
<l abel id="Gender. Label ">
<! [CDATA[Gender:]]>
</ | abel >
</ questi on>
</cl uster>
<cl uster>
<questi on i d="anot her Menber "
control -question="true"
control -question-type="1EG BOOLEAN'>
<l abel id="Anot her Menber. Label ">
<I[CDATA[| s t here anot her
househol d nemnber ?]] >
</ | abel >
</ questi on>
</cluster>
</ questi on- page>
</ | oop>
</ condi tion>

Figure 11: Using while loop to collect household members

3.2 Household Relationships

When gathering information about a group of people in a household, it might be necessary to
ascertain how those people are related to each other.

IEG provides a mechanism for capturing relationships through the use of relationship pages and a
specific Datastore schema structure.

A Relationship entity should be defined in the Datastore schema, taking the following form:

<xsd: el enent name="Per son" >
<xsd: conmpl exType>
<xsd: sequence nmi nCccurs="0">
<xsd: el enent ref="Rel ati onship" m nCccurs="0"
maxQccur s="unbounded"/ >
</ xsd: sequence>

</ xsd: el ement >
<xsd: el enent name="Rel ati onshi p">
<xsd: conpl exType>
<xsd:attribute name="rel ati onshi pType"
type="1 EG STRI NG'/ >

© Merative US L.P. 2012, 2024

3 Capturing Client Information 27

<xsd: attribute name="i sNonPar ent Pri maryCar et aker"
type="1 EG BOOLEAN' default="fal se"/>
<xsd: attribute name="personl D' type="D: SVR _KEY"/ >
</ xsd: conpl exType>
</ xsd: el ement >

Figure 12: Relationship Entity in Datastore Schema

A relationship page for the household can be defined as follows, provided that the Relationship
entity is a child of the Person entity:

<rel ati onshi p- page i d="Rel ati onshi pPage" show- person-tabs="true"
progress="40">
<title id="Rel ati onshi pPage. Title">
<! [CDATA[Househol d Rel ati onshi ps]]>
</title>
<descri ption i d="Rel ati onshi pPage. Descri pti on">
<! [CDATA[Pl ease enter the relationships for %s below]]>
<argunent id="Person.firstNane" />
</ descri ption>
<i con image="sanpl e_title_househol d" />
<question id="caretakerlnd">
<l abel id="Caretakerlnd.Label">
<I[CDATA[Is this a non-parent caretaker
rel ati onshi p?]]>
</ | abel >
</ questi on>
</rel ationshi p- page>

Figure 13: Relationship Page

It is only necessary to define the relationship page once. IEG will then display the page as many
times as is necessary to gather Relationships one person at a time. This equates to one less times
than the number of people in the household, as the last person's Relationships will have been
collected in their entirety through the process.

By default, the Relationship Type field is presented as a dropdown, populated from a codetable
(configurable through the r el ati onshi p. t ype. domai n. name property):

The relationship page will display a Person Tab at the top containing the list of household
members and the current Person will be highlighted. Then each relationship between the current
Person and the other members will be displayed.

The caretaker indicator is the only question that can be added directly to the relationship page.
Questions regarding other attributes of a Relationship entity must be added to clusters that have
been added to the relationship page.

3.3 Summarizing Client Information

Lists are used on summary pages to display information gathered in loops. The structure of the
list should reflect the structure of the loop or hierarchy of loops that collected the data.

This means that the entity and criteria on the list should match the entity and criteria on the loop.
For example, to record the members of the family described in 3.1 Families and Households on
page 23, a for loop was used:

<l oop | oop-type="for" | oop-expressi on="nunPeopl e"

© Merative US L.P. 2012, 2024

Curam 8.1.2 28

entity="Person" criteria="isPrimry==fal se">
</ | oop>
Figure 14: For loop to collect household member information

In the section summary page, the information gathered in this loop is displayed in a list. The list,
like the loop, has 'Person' as its entity and 'isPrimary==false' as its criteria:

<list entity="Person" criteria="isPrimry==fal se">
</[list>
Figure 15: List of people

Relationship information gathered using a relationship page can be displayed on summary pages
in relationship summary lists:

<rel ati onshi p- summary-1i st >
<title id="Rel ati onshi pSunmaryList.Title">
<! [CDATA[Per son Rel ati onshi ps Summary]] >
</title>
<descri ption id="PersonRel ati onshi pSumraryLi st. Descri ption">
<! [CDATA[Person Rel ationship Sunmary Detail s]]>
</ descri ption>
<col um i d="car et aker |l nd">
<title id="CaretakerIind. Title">
<! [CDATA[NPCR] | >
</title>
</ col um>
<edit-link start-page="Rel ati onshi pPage" />
</rel ationship-summary-|ist>

Figure 16: Relationship Summary List

© Merative US L.P. 2012, 2024

4 Capturing Related Data 29

4 Capturing Related Data

Once we have captured information about the household members such as their personal details
and their relationships, we might want to capture related data. This can be achieved through
composition (the use of nested DS entities) or association (the use of related, non-nested DS
entities).

4.1 Capturing Composite Data

We have seen that it is possible to capture relationships in IEG. The combination of the
Relationship entity and the RelationshipPage provide a convenient mechanism to capture the
relationships between the people in a household.

The relationship between people in a household is only one form of relationship. IEG supports
other types of relationships. IEG and the DS allow entities to be nested creating a parent child
relationship. This can be seen in the example where there is a requirement to capture the incomes
for the people in a household. The Income entity is defined as any other entity is defined. It is
nested in the Person entity by referencing it in a sequence, as the following sample code snippet
shows:

<xsd: el ement nane="Per son">
<xsd: conpl exType>
<xsd: sequence m nCccurs="0">
<xsd: el enent ref="Income" m nCccurs="0"
maxCccur s="unbounded" />
</ xsd: sequence>

ékéd:attribute nane="hasl ncome" type="I1EG BOOLEAN"
default="fal se"/>
</ xsd: conpl exType>

</ xsd: el erent >
<xsd: el enent name="Incone" >
<xsd: conpl exType>
<xsd:attribute name="type" type="IEG STRI NG' />
<xsd: attribute name="amount" type="|EG MONEY" />
</ xsd: conpl exType>
</ xsd: el enent >

Figure 17: Parent/Child Schema

Income information can then be gathered for people in a household by looping over every person
that has income. The loop criteria will use a "hasIncome" boolean question that will be asked
while gathering the details for each person. A page within the loop can be mapped to the Income
entity thus creating the nested relationship, as shown below:

<l oop | oop-type="for-each" entity="Person"
criteria="hasl nconme==true">
<l oop | oop-type="while" | oop-expressi on="hasMor el ncone"
entity="Ilncone">
<questi on- page i d="InconePage" entity="Incone"

© Merative US L.P. 2012, 2024

Curam 8.1.2 30

Figure 18: Creating Nested Entities

4.2 Displaying Composite Data on a Summary

The information gathered for nested entities can be displayed on a summary page using a nested
list. Similarly to regular lists, nested lists must match the entities and criteria used in the nested
loops that captured the data.

<list entity="Person" showicons="true"
criteria="hasl ncome==true">
<title id="InconmeList.Title">
<!'[CDATA[| ncone]] >
</title>
<description id="InconeLi st. Description">
<I[CDATA[Here's the incone details you' ve entered for al
t he
peopl e in your househol d]]>
</ descri pti on>
<col umm id="firstNane">
<title id="FirstNane.Title">
<I'[CDATA[Fi rst Nane]]>
</title>
</ col umm>
<list entity="Incone">
<col um id="type">
<title id="InconeType. Title">
<! [CDATA[| ncone Type]]>
</title>
</ col um>
<col umm i d="anmount ">
<title id="IncomeAnmount.Title">
<! [CDATA[| ncome Ampunt]] >
</title>
</ col um>
</list>
</list>

Figure 19: Displaying Nested Entities on Summary Pages
The sample code snippet above of an income summary list will be displayed in the IEG Player as

a regular list with incomes grouped per Person. It will also contain Edit and Delete links for each
income and an Add link with a dropdown listing all the people.

4.3 Capturing Associated Data

IEG allows association relationships to be created between entities. This is useful because a
restriction applies to nested entities and nested lists that they can only be nested to two levels. The
use of associated relationships provides an effective alternative to nesting entities to three levels.

For example, suppose there is a requirement to record employment information for the people in
a household. Employment information may be gathered independently of Income information as
there may be multiple incomes for a given employment.

© Merative US L.P. 2012, 2024

4 Capturing Related Data 31

Once the Income and Employment information is gathered and the entities have been created, the
association between the entities can be made. The association is made by creating a "relationship"
entity. The relationship entity is normally "owned" by one of the entities participating in the
relationship and is represented as a sequence as with other relationship types.

Defining a relationship entity requires being able to identify the related entity therefore a key
must be defined in the related entity. To apply this to the Income/Employment example, the
Employment entity type will have a key, an EmploymentRelationship entity type will be defined
and the Income entity will own a sequence of EmploymentRelationships, as follows:

<xsd: el enent name="Enpl oynent " >
<xsd: conmpl exType>
<xsd: attribute name="enpl oynent| D" type="d: SVR KEY" />
<xsd: attribute name="enpl oyer" type="1EG STRING' />
<xsd: attri bute name="enpl oynent Type" type="|1EG STRI NG' />
</ xsd: conpl exType>
<xsd: key nane="Enpl oynent Key">
<xsd: sel ector xpath="./Enpl oynent" />
<xsd: field xpat h="@npl oynent1 D' />
</ xsd: key>
</ xsd: el enent >
<xsd: el enent name="I|ncone" >
<xsd: conpl exType>
<xsd: sequence m nCccurs="0">
<xsd: el enent ref="Enpl oynent Rel ati onshi p" ni nCccurs="0"
maxQccur s="unbounded" />
</ xsd: sequence>
<xsd:attribute name="type" type="IEG STRING' />
<xsd:attribute name="anmount" type="1EG MONEY" />
</ xsd: conpl exType>
</ xsd: el enent >
<xsd: el enent name="Enpl oynent Rel ati onshi p">
<xsd: conpl exType>
<xsd: attribute name="enpl oynent| D' type="d: SVR KEY" />
</ xsd: conpl exType>
</ xsd: el enent >

Figure 20: Associated Entity Schema

The association can then be captured in the script by defining a list-question and specifying a
link-entity attribute which refers to the key of the related entity. Continuing our example, on
a page mapped to the Income entity a list-question can be defined specifying the key from the
EmploymentRelationship used to identify the Employment entity.

List questions are constructs that allow the user to choose from a list of entities. For more details,
see 5.1 List Questions on page 35.

<questi on- page id="IlnconePage" entity="I|ncone"
<cl uster>
<| ayout >
<| abel - wi dt h>0</| abel - wi dt h>
</ | ayout >
<list-question |ink-
entity="Enpl oynent Rel ati onshi p. enpl oynent | D'
entity="Enpl oynent" single-select="true">
<| abel id="Sel ect Enpl oyer. Label ">
<! [CDATA[Sel ect Enpl oyer]]>
</ | abel >

© Merative US L.P. 2012, 2024

Curam 8.1.2 32

<iteml abel >
<| abel -el ement attribute-id="enpl oyer" />
</item| abel >
</list-question>
</cluster>
</ questi on- page>

Figure 21: Creating Association Relationships

4.4 Displaying Associated Data on a Summary

The association between entities can be displayed on a summary page by adding a column to the
list of entities of one type, in order to display details of the related entity. A link-entity attribute
needs to be specified on this column to identify the related entity.

The following example shows how, while listing the Incomes for a Person on a summary page,
the associated Employer name can be displayed for each Income:

<summary- page i d="IncomeSumary"

<list entity="Person" criteria="haslncome==true"
showi cons="true">
<title id="IncomeList.Title">l nconme</title>
<description id="InconeList.Description">Here's the incone
details you' ve entered for all the people in your
househol d</ descri pti on>
<col um id="firstName" >
<title id="FirstName. Title">First Name</title>
</ col um>
<list entity="Incone" showicons="fal se">
<col um id="type">
<title id="IncomeType. Title">I ncome Type</title>
</ col unm>
<col um i d="amount ">
<title id="IncomeAmount. Title">I ncome Amount</title>
</ col um>
<col um i d="enpl oyer"
l'i nk-entity="Enpl oynent Rel ati onshi p. enpl oynent | D'
entity="Enpl oynent">
<title id="Enployer. Title">Enpl oyer</title>
</ col um>
</list>
</list>
</ summary- page>

Figure 22: Entity Association Summary Page

4.5 Deleting Associated Data

When entities form parent-child relationships, if the parent entity is deleted, all its child entities
are also deleted. When an entity that participates in a relationship is deleted, by default, the
relationships for that entity are deleted but the related entities are not.

For example, suppose the details of all the people in a household have been collected and Person
entities created and the relationships between the people in the household have also been captured

© Merative US L.P. 2012, 2024

4 Capturing Related Data 33

and Relationship entities created. If the user chooses to remove a person, the relationships that
person participates in will also be removed but none of the other people in the household will be
removed.

This default behavior also applies to the income/employment example. If the user chooses to
remove an income, any EmploymentRelationships for the income will be removed but none of the
Employment entities will be removed.

It is possible to change the default behavior when deleting associated entities so that any entities
related to the entity being removed will also be removed.

To change the default behavior, an annotation containing a documentation element may be added
to the definition of a relationship entity in the DS schema. A documentation element containing
the text " @ur am i eg. cascadi ng. del et e=t r ue" indicates that related entities should
be deleted when the relationship is deleted.

<xsd: el enent name="Enpl oynent Rel ati onshi p">
<xsd: annot ati on>
<xsd: docunent ati on>@uram i eg. cascadi ng. del et e=true
</ xsd: docunent ati on>
</ xsd: annot ati on>
<xsd: conpl exType>
<xsd:attribute name="enpl oynent| D' type="d: SVR_ KEY" />
</ xsd: conpl exType>
</ xsd: el enent >

Figure 23: Cascading Deletes Schema
In the Income/Employment example, if cur am i eg. cascadi ng. del et e is set to true for
the EmploymentRelationship when an Income entity is removed any associated Employment

entity will also be removed. Removing the Employment entities in this way does not cause other
Income entities to the removed.

© Merative US L.P. 2012, 2024

Curam 8.1.2 34

© Merative US L.P. 2012, 2024

5 Efficient Ways of Capturing Data 35

5 Efficient Ways of Capturing Data

This section highlights some of the features of IEG that allow information to be gathered more
effectively and more intuitively.

5.1 List Questions

IEG provides an alternative to asking the same boolean question for a number of entities. A list
question can be used to gather all the answers at the same time.

In an earlier example, we saw a requirement to gather income information for the people in a
household. In order to only gather income information for the people who actually have income, a
question was added to the 'Household Members Details' page to indicate if the person has income
or not.

Continuing the previous example where information has been collected about the people in the
household, the attribute has| ncone has been added to the Person entity to indicate if income
information should be collected for the person, as follows:

<xs: el enment nane="Person">
<xs: conpl exType>

<xs:attribute nane="hasl ncome" type="1 EG _BOOLEAN'/ >

Figure 24: Has Income Person Schema

Like questions, list questions must be added to a cluster. Where list questions differ is that you
must specify the type of the entities that will be displayed in the list. The ID of the list question
corresponds to the name of the boolean attribute that should be set if the user selects an item

in the list. As with questions, a list question should have a label to indicate the purpose of the
question. List questions should also have an item label element. The item label specifies which
attribute from the entities should be used to identify the entities in the list. In the following
example, the first name of the household members is displayed to identify them.

<questi on- page i d="AnyoneHavel ncone" >

<cl uster>
<list-question id="haslncome" entity="Person">
<| abel id="Haslncone. Label ">
<! [CDATA[Whi ch peopl e have incone?]]>
</ | abel >
<item| abel >
<| abel -el enent attribute-id="firstName"/>
</iteml abel >
</list-question>
</cl uster>
</ questi on- page>

Figure 25: List question

So rather than adding a question in the loop where the household member details are gathered,
once the household member details have been captured a list containing the household members
can be displayed. The user can then select the members that have income.

© Merative US L.P. 2012, 2024

Curam 8.1.2 36

List questions are particularly useful when used in conjunction with a for-each loop, referencing
the question that was set in the list-question in the criteria expression of the loop. List questions
can also be used with entity types other than Person.

Single-select

List questions can also be used when the selection should be mutually exclusive. When the
si ngl e- sel ect attribute of a list question is set to t r ue, only one of the items in the list can
be selected.

If for example, the requirement is to indicate which household member is the primary care giver,
an attribute can be added to the Person entity and a single-select list question can be added to the
script:

<xsd: el ement nanme="Per son">
<xsd: conpl exType>

ékéd:attribute nane="pri maryCareG ver" type="1EG BOOLEAN'/ >

Figure 26: Primary Care Giver Person Schema
<question-page i d="Pri maryCareG ver" ...>

<cl uster>
<list-question id="primryCareG ver" entity="Person"
single-select="true" criteria="age > 14">
<l abel id="PrimaryCareG ver. Label ">
<! [CDATA[Whi ch person is the primary care giver?]]>
</ | abel >
<item| abel >
<l abel -el ement attribute-id="firstNanme" />
</item| abel >
</list-question>
</cluster>

Figure 27: Single-select List Question

The above list question will cause list of the household members that are over 14 years old to be
displayed with a radio button next to each Person, thus allowing only one to be selected.

5.2 Code-table questions

If an attribute is defined in a DS schema as a code table, the default behavior is to display the
question as a drop-down menu. You can have single-select or multi-select code-table questions.

When using drop-down menus in your questions, ensure that you do not leave blank responses as
this can cause invalid HTML. To produce valid HTML, you must ensure that drop-down menus
always have a value for the default selected option. For example, “--Please choose an option--".

© Merative US L.P. 2012, 2024

5 Efficient Ways of Capturing Data 37

Single-select code-table questions

By default, only one answer can be selected in the menu. For example, to capture a household
member's home state, add a domain definition to represent the AddressState code table and add
a home state attribute to the Person entity as follows:

<question-page id="AboutYouPage" entity="Person">

<cluster>
<question id="homeState">
<label id="State.Label">
<! [CDATA[Please select your home state:]]>
</label>
</question>
</cluster>

You can add a question to capture the home state information to the script as follows:

<xsd:simpleType name="IEG STATE ADDRESS">
<xsd:annotation>
<xsd:appinfo>
<D:options>
<D:option name="code-table-name">AddressState</D:option>
</D:options>
</xsd:appinfo>
</xsd:annotation>
<xsd:restriction base="IEG CODETABLE CODE" />
</xsd:simpleType>

<xsd:element name="Person'">

<xsd:attribute name="homeState" type="IEG_ STATE ADDRESS" />

When the script runs, the question is displayed as a drop-down menu.

Multi-select code-table questions
You can also define code-table questions so that the user can make multiple selections.

When a code-table question is single-select, the answer to the question can be stored in a single
attribute of an entity. For multi-select code-table questions with multiple answers, you must add a
sequence to store the answers and define a new entity type for the answers in the sequence.

<xsd:element name="Person">

<xsd:complexType>
<xsd:sequence minOccurs="0">
<xsd:element ref="State" minOccurs="0"
maxOccurs="unbounded" />
</xsd:sequence>

</xsd:complexType>
</xsd:element>

<xsd:element name="State">
<xsd:complexType>
<xsd:attribute name="stateCode" type="IEG STATE ADDRESS" />
</xsd:complexType>
</xsd:element>

To make a code-table question multi-select, set the multi-select attribute of the question to

true.

© Merative US L.P. 2012, 2024

Curam 8.1.2 38

For a multi-select code-table question, you must map the cluster that contains the question to the
new entity type that represents the answers. In the example, the cluster is mapped to the State
entity.

The page that contains the multi-select question must be mapped to the entity that contains the
sequence. In this example, the page must be mapped to the Person entity.

Finally, for the options in a multi-select code-table question to be displayed, you must add a
layout element to the question to specify the number of rows to display. If the number of
options exceeds the number of rows that are specified in the layout, a scroll bar is added.

<question-page id="AboutYouPage" entity="Person">

<cluster entity="State">
<question id="stateCode" multi-select="true">
<label id="State.Label">
<! [CDATA[Please select the states you lived in:]]1>
</label>
<layout>
<num-rows>4</num-rows>
</layout>
</question>
</cluster>

When the script runs, the question is displayed as a list of the code-table descriptions with one
checkbox for each item.

5.3 Conditional Elements

IEG scripts can have multiple different conditional elements: sections, pages or clusters.
Conditional elements can be shown or hidden based on answers from previous pages or on data
pre-populated in the DS.

Conditional Sections

It is possible to remove sections from a script execution by evaluating an expression at the start
of the execution: if the section is not visible, it will not be listed in the sections panel and the
expression will not be re-evaluated during the script execution.

Using a pre-populated DS as described in 8.2 Pre-Populating Scripts with Captured Data
on page 71, we can set a flag on an entity depending on circumstances external to the
script. Let's say we have an entity called IntakeInformation that has a boolean attribute
"collectIncomelnformation". We can specify an Income section in our script:

<section

vi si bl e="I| nt akel nf ormati on. col | ect | nconel nf ormati on==true" >
</ section>

Figure 28: Visible Attribute of a Section

This will hide the Income section if the "collectincomelnformation" attribute is false, as if the
section was not present in the script definition.

© Merative US L.P. 2012, 2024

5 Efficient Ways of Capturing Data 39

If a section needs to be enabled or disabled depending on answers from previous sections, it is
possible to wrap all the pages of a section in a single condition. Unlike the visible attribute, this
condition will be evaluated whenever the section is encountered, which means it is possible to go
back and change an answer that affects the navigability of a section. The section will still appear
in the sections panel but will be grayed out so the user cannot click on it.

The preceding example can be modified so that the "collectincomeInformation" question is asked
at the start of the script. The Income section can then be modified as follows:

<section>
<condi tion
expressi on="1nt akel nf ormati on. col | ect I nconel nf ormati on">

</ condi ti on>
</ section>

Figure 29: Conditional Section

Conditional Pages

Pages can be displayed or not based on the value of a condition expression. Loops can be also
wrapped in these conditions.

The conditional section previously mentioned where one condition wraps all the section's content
is an example of conditional pages.

Conditional Clusters

Clusters can also be wrapped in a condition element. If the expression of the condition element

does not refer to any of the questions on the same page the cluster is a static conditional cluster.
That is because it can be determined before the pages is displayed whether to display the cluster
or not.

For example, if information about household members has been gathered you may wish to add
another page to ask further personal details including whether the person is pregnant. A new
i sPregnant attribute should be added to the Person entity to store this information:

<xsd: el enent nanme="Person">
<xsd: conpl exType>
<xsd:attribute name="i sPregnant" type="|EG BOOLEAN'/ >
Figure 30: Additional Person Attribute
Of course, this question is only applicable if the gender is female. Therefore the cluster can be

wrapped in a condition and it will only be displayed if the condition expression evaluates to true.
The new extra Person Details page can be defined as follows:

<questi on- page i d="About Thed i ent Conti nued" entity="Person" ...>
<condi tion expressi on="Person. gender ==" ; SX2" ; " >
<cl uster>

<question id="isPregnant" mandatory="true">
<l abel id="1sPregnant. Label">
Are you pregnant?
</ | abel >

© Merative US L.P. 2012, 2024

Curam 8.1.2 40

<hel p-text id="IsPregnant. Hel pText">
Are you pregnant?
</ hel p-text>
</ questi on>
</cluster>
</ condi tion>
</ quest i on- page>

Figure 31: Static Conditional Cluster

Alternatively, if any of the questions referenced in the condition expression are on the same page,
the cluster is then a dynamically conditional cluster. The means that the cluster will be displayed
and hidden as the user changes answers to questions on the page. This dynamic feature of IEG
requires that JavaScript is enabled in the browser. The expressions of dynamically conditional
cluster may not refer to custom functions, as the expressions are evaluated without making a
server call.

Without changing the DS schema, if the example above is changed so that the conditional cluster
is defined on the same page as the gender question the cluster will be a dynamically conditional
cluster.

<questi on- page id="About TheCient" entity="Person" ...>

<cl uster>
<title id="DetailsCuster.Title">
<! [CDATA[Personal Details]]>
</title>

<question id="gender" mandatory="true">
<| abel id="GCGender. Label ">
<! [CDATA[Gender:]]>
</ | abel >
</ questi on>

<condi ti on expressi on="Person. gender ==" ; SX2" ; " >
<cl uster>
<question id="isPregnant" mandatory="true">
<| abel id="IsPregnant. Label ">
<! [CDATA[Are you pregnant?]]>
</ | abel >
</ questi on>
</cl uster>
</ condi tion>
</ questi on- page>

Figure 32: Dynamically Conditional Cluster

The pregnancy question will dynamically appear or disappear when the value selected for

the gender changes. Dynamic behavior on a page can be triggered by text fields, date fields,
checkboxes, radio buttons, select elements. Dynamic behavior cannot be triggered by the answer
to a multi-select question or a question matrix, due to the restrictions of the expression syntax.

It should be noted that only one level of condition is allowed around a cluster, i.e. conditional
clusters cannot be nested in other conditions. The condition expression for a dynamically
condition cluster may refer to questions on the same page that are themselves defined in
dynamically conditional cluster. This creates a cascading dependency between clusters.

© Merative US L.P. 2012, 2024

5 Efficient Ways of Capturing Data 41

5.4 Question Matrices

A question matrix will display a list of questions based on a codetable and for each of these
codetable values and each entity, a checkbox will be displayed to allow the user to select all the
values that apply to a particular entity.

The list questions presented in 5.1 List Questions on page 35 ask the same boolean question
about a group of entities. It is possible to ask the same codetable question for a group of entities
using question matrices.

For example, suppose there is a requirement to capture possible levels of substance abuse for each
household member, a new domain definition can be added to represent the Subst anceAbuse
codetable and an attribute to store the level of substance abuse can be added to the Person entity
as follows:

<xsd: si npl eType nanme="| EG_SUBSTANCEABUSE" >
<xsd: annot at i on>
<xsd: appi nf 0>
<D: opti ons>
<D: opti on name="code-t abl e- nane" >Subst anceAbuse</
D: opti on>
</ D: opti ons>
</ xsd: appi nf 0>
</ xsd: annot ati on>
<xsd:restriction base="1EG CODETABLE CCDE" />
</ xsd: si npl eType>

<xsd: el ement nanme="Per son">
<xsd: conpl exType>

ékéd:attribute name="subst anceAbuse"
t ype="1 EG_SUBSTANCEABUSE" />

Figure 33: Substance Abuse Attribute

The question matrix is then defined as a regular list question, only the fact that it is based on a
codetable instead of a boolean will cause it to be displayed differently.

<list-question entity="Person" id="substanceAbuse"
criteria="age > 14">
<l abel id="SubstanceAbuse. Label ">
<! [CDATA[Subst ance Abuse:]]>
</ | abel >
<item| abel >
<l abel -el enent attribute-id="firstNanme" />
</iteml abel >
</list-question>

Figure 34: Question Matrix Code Example

The example above, of a question matrix that collects substance abuse information about multiple
household members, will be displayed in the IEG Player as a matrix with each row corresponding
to a codetable description and each column to a Person.

© Merative US L.P. 2012, 2024

Curam 8.1.2 42

5.5 Fast Path Navigation

By default, when a user reiterates through a script all the pages are re-displayed which can
become arduous especially in large households. Fast Path navigation enables end users to go
through IEG scripts more quickly by automatically skipping loop or conditional pages that have
already been answered.

This functionality is optional and switched off by default. It can be activated on loops and
conditions (to activate Fast Path navigation, see the Aut hori ng Scri pts using
Intelligent Evidence Gathering (IEG)guide.

The first time a fast path element is encountered, it behaves as normal. When the user navigates
through the script subsequently only the new pages within these fast path elements will be
displayed. The pages that were previously displayed will now be skipped. This functionality
doesn't prevent from editing the data via the edit links on a summary page if necessary.

Fast Path can be used in the following scenarios:
» List Question driving a Loop

+ Eligibility Criteria

* Fast Path Conditions

* Condition in Fast Path Loop

List Question driving a Loop

Using the same List Question as described in 5.1 List Questions on page 35, we want to
gather income information for the people in a household. We will use a nested fast path loop as
described in the following example:

<l oop | oop-type="for-each" entity="Person"
criteria="haslncome==true" fast-path="true">
<l oop | oop-type="while" | oop-expressi on="hashorel ncone"
entity="Inconme">
<questi on- page i d="I1nconePage" entity="I|ncone"
show person-tabs="true">
<title id="IncomePage. Title">
<!'[CDATA[| ncone Details]]>
</title>
<cl uster>
<title id="IncomeDetails.Title">
<! [CDATA[I ncone Details]]>
</title>
<question id="type">
<| abel id="Type. Label ">
<! [CDATA[Type:]]>
</ | abel >
</ questi on>
<question id="amunt">
<l abel id="Anount. Label ">
<! [CDATA[Amount :]]>
</ | abel >
</ questi on>
<question i d="hasMor el ncone"

© Merative US L.P. 2012, 2024

5 Efficient Ways of Capturing Data 43

control -question="true"

control -question-type="1 EG BOOLEAN" >

<| abel id="ContinueQuestion. Label">
<! [CDATA[Does %ls have any nore incone?]]>
<ar gurment id="Person.firstNanme" />

</ | abel >

</ questi on>
</cl uster>
</ questi on- page>
</| oop>
</ | oop>

Figure 35: Fast Path List Question driving a Loop Code Example

The first time the list question is encountered, the pages following the loop will gather income for
the people that have been selected. Then when re-visiting the page containing the list question,
the following can occur:

+ If'the checkboxes are not modified, clicking Next will jump over the income loop and display
the page after the loop.

+ If some of the checkboxes are unselected, clicking Next will delete the incomes corresponding
to the people that were unselected, jump over the income loop and display the page after the
loop.

» Ifnew checkboxes are checked, clicking Next will jump over the existing income pages, show
new income pages for the newly selected people and then display the page after the loop.

» If new checkboxes are checked and others are unselected, clicking Next will delete the
incomes corresponding to the people that were unselected,jump over the existing income
pages, show new income pages for the newly selected people and then display the page after
the loop.

Eligibility Criteria

Building on the previous scenario, we can filter the people that will be displayed in the list
question (the loop does not need to be modified). Only the people over 18 will be eligible to enter
income so a criteria is added to the list question. When reiterating through the script people may
no longer match the criteria and therefore not appear in the list.

<list-question id="haslncone" entity="Person" criteria="age >
18" >
<| abel id="Hasl ncone. Label ">
<! [CDATA[Whi ch peopl e have incone?]]>
</ | abel >
<item| abel >
<l abel -el enent attribute-id="firstNanme" />
</[iteml abel >
</list-question>

Figure 36: Fast Path List Question with Eligibility Criteria driving a Loop Code Example

This will behave as mentioned in the previous scenario, but if the date of birth of a person is
modified, the following will happen:

» If the person becomes ineligible (under 18) and income had been entered, the corresponding
income will get automatically deleted as soon as the new date of birth is submitted.

© Merative US L.P. 2012, 2024

Curam 8.1.2 44

+ If'the person becomes eligible (over 18), it will be displayed in the list question (but not
selected) the next time the list question page is displayed.

Fast Path Conditions

We can ask pregnancy details for female household members using a conditional page. If the
condition is defined as fast path, the pregnancy details will be hidden when re-iterating over
household members as the pages in the condition will only be displayed when reiterating through
the script if the condition previously evaluated to false and something has changed so the
condition now evaluates to true.

<questi on- page i d="About YouPage" entity="Person">
<title id="PrimryPersonPage. Title">
<! [CDATA[About You]] >
</title>
<cl uster>
<title id="Detail sCluster.Title">
<! [CDATA[Per sonal Details]]>
</title>
<question id="firstNane" nandatory="true">
<l abel id="FirstName.Label ">
<I[CDATA[First Nane:]]>
</ | abel >
</ questi on>
<question id="m ddl eNane" >
<l abel id="M ddl eNane. Label ">
<! [CDATA| M ddl e Nane:]]>
</ | abel >
</ questi on>
<question id="| ast Nane">
<l abel id="IastNane. Label ">
<! [CDATA[Last Nane:]]>
</ | abel >
</ questi on>
<question id="gender" mandatory="true">
<l abel id="Gender. Label ">
<! [CDATA[Gender:]]>
</ | abel >
</ questi on>
<question id="dateO'Birth" mandatory="true">
<l abel id="DateOBirth.Label">
<I|[CDATA[Date O Birth:]]>
</ | abel >
</ questi on>
</cluster>
</ questi on- page>
<condi tion expressi on="Person. gender ==" ; SX2" ; "
fast-path="true">
<questi on- page i d="PregnancyPage" entity="Person">
<title id="PregnancyPage. Title">
<! [CDATA[About You: pregnancy]]>
</title>
<cl uster>
<title id="Detail sCluster.Title">

© Merative US L.P. 2012, 2024

5 Efficient Ways of Capturing Data 45

<! [CDATA[Per sonal Details About Your Pregnancy]]>

</title>

<question id="isPregnant" >
<| abel id="1sPregnant. Label">

<! [CDATA[Are you pregnant?]]>

</ | abel >

</ questi on>

</cluster>
</ questi on- page>
</ condi ti on>

Figure 37: Fast Path Conditions Code Example

When editing the personal details, the following can occur:

* Ifno change was made to the gender, clicking on Next will jump over the condition, whether it
was displayed the first time or not.

» If the gender has changed from Male to Female, clicking on Next will display the conditional
page to enter pregnancy details.

+ If'the gender has changed from Female to Male, clicking on Next will delete the pregnancy
details and display the page after the condition.

Condition in Fast Path Loop

When a condition is defined inside a Fast Path loop, this will behave the same as when a criteria
is used on the loop instead of nesting a condition, with the following exception: if the condition
becomes true, the page contained within the condition cannot be displayed as the loop doesn't
have a new iteration to show and therefore will be skipped. If the condition becomes false, the
page and associated data will not be deleted as the condition is not re-evaluated.

It is therefore recommended to use a criteria on the loop instead of a condition.

<l oop | oop-type="for-each" entity="Person"
fast-path="true">
<condi ti on expressi on="Person. hasl ncome==true" >
<l oop | oop-type="while" | oop-expressi on="hasMor el ncone"
entity="Ilncone">
<questi on- page i d="InconePage" entity="Incone"
show per son-tabs="true">
<title id="InconePage. Title">
<! [CDATA[| ncone Details]]>
</title>
<cl uster>
<title id="InconmeDetails. Title">
<!'[CDATA[| nconme Details]]>
</title>
<question id="type">
<l abel id="Type. Label ">
<! [CDATA[Type:]]>
</ | abel >
</ questi on>
<question id="anmount">
<l abel id="Anount. Label ">
<! [CDATA[Arount :]] >
</ | abel >
</ questi on>

© Merative US L.P. 2012, 2024

Curam 8.1.2 46

<question i d="hasMor el ncone"
control -question="true"
control -question-type="1 EG BOOLEAN' >
<l abel id="ContinueQuestion. Label ">
<! [CDATA[Does %ls have any nore incone?]]>
<ar gurment id="Person.firstName" />
</ | abel >
</ questi on>
</cl uster>
</ questi on- page>
</ | oop>
</ condi tion>
</ | oop>

Figure 38: Condition in Fast Path loop Code Example

5.6 Implicit Delete

Wherever possible, the IEG engine tries to delete data as soon it finds out that it is no longer
relevant.

If an answer is explicitly modified by the user (through a regular question, a list-question or a set-
attribute, but not through a custom function call), the engine detects if this answer is used in a
condition expression, a list-question criteria or a loop criteria. If that is the case, the expression

or criteria is re-evaluated and if it becomes false, the corresponding pages are removed and the
associated data gets deleted without the need to go through the script to encounter the expressions
or criterion.

5.7 Three Field Date Picker

Whenever a date needs to be entered by a user, the default input field shows a plain text field and
a date picker. The user is free to either enter the date manually (for example, '5/6/2010") or to
click on the relevant date in the calendar widget. The former can be effective for power users and
the latter is quite handy for dates that are not too far in the past or in the future. But for non-power
users that need to enter dates well in the past (the obvious example is a date of birth), the default
date picker can require a lot of clicks to get to the relevant date.

Another date picker exists in the form of three fields displayed side by side, each representing the
three date parts (day, month, year). This lets users select dates in a much faster way and prevents
invalid dates being typed.

To switch from the default date picker to the three-field one, the date attribute being captured
should be defined in the data store schema using the 7/EG_THREE FIELD DATE'type or a
domain that extends it:

<xs:element name="Person">
<xs:complexType>

<xs:attribute name="dateOfBirth" type="IEG_THREE_FIELD DATE"/>

The order of the drop-down elements and the display values of the month element reflect the date
format, as configured by the date format property in the ApplicationConfiguration.properties file.

© Merative US L.P. 2012, 2024

5 Efficient Ways of Capturing Data 47

The day drop-down is populated with numbers ranging from 1 to 31. Validation at infrastructure
level prevents users from selecting an invalid date, for example, February 31, 2015. The year
drop-down element is populated with values starting 100 years in the past to 30 years in the
future. The range and order of the options are not configurable.

© Merative US L.P. 2012, 2024

Curam 8.1.2 48

© Merative US L.P. 2012, 2024

6 Other Script Development Considerations 49

6 Other Script Development Considerations

You might need to display data in a read-only mode or to invoke external functionality. Some
things must be considered when maintaining IEG scripts, placing scripts under source control and
loading scripts into the database.

6.1 Displaying Data as Read-Only

Sometimes the answers to some questions need to be displayed to the user in such a way that
they cannot be modified. This is already the case on summary pages where users can review the
answers and use the back button or edit links to modify them.

On a question page, a "read-only" boolean attribute can be set to true indicating that all the
questions displayed on the page will not be editable.

A more sophisticated mechanism exists: "read-only-expression" attributes can be used on
different script elements (sections, all types of pages, clusters, questions and list questions). If the
expression evaluates to true, this will apply to all the questions contained in the element. At its
simplest, the expression will be "true" if the element needs to be unconditionally read-only. On a
summary page, the result is that add, edit and delete links are not displayed.

In the case of read-only-expression defined for cluster, question and list question script elements,
if any of the questions referenced in the expression are on the same page as the script element the
script element is then dynamically enabled or disabled as opposed to just being read-only. This
means that questions will be enabled and disabled as the user changes answers to other questions
on the page. Where the read-only-expression of a cluster references a question on the same page
all the questions contained in the cluster will be enabled and disabled. This dynamic feature of
IEG requires that JavaScript is enabled in the browser. The expressions to dynamically enable
and disable questions may not refer to custom functions, as the expressions are evaluated without
making a server call.

Dynamic read-only-expressions may also refer to questions on the same page that are themselves
dynamically enabled and disabled. This creates a cascading dependency between questions. Care
should be taken when defining expressions with cascading dependencies as IEG does not take
into account whether the questions referred to in the read-only-expression is enabled or not, just
the value of the question. This may be confusing for the user as it may not be apparent what is
controlling the enabling and disabling of a question.

When a question is displayed if the corresponding Datastore attribute has a value it will be
displayed even if the question is initially disabled. The question may then be enabled by the

user and the user may change the answer. If the question is disabled its value will set back to the
value it had when initially displayed. When a page is submitted the Datastore attribute will not be
updated unless the question is enabled. Therefore if the page is redisplayed the original value of
the Datastore attribute will be displayed again.

It is not possible to mark a question as mandatory if it also has a dynamic read-only-expression
on the question itself or one of its parent elements.

Dynamically enabling and disabling script elements is not supported on Relationship Pages.

© Merative US L.P. 2012, 2024

Curam 8.1.2 50

The information gathered in loops can be displayed on summary pages using lists, but it is

also possible to use this list construct on regular pages without the need to specify a read-only-
expression in one of the elements wrapping the list. The only difference with summary lists is that
links are not allowed.

Another possibility is to make a whole script read-only. This is useful, for example, if a case-
worker needs to review a script without being able to change any of the answers. The script is set
to read-only through the IEGRuntimeAPI by setting a read-only flag on the script execution, as
shown below:

//Set read only flag.

| EGRuntime runti meAPl = new | EGRunti nme();

| EGScri pt Executionl D runti meExecl D = new | EGScri pt Executi onl D();
runti meExecl D. executionl D = execution. get Executionl I();

| EGReadOnl yFl ag readOnl yFl ag = new | EGReadOnl yFl ag() ;

readOnl yFl ag. readOnl yFl ag = true;

runti meAPl . set ReadOnl yFl ag(runti neExecl D, readOnl yFl ag) ;

Figure 39: Setting the read-only flag on a script execution

6.2 Invoking external functionality by using expressions and
custom functions

Expressions can be defined in multiple places in scripts to define behavior such as loops
or conditions. These expressions can refer to answers and can combine them using various
operators, and they can call external functions, which are called custom functions.

Expressions cannot call custom functions when used on dynamic conditional clusters as these
expressions are evaluated in the browser.

Custom functions are defined in Java™ code and depending on their usage, they can be one of two
types:

* Custom functions that can take parameters, possibly making a call to external functionality,
and return a value. They do not change the content of the datastore. They are used in most
expressions.

+ Custom functions where you want to update the content of the datastore use the stand-alone
callout element. The returned value is irrelevant but it must be a Boolean value. These
custom functions must not update values that were answered before the callout. The IEG
Engine is unaware of updates that are made outside the context of the script, and cannot take
any actions that might be required by the updates.

For example, on a personal details page, you might need to call external functionality to validate
a US ZIP code that a user has supplied or to populate a US State field based on a supplied ZIP
code. Let's look at how you might implement these two use cases.

Update the datastore schema to add two extra attributes to the Person entity, as follows:

<xsd:attribute name="state" type="IEG STRING"/>
<xsd:attribute name="zipCode" type="IEG STRING"/>

First, let's try to validate a ZIP code against a state (this is a naive implementation): a ZIP code
must be five digits long and the first three digits indicate the state.

© Merative US L.P. 2012, 2024

6 Other Script Development Considerations 51

The personal details page and the corresponding summary page can be modified with two extra
mandatory questions in the script definition: state and zipCode:

<question id="state" mandatory="true">
<label id="State.Label">
State:
</label>
<help-text id="State.HelpText">
The state you live in
</help-text>
</question>
<question id="zipCode" mandatory="true">
<label id="ZipCode.Label">
ZIP Code:
</label>
<help-text id="ZipCode.HelpText">
Your ZIP code
</help-text>
</question>

Create the custom function that performs the validation as a Java™ class in the
curam.rules.functions package. The following custom function validates the ZIP code:

public class CustomFunctionValidateZipCode extends CustomFunctor {

public Adaptor getAdaptorValue (final RulesParameters rp)
throws AppException, InformationalException {

final List<Adaptor> parameters = getParameters();
final String zipCode =

((StringAdaptor) parameters.get(0)).getStringValue (rp);
final String state =

((StringAdaptor) parameters.get(l)) .getStringValue (rp);
boolean valid = false;

if (zipCode.length() == 5) {
final String prefix = zipCode.substring (0, 3);
//lookup the state prefixes
if (prefix.equals("100")
&& state.equalsIgnoreCase ("New York")) {
valid = true;
}
if (prefix.equals("900")
&& state.equalsIgnoreCase ("California™)) {
valid = true;
}
}

return AdaptorFactory.getBooleanAdaptor (Boolean.valueOf (valid));
}

Insert the following metadata for the custom function in <your conponent >/ r ul eset s/
functions/ Cust onfuncti onMet aDat a. xm :

<CustomFunctor name="CustomFunctionValidateZipCode">
<parameters>
<parameter>
curam.util.rules.functor.Adaptor$StringAdaptor
</parameter>
<parameter>
curam.util.rules.functor.Adaptor$StringAdaptor
</parameter>
</parameters>
<returns>curam.util.rules.functor.Adaptor$BooleanAdaptor</returns>
</CustomFunctor>

In the example, the validateZipCode custom function doesn't access an external database
to look up the corresponding state. Ideally, the custom function would look up and check the
returned state against the entered state. For simplicity, two ZIP code prefixes were hardcoded.

© Merative US L.P. 2012, 2024

Curam 8.1.2 52

The validation is then inserted in the script definition for the personal details page.

<validation
expression="ValidateZipCode (Person.zipCode, Person.state)">
<message id="InvalidZipCode">
The ZIP code is invalid.
</message>
</validation>

When the user clicks Next, the answers to the zipCode and state questions are passed to the
custom function, which returns true if the answers are valid. The next page is then displayed.

If the custom function returns false, the message that is specified in the validation is displayed at
the top of the Person details page, blocking the access to the Next page until valid answers are
submitted.

The custom function has no side effect as it doesn't alter anything. It performs an operation based
on the parameters and returns a result.

You can also remove the mandatory flag on the two new questions and validate the answers only
if they have both been supplied. Change the validation expression to use the i sNotNull custom
function that is provided in the application, which checks whether the parameter is null:

"not (isNotNull (Person.zipCode) and isNotNull (Person.state))
or ValidateZipCode (Person.zipCode, Person.state)"

Alternatively, you can populate the state question by using the zipCode. On the Person details
page, ask for the zipCode only, with a mandatory flag, and the summary page then displays both
state and zipCode.

© Merative US L.P. 2012, 2024

6 Other Script Development Considerations 53

You can define the following custom function:

public class CustomFunctionpopulateState extends CustomFunctor ({

public Adaptor getAdaptorValue (final RulesParameters rp)
throws AppException, InformationalException {

final IEG2Context ieg2Context = (IEG2Context) rp;
final long rootEntityID = ieg2Context.getRootEntityID();
String schemaName;
//schemaName has to be hard-coded or retrieved outside of IEG
Datastore ds = null;
try {
ds =
DatastoreFactory.newInstance () .openDatastore (
schemaName) ;
} catch (NoSuchSchemaException e) {
throw new AppException (IEG.ID_SCHEMA NOT_ FOUND) ;
}

Entity applicationEntity = ds.readEntity(rootEntityID) ;

Entity personEntity =
applicationEntity.getChildEntities (

ds.getEntityType ("Person")) [0];
String zipCode = personEntity.getAttribute ("zipCode");
String state = "Unknown";

final String prefix = zipCode.substring (0, 3);
//lookup the state prefixes

if (prefix.equals("100")) {
state = "New York";

}

if (prefix.equals("900")) {
state = "California";

}

personEntity.setAttribute ("state", state);
personEntity.update () ;

return AdaptorFactory.getBooleanAdaptor (new Boolean (true)) ;

And its metadata:

<CustomFunctor name="CustomFunctionpopulateState">
<returns>curam.util.rules.functor.Adaptor$BooleanAdaptor</returns>
</CustomFunctor>

Between the Person details page and the summary page, insert a callout element in the script
definition to call this custom function, as follows:

<callout id="populateAddress" expression="populateState()"/>

This time, the custom function alters the datastore by populating the state on the Person entity.
The context contains the root entity ID and executionID, making it easier to update the datastore.
If the callout is in a loop, the context also contains the current entity ID.

6.3 Reusing Scripts

It is possible to break down a script definition into multiple files thus providing a re-use
mechanism.

In order to achieve this, a script definition will have to reference subscripts. Each of these
subscripts will be a standalone script that can be run independently.

© Merative US L.P. 2012, 2024

Curam 8.1.2 54

Here is an example of a script that can be used as a subscript:

<?xm version="1.0" encodi ng="UTF-8"?>
<ieg-script ...>

<identifier id="Subscript" scriptversionnunber="V1"
type="Test" />

<guesti on- page ...>

</ quest i on- page>
</ieg-script>
Figure 40: Subscript Containing Pages

The script in the above example code snippet can be included in another script as a subscript, as
follows:

<?xm version="1.0" encodi ng="UTF-8"?>
<ieg-script ...>
<identifier id="Script" scriptversionnunber="V1l" type="Test" />
<section>
<i eg- sub-scri pt >
<identifier id="Subscript"
scri ptversi onnunber ="V1" type="Test" />
</ieg-sub-script>
</ section>
<section>

</ section>
</ieg-script>
Figure 41: Inclusion of a Subscript in a Script

The possible point of insertion of a subscript in a script can be as follows:

 If the script contains sections and the subscript also contains sections, the subscript will have
to be inserted at the top level, under the parent ieg-script element.

+ If'the script contains sections and the subscript doesn't contain sections, the subscript will have
to be inserted in a section of the parent script.

+ If'the script doesn't contain sections, the subscript cannot contain sections. It will be inserted at
the top level, under the ieg-script element.

Another limitation to keep in mind is that a subscript can appear only once in a script as the page
IDs must be unique within the resulting script.

Note that a script might be used as a subscript elsewhere. When modifying scripts, ensure that
any referencing scripts are re-tested to ensure the changes do not have an undesired impact.

6.4 Source Control and Versioning

IEG script definitions are stored in the database. When editing an IEG script using the IEG
Editor, the script is edited in place and updated directly in the database. IEG script definitions
are development artifacts and from a software configuration management point of view it is
important that these artifacts are placed under source control as you would with any other
artifacts.

© Merative US L.P. 2012, 2024

6 Other Script Development Considerations 55

It is possible to download a script definition from the IEG script administration screens. When
the option to download a script is chosen, the script is first retrieved from the database, then the
properties files associated with the script definition are retrieved from the Resource Store and the
textual properties are "injected" into the script definition before it is made available. However
downloading a script in this way does not provide all the resources that may be associated with a
script definition. For example, it does not provide properties files in multiple locales and it does
not provide images and icons. For more information about the database representation of an IEG
script, see see the Authoring Scripts using Intelligent Evidence Gathering Guide .

When populating the database with script definitions, it is important to be aware of the
differences in functionality between importing a script through the IEG script administration
screens and loading a script definitions via DMX files.

6.5 Rendering Custom HTML on a Summary Page

You can use the custom-output display element to render custom HTML on a summary page.
The custom-output display element enables data from a data store instance to be retrieved and
accessed from a custom renderer so that the data can be rendered by using custom HTML.

Some summary pages might contain much material that is displayed on multiple pages.
Therefore, you might want to implement custom layout requirements so that you can use user
interface design concepts. For example, you might want to use cards to format Intelligent
Evidence Gathering (IEG) summary data in a user-friendly layout that is oriented to data types.

By using the custom-output display element to render custom HTML, you can implement
custom-rendered clusters that include images and rich text formatting on a summary page.
Custom-rendered clusters enable a summary of the data that is provided by a client to be
displayed in a more visually appealing format.

Script description

The following sample shows an example instantiation of the custom-output display element in
a summary-page element.

<summary-page id="HouseholdSummary">
<title id="HouseholdSummary.Title"><![CDATA[Household Summary]]></title>
<icon image="sample title household" />
<custom-output
class-name="curam.ieg.player.custom.IEGSampleCustomRenderer"
data-accessor="curam.ieg.player.custom.IEGSampleCustomOutputDataAccessor" />

</summary-page>

* custom-output element

The custom-output element is an optional child element of the summary-page display
element. You can use the custom-output element only within a summary-page element.
You can include multiple custom-output elements in a single summary page or in multiple
summary pages, in any order, similarly to cluster, 1ist, condition, and relationship-
summary-1ist elements.

The custom-output element has two mandatory attributes, a data-accessor attribute, and
a class-name attribute. The custom-output element has no child elements.

© Merative US L.P. 2012, 2024

Curam 8.1.2 56

How to

* custom-output attributes
¢ data-accessor attribute

The data-accessor attribute represents the name of the data accessor class that is used to
retrieve entity data that is rendered as required in the custom renderer class that is specified
in the class-name attribute. The fully qualified name of the data accessor class must be
specified in the attribute field.

For each custom-output element, the data that is retrieved by the specified data accessor
class is unique to the associated, specified custom renderer class. For example, if two
custom-output elements are instantiated on a summary page, a different data-accessor
class but the same custom renderer class can be specified for both elements. For the first
custom-output element, the data accessor class retrieves only person entity data. For

the second custom-outputelement, the data-accessor class retrieves only income entity
data. Therefore, for the first custom-output element, the custom renderer can access
only person entity data. For the second custom-output element, the custom renderer can
access only income entity data.

* class-name attribute

The class-name attribute represents the name of the custom renderer class that is used to
output custom HTML on a summary page. The class-name attribute value must specify
the fully qualified name of the custom renderer class.

use the custom-output element

To render custom HTML on a summary page, you must configure a data accessor class and a
custom renderer class.

Data accessor class

You must create a data accessor class that is used to retrieve entity data from a data store
instance. The data can then be processed within a custom renderer class. The data accessor

class must implement the curam.ieg.external.impl.IEGCustomOutputEntityData
interface and its getRequiredEntitiesForCustomOutput (IEGScriptExecution)
method. The getRequiredEntitiesForCustomOutput method returns a list of string objects
that represent the entity data and that can be read by a custom renderer on the client side.

Optionally, a data accessor class can also inherit from the
curam.ieg.external.impl.IEGCustomOutputDataAccessor class. The
curam.ieg.external.impl.IEGCustomOutputDataAccessor class contains
several utility APIs that are provided to enable entity data from the data store to

be accessed more easily. The following list gives a brief description of the APIs.
For a full description, see the Javadoc documentation for the methods in the
curam.ieg.external.impl.IEGCustomOutputDataAccessor class.

¢ List<String> getRequiredEntities (List<String>, IEGScriptExecution)
This method returns a list of XML strings that contain entity data for a list of specified entity
type names.

* List<String> getTopLevelEntities (IEGScriptExecution)
This method returns a list of strings that contains the names of the direct child entities of the
root entity.

© Merative US L.P. 2012, 2024

6 Other Script Development Considerations 57

* List<String> getEntityXML (List<Entity>)
This method returns entity data in an XML string format. The following example shows a
sample XML string for an income entity with two attributes, type and amount:

<Income type="Wages" amount="10000"/>

¢ List<String> getChildEntityXML (List<Entity>, String,
IEGScriptExecution)
This method returns a list of strings that contain entity data that is of a specified child entity

type.

Custom renderer class

You must also create a custom renderer class that is used to create and render custom HTML. The
custom renderer class must inherit from the curam.ieg.player.IEGCustomOutputRenderer
class. The curam.ieg.player.IEGCustomOutputRenderer class contains several

utility APIs that are provided to enable a custom renderer to access and process data

that is retrieved by a data accessor class. The following list gives a brief description of

the APIs. For a full description, see the Javadoc documentation for the methods in the
curam.ieg.player.IEGCustomOutputRenderer class.

* List<Node> getEntityXMLData (Component, RendererContext)
This method gets the required entity data that was retrieved by the associated data accessor
class for a custom renderer. Entity data for a custom renderer is retrieved in an XML string
format and returned as a list of node objects.

¢ List<String> getEntityData (Component, RendererContext)
This method gets the required entity data was retrieved by the associated data accessor class
for a custom renderer. Entity data for a custom renderer is retrieved and returned as a list of
strings.

¢ List<Node> parseXMLString(String)
This method parses an XML String into a list of node objects.

* String getlocalizedText (Component, RendererContext, String,
List<String>)
This method returns the localized text for a specified property.

* String getlocalizedCodeTableItemValue (String, String, RendererContext)
This method returns the localized value of the specified code table item.

* String getlocalizedMoneyString(String)
This method returns a localized string that represents a money value.

* String getlocalizedBooleanString (RendererContext, String)
This method returns a localized string that represents a Boolean value.

* String getlocalizedDateString(String)
This method returns a localized string that represents a date value.

* String getlocalizedImageFromResourceStore (String, RendererContext)
This method returns the relative URI for an image from the resource store for the current
locale.

Both data accessor classes and custom renderer classes can be reused multiple times by different
custom-output elements.

© Merative US L.P. 2012, 2024

Curam 8.1.2 58

Guidelines for using the custom-output element

When you add a custom-output element to a summary page, if custom properties are required
to be used within a custom renderer class, you must add the properties to the properties file for the
summary page. The custom renderer class must then reference the required properties directly.

For example, you can retrieve text from a properties file within a custom renderer by calling the
getLocalizedText (Component, RendererContext, String, List<String>) method.
If required, pass the property name and a list of arguments for the property as parameters into the
method. The localized text for the property is returned. Similarly, you can also retrieve images
from the resource store by calling the getLocalizedImageFromResourceStore (String,
RendererContext) method. Pass the name of the image as a parameter into the method, and the
relative image URI is returned. You can set the URI value as the source for an image element.

The custom-output element enables data from a data store instance to be retrieved and then
rendered on a summary page by using custom HTML. When you use the custom-output
element, use the following guidelines:

* API methods
Several API methods are provided in the
curam.ieg.player.IEGCustomOutputRenderer class to handle the localization of the
different data types that can be used within custom renderers. It is recommended that you use
the methods to return localized versions for each of the data types within a custom renderer.
No API methods are supplied for number formatting. The following table lists the data types
for which localization APIs are provided:

Table 2: Data types and associated API localization methods

Data type Method

String getLocalizedText (Component, RendererContext, String,
List<String>)

Codetable getLocalizedCodeTableItemValue (String, String, RendererContext)

Note: Codetable
hierarchies are not

supported.
Money getLocalizedMoneyString (String)
Boolean getLocalizedBooleanString (RendererContext, String)
Date getLocalizedDateString (String)

* Retrieving entity data

* You must use data accessor classes to retrieve entity data that can then be rendered in a
custom renderer class. Data accessor classes support only the reading of data from the data
store. The editing of data store data within a data accessor class might cause adverse effects
and is not supported.

» Retrieving a large amount of entity data from the data store within a data accessor class can
affect the overall performance of an IEG page. Therefore, take care when you consider how
many custom-output elements are included on a summary page.

* Within custom renderer classes, where it is possible to retrieve data such as images and
properties, ensure that you retrieve data only from the resource store.

© Merative US L.P. 2012, 2024

6 Other Script Development Considerations 59

* Instantiating the custom-output element
Import IEG script definitions that contain the new custom-output element into the database
by using one of the following options:

* ieg.importscript command line build option
* database command line build option

Do not use the option in the administration section of the application to import an IEG script
that contains custom-output elements. Any associated properties that are specified for a
custom renderer are not included in the script definition. Instead, the properties are defined
directly in the associated property file of the summary page where the custom-output
elements are instantiated.

* Rendering custom HTML

* The HTML that is output by a custom renderer can contain only read-only fields. The
HTML output must not contain any editable fields because no infrastructure is provided
that allows data to be either entered or modified through the mechanism of the custom
output feature.

* The custom HTML that is created must be valid HTML within the context of an IEG page.
For example, it is valid to insert a div tag as a starting point for the custom HTML, but
inserting an html tag as a starting point within a custom renderer might cause adverse
effects.

* Ensure that the custom renderer does not delegate to other renderers to output HTML on a
summary page.

* Ensure that the custom HTML complies with accessibility standards.

» If specific custom HTML for right-to-left languages and high contrast mode is required,
use the custom renderer to create the custom HTML.

Sample code for rendering custom HTML

The following sample code shows an example of how to set up the custom-output element and
its required classes. The sample code outputs the first names of all the people in the household in
a custom cluster at the top of a summary page. The example also demonstrates how text from a

properties file and images can be retrieved from the resource store and used in a custom renderer.

Data accessor class

The following sample data accessor code implements the supplied
curam.ieg.external.impl.IEGCustomOutputEntityData interface and

its getRequiredEntitiesForCustomOutput (IEGScriptExecution)

method. The code then specifies that person entity data is required for the

particular custom-output element. To retrieve the person entity data, the
getRequiredEntities (List<String>, IEGScriptExecution) API method is

© Merative US L.P. 2012, 2024

Curam 8.1.2 60

called. The data accessor class can access the API method because the class inherits from the
curam.ieg.external.impl.IEGCustomOutputDataAccessor class.

package curam.ieg.player.custom;

public class IEGSampleCustomOutputDataAccessor extends
IEGCustomOutputDataAccessor implements IEGCustomOutputEntityData {

public IEGSampleCustomOutputDataAccessor () {
}

public List setRequiredEntities() {
// Create a list of required entity types
List entityListForCustomOutput = new ArrayList();
entityListForCustomOutput.add ("Person") ;
return entityListForCustomOutput;
}
@Override
public List getRequiredEntitiesForCustomOutput (final IEGScriptExecution
execution)
throws AppException, InformationalException ({
// Returns a list of XML strings for Entities of the required entity types.
final List entitylList = getRequiredEntities (setRequiredEntities (), execution);
return entityList;

}
}

Custom renderer class

The sample custom renderer class accesses the data that was retrieved by the data accessor class,
processes it, and then creates HTML to render the data. To render the data, the custom renderer

© Merative US L.P. 2012, 2024

6 Other Script Development Considerations 61

inherits from the supplied curam.ieg.player.IEGCustomOutputRenderer class. You can
style HTML in custom renderers by using either CSS, or inline styling.

package curam.ieg.player.custom;
public class IEGSampleCustomRenderer extends IEGCustomOutputRenderer ({

@Override

public void render (final Component component,

final DocumentFragment fragment, final RendererContext context,
final RendererContract contract) throws ClientException,
DataAccessException, PlugInException {

// Get the owner document from the fragment
final Document ownerDocument = fragment.getOwnerDocument () ;

// CSS classes for customOutput divs
final String customOutputClass = "customOutput";

// Create the required HTML elements
final Element customOutputDiv = ownerDocument.createElement (kDiv) ;
customOutputDiv.setAttribute (kClass, customOutputClass);

final Element customOutputHouseholdContentDiv =
ownerDocument.createElement (kDiv) ;

final Element customOutputHouseholdTitle =
ownerDocument.createElement (kH2) ;

/*
* Calls the provided API method to retrieve the localized title text from
* a properties file.

*/

final String householdTitle = getLocalizedText (component,

context, "CustomHousehold.Title",

new ArrayList());

customOutputHouseholdTitle.setTextContent (
householdTitle) ;

// Create a div to hold the household icon
final Element customOutputHouseholdImageDiv =
ownerDocument.createElement (kDiv) ;

// Create the household icon using an image from the resource store.
final Element customOutputHouseholdImage =
ownerDocument.createElement (kImg) ;

/*

* Calls the provided API method to retrieve the image from the resource
* store

./

customOutputHouseholdImage.setAttribute (kSrc,
getLocalizedImageFromResourceStore ("household.png", context));

customOutputHouseholdImageDiv.appendChild (
customOutputHouseholdImage) ;
customOutputHouseholdContentDiv.appendChild (
customOutputHouseholdTitle) ;

// Set the attribute name for the entity

final List personAttributeNames = new ArrayList();
personAttributeNames.add ("firstName") ;
/*

* Calls the provided API method to access the entity data the data
* accessor class retrieved.

v

final List nodelist = getEntityXMLData (component, context);

Element element;

// Navigate through the node list

for (final Node node: nodelList) {

if (node.getNodeName () .equals ("Person")) {

element = processPersonDetails (

personAttributeNames, node.getAttributes (), fragment, context,
component, customOutputHouseholdTitle) ;

© Merative US L.P. 2012, 2024

Curam 8.1.2 62

Sample properties file for a summary page with a custom-output element

The following sample code shows an example of how to add a custom property to the properties
file for the summary page that contains the custom-output element:

CustomHousehold.Title=Household Details:

Sample IEG script

In the following IEG Script, the custom-output element has been added before a list element
on a summary page:

<summary-page id="HouseholdSummary" progress="45"

show-back-button="true" show-exit-button="false"

show-save-exit-button="true" show-next-button="true" set-focus="true">

<title id="HouseholdSummary.Title"><![CDATA[Household Summary]]></title>

<icon image="sample title household" />

<custom-output
class-name="curam.ieg.player.custom.IEGSampleCustomRenderer"
data-accessor="curam.ieg.player.custom.IEGSampleCustomOutputDataAccessor" /

<list entity="Person">
<title id="PersonList.Title"><![CDATA[People in your household]]></title>
<column id="firstName">
<title id="FirstName.Title"><![CDATA[First Name]]></title>
</column>
</list>
</summary-page>

© Merative US L.P. 2012, 2024

7 Integrating IEG into a Caram Application 63

7 Integrating IEG into a Ciram Application

This section outlines how IEG can be integrated into an application. IEG can be integrated in two
ways: either by opening the player in a tab or in a modal dialog. The integration tasks that are
dealt with here include creating the script execution; setting finish and quit pages; running in a
tab; running in a modal; cleaning up application data; and resuming scripts.

7.1 Creating a Script Execution

It is recommended that, before opening the IEG Player from an application, the script execution is
created using the public API. The execution ID can then be passed to the player.

The following example code snippet shows the creation of a script execution using the public
APIL:

/1l create the script execution

final 1ECGRuntime runti meAPlI = new | EGRunti me();

final |EGScriptExecutionldentifier executionldentifier =
runti meAPl . creat eScri pt Execution(iegScriptlD, schemaNane);

Figure 42: Creation of a script execution

7.2 Specifying a Redirection URL

The finish-page and quit-page attributes in an IEG Script indicate what URL to redirect to
when leaving the IEG Player. In this way they provide a connection between the IEG Player and
an application.

These attributes are detailed in the | EG Scri pt El enent Ref er ence chapter of the
Aut horing Scripts using Intelligent Evidence Gathering (IEQ
developer's guide.

Modify the example script to include these attributes as shown below:

<i eg-script
finish-page="1EG_listA llE&Scripts"
quit-page="1E&Q |listA |l E&QScripts”
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schema- i nst ance"
xsi : noNanmespaceSchemaLocat i on="i eg- schema. xsd" >

<i eg-script>
Figure 43: Script with finish-page and quit-page defined

In the example above, completion or exit from the script will result in redirection to the list of all
IEG scripts provided in the administration screens.

© Merative US L.P. 2012, 2024

Curam 8.1.2 64

7.3 Running the IEG Player in a Tab

Running the IEG Player in a tab requires less effort than running it in a modal. It necessitates
that the 'opening' link points to ieg/Screening.do and passes in the executionID.
Screening.do invokes the IEG Player.

The parameters are as follows:
Here is an example of a resolve UIM that opens the IEG Player in a tab:

<?xm version="1.0" encodi ng="UTF-8"?>
<PAGE PAGE | D="System | ECResol ver">
<JSP_SCRI PTLET>
<! [CDATA]

String scriptlD = request. getParaneter("scriptlD");

String scriptType = request. getParaneter("scriptType");

String scriptVersion = request. get Par anet er (
"scriptVersion");

String schemaName = request. get Paranet er ("schenaNane");

String nane = request. get Paraneter (" nane");

String executionl DParam =
request . get Par anet er (" executi onl DParam') ;
String url = null;

curam onega3. request . Request Handl er
rh = curam onega3. r equest.
Request Handl er Fact ory. get Request Handl er (r equest) ;

String context = request.getContextPath() + "/";

i f (executionlDParam == null) {
/1 Need to check to see if there are any script
val i dation
/1 errors before running the script.

String context WthUser Preferences = context +
curam onega3. user. User Pref er encesFact ory
. get User Pr ef erences(
pageCont ext . get Sessi on()).getLocale() + "/";

curaminterfaces. | EGScri pt Adm nPkg.
| EGScri pt Admi n_checkFor Scri pt Errors_TH
i egScri pt Adm nCheckForErrors
= new curaminterfaces. | EGScri pt Adm nPkg.
| EGScri pt Adm n_checkFor Scri ptErrors_TH();

i egScri pt Adm nCheckFor Errors. set Fi el dval ue(
i egScri pt Adm nCheckFor Errors. key$scriptlD_idx, scriptlD);
i egScri pt Adm nCheckFor Errors. set Fi el dVal ue(
i egScri pt Adm nCheckFor Errors. key$scri pt Type_i dx,
script Type);
i egScri pt Adm nCheckFor Errors. set Fi el dVal ue(
i egScri pt Adm nCheckFor Errors. key$scri pt Ver si on_i dx,
scri pt Versi on);
i egScri pt Adm nCheckFor Errors. set Fi el dVal ue(

© Merative US L.P. 2012, 2024

7 Integrating IEG into a Caram Application 65

i egScri pt Adm nCheckFor Errors. key$schemaNane_i dx,
schenaNane) ;

//Call the method.

i egScri pt Adm nCheckFor Errors. cal | Server();

String errorsPresentlnScript =
i egScri pt Adm nCheckFor Errors. get Fi el dVal ue(
i egScri pt Adm nCheckForErrors
.resul t $errorsExi st _idx);
bool ean errorsPresent =

Bool ean. val ueO (errorsPresent | nScri pt). bool eanVal ue() ;
if (errorsPresent) {
/1 1f there are errors, redirect to the validation
error

/1 page.
String redirectTo = context Wt hUser Pref erences

+ "System|istValidationErrorsFor RunPage. do"

+ "?name=" + nane

+ "&scriptID=" + scriptlD

+ "&script Type=" + scriptType

+ "&scriptVersion=" + scriptVersion

+ "&schemaName=" + schenmaNane;

url = redirectTo + "&anp;" + rh.get SystenParaneters();
} else {

[l Call the run script nmethod and redirect to the | EG
/1 player.

curaminterfaces. | EGScri pt Adm nPkg.

| EGScri pt Admi n_runScript TH i egScri pt Adm nRunScri pt

= new curaminterfaces. | EGScri pt Adm nPkg.

| EGScript Admin_runScript TH();

egScri pt Adm nRunScri pt. set Fi el dval ue(

egScri pt Adm nRunScri pt. key$dt| s$scri ptl D_i dx,
scriptlD);

egScri pt Adm nRunScri pt. set Fi el dVal ue(

egScri pt Adm nRunScri pt. key$dt| s$scri pt Type_i dx,
scri pt Type);

egScri pt Adm nRunScri pt. set Fi el dVal ue(

egScri pt Adm nRunScri pt . key$dt | s$scri pt Ver si on_i dx,
scri pt Version);

egScri pt Adm nRunScri pt. set Fi el dVal ue(

egScri pt Adm nRunScri pt . key$schemaNane_i dx,
schemaNane) ;

/Il Call the nethod.

i egScri pt Adm nRunScri pt.cal |l Server();

String executionlD = iegScript Adm nRunScri pt.
get Fi el dval ue(
i egScri pt Adm nRunScri pt. result
$executionl D_i dx);
url = context + "ieg/Screening.do?" + "executionlD="

© Merative US L.P. 2012, 2024

Curam 8.1.2 66

+ executionl D + "&" + rh. get SystenParaneters();

} else {
url = context + "ieg/Screening.do?" + "executionlD="
+ executionl DParam + " &"
+ rh. get SystenPar anet ers();

}

/! Redirect to the correct page.

response. sendRedi rect (response. encodeRedi rect URL(url));
11>
</ JSP_SCRI PTLET>
</ PACE>

Figure 44: Resolve UIM to open IEG Player

7.4 Running the IEG Player in a Modal Dialog

The IEG Player can be opened in a modal dialog, and there are some specific considerations a
script developer needs to account for pertaining to this.

Opening the IEG Player in a Modal Dialog

To open the IEG Player in a modal dialog, open Screening.do, in the modal, passing the
executionID and system parameters, using a resolve UIM.

System IEGResolverModal.uim is provided out-of-the-box to perform this processing:

<PAGE PAGE_| D="System | EGResol ver Modal " >
<JSP_SCRI PTLET>
<! [CDATA[

String scriptlD = request. getParaneter("scriptlD');
String scriptType = request. getParaneter("scriptType");
String scriptVersion =

request . get Par anet er ("scri pt Versi on");
String schemaName = request. get Paranet er ("schemaNane");
String name = request. get Paraneter ("nanme");

/1 Need to check to see if there are any script
/1 validation errors before running the script.
curam onegad. r equest . Request Handl er
rh = curam onega3. request.
Request Handl er Fact ory. get Request Handl er (r equest) ;

String context = request.getContextPath() + "/";
String context WthUser Preferences = context +
curam onmega3. user. User Pr ef erencesFact ory
. get User Pr ef er ences(
pageCont ext . get Sessi on()).getLocale() + "/";

String url = null;

© Merative US L.P. 2012, 2024

7 Integrating IEG into a Caram Application 67

curaminterfaces. | EGScri pt Adm nPkg.
| EGScri pt Adm n_checkFor Scri pt Errors_TH
i egScri pt Adm nCheckForErrors
= new curaminterfaces. | EGScri pt Adm nPkg.
| EGScri pt Adnmi n_checkFor ScriptErrors _TH();

i egScri pt Adm nCheckFor Errors. set Fi el dVal ue(
i egScri pt Adm nCheckFor Errors. key$scri ptl D_i dx,
scriptlD);
i egScri pt Adm nCheckFor Errors. set Fi el dVal ue(
i egScri pt Adm nCheckFor Errors. key$scri pt Type_i dx,
scri pt Type);
i egScri pt Adm nCheckFor Errors. set Fi el dval ue(
i egScri pt Adm nCheckFor Errors. key$scri pt Versi on_i dx,
scri pt Version);
i egScri pt Adm nCheckFor Errors. set Fi el dVal ue(
i egScri pt Adm nCheckFor Errors. key$schemaNane_i dx,
schemaNane) ;
[/ Call the nethod.
i egScri pt Adm nCheckFor Errors. cal |l Server();

String errorsPresentlnScript =
i egScri pt Adm nCheckFor Errors. get Fi el dVal ue(
i egScri pt Adm nCheckForErrors. resul t $errorskxi st _idx);
bool ean errorsPresent =
Bool ean. val ueO (errorsPresent | nScript).
bool eanVal ue();

if (errorsPresent) {

[/ If there are errors, redirect to the validation
/1 error page.
String redirectTo = context Wt hUser Pref erences

+ "System | istValidationErrorsForMdal Page. do"

+ "?name=" + name + "&scriptID=" + scriptlD

+ "&script Type=" + scriptType

+ "&scriptVersion=" + scriptVersion

+ "&schemaNane=" + schenmaNane;
url = redirectTo + "&&" + rh. get SystenParaneters();

} else {

/1 Call the run script method and redirect to
/'l the | EG pl ayer.
curaminterfaces. | EGScri pt Adm nPkg.
| EGScri pt Adm n_runScri pt _TH i egScri pt Adm nRunScr i pt
= new curaminterfaces. | EGScri pt Adm nPkg.
| EGScri pt Admi n_runScript _TH();

i egScri pt Adm nRunScri pt. set Fi el dval ue(
i egScri pt Adm nRunScri pt. key$dt| s$scriptl D i dx,
scriptlD);
i egScri pt Adm nRunScri pt. set Fi el dval ue(
i egScri pt Adm nRunScri pt. key$dt| s$scri pt Type_i dx,
script Type);
i egScri pt Adm nRunScri pt. set Fi el dVal ue(
i egScri pt Adm nRunScri pt. key$dt| s$scri pt Ver si on_i dx,

© Merative US L.P. 2012, 2024

Curam 8.1.2 68

Exiting

scri pt Versi on);
i egScri pt Adm nRunScri pt. set Fi el dVal uge(
i egScri pt Adm nRunScri pt. key$schenaNane_i dx,
schemaNane) ;
//Call the method.
i egScri pt Adm nRunScri pt.call Server();

String executionlD =
i egScri pt Adm nRunScri pt. get Fi el dval ue(
i egScri pt Adm nRunScri pt.resul t $executi onl D_i dx);
executionl D = executionlD.replaceAll (",", "");

url = context + "ieg/ Screening.do?"
+ "executionl D=" + executionlD
+ "&" + rh.getSystenParaneters();

}

/1l Redirect to the correct page.
response. sendRedi r ect (
response. encodeRedi rect URL(url));
1>
</ JSP_SCRI PTLET>
</ PACE>

a Script Execution in a Modal Dialog

There are two broad approaches a script developer can take to complete or exit an IEG script
execution in a modal dialog:

* Directly closing the modal dialog, and refresh or redirect in the parent tab.
* Progressing to further UIM screen/s in the modal dialog.

Directly Closing the Modal on Script Completion
To close a modal dialog directly upon completion of; or exit (Exit, Save & Exit actions) from an
IEG script execution, the script developer must specify a resolve UIM as the finish-page and/or

quit-page.

That resolve UIM must in turn invoke a custom JSP that calls the appropriate JavaScript function
to close the dialog.

For example, to redirect to the | EG2_| i st Al | | EG2Scri pt s administration screen, include
the following JSP scriptlet in your UIM file:

<PAGE
PAGE | D="1 E&Q_resol veFi ni shScri pt"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena- i nst ance"
Xxsi : noNamespaceSchemaLocati on="fil e:// Curanl U MSchema. xsd"
>
<JSP_SCRI PTLET>
<! [CDATA[

curam onegadl. r equest . Request Handl er
rh = curam omega3. r equest . Request Handl er Fact ory
. get Request Handl er (request);

String context = request.getContextPath() + "/";

© Merative US L.P. 2012, 2024

7 Integrating IEG into a Caram Application 69

context += curam onega3. user. User PreferencesFactory
. get User Pr ef erences(
pageCont ext . get Session()).getLocale() + "/";

String url = :
url = context + "IE&Q_listAlllE&ScriptsPage. do";

String forwardParans =
request . get Par anet er (" f or war dPar ans") ;

if (screenContext != null && screenContext
. hasCont ext Bi t s(
curam onega3. tagl i b. Scr eenCont ext. MODAL)) {
url += "?" + rh.getSystenParaneters();
String encodeRedi rect URL = response. encodeURL(url);
response. sendRedi r ect (r esponse. encodeRedi rect URL(
request . get Cont ext Path() +
"/iegl/ C oseAndRedirect.jspx?redirect="
+ encodeRedi rect URL)) ;
} else {
url +="?" + rh.get SystenParaneters();
response. sendRedi r ect (
response. encodeRedi rect URL(url));

11>
</ JSP_SCRI PTLET>
</ PAGE>

Cl oseAndRedi r ect . j spx is provided out-of-the-box for closing the modal dialog and
redirecting to a specified UIM (if provided) in the parent.

Progressing to Further UIM Screen/s in the Modal Dialog

To keep the modal dialog open to display further UIM screens after script execution has
completed, specify the required UIM page as the finish-page and/or quit-page in the IEG script
definition.

Once that UIM has loaded, you have moved out of IEG and standard UIM processing in a modal
dialog applies.

7.5 Cleaning Up Application Data

Cleaning up application data involves removing data from the [IEGEXECUTIONSTATE database
table and the Datastore(DS) where appropriate. This section details the manual and automatic
data clean-up tasks that script authors should be aware of, and makes some recommendations to
ensure cleaning up application data can proceed smoothly.

In order to support execution of an IEG script, information about individual script executions
must be maintained by the IEG engine. For example the IEG engine must keep track

of the current page for the script execution. The IEG engine must also maintain a list

of the pages that have been presented to the user to support navigation. The answers to
control questions are not persisted in the DS and the IEG engine must also keep track

of these. All the information to support the execution of an IEG script is persisted in the
IEGEXECUTIONSTATE table. When a new IEGScriptExecution object is created via the

© Merative US L.P. 2012, 2024

Curam 8.1.2 70

IEGScriptExecutionFactory API a corresponding entry is created in the [IEGEXECUTIONSTATE
table. The IEGEXECUTIONSTATE table is an "internal” table only intended to be used by

the IEG engine and it should not be modified or extended. Script authors should not become
dependent on or make assumptions about the contents of this table as they can be subject to
change without notice.

IEG has no way of knowing when an entry in the IEGEXECUTIONSTATE table is no longer
required and therefore the entries will persist until they are explicitly deleted. To avoid the
IEGEXECUTIONSTATE table becoming unnecessarily cluttered, if a script execution has
completed or will not be resumed or re-executed its entry in the table should be removed via the
removeScriptExecutionObject method of the [IEGScriptExecutionFactory APIL.

IEG cannot make any inference as to what data can be used to logically and uniquely identify a
particular script execution as this can vary from script definition to script definition. The only
way for IEG to identify a script execution is via the generated ID that is assigned to the script
execution when it is initially created. It is highly recommended that script authors implement

a mechanism to identify script executions by associating unique data with the script execution
IDs. A new table can be created to maintain the relationship between the data that identifies the
execution and the execution ID to make it easy for script executions to be resumed. When they
are no longer required they can be removed. Removing a script execution does not cause any of
the gathered data that is persisted in the DS to be removed.

Similarly to IEGEXECUTIONSTATE, the IEG engine and the DS have no way of knowing when
the data that is gathered during a script execution and persisted in the DS is no longer required.
Again, the DS can become unnecessarily cluttered with entities that are no longer required. It is
intended that entities will not persist in the DS indefinitely but that the gathered data be moved to
application tables and then removed from the DS. When an entity is deleted from the DS its child
entities are also deleted. Therefore when the data that is gathered during a script execution has
been moved to application tables and is no longer required it is sufficient to delete the root entity
for the execution.

The following example code snippet shows the deletion of the root entity:

final Long applicationlD = execution.getRootEntitylD();
final Entity rootEntity =
dat astore.readEntity(applicationlD);
rootEntity. delete();

Figure 45: Deleting the Root Entity

7.6 Resuming Executed Scripts

It is possible to stop a script execution and resume it later. To do so, the application must take care
of storing the execution ID in a custom table and associate it with some user ID.

See 7.5 Cleaning Up Application Data on page 69 for more details.

Provided the IEGEXECUTIONSTATE table hasn't been cleaned up and the script definition
hasn't been modified, a script execution will be resumed by passing the executionID parameter to
the IEG Player in the same way it is done when starting a new script execution.

© Merative US L.P. 2012, 2024

8 Managing Captured Data 71

8 Managing Captured Data

The data captured during script execution is persisted in the Datastore (DS). This section explains
how you can retrieve the captured data from the DS. This section also explains how data can be
inserted into the DS so that it is available to [EG while executing scripts.

8.1 Retrieving Captured Data

The Datastore (DS) has a public API which you may use in your application code. This API is
most often used to retrieve information from a populated schema but it can also be used to pre-
populate a schema.

For example, once a client has completed an application, they can submit their information. At
this point, the API can be used to extract the data from the schema and populate tables in the
relational database.

An example of pre-population is where some information about the client is known in advance
of starting their application. If some of that information is required to navigate through the
application, the DS can be pre-populated with the information.

To read any data from a schema, the appropriate execution of the script needs to be known.
This means you are retrieving the correct application information for a client. Therefore, the
executionID and schema name are vitally important to gain access to the data.

The following example code snippet shows the obtaining of the root entity:

final 1EGRuntinme runti neAPl = new | EGRunti ne();
final | EGRootEntitylD rootEntitylD =
runti meAPl . get Scri pt Executi onRoot Entityl D(executionl D);

Dat ast ore ds = Dat ast oreFactory. newl nst ance()
. openDat ast or e(kSchemaNane) ;

final Entity rootEntity =
ds.readEntity(rootEntitylD. entitylD));

Figure 46: Obtaining root entity

From here, the root entity can be used to retrieve other entities under this root entity.

8.2 Pre-Populating Scripts with Captured Data

It is possible to pre-populate the values that will be displayed to the user so that the answers only
need to be confirmed or modified.

For example, we can pre-populate the name and date of birth of a user on a Personal Details page
assuming that the user has already logged in and another database holds the personal details.

The DS can be pre-populated prior to the start of script execution as follows:

Dat astore ds = null;

© Merative US L.P. 2012, 2024

Curam 8.1.2 72

try {
/1 open the data store and create the root entity

ds = Dat ast or eFact ory. newl nst ance() . openDat ast or e(schenaNane) ;
} catch (NoSuchSchemaException e) {
t hrow new AppException(l EG | D_SCHEMA NOT_FOUND) ;

}

final EntityType appType
final Entity rootEl enent

ds. getEntityType("Application");
ds. newentity(appType);

ds. addRoot Enti ty(root El enent) ;

final EntityType personType = ds.getEntityType("Person");
final Entity person = ds. newkntity(personType);

person.setAttribute("firstName", "TestFirstName");
person.setAttribute("l ast Nane", "TestLastNanme");
person. setAttribute("dateOBirth", "19700101");
/...

root El ement . addChi | dEnti ty(person);
Figure 47: Code Snippet that Populates the DS

The root entity can then be used in creating a new script execution as follows:

/| create the script execution
final | EGRootEntitylD rootEntitylD = new | EGRoot Entityl D();
root Entityl D = root El ement . get Uni quel D() ;
final IEGRuntinme runti neAPlI = new | EGRunti ne();
final | EGScriptExecutionldentifier executionldentifier =
runti meAPl . creat eScri pt Execut i onExi sti ngRoot Entity(
i egScriptlD, schenaNane, rootEntitylD);

Figure 48: Creation of a Script Execution

The IEG Player can then be run using this new script execution as follows:

<?xm version="1.0" encodi ng="UTF-8"?>
<PAGE PACE_ I D="1EGScri pt Launcher" >
<JSP_SCRI PTLET>
<! [CDATA[
curam onega3. request . Request Handl er rh =
curam onega3. request . Request Handl er Fact ory. get Request Handl er (
request);

String context = request.getContextPath() + "/";

String url =
context + "ieg/ Screening.do?" + "executionlD=" + executionlD
+ "&" + rh.getSystenParaneters();

/! Redirect to the correct page.
response. sendRedi rect (response. encodeRedi rect URL(url));
1>
</ JSP_SCRI PTLET>

© Merative US L.P. 2012, 2024

8 Managing Captured Data 73

</ PAGE>
Figure 49: Launching the IEG Player

Note that it is only possible to pre-populate the DS, and not the control questions or other script-
related information as they are stored in the script execution and not in the DS. This means that it
is not possible to pre-populate the data displayed in the first section of the script and start at the
second section. The first section will be displayed and the user will be able to confirm the pre-
populated data.

© Merative US L.P. 2012, 2024

Curam 8.1.2 74

© Merative US L.P. 2012, 2024

9 Using the Resource Store 75

9 Using the Resource Store

The Resource Store is an area of the infrastructure database which is used to store resources used
in a live application. Resources can be of any type but the most common used by IEG are images
and properties file resources.

9.1 Listing all Resources

To gain access to the resource administration screens, you will need to log in as an admin user.
Once logged in, you will see a section in your navigation panel called IEG. When you click on
the section, you will see a menu which contains a link called 'Application Resources'. If you click
on this, a list of resource will be displayed with a search box based on the category.

Resources are organized into categories. Existing resources are displayed by selecting a category
in the filter criteria and selecting 'search'. The resource categories used by IEG are as follows:

+ CSS

Stylesheet templates that can be modified to customize the look-and-feel of the IEG Player.
* Image

Images used in the IEG Player and IEG Scripts.
* Property

Properties files containing locale specific text for Scripts and Question Pages.

9.2 Uploading a New Resource

At the top of the screen which lists all resources is a link which lets you add a new resource.
When you click on this link, you will be presented with a screen where the resource details should
be entered.

You must enter the following information:
* Name

This is a unique name for the resource which can be used within an IEG script to reference it.
Depending on the resource type, a naming convention may be enforced for use within an IEG
script. The sections on 9.6 Adding Images on page 76 and 9.7 Changing Static Text on

page 77 have more details.

* Content Type

When serving a resource to a web browser, a content type is required to instruct the browser
how to handle the resource. The most common content types used in an IEG script would be
i mage/ png for a PNG image and t ext / pl ai n for a properties file.

* Content

The file chooser allows the user to pick the resource to upload.

The following information is optional:

© Merative US L.P. 2012, 2024

Curam 8.1.2 76

Category

The category in which the new resource is to be added.
Content Disposition

For resources used in IEG scripts, this can be left empty.
Locale

If you wish to have a locale specific version of a resource, enter the locale code here. When
the system searches for a resource, it uses a fall-back mechanism similar to Java. For example,
if the current locale is en_US the system will attempt to locate the resource for the en_US
locale, then en and finally the “default” resource. The “default” resource is specified by
leaving the locale field empty when uploading the resource.

Internal

This indicates if the resource is for internal use only and should never be served to the web
browser. In this first release of IEG, this setting can be ignored.

Description

A description of the resource.

9.3 Removing an Existing Resource

To delete an existing resource, select the 'view' link on the resource and from the 'View Resource
Page' select 'delete’ to remove this resource from the system.

When you click on this link, a confirmation dialog will be displayed asking you to confirm that
you want to remove this resource from the system.

9.4 Updating an Existing Resource

To update an existing resource, select the 'edit' link on the 'Application Resources' page or on the
'View Resource' page. You can then browse to the updated resource on your file system in the
'New content' field.

9.5 Downloading an Existing Resource

Each entry in the resources list can be downloaded by clicking the 'download' link on the
'Application Resources' page. This link will open the browser file download dialog to allow the
user to save the resource or open it directly.

9.6 Adding Images

IEG scripts allow you to specify images to use for both your sections (in the navigation panel to
the left of a page, by default) and pages (in the page title area for the page), and also comes with

© Merative US L.P. 2012, 2024

9 Using the Resource Store 77

some images which are built in to the system (like the various person images used in person tabs,
and so on).

All of these images must be stored in the resource store so that new images can be added and
existing ones updated without having to rebuild and re-deploy your application. When uploading
an image resource, set the “Content Type” appropriately for the image (e.g., image/png, image/gif
etc.) and leave the “Content Disposition” field empty.

9.7 Changing Static Text

The IEG engine allows you to enter all the text for your script for the default locale directly into
the script definition. However, this is not where the text displayed on the screens is actually read
from. Instead, all text referenced from within a script is stored in locale-specific properties files
within the resource store.

For each script, there will be a minimum of one properties file for the script itself and one
properties file for each page within the script. In order to ensure the uniqueness of these files,
the following naming convention is used (the last part is obviously only applicable to the page-
specific properties files):

scriptl D scriptVersion_scriptType_pagel D

When you use the IEG admin screens to upload a new script into the system, all the static text
contained within it (e.g., all the labels, titles, descriptions, etc.) are automatically extracted

into the appropriately named properties files for your script and stored in the resource store
with no locale associated with them (so that they act as the fall-back properties if no properties
exist for the locale in which you are running). Any of this text can then be changed by simply
downloading the current properties file keeping in mind the naming convention described above
to locate the resource in the resources list. Then make the necessary changes and update the
resource as described in 9.4 Updating an Existing Resource on page 76. No changes to the
script itself are required.

Equally, versions of these files for other locales can be easily added and will be picked up in
preference to the default locale properties the next time the script is run in that locale. When
uploading a properties file resource, set the “Content Type” to t ext / pl ai n and leave the
“Content Disposition” field empty.

9.8 Changing the Default File Encoding

When uploading a plain text resource, the file will be expected to be in UTF-8 encoding. If you
wish to use a different encoding when uploading the file, the "Content Type" field can be used to
specify this through the use of the optional charset parameter.

For example:

text/plain; charset=1 SO 8859-1

© Merative US L.P. 2012, 2024

Curam 8.1.2 78

© Merative US L.P. 2012, 2024

10 Using IBM Rational AppScan to scan IEG 79

10 Using IBM Rational AppScan to scan IEG

This section describes the steps required to perform security scans of IEG style applications using
the IBM®Rational AppScan® tool.

10.1 Preparation

In IEG the communication between the Player and the Engine is coordinated by means of a sync
token. The sync token is used to ensure that the page submitted by the browser is consistent with
the page the IEG engine is expecting to be submitted.

This facilitates detecting when the user uses the browser navigation buttons rather than the
navigation buttons in the Player itself. The sync token changes for every question page that is
displayed in the IEG Player. This makes it very difficult to scan IEG question scripts executing in
the IEG player.

For this reason, prior to scanning it is recommended that the script configuration property
appscan.mode.enabled should be set to true. When this property is set to true, the Engine does
not check the value o the sync token that is passed by the Player. Disabling sync token checking
is acceptable when performing a scan but sync token checking should always be enabled in a
production environment.

Also, in order to reduce the amount of superfluous information reported in a scan the stack trace
should be disabled. To disable the stack trace:

* Go to the folder webclient\JavaSource\curam\omega3\

* Rename Initial ApplicationConfiguration.properties to ApplicationConfiguration.properties
* Open ApplicationConfiguration.properties

* Addthe entry: err or page. st ackt race. out put =f al se

10.2 Relationship Pages

Relationship pages are a special feature of IEG which facilitate gathering information about the
relationships between the people of a household.

Unlike the other pages of an IEG script Relationship pages have a more dynamic nature and
contain a variable number of fields. Currently the names of the fields that are generated for
Relationship pages vary from execution to execution. This means that currently it is not possible
to run a scan on an IEG question script that contains a relationship page.

10.3 Scan Configuration

Once AppScan is launched a new scan can be created by selecting the 'Create New Scan...' option
on the Welcome screen.

Then select 'Regular Scan' from the Predefined Templates on the next screen.

© Merative US L.P. 2012, 2024

Curam 8.1.2 80

Choose "Web Application Scan' on the first page of the Configuration Wizard, click 'Next'.

On the 'URL and Servers' page of the wizard enter the starting URL of the application. Once the
URL is entered it can be verified by clicking the icon beside the input field. This will cause the
AppScan browser to be displayed and it will attempt to open the URL. Confirm that the URL is
correct and accessible. (Click yes on security warning if necessary). Close the browser and click
'Next' in the Configuration Wizard.

Enter the necessary Login Management details. Applications running under Eclipse/Tomcat do
not require the user to login, so the option 'None' can be selected. Click 'Next'.

On the 'Test Policy' screen click on the 'Full Scan Configuration' link in the 'General Tasks' panel.
This presents the 'Scan Configuration' dialog.

10.4 Test Policy

Ensure that 'Test Policy' is selected in the view selection pane on the left-hand side of the
configuration dialog. The most straight forward approach while configuring a scan is to enable all
the tests and then disable the low value tests which increase the time required to run the scan.

Select 'Enabled/Disabled' from the 'sort tests by' dropdown. First check the 'Partially Enabled'
then the 'Disabled' boxes. The only entry displayed should be 'Enabled'. Select 'Severity' from the
dropdown. Uncheck the 'Low' and 'Informational' boxes. For the purposes of scanning IEG it is
not required to perform invasive tests as these tests are more concerned with testing the platform.
Select 'Invasive' from the dropdown. Uncheck the 'Invasive' box.

10.5 Explore Options

Select 'Explore Options' in the view selection pane.

Set 'Redundant Path Limit' to 1. Choose 'Breadth First' as the 'Explore Method'.

10.6 Communications and Proxy

Select 'Communications and Proxy' in the view selection pane. Set 'Number of Threads' to 1.

© Merative US L.P. 2012, 2024

10 Using IBM Rational AppScan to scan IEG 81

10.7 Test Options

Select 'Test Options' in the view selection pane. Uncheck 'Use Adaptive Testing based on
application behavior'.

10.8 Multi-Step Operations

IEG requires correctly formatted data be used in certain parameters. As such AppScan must be
'trained' to use the application being tested. Select '"Multi-Step Operations' in the view selection
pane.

Click the record button. This will cause the AppScan browser to be displayed and it will attempt
to open the URL specified on the 'URL and Servers' page of the Configuration Wizard. You
should then navigate through the application as required, entering relevant data. AppScan will
record the values entered and use these values for each test that it runs later. Once you have
finished, simply close the browser. The Scan configuration dialog will be updated with the
sequence that has just been recorded. Check the 'Enable playback of this sequence' checkbox and
uncheck the 'Allow play optimization' checkbox.

Take note of all the sequence steps that contain Scr eeni ng. do. You will have to turn these
sequence steps into regular expressions and add them as exception paths to the exclude path
options of AppScan. AppScan can easily be thrown out of sync when it comes to recorded
operations, so you have to ensure that AppScan will ignore the wrong path and keep to the
recorded script when running its tests. This is achieved by telling AppScan to ignore all sequence
steps containing scr eeni ng. do, except those that you specify in regular expressions. Take
note of each ___u=x value found in the list of sequence steps.

10.9 Exclude Paths and Files

Select 'Exclude Paths and Files' in the view selection pane.

Click the button to add an Exclude Path. Choose 'Exclude' as the "Type' and select 'Regular
Expression' from the 'Match' dropdown. Enter . */Curam/ieg/Screening.do. * for the 'Path’
and click 'OK".

Add another Exclude Path. Choose 'Exception’ as the 'Type' and select 'Regular Expression' from
the '"Match' dropdown. Enter . */Curam/ieg/Screening.do?executionID=.\d* for the
'Path’ and click 'OK".

An Exception should also be added for each u=x value found in the list of sequence steps.
Again, select 'Regular Expression' from the 'Match' dropdown and enter an expression in the
following format for 'Path": . */Curam/ieg/Screening.do?executionID=.*& u=[value
shown in summary screen]

Click 'OK".
Click 'OK' to be returned to the configuration wizard.
Click 'Next' in the Configuration Wizard.

© Merative US L.P. 2012, 2024

Curam 8.1.2 82

10.10 Complete

At this point the configuration of the scan is complete. Choose the 'I will start my scan later'
option so that the configured scan will be saved rather than allowing AppScan randomly scan the
whole application. Click 'Finish'.

10.11 Running the Scan

To start the scan, select the 'Scan' menu item in the AppScan main window and select 'Test Multi-
Step Operations Only'.

Depending on the application to be tested a scan may take a number of days to complete. Once
the scan is complete AppScan will display the results of the scan on a summary screen. These
results should then be investigated to determine which reported issues are real vulnerabilities and
which are false positives.

© Merative US L.P. 2012, 2024

11 Runtime processing in IEG 83

11 Runtime processing in IEG

This section describes the runtime processing and behaviors that occur when you use an IEG
application.

11.1 Loss of network connectivity during an IEG session

When a loss of network connectivity occurs while you are running an IEG application, if a user
starts an operation that requires a server call, such as clicking a navigational button or clicking a
link that performs an action, the user is presented with a modal dialog box, that informs them of a
network connectivity error.

By default, the modal dialog box informs the user that a network error occurred while the request
was being processed and to check the internet connection and try again. This default text within
the modal dialog box is configured by using the following properties:

Property Purpose
network.connection.error.dialog.title.text Modal dialog title text
network.connection.error.dialog.message.text Modal dialog message
network.connection.error.dialog.ok.button.test Modal dialog OK button text

The modal dialog box displays at the center of the user's application window and any access to
the page content behind the modal is disabled.

The modal dialog box also contains an OK button which users are able to click to close it. The
users can then continue to interact with the IEG features that do not require a server call to
function, for example, form data, widgets such as drop-down menus and date pickers, help links
and expand or collapse clusters and lists on summary pages.

When the modal dialog box is dismissed by the user, all navigation actions and links are reset and
respond as before. No limit exists for the amount of times that the modal dialog box can be shown
and dismissed while in an offline state.

IEG features that require a server call to function, such as code table hierarchies, do not function
in an offline state. When the connection is restored, the IEG features work as before. The modal
dialog box is not displayed when a user clicks a hyperlink that brings them to an external source
or for non-navigation actions such as clicking a print link.

When the network connection is restored and the network connectivity error modal dialog box is

dismissed, users are able to start operations that require server calls as normal without the modal

dialog opening, and features such as form validations resume seamlessly. All keyboard shortcuts

and gesture navigation operate as normal and respond gracefully when any network resources are
requested.

For a session-timeout warning dialog box that is configured to be displayed before an application
session times out, and if the IEG application is in an offline state when the session-timeout
warning dialog box displays, the session-timeout warning dialog box contains no content and is
not dismissable. The reason is that the session-timeout warning dialog box requires a server call
to populate its content. If the session-timeout warning dialog box displays while IEG is offline, a
user needs to refresh the browser when the network connection is restored to restart the session.

© Merative US L.P. 2012, 2024

Curam 8.1.2 84

© Merative US L.P. 2012, 2024

Notices

Permissions for the use of these publications are granted subject to the following terms and
conditions.

Applicability
These terms and conditions are in addition to any terms of use for the Merative website.
Personal use

You may reproduce these publications for your personal, noncommercial use provided that all
proprietary notices are preserved. You may not distribute, display or make derivative work of
these publications, or any portion thereof, without the express consent of Merative

Commercial use

You may reproduce, distribute and display these publications solely within your enterprise
provided that all proprietary notices are preserved. You may not make derivative works of these
publications, or reproduce, distribute or display these publications or any portion thereof outside
your enterprise, without the express consent of Merative.

Rights

Except as expressly granted in this permission, no other permissions, licenses or rights are
granted, either express or implied, to the publications or any information, data, software or other
intellectual property contained therein.

Merative reserves the right to withdraw the permissions granted herein whenever, in its
discretion, the use of the publications is detrimental to its interest or, as determined by Merative,
the above instructions are not being properly followed.

You may not download, export or re-export this information except in full compliance with all
applicable laws and regulations, including all United States export laws and regulations.

MERATIVE MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE
PUBLICATIONS. THE PUBLICATIONS ARE PROVIDED "AS-IS" AND WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT
LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT,
AND FITNESS FOR A PARTICULAR PURPOSE.

Merative or its licensors may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this documentation does not grant you any license
to these patents.

Information concerning non-Merative products was obtained from the suppliers of those products,
their published announcements or other publicly available sources. Merative has not tested those
products and cannot confirm the accuracy of performance, compatibility or any other claims
related to non-Merative products. Questions on the capabilities of non-Merative products should
be addressed to the suppliers of those products.

Any references in this information to non-Merative websites are provided for convenience only
and do not in any manner serve as an endorsement of those websites. The materials at those
websites are not part of the materials for this Merative product and use of those websites is at
your own risk.

© Merative US L.P. 2012, 2024

This information contains examples of data and reports used in daily business operations.

To illustrate them as completely as possible, the examples include the names of individuals,
companies, brands, and products. All of these names are fictitious and any similarity to actual
people or business enterprises is entirely coincidental.

The licensed program described in this document and all licensed material available for it are
provided by Merative under terms of the Merative Client Agreement.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate
programming techniques on various operating platforms. You may copy, modify, and distribute
these sample programs in any form without payment to Merative, for the purposes of developing,
using, marketing or distributing application programs conforming to the application programming
interface for the operating platform for which the sample programs are written. These examples
have not been thoroughly tested under all conditions. Merative, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample programs are provided
"AS IS", without warranty of any kind. Merative shall not be liable for any damages arising out of
your use of the sample programs.

Privacy policy

The Merative privacy policy is available at https://www.merative.com/privacy.

Trademarks

Merative ™ and the Merative ™ logo are trademarks of Merative US L.P. in the United States and
other countries.

IBM®, the IBM® logo, and ibm.com® are trademarks or registered trademarks of International
Business Machines Corp., registered in many jurisdictions worldwide.

Adobe™, the Adobe™ logo, PostScript™, and the PostScript™ logo are either registered
trademarks or trademarks of Adobe™ Systems Incorporated in the United States, and/or other
countries.

Oracle and Java are registered trademarks of Oracle and/or its affiliates.

The registered trademark Linux® is used pursuant to a sublicense from the Linux Foundation, the
exclusive licensee of Linus Torvalds, owner of the mark on a worldwide basis.

Microsoft™, Windows™, and the Windows™ logo are trademarks of Microsoft™ Corporation in
the United States, other countries, or both.

UNIX™ is a registered trademark of The Open Group in the United States and other countries.

Other company, product, and service names may be trademarks or service marks of others.

© Merative US L.P. 2012, 2024

https://www.merative.com/privacy

	Note
	Edition
	Notices
	Privacy policy
	Trademarks

	Contents
	1 Working with Intelligent Evidence Gathering
	2 Get started
	2.1 About IEG
	Datastore (DS)
	Resource Store (RS)
	Script Structure

	2.2 Evaluating the Use of IEG
	2.3 The Basics
	Create a Schema
	Create a Script
	Adding a Section and a Question Page to an IEG Script

	Adding a Summary Page to an IEG Script
	Run a Script
	Validating a Script

	3 Capturing Client Information
	3.1 Families and Households
	3.2 Household Relationships
	3.3 Summarizing Client Information

	4 Capturing Related Data
	4.1 Capturing Composite Data
	4.2 Displaying Composite Data on a Summary
	4.3 Capturing Associated Data
	4.4 Displaying Associated Data on a Summary
	4.5 Deleting Associated Data

	5 Efficient Ways of Capturing Data
	5.1 List Questions
	Single-select

	5.2 Code-table questions
	5.3 Conditional Elements
	Conditional Sections
	Conditional Pages
	Conditional Clusters

	5.4 Question Matrices
	5.5 Fast Path Navigation
	List Question driving a Loop
	Eligibility Criteria
	Fast Path Conditions
	Condition in Fast Path Loop

	5.6 Implicit Delete
	5.7 Three Field Date Picker

	6 Other Script Development Considerations
	6.1 Displaying Data as Read-Only
	6.2 Invoking external functionality by using expressions and custom functions
	6.3 Reusing Scripts
	6.4 Source Control and Versioning
	6.5 Rendering Custom HTML on a Summary Page
	How to use the custom-output element
	Guidelines for using the custom-output element
	Sample code for rendering custom HTML

	7 Integrating IEG into a Cúram Application
	7.1 Creating a Script Execution
	7.2 Specifying a Redirection URL
	7.3 Running the IEG Player in a Tab
	7.4 Running the IEG Player in a Modal Dialog
	Opening the IEG Player in a Modal Dialog
	Exiting a Script Execution in a Modal Dialog
	Directly Closing the Modal on Script Completion
	Progressing to Further UIM Screen/s in the Modal Dialog

	7.5 Cleaning Up Application Data
	7.6 Resuming Executed Scripts

	8 Managing Captured Data
	8.1 Retrieving Captured Data
	8.2 Pre-Populating Scripts with Captured Data

	9 Using the Resource Store
	9.1 Listing all Resources
	9.2 Uploading a New Resource
	9.3 Removing an Existing Resource
	9.4 Updating an Existing Resource
	9.5 Downloading an Existing Resource
	9.6 Adding Images
	9.7 Changing Static Text
	9.8 Changing the Default File Encoding

	10 Using IBM Rational AppScan to scan IEG
	10.1 Preparation
	10.2 Relationship Pages
	10.3 Scan Configuration
	10.4 Test Policy
	10.5 Explore Options
	10.6 Communications and Proxy
	10.7 Test Options
	10.8 Multi-Step Operations
	10.9 Exclude Paths and Files
	10.10 Complete
	10.11 Running the Scan

	11 Runtime processing in IEG
	11.1 Loss of network connectivity during an IEG session

