
Cúram 8.1.2
Web Services Guide

Note
Before using this information and the product it supports, read the information in Notices on page
57

© Merative US L.P. 2012, 2024

© Merative US L.P. 2012, 2024

Edition
This edition applies to Cúram 8.1, 8.1.1, and 8.1.2.

© Merative US L.P. 2012, 2024

Merative and the Merative Logo are trademarks of Merative US L.P. in the United States and
other countries.

© Merative US L.P. 2012, 2024

© Merative US L.P. 2012, 2024

Contents vii

Contents

Note.. iii

Edition... v
1 Integrating with External Applications through Web Services...................................9
1.1 Using Web Services..9

Overview of Web Services..9
Benefits of the Apache Axis2 Platform... 10
Types of Web Services... 10
Web Services Security.. 13

1.2 Building Outbound Web Service Connectors..13
Including the WSDL Files in Your Components File System..14
Adding the WSDL File Location to the Outbound Web Services File..................................... 14
Generating the Web Service Stubs...15
Creating a Client and Starting the Web Service... 15
Client Stub Pool Configuration.. 17

1.3 Developing Inbound Web Services... 18
Getting Started...18
Modeling and Implementing an Inbound Web Service... 19
Building and Packaging Web Services... 22
Providing Security Data for Web Services..23
Providing Web Service Customizations.. 23

1.4 Securing Web Services... 29
Axis2 Security and Rampart..30
Custom SOAP Headers.. 30
Encrypting Custom SOAP Headers.. 33
Using Rampart With Web Services...35
Securing Web Service Network Traffic with HTTPS/SSL... 44
Creating Keystore Files... 45

1.5 Inbound Web Service Properties: ws_inbound.xml...45

1.6 Deployment Descriptor File: services.xml... 47

1.7 Troubleshooting... 49
Initial Server Validation and Troubleshooting..50
Using an External Client to Validate and Troubleshoot.. 51
Troubleshooting Axis2 errors...52
Avoiding Use of anyType.. 53
Axis2 Exceptions... 54

1.8 Including the Axis2 Admin Application in Your Web Services WAR File.................................54

1.9 Including the Axis2 SOAP Monitor in Your Web Services WAR File...................................... 55

© Merative US L.P. 2012, 2024

Cúram 8.1.2 viii

Notices.. 57
Privacy policy... 58

Trademarks.. 58

© Merative US L.P. 2012, 2024

1 Integrating with External Applications through Web Services 9

1 Integrating with External Applications through Web
Services

Use this information to develop and secure Cúram web services. You can make business logic
available as web services.

This information covers all aspects of Cúram web service development including modeling,
building, securing, deploying, and troubleshooting. Developers must be familiar with web service
concepts and their underlying technologies, including modeling and developing in an Cúram
environment.

Note: Cúram web services are based on Apache Axis2. As the basis for the latest generation
of web service standards, Axis2 brings improved architecture, performance, and standards
support to your web services.

Related concepts

Related information
axis.apache.org/axis2/java/core/index.html

1.1 Using Web Services

An overview of web services and how to use them to integrate web-based applications. The
basics of Apache Axis2 web services are introduced and how Cúram web services correspond to
this web service functionality.

Overview of Web Services

The term web services describes a standardized way of integrating web-based applications. Web
services allow different applications from different sources to communicate with each other.
Because all communication is in XML, web services are not tied to one operating system or
programming language.

This application-to-application communication is performed by using XML to tag the data, using:

• SOAP (Simple Object Access Protocol: A lightweight XML-based messaging protocol) to
transfer the data.

• WSDL (Web Services Description Language) to describe the services available.
• UDDI (Universal Description, Discovery and Integration) to list what services are available.

Web services can be considered in terms of the direction of flow, outbound/accessing and
inbound/implementing, which are supported by the Cúram infrastructure for development and
deployment as described below:

• Outbound Web Service Connector
An outbound web service connector allows the Cúram application to access external
applications that have exposed a web service interface. The WSDL file that is used to describe
this interface is used by the web service connector functionality in Cúram to generate the

© Merative US L.P. 2012, 2024

http://axis.apache.org/axis2/java/core/index.html

Cúram 8.1.2 10

appropriate client code (stubs) to connect to the web service. This means developers can
focus on the business logic to handle the data for the web service. For information about
how to develop outbound web service connectors, see 1.2 Building Outbound Web Service
Connectors on page 13.

• Inbound Web Service
Some functionality within the Cúram application can be exposed to other internal or external
applications within the network. This can be achieved using an inbound web service. The
Cúram infrastructure generates the necessary deployment artifacts and packages them
for deployment. After the application EAR file is deployed. any application that wants to
communicate with the Cúram application must implement the appropriate functionality based
on the WSDL for the web service. The infrastructure relies on the web service class to be
modeled and it utilizes Axis2 tooling in the generation step for inbound web services. For
information about how to develop Cúram inbound web services, see 1.3 Developing Inbound
Web Services on page 18.

Benefits of the Apache Axis2 Platform

Apache Axis2 is the supported platform, or stack, that is supported for web services. There are
several benefits to using Axis2.

There are other web service platforms that you can adapt for use with Cúram instead of Axis2.
However, the benefits of Axis2 web services include the following.

• Axis2 provides significant improvements in flexibility due to the new architecture and
improved performance. Performance improvements come from a change in XML parser
changes by using the StAX API. The StAX API is faster than the SAX event-based parsing
that was used in the previous web services implementation.

• New message types are available - This third generation of web service support makes new
message exchange patterns (MEPs) available. Rather than just in-out processing, in-only (also
known as fire-and-forget) and other MEPs are now available.

• Support for new and updated standards such as SOAP (1.2 and 1.1) and WSDL (2.0 and 1.1).

Types of Web Services

Web services are categorized in a number of ways. One of the main groupings is the web service
style and use that determines the way that web service operation parameters are handled.

The style option that is defined by the WSDL specification determines the structure of the SOAP
message payload. The payload is the contents of the <soap:body> element.

• Document (also referred to as document-oriented web services, or DOWS). The contents of
the web service payload are defined by the schema in the <wsdl:type> and is sent as a self-
contained document. This style is flexible and can process parameters and return data, or by
using IBM® Rational® Software Architect Designer modeling, can be a W3C Document that
is passed as an argument and return value. Document is assumed to be the default style if not
specified.

• RPC: The contents of the payload must conform to the rules specified in the SOAP
specification, that is, <soap:body> and can contain one element only. The element is named
after the operation. Also, all parameters must be represented as subelements of this wrapper
element. Typically, subelements would be parameters and return values.

© Merative US L.P. 2012, 2024

1 Integrating with External Applications through Web Services 11

Regardless of the choice of style, the contents of the SOAP message payload might look the same
for a SOAP message regardless of whether document or RPC style is specified in the WSDL.
This is because of the freedom available in the case of the document style.

The use option determines the serialization rules that are used by the web service client and server
to interpret the payload of the SOAP message.

• Literal. The type definitions are self-defining, following an XML schema definition in
<wsdl:types> by using either the element or type attribute.

• Encoded: The rules to encode and interpret the payload application data are in a list of
URIs specified by the encodingStyle attribute, from the most to least restrictive. The most
common encoding is SOAP encoding, which specifies how objects, arrays, and so on, must be
serialized into XML.

The style and use options for a web service are specified in the WSDL <wsdl:binding> section
(see http://www.w3.org/TR/wsdl and http://www.w3.org/TR/wsdl20) as attributes and control
the content and function of the resulting SOAP (see http://www.w3.org/TR/soap11 and http://
www.w3.org/TR/soap12) message.

The following WSDL fragment illustrates the context for these settings, where the different
values for the options are separated by the pipe (|) character:

<wsdl:binding name="myService" ... >
 <soap:binding transport="..." style="document|rpc"/>
 <wsdl:operation name="myOperation">
 <soap:operation soapAction="urn:op2" style="document"/>
 <wsdl:input>
 <soap:body use="literal|encoded"
 encodingStyle="uri-list" ... />
 </wsdl:input>
 <wsdl:output>
 <soap:body use="literal|encoded"
 encodingStyle="uri-list" ... />
 </wsdl:output>
 </wsdl:operation>
</wsdl:binding>

The encoded use option is discouraged by the Web Services Interoperability Organization (WS-I)
and the Document/Literal is the preferred choice for web service style and use.

Within the context of the Document/Literal style, use pairing is the concept of "wrapped" and
"unwrapped". This paring is not a specific style or use, but a pattern that is characterized by a
single part definition, each part definition in the WSDL references an element, not a type as in
RPC (it's these referenced elements that serve as the "wrappers"), the input wrapper element
must be defined as a complex type that is a sequence of elements, the input wrapper name must
have the same name as the operation, the output wrapper name must have the same name as
the operation with "Response" appended to it, and, the style must be "document" in the WSDL
binding section. Based on the capabilities of Apache Axis2 only the "wrapped" pattern is
supported1. However, it is not supported by WSDL 2.0. The following WSDL fragment illustrates
this pattern by using a simple web service that multiplies two numbers and returns the results.

...
 <wsdl:types>
 ...

1 Because only the Document/Literal-wrapped pattern for Axis2 is supported, turning this off via
doclitBare set to true in the services.xml descriptor file is not supported.

© Merative US L.P. 2012, 2024

http://www.w3.org/TR/wsdl
http://www.w3.org/TR/wsdl20
http://www.w3.org/TR/soap11
http://www.w3.org/TR/soap12
http://www.w3.org/TR/soap12

Cúram 8.1.2 12

 <xs:element name="simpleMultiply">
 <xs:complexType>
 <xs:sequence>
 <xs:element
 minOccurs="0"
 name="args0"
 type="xs:float"/>
 <xs:element
 minOccurs="0"
 name="args1"
 type="xs:float"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="simpleMultiplyResponse">
 <xs:complexType>
 <xs:sequence>
 <xs:element
 minOccurs="0"
 name="return" type="xs:float"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 ...
 </wsdl:types>
 ...
 <wsdl:message name="simpleMultiplyRequest">
 <wsdl:part name="parameters"
 element="ns:simpleMultiply"/>
 </wsdl:message>
 <wsdl:message name="simpleMultiplyResponse">
 <wsdl:part name="parameters"
 element="ns:simpleMultiplyResponse"/>
 </wsdl:message>
 ...
 <wsdl:operation name="simpleMultiply">
 <wsdl:input message="ns:simpleMultiplyRequest"
 wsaw:Action="urn:simpleMultiply"/>
 <wsdl:output message="ns:simpleMultiplyResponse"
 wsaw:Action="urn:simpleMultiplyResponse"/>
 </wsdl:operation>
 ...
 <wsdl:operation name="simpleMultiply">
 <soap:operation soapAction="urn:simpleMultiply"
 style="document"/>
 <wsdl:input>
 <soap:body use="literal"/>
 </wsdl:input>
 <wsdl:output>
 <soap:body use="literal"/>
 </wsdl:output>
 </wsdl:operation>
 </wsdl:operation>
...

The following table shows the various style and use combinations that are supported in Cúram.

© Merative US L.P. 2012, 2024

1 Integrating with External Applications through Web Services 13

Table 1: Summary of Web Service Style and Use Support

Style/Use Cúram with Axis2

RPC/Literal -

Document/Encoded Not supported (not WS-I compliant)

Document/Literal (wrapped) Supported

Of the supported style and use combinations, there are a number of relative strengths and
weaknesses to consider when defining your web services.

Table 2: Summary of Web Service Style and Use Strengths and Weaknesses

Style/Use Strengths Weaknesses

Document/Literal (wrapped) • WS-I compliant
• No type encoding information
• Can validate in a standard

way
• Operation name in SOAP

message

• Very complex WSDL

RPC/Literal (Axis2 only) • WS-I compliant
• WSDL is straightforward
• Operation name is included in

the WSDL
• No type encoding information

• Hard to validate the message

RPC/Encoded (legacy only) • WSDL is straightforward
• Operation name is included in

the WSDL

• Not WS-I compliant

Web Services Security

To ensure that your valuable and sensitive enterprise data remains safe, it is important to consider
web service security in your planning, implementation, and runtime support of web services.

The security is implemented entirely by the facilities that are integrated with Axis2, which
includes WS-Security, wss4j, and so on. However, with the support of web services with Axis2,
there is the option (recommended and on by default) that requires clients of inbound web services
to provide credentials by using Cúram custom SOAP headers.

1.2 Building Outbound Web Service Connectors

You can create Cúram outbound web services. An Cúram outbound web service connector allows
the application to access external applications that expose a web service interface.

The WSDL file that describes this interface is used by the web service connector functionality in
Cúram to generate the appropriate client code (stubs) to connect to the web service.

© Merative US L.P. 2012, 2024

Cúram 8.1.2 14

Including the WSDL Files in Your Components File System

You must have at least one WSDL file to generate client stubs. Place the WSDL file or files in the
file system, which is usually under source control.

The directories and files that are used are structured as follows.

+ EJBServer
 + build
 + svr
 + wsc2
 + <service_name>
 - <service_name>.wsdl - where modeled service
 WSDL files are built to
 + jav
 + src
 + wsconnector - default location for
 generated stub source;
 override with property
 axis2.java.outdir
 + wsconnector - default location for
 compiled stub code;
 override, with axis2.
 extra.wsdl2java.args
 property
 + components
 + custom
 + axis
 - ws_outbound.xml - where you identify
 your WSDL files
 + <service_name>
 + <service_name>.wsdl - where you might copy a
 WSDL file as pointed to
 by ws_outbound.xml

Place the WSDL files in the custom folder under the location that is represented by your
SERVER_DIR environment variable, typically, EJBServer/components/custom, and
specify the location in the ws_outbound.xml. Placing your WSDL in this structure ensures
that your web services are isolated from Cúram web services. The base name of the root WSDL
file must use the service name.

Adding the WSDL File Location to the Outbound Web Services File

For each component that you want to build an outbound web service connector for, you must
specify the location of the WSDL file or files in a ws_outbound.xml file.

The location for this file is typically EJBServer/components/custom/axis/
ws_outbound.xml.

Specify the location of the WSDL file or files as shown in this example:

<?xml version="1.0" encoding="UTF-8"?>
<services>
 <service name="SomeService"
 location=
 "components/custom/axis/SomeService/SomeService.wsdl"/>
 </services>

The ws_outbound.xml file contains one service entity for each web service, which specifies
the service name (matching the WSDL file base name) and location (relative to the SERVER_DIR
environment variable).

© Merative US L.P. 2012, 2024

1 Integrating with External Applications through Web Services 15

Generating the Web Service Stubs

Generate the web service stubs by invoking the build script. The generation of the web service
stubs is based on the contents of the ws_outbound.xml files, as specified by your component
structure, the setting of the COMPONENT_ORDER environment variable, and the files in your
components/custom/axis directories.

Invoke the Cúram build script:

build wsconnector2

Each WSDL file that is identified by the ws_outbound.xml files is used to generate the stub
source code, which is compiled to produce executable code. The generated source is located in
the EJBServer/build/svr/wsc2/jav/src/wsconnector directory and any compiled
Java™ code is located in the EJBServer/build/svr/wsc2/jav/wsconnector
directory.

By default, the client stubs are generated with Axis2 data bindings (ADB). However, you
can generate some or all of your stubs by using XMLBeans bindings. To generate all stubs
by using XMLBeans bindings, run the wsconnector2 Ant target with the argument: -
Daxis2.extra.wsdl2java.args="-d xmlbeans".

Sometimes not all clients are suitable for the same binding. You can override the ADB default
selectively by adding the extraWsdl2javaArgs="-d xmlbeans" attribute to the service
definitions in the ws_outbound.xml file, for example:

<service name="SomeService"
 location="components/custom/axis/SomeService/SomeService.wsdl"
 extraWsdl2javaArgs="-d xmlbeans"
/>

Creating a Client and Starting the Web Service

To start the web service, you must create and build a client, for example, a Java™ main program,
that uses the generated stubs to prepare arguments, start the web service, and process the return
results.

Starting the web service and using the generated code depends on your development
environment. For example, assuming that the web service is deployed and tested, it might include
the following steps.

1. Copy or reference the generated source and class files, for example, reference in Eclipse.
2. Code your client, for example, a Java™ main program. Typically, your steps include the

following:

• Instantiate the generated stub class.
• Optionally, increase the client timeout threshold, especially for a client that might run first

after the application server starts.
• Set up the credentials in the custom SOAP header. For more information, see Custom

SOAP Headers on page 30.
• Call the stub methods to instantiate objects and set their values to pass to the service.
• Call the service operation.
• Check the response.

© Merative US L.P. 2012, 2024

Cúram 8.1.2 16

3. Build and test.

Typically the generated stub code provides a number of options to start the web service. These
sample code fragments can help illustrate that process.

The following sample web service client fragment calls a service that is named simpleAdd in
class WebServiceTest. for which the external tooling generates WebServiceTestStub and
related classes:

final WebServiceTestStub stub =
 new WebServiceTestStub();

 // Set client timeout for slow machines.
 ServiceClient client = stub._getServiceClient();
 client.getOptions().setProperty(
 HTTPConstants.SO_TIMEOUT, new Integer(180000));
 client.getOptions().setProperty(
 HTTPConstants.CONNECTION_TIMEOUT, new Integer(180000));

 // test string and primitive data types
 final WebServiceTestStub.SimpleAdd service =
 new WebServiceTestStub.SimpleAdd();
 final int i = 20;
 final int j = 30;
 service.setArgs0(i);
 service.setArgs1(j);

 final WebServiceTestStub.SimpleAddResponse
 simpleAddResponse = stub.simpleAdd(service);
 final long sum = simpleAddResponse.get_return();

 client.cleanupTransport(); // Call when done with the service
 // to avoid exhausting connection pool.
 client.cleanup(); // Call when done with the client.

Sometimes, while the generated code is convenient, you need a little more control over your
client environment. The following example illustrates how you might call an in-only service by
using a "hand-built" SOAP message, which in this case takes a simple String argument as input.
A sample web service client that uses generated stub and custom code is shown.

final TestWSStub stub =
 new TestWSStub();

 // Get client from stub
 ServiceClient client;
 client = stub._getServiceClient();

 /*
 * Define SOAP using string
 */
 final String xml = " <rem:testString "
 + "xmlns:rem=\"http://remote.testmodel.util.curam\"> "
 + " <rem:testString>"
 + My test string!
 + "</rem:testString>"
 + " </rem:testString>";

 final ByteArrayInputStream xmlStream =
 new ByteArrayInputStream(xml.getBytes());
 final StAXBuilder builder = new StAXOMBuilder(xmlStream);
 final OMElement oe = builder.getDocumentElement();

 // Send the message
 client.fireAndForget(oe); // API for In-Only processing
 Thread.sleep(10000); // Required for fireAndForget()
 client.cleanupTransport(); // Call when done with the service
 // to avoid exhausting connection pool.
 client.cleanup(); // Call when done with the client.

© Merative US L.P. 2012, 2024

1 Integrating with External Applications through Web Services 17

Note: Later versions of Axis2 Javadoc indicate that unless your client sets the
callTransportCleanup property to true (not recommended for performance
reasons) on the org.apache.axis2.client.Options object that you must call the
org.apache.axis2.client.ServiceClient.cleanupTransport() API after
processing the response.

Client Stub Pool Configuration

The following configuration settings are available for configuring the client stub pool.

• curam.ws.client_stub_pool_size_per_endpoint
The number of cached client stubs per web service end point (IP-address:port:web-service).
The value of this property must be <= curam.ws.client_max_host_connections. The default
value is 50.

• curam.ws.client_stub_pool_idle_time
The amount of time in milliseconds that a pool entry can sit idle before it is eligible for
eviction. The default value is 300,000 (5 minutes).

• curam.ws.client_stub_pool_eviction_run_interval
The amount of time in milliseconds between runs of evictions checks. The default value is
60,000 (1 minute).

• curam.ws.client_max_total_connections
The number of allowed total outbound connections to web service end points. The value of
this property must be >= curam.ws.client_max_host_connections. The default value is 100.

• curam.ws.client_max_host_connections
The allowed number of connections to one host end point (IP-address:port). The value
of this property must be >= curam.ws.client_stub_pool_size_per_endpoint and <=
curam.ws.client_max_total_connections. The default value is 50.

• curam.ws.client_connection_timeout
The amount of time, in milliseconds, that a client stub waits for a connection to a web service
end point. The default value is 60,000 (1 minute).

• curam.ws.client_socket_timeout
The amount of time, in milliseconds, that a socket operation waits before a timeout error is
generated. The default value is 60,000 (1 minute).

• curam.jmx.ws_outbound_statistics_enabled
The application property that specifies whether the JMX statistics for outbound web services
calls are enabled.

© Merative US L.P. 2012, 2024

Cúram 8.1.2 18

1.3 Developing Inbound Web Services

An inbound web service is Cúram application functionality that is exposed to other internal or
external applications in the network. This information describes the infrastructure that supports
these services and the steps that you must complete to use it.

Getting Started

An overview of the process for developing inbound web services.

• Model your web service and provide implementation code
You need to define the classes (WS Inbound) and operations in IBM® Rational® Software
Architect Designer that you are implementing to provide the functionality that you want to
expose as web services.

As with any Cúram process class, you must provide the implementation for the classes and
operations you model that is described in the .

• Build your web services and the web services EAR file
The Cúram build system will build and package your web services. Use the server and EAR
file build targets that are described in the guide and the deployment guide that is appropriate
to your platform.

• Provide security data for your web services
By default your web services are not accessible until you: a) Provide security data (see
Providing Security Data for Web Services on page 23) that defines the service class
and operation and which security group(s) can access them; and b) Your clients must then
provide credentials appropriate to those security definitions (see Custom SOAP Headers on
page 30 (unless you choose to disable this security functionality; see Custom Credential
Processing on page 25).

Each of the above steps is explained in more detail in the sections that follow. To better
understand the process just outlined the following illustrates the structure of directories and files
used.

+ EJBServer
 + build
 + svr
 + gen
 + wsc2 - where the generator
 places ws_inbound.xml
 property files
 - <service_name>.wsdl - where modeled service
 WSDL files are generated
 + components
 + custom
 + axis
 + <service_name>
 - ws_inbound.xml - where you might place a
 custom ws_inbound.xml
 property file
 - services.xml - where you might place a
 custom services.xml
 descriptor file
 + source - where optional schema

© Merative US L.P. 2012, 2024

1 Integrating with External Applications through Web Services 19

 validation code would go
 + schemas - where you might place
 optional schema
 + webservice - where you must place
 custom receiver code

Figure 1: File System Usage For Inbound Web Services

Modeling and Implementing an Inbound Web Service

Based on your design decisions, you will need to model the necessary classes and operations, and
set the appropriate properties in the Cúram model.

For more information about how to use the IBM® Rational® Software Architect Designer tool
with the Cúram model, see Working with the Cúram Model in Rational Software Architect
Designer.

You must also code your web service implementation classes in accordance with the standard
Cúram development process that is described in the guide .

When you model your web services, consider the following.

• The web service binding style - Document (recommended, default) or RPC.
• The web service binding use - Literal or Encoded.

Note: Not all combinations of binding style and use are supported. For more information,
see Types of Web Services on page 10.

• Whether the service is processing struct and domain types or a W3C Document.

Creating Inbound Web Service Classes
To add an Axis2 inbound web service class to a package in IBM® Rational® Software Architect
Designer, select Add Class, WS Inbound from the right-click context menu and name the class.

Note: In Cúram, web service names are based on the class name that are specified in the
Rational® Software Architect Designer model and must be unique within the environment.

If you require passing and returning a W3C Document instead of Cúram domain types or structs
you must:

1. In the Curam properties tab for the WS Inbound class, select the WS_Is_XML_Document
property (if passing W3C Documents providing schema validation is an optional activity and
is detailed in Providing schema validation on page 28);

2. Select True as the value from the drop down.

By default the web service style for the class is document, which is defined in the
WS_Binding_Style property as " 0 - Unspecified ". If you require the RPC binding style:

1. In the Curam properties tab, select the WS_Binding_Style property;
2. Select " 2 - RPC " as the value from the drop down.

You can also set the value explicitly to " 1 - Document ", but the generator defaults the " 0 -
Unspecified " value to be document.

© Merative US L.P. 2012, 2024

Cúram 8.1.2 20

The class properties above will apply uniformly to all operations of the web service class; so,
you need to plan your design to account for this. That is, a class can contain W3C Document
operations or operations that use native data types or Cúram structs, but not both. Similarly the
binding style (WS_Binding_Style) will be applied to all operations of a class when passed as an
argument to the Java2WSDL tool; so, any requirement for operations with a different binding
style in generated WSDL would need to be handled in a separate modeled class.

Adding Operations to Inbound Web Service Classes
In IBM® Rational® Software Architect Designer, you add operations to Axis2 inbound web
service classes by using the right-click context menu.

Add an operation to an inbound web service class.

1. Select Operation from the right-click context menu and choose Default.
2. In the Create 'default' Operation Wizard, name the operation, and select its return type.

The following are issues with Axis2 that are relevant to you when you model inbound web
services:

• Certain method names on inbound web services do not operate as expected because, when
handling an inbound web service call, Java reflection is used to find and start methods in
your application. The Axis2 reflection code identifies methods by name only (that is, not
by signature). This identification means that unexpected behavior can occur if your web
service interface contains a method with the same name as an inherited method. Each inbound
web service in your application causes a facade bean, that is, a stateless session bean to be
generated.

So, in addition to your application methods, this class also contains methods that are inherited
from javax.ejb.EjbObject, and possibly others generated by your application server
tooling. For example: remove, getEJBHome, getHandle.

This limitation is logged with Apache in JIRA AXIS2-4802. Currently, the only workaround is
to ensure that your inbound web service does not contain any methods whose names conflict
with those that are in javax.ejb.EjbObject.

Adding Arguments and Return Types to Inbound Web Service Operations
You add arguments and return types to inbound web service operations in the same way that they
are added to process and facade classes. However, they are only relevant for classes that don't
specify support for W3C Documents (WS_Is_XML_Document property).

For more information about how to add arguments and return types to process classes, see the
related link to Modeling Cúram elements using Rational® Software Architect Designer.

Note: When modeling a web service struct aggregation in IBM® Rational® Software Architect
Designer graphical mode, Rational® Software Architect Designer automatically adds an
aggregation label. This causes the WSDL to be generated incorrectly. Remove this label in the
model before building and the WSDL will generate correctly.

Related information

© Merative US L.P. 2012, 2024

1 Integrating with External Applications through Web Services 21

Processing of Lists
An operation uses Cúram lists if its return value or any of its parameters utilize a struct which
aggregates another struct using 'multiple' cardinality.

In the UML metamodel, you can model a <<WS_Inbound>> operation that uses parameters that
contain lists, that is, a struct that aggregates one or more other structs as a list. All operations that
are visible as a web service are normally also visible to the web client.

However, the web client does not support the following:

• List parameters.
• Non-struct parameters, that is, parameters which are domain definitions.
• Non-struct operation return types.

In these cases, the web client ignores the operations that it does not support, but these operations
can be used for Axis2 inbound web services.

Data Types
The Cúram data types, except Blob (SVR_BLOB), can be used in Axis2 inbound web service
operations.

The mappings between Cúram and WSDL data types are shown in the following table:

Table 3: Cúram to WSDL data types for Axis2

Cúram data type WSDL data type

SVR_BOOLEAN xsd:boolean

SVR_CHAR xsd:string

SVR_INT8 xsd:byte

SVR_INT16 xsd:short

SVR_INT32 xsd:int

SVR_INT64 xsd:long

SVR_STRING xsd:string

SVR_DATE xsd:string

(Format: yyyymmdd)

SVR_DATETIME xsd:string

(Format: yyyymmddThhmmss)

SVR_FLOAT xsd:float

SVR_DOUBLE xsd:double

SVR_MONEY xsd:float

With the supported data types shown in Data Types on page 21, only the related XML
schema types that map to primitive Java types and java.lang.String are supported for
inbound web services. For example, "xsd:boolean" and "xsd:long" that map to the boolean and
long Java types, respectively, and "xsd:string" that maps to java.lang.String are supported.
All other XML schema types that do not map to a Java primitive type or to java.lang.String
are not supported.

© Merative US L.P. 2012, 2024

Cúram 8.1.2 22

An example of an unsupported XML schema type is "xsd:anyURI", which maps to
java.net.URI. This limitation applies to inbound web services only and is due to the fact
that inbound web services are generated based on what can be represented in a Cúram model.
Outbound web services are not affected by this issue. For more details on related modeling topics,
see Working with the Cúram Model in Rational Software Architect Designer and the .

Note: Passing or returning the raw Cúram data types, that is, Date, DateTime, Money, as an
attribute to an Axis2 web service is restricted. Cúram data types must be wrapped inside a
struct before they are passed as attributes to a web service.

Building and Packaging Web Services

Use the targets websphereWebServices, weblogicWebServices, and
libertyWebServices to build the web services EAR file.

The steps in this build process are as follows.

1. Package global WAR file directories: lib, conf, modules.
2. Iterate over the web service directories in build/svr/gen/wsc2 (one directory per web

service class) that are created by the generator.

• Process the properties in the following order: custom, generator, defaults. For more
information, see Inbound Web Service Properties File on page 24.

• Unless a custom services.xml has been provided, generate the services.xml
descriptor file, For more information, see Deployment Descriptor File on page 24.

• Package the web service directory.

The following properties and customizations are available.

• You can turn off the generation of the webservices2.war by setting the property
disable.axis2.build.

• You can specify an alternate location for the build to read in additional or custom Axis2
module files by setting the axis2.modules.dir property that will contain all the .mar files and
the modules.list file to be copied into the WEB-INF\modules directory;

• You can include additional, external content into the webservices.war by setting either of
the following properties.

• axis2.include.location - that points to a directory containing a structure mapping to
the Axis2 WAR file directory structure;

• axis2.include.zip - that points to a zip file containing a structure mapping to the
Axis2 WAR file directory structure.

With either of the two properties above, setting the axis2.include.overwrite property
causes these contents to override the Cúram packaged content in the WAR file. This capability
is for including additional content into your WAR file. An example of how you might use
this is to include the sample Version service to enable Axis2 to successfully validate the
environment (see Initial Server Validation and Troubleshooting on page 50).

For example, to include the sample Version web service for IBM® WebSphere® Application
Server you need to create a directory structure that maps to the webservices2.war
file and includes the structure of Version.aar file as is shipped in the Axis2 binary
distribution: axis2-1.5.1-bin/repository/services/version.aar. That
structure would look like this:

© Merative US L.P. 2012, 2024

1 Integrating with External Applications through Web Services 23

+ WEB-INF
 + services
 + Version
 + META-INF
 - ./services.xml
 + sample
 + axisversion
 - ./Version.class

Then, if the location of the Version directory were in C:\Axis2-includes, you would
specify the following property value at build time: -Daxis2.include.location=C:\Axis2-
includes. Alternatively, you could package the above file structure into a zip file and specify
the -Daxis2.include.zip property instead. In both cases the file structure specified would
be overlaid onto the file structure (depending on the value of axis2.include.overwrite) and
packaged into the webservice2.war WAR file. (For Oracle® WebLogic Server the above
would be changed to replace the contents of the Version directory with a Version.aar file,
which is a compressed file.)

• You can set global, default web services credentials at build time through the following
properties that are set in your Bootstrap.properties file.

• curam.security.credentials.ws.username - the username that is used when
executing inbound web service calls;

• curam.security.credentials.ws.password - the password that is used when
executing inbound web service calls. This password must be encrypted.

The above credentials must exist on the Users table, must be enabled, and should be
assigned the appropriate security role.

Default credentials can streamline your development and testing processes, but should not
be used in a production environment when working with sensitive data and/or processes.

Providing Security Data for Web Services

You must provide security data in order to make your web service usable. In Cúram, web services
are not automatically associated with a security group. This is to ensure that web services are not
vulnerable to a security breach.

As part of your development process, ensure that the appropriate security database entries are
created. For example:

INSERT INTO SecurityGroupSid (groupname, sidname)
 values ('WEBSERVICESGROUP', 'ServiceName.anOperation');

For more information about the contents of the Cúram security tables, see .

Providing Web Service Customizations

Providing customizations at build-time impacts the security and behavior of your web service at
run time. With the default configuration, the web services EAR file build performs the following
tasks:

• Assigns the appropriate Cúram message receiver for struct and domain types, for argument
and operation return values, or for W3C Documents. This assignment is based on how

© Merative US L.P. 2012, 2024

Cúram 8.1.2 24

you set the WS_Is_XML_Document property in Rational Software Architect for the "WS
Inbound" (stereotype: <<wsinbound>>) class.

• Expects the web service client to pass a custom SOAP header with authentication credentials
to start the web service.

To change the default behaviors, you require a custom receiver. For more information, see
Customizing Receiver Runtime Functionality on page 25. You might also need to customize
the following.

• Implementing web services security (Apache Rampart). For more information, see 1.4
Securing Web Services on page 29.

• Providing external, non- Cúram functionality such as the Apache Axis2 Monitor. For more
information, see 1.9 Including the Axis2 SOAP Monitor in Your Web Services WAR File on
page 55.

• Providing other custom parameters for the deployment descriptor (services.xml),
for example: doclitBare, mustUnderstand. For more information, see the Apache Axis2
documentation for more information (Apache Axis2 Configuration Guide).

To effectively customize your web services you need to know how Cúram processes web services
at build time, which is explained in the following sections.

Inbound Web Service Properties File
Based on the web service classes modeled with IBM® Rational® Software Architect Designer, the
generator creates a folder in the build/svr/gen/wsc2 directory for each web service class
modeled.

For more information, see Getting Started on page 18. (This maps closely to how
Axis2 expects services to be packaged for deployment.) In that folder a properties file,
ws_inbound.xml, is generated.

To provide a custom ws_inbound.xml file, you can start with the generated copy that
you will find in the build/svr/gen/wsc2/<service_name> directory after an
initial build. Place your custom ws_inbound.xml file in your components/custom/
axis/<service_name> directory (usually under source control). During the build the
ws_inbound.xml files are processed to allow for a custom file first, overriding generated and
default values. For more information about the property settings in this file, see 1.5 Inbound Web
Service Properties: ws_inbound.xml on page 45 .

Deployment Descriptor File
Each web service class requires its own deployment descriptor file (services.xml.

The build automatically generates a suitable deployment descriptor for the defaults in accordance
with 1.5 Inbound Web Service Properties: ws_inbound.xml on page 45. The format and
contents of the services.xml are defined by Axis2. See the Apache Axis2 Configuration
Guide (http://axis.apache.org/axis2/java/core/docs/axis2config.html) for more information.

To provide a custom services.xml file, start with the generated copy that is located in the
build/svr/wsc2/<service_name> directory after an initial build of the web services
WAR/EAR file. This is illustrated in Getting Started on page 18.

Place your custom services.xml file in your components/custom/axis/
<service_name> directory (usually under source control). For details about this contents
file, see 1.6 Deployment Descriptor File: services.xml on page 47. During the build, the
services.xml files are packaged into the web services WAR file (webservices2.war)

© Merative US L.P. 2012, 2024

http://axis.apache.org/axis2/java/core/docs/axis2config.html
http://axis.apache.org/axis2/java/core/docs/axis2config.html

1 Integrating with External Applications through Web Services 25

as per Axis2 requirements, that is, using this file system structure: WEB-INF/services/
<service_name>/META-INF/services.xml. See the Apache Axis2 User's Guide -
Building Services http://axis.apache.org/axis2/java/core/docs/userguide-buildingservices.html).

Customizing Receiver Runtime Functionality
The default receivers that are provided with Cúram should be sufficient for most cases. However,
you can provide overrides for the following functionality.

• Credentials processing
• Accessing the SOAP Message
• Application server-specific provider URL and context factory parameters
• SOAP factory provider for W3C Document processing

Custom Credential Processing
You might need to customize credentials processing, for example, if you want to obtain or
validate credentials externally before passing them to the receiver for authentication.

By default, Cúram web services are built to expect the client to provide credentials using a
custom SOAP header. These credentials are then used in starting the service class operation. The
default processing flow is as follows:

• Unless curamWSClientMustAuthenticate is set to false in the services.xml descriptor
for the service, the SOAP message is checked for a header and if present these credentials are
used. If the SOAP header is not present, then the invocation of the service fails.

• If curamWSClientMustAuthenticate is set to false the services.xml jndiUser and
jndiPassword parameters are used.

• If there are no jndiUser and jndiPassword parameters in the services.xml descriptor file,
default credentials are used.

However, there is no security data generated for web services. In this case, the defaults
credentials on their own are not adequate to enable access to the service. For more information
on providing this data, see Providing Security Data for Web Services on page 23.

If you require your own credential processing you must code your own
getAxis2Credentials(MessageContext) method, extending
curam.util.connectors.axis2.CuramMessageReceiver, to provide these
parameters. This method takes a MessageContext object as an input parameter and returns
a java.util.Properties object that contains the Axis2 parameter name and value. For
example:

public Properties getAxis2Credentials(
 final MessageContext messageContextIn) {

 final Properties loginCredentials = new Properties();

 String sUser = null;
 String sPassword = null;

 <Your processing here...>

 if (sUser != null) {
 loginCredentials.put(
org.apache.axis2.rpc.receivers.ejb.EJBUtil.EJB_JNDI_USERNAME,
 sUser);
 }

© Merative US L.P. 2012, 2024

http://axis.apache.org/axis2/java/core/docs/userguide-buildingservices.html

Cúram 8.1.2 26

 if (sPassword != null) {
 loginCredentials.put(
org.apache.axis2.rpc.receivers.ejb.EJBUtil.EJB_JNDI_PASSWORD,
 sPassword);
 }

 return loginCredentials;
 }

Figure 2: Sample getAxis2Credentials Method

See Building Custom Receiver Code on page 27 on how to specify and build this custom
class for this method.

You can use the runtime properties curam.security.credentials.ws.username
and curam.security.credentials.ws.password (encrypted) to specify default web
services credentials. Using runtime properties might not be appropriate in a secure production
environment; but, could be a useful, for instance, in development for simulating functions that
would ultimately be provided by an external security system. For more information on encrypted
passwords, see the Cúram Security Guide.

Accessing the SOAP Message
If you require access to the SOAP message, you can extend the Curam receiver class as shown in
the following example.

package webservice;

import org.apache.axis2.AxisFault;
import org.apache.axis2.context.MessageContext;
import org.apache.log4j.Logger;

/**
 * Sample SOAP message access.
 */
public class CustomReceiverInOutAccessSOAPMsg
 extends curam.util.connectors.axis2.CuramMessageReceiver {

 /** Class logger. */
 private final Logger log =
 Logger.getLogger(CustomReceiverInOutAccessSOAPMsg.class);

 /**
 * Access the SOAP message and invoke
 * Curam receiver invokeBusinessLogic.
 *
 * @param messageContextIn Input MessageContext.
 * @param messageContextOut Output MessageContext.
 *
 * @throws AxisFault based on called method.
 */
 @Override
 public void invokeBusinessLogic(final MessageContext
 messageContextIn,
 final MessageContext messageContextOut) throws AxisFault {
 if (messageContextIn != null) {
 final org.apache.axiom.soap.SOAPEnvelope inEnv =
 messageContextIn.getEnvelope();

© Merative US L.P. 2012, 2024

1 Integrating with External Applications through Web Services 27

 if (inEnv != null) {
 // Insert custom SOAP processing here.
 log.debug("Sample access of SOAP message: " +
 inEnv.toString());
 }
 }

 super.invokeBusinessLogic(messageContextIn,
 messageContextOut);
 }
}

Figure 3: Sample Custom Receiver to Access the SOAP Message

Note, the invocation of super.invokeBusinessLogic() must be made.

See Building Custom Receiver Code on page 27 on how to specify and build this custom
class.

Custom Application Server-Specific Parameters
The app_webservices2.xml script generates correct application server-specific provider
URL and context factory parameters. However, if you are supporting multiple environments, you
can derive one or more of these values in your own custom code.

You can provide your own getProviderURL() and/or getContextFactoryName() methods
by overriding class curam.util.connectors.axis2.CuramMessageReceiver. Both
methods return a string representing the provider URL and context factory name, respectively.
For more information about how to specify and build this custom class for these methods, see
Building Custom Receiver Code on page 27.

Custom SOAP Factory
Generally, the default SOAP factory, org.apache.axiom.soap.SOAPFactory, is adequate
for processing your web services that process W3C Documents. However, you can override this
behavior by providing your own getSOAPFactory(MessageContext) method.

This method takes a MessageContext object as an input parameter and returns an
org.apache.axiom.soap.SOAPFactory.

Building Custom Receiver Code
To build custom receiver code, you must complete the following steps.

1. Extend the appropriate class. For example, public class MyReceiver extends
curam.util.connectors.axis2.CuramMessageReceiver. For the list of
receiver classes and their usage, see Deployment Descriptor File on page 24.

2. Specify a package name of webservice in your custom Java program. For example, package
webservice;.

3. Place your custom source code in your components source/webservice directory. For
example, components/mycomponents/source/webservice). The server build
target builds and packages this custom receiver code.

4. Create a custom services.xml descriptor file for each service class to be overridden by
your custom behavior. See Deployment Descriptor File on page 24 and Building Custom
Receiver Code on page 27.

<messageReceivers>
 <messageReceiver
 mep="http://www.w3.org/2004/08/wsdl/in-out"
 class="webservice.MyReceiver"/>

© Merative US L.P. 2012, 2024

Cúram 8.1.2 28

 </messageReceivers>

Figure 4: Sample services.xml Descriptor File Entry for a Custom Receiver

The webservices build that is implemented in app_webservices2.xml packages these
custom artifacts into a WAR file.

Providing schema validation
When you use web services that pass and return a W3C Document object, you might want to use
schema validation to verify the integrity of the document you are processing.

Whether you choose to use schema validation depends on the following factors:

• The CPU cost of performing such validation, which depends on the volume of transactions
your system encounters.

• The source of the Documents being passed to your web service, whether that is under your
control or public.

The steps for validating an XML Document in an inbound web service are as follows:

1. Include the schema document in the application ear by storing it somewhere within directory
SERVER_DIR/components/**/webservices/**/*.xsd.

2. Provide code within the implementation code of the BPO method that loads the schema file,
and passes it into the infrastructure validator class along with the org.w3c.Document class to
be validated.

The code example (Providing schema validation on page 28) illustrates how validation can be
implemented.

 import curam.util.exception.AppException;
 import curam.util.exception.InformationalException;
 import curam.util.webservices.DOWSValidator;
 import java.io.InputStream;
 import org.w3c.dom.Document;

 . . .

 /**
 * A sample XML document web service.
 */
 public org.w3c.dom.Document
 myWebServiceOperation(final org.w3c.dom.Document docIn)
 throws AppException, InformationalException {

 // DOWSValidator is the SDEJ infrastructure class for
 // validating org.w3c.Document classes in web services.
 final curam.util.webservices.DOWSValidator validator =
 new curam.util.webservices.DOWSValidator();

 try {
 // The following is used only for error reporting
 // purposes by DOWSValidator. In your code you can
 // provide a relevant value to help identify the schema
 // in the event of an error.
 final String schemaURL = "n/a";

 // Load the schema file from the .ear file.

© Merative US L.P. 2012, 2024

1 Integrating with External Applications through Web Services 29

 // For example, the source location of
 // 'test1.xsd' was
 // SERVER_DIR/components/custom/webservices.

 final InputStream schemaStream =
 getClass().getClassLoader().
 getResourceAsStream("schemas/test1.xsd");

 // if schema file is in
 // SERVER_DIR/components/custom/webservices/test/test1.xsd
 schemaStream =
 getClass().getClassLoader().
 getResourceAsStream("schemas/test/test1.xsd");

 // Invoke the validator.
 validator.validateDocument(docIn, schemaStream,
 schemaURL);

 } catch (Exception e) {
 // Schema validation failed. Throw an exception.
 AppException ae = new
 AppException(SOME_MESSAGES.ERR_SCHEMA_VALIDATION_ERROR,
 e);
 }

 // normal BPO logic goes here.
 // ...

 return result;
 }

Figure 5: Sample Illustrating Schema Validation

1.4 Securing Web Services

Web service security is an important part of your web services implementation. Use this
information to learn about existing web service security and how to secure your web services.

For Rampart and Axis2 web services security, you will learn how to:

• Use and set up Rampart.
• Use custom SOAP headers with Axis2 and encrypt them.
• Use HTTPS/SSL to secure web service network traffic.

You can also use the following to secure your web services:

• Cúram modeling requirements for using secure web services.
• Code password callback handlers (also applicable to Axis2 if your policy specifies a password

callback handler).
• Set up the client environment.
• Create keystore files (also applicable to Axis2 if your environment requires these steps for

supporting HTTPS/SSL).

© Merative US L.P. 2012, 2024

Cúram 8.1.2 30

Axis2 Security and Rampart

Rampart is the security module of Axis2. With the Rampart module you can secure web services
for authentication, integrity (signature), confidentiality (encryption/decryption) and non-
repudiation (timestamp).

Rampart secures SOAP messages according to specifications in WS-Security, using the WS-
Security Policy language.

The only specific restriction placed on the use of web service security for Cúram applications is
that Rampart Authentication cannot be used. This is due to the requirements of Cúram receivers
(this authentication is typically coded in the service code itself, which would be moot by that
point as these receivers would have already performed authentication). However, custom SOAP
headers provide similar functionality (see Custom SOAP Headers on page 30 for more
details).

WS-Security can be configured using the Rampart WS-Security Policy language. The WS-
Security Policy language is built on top of the WS-Policy framework and defines a set of policy
assertions that can be used in defining individual security requirements or constraints. Those
individual policy assertions can be combined using policy operators defined in the WS-Policy
framework to create security policies that can be used to secure messages exchanged between a
web service and a client.

WS-security can be configured without any Cúram infrastructure changes using Rampart and
WS-Security Policy definitions. A WS-Security Policy document can be embedded in a custom
services.xml descriptor (see Deployment Descriptor File on page 24). WS-Policy and
WS-SecurityPolicy can also be directly associated with the service definition by being embedded
within a WSDL document.

Encryption generally incurs costs (e.g. CPU overhead) and this is a concern when using WS-
Security. However, there are ways to help minimize these costs and one of these is to set the WS-
SecurityPolicy appropriate for each individual operation, message, or even parts of the message
for a service, rather than applying a single WS-SecurityPolicy to the entire service (for example,
see Encrypting Custom SOAP Headers on page 33). To apply such a strategy you need to
have a clear grasp of your requirements and exposures. Questions you might consider as you plan
your overall security strategy and implementation: Can some services bypass encryption if they
are merely providing data that is already available elsewhere publicly? Are multiple levels of
encryption necessary; for instance, do you really need both Rampart encryption and HTTP/SSL
encryption?

Custom SOAP Headers

Cúram enforces credential checking or web service invocations based on the default expectation
that a client that is calling a web service has provided a custom SOAP header. This information
describes how your clients can provide the required SOAP headers.

This topic was introduced in Providing Web Service Customizations on page 23. If you
choose to bypass this security checking, you must plan specific customizations. By default, the
provided receivers for Axis2 expect the client invocation of each web service to provide a custom
SOAP header that contains credentials for authenticating Cúram access to the web service.

The following is an example of the Cúram custom SOAP header in the context of the SOAP
message:

© Merative US L.P. 2012, 2024

1 Integrating with External Applications through Web Services 31

<?xml version='1.0' encoding='UTF-8'?>
 <soapenv:Envelope
 xmlns:soapenv="http://www.w3.org/2003/05/soap-envelope">
 <soapenv:Header>
 <curam:Credentials
 xmlns:curam="http://www.curamsoftware.com">
 <Username>testerID</Username>
 <Password>password</Password>
 </curam:Credentials>
 </soapenv:Header>
 <soapenv:Body>
 <!-- SOAP message body data here. -->
 </soapenv:Body>
 </soapenv:Envelope>

Figure 6: Example Custom SOAP Header

The following is a sample client method for creating custom SOAP headers:

import org.apache.axis2.client.ServiceClient;
import javax.xml.namespace.QName;
import org.apache.axiom.om.OMAbstractFactory;
import org.apache.axiom.om.OMElement;
import org.apache.axiom.om.OMFactory;
import org.apache.axiom.om.OMNode;
import org.apache.axiom.om.OMNamespace;
import org.apache.axiom.soap.SOAPFactory;
import org.apache.axiom.soap.SOAPHeaderBlock;

...

/**
 * Create custom SOAP header for web service credentials.
 *
 * @param serviceClient Web service client
 * @param userName User name
 * @param password Password
*/
void setCuramCredentials(final ServiceClient serviceClient,
 final String userName, final String password)

 // Setup and create the header
 final SOAPFactory factory =
 OMAbstractFactory.getSOAP12Factory();
 final OMNamespace ns =
 factory.createOMNamespace("http://www.curamsoftware.com",
 "curam");
 final SOAPHeaderBlock header =
 factory.createSOAPHeaderBlock("Credentials", ns);
 final OMFactory omFactory = OMAbstractFactory.getOMFactory();

 // Set the username.
 final OMNode userNameNode =
 omFactory.createOMElement(new QName("Username"));
 ((OMElement) userNameNode).setText(userName);
 header.addChild(userNameNode);

 // Set the password.
 final OMNode passwordNode =

© Merative US L.P. 2012, 2024

Cúram 8.1.2 32

 omFactory.createOMElement(new QName("Password"));
 ((OMElement) passwordNode).setText(password);
 header.addChild(passwordNode);

 serviceClient.addHeader(header);
}

Figure 7: Sample Method to Create Custom SOAP Headers

Then a call to the above method would appear as:

// Set the credentials for the web service:
 MyWebServiceStub stub =
 new MyWebServiceStub();
 setCuramCredentials(stub._getServiceClient(),
 "system", "password");

By default, the client that failed to provide this custom header will cause the service to not be
invoked. And, of course, incorrect or invalid credentials will cause an authentication error. The
following is an example of failing to provide the necessary custom SOAP header:

<soapenv:Envelope xmlns:
 soapenv="http://www.w3.org/2003/05/soap-envelope">
 <soapenv:Body>
 <soapenv:Fault>
 <soapenv:Code>
 <soapenv:Value
 >soapenv:Receiver</soapenv:Value>
 </soapenv:Code>
 <soapenv:Reason>
 <soapenv:Text xml:lang="en-US">
 No authentication data.
 </soapenv:Text>
 </soapenv:Reason>
 <soapenv:Detail/>
 </soapenv:Fault>
 </soapenv:Body>
</soapenv:Envelope>

© Merative US L.P. 2012, 2024

1 Integrating with External Applications through Web Services 33

Warning: Potential Security Vulnerability

By default, custom SOAP headers that contain credentials for authentication pass on the wire
in plain-text. This is an insecure situation and you must encrypt this traffic to prevent your
credentials from being vulnerable and your security from being breached. For information
about how you can rectify this, see Encrypting Custom SOAP Headers on page 33 and/or
Securing Web Service Network Traffic with HTTPS/SSL on page 44.

For example, this is what the custom SOAP header looks like in the SOAP message with the
credentials visible:

<?xml version='1.0' encoding='UTF-8'?>
<soapenv:Envelope
 xmlns:soapenv="http://www.w3.org/2003/05/soap-envelope">
 <soapenv:Header>
 <curam:Credentials
 xmlns:curam="http://www.curamsoftware.com">
 <Username>tester</Username>
 <Password>password</Password>
 </curam:Credentials>
 </soapenv:Header>
 <soapenv:Body>
 ...
 </soapenv:Body>
</soapenv:Envelope>

Figure 8: Sample Custom SOAP Header

Encrypting Custom SOAP Headers

By default, SOAP headers travel across the wire as plain text. You can use Rampart to encrypt
your Cúram custom SOAP headers to help to ensure the security of these credentials.

We recommend that you plan a security strategy and implementation for all of your web services
and related data based on your overall, enterprise-wide requirements, environment, platforms, and
so on. This information is just one small part of your overall security picture.

There is additional information on coding your web service clients for Rampart security in Using
Rampart With Web Services on page 35 that provides more context for the following.

The steps to encrypt these headers are follows:

1. Add the following to your client descriptor file:

<encryptionParts>
 {Element}{http://www.curamsoftware.com}Credentials
 </encryptionParts>

(See Defining the Axis2 Security Configuration on page 35 for more information on the
contents of this file.)

Or, add the following to your Rampart policy file:

<sp:EncryptedElements
 xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:sp=
 "http://schemas.xmlsoap.org/ws/2005/07/securitypolicy">
 <sp:XPath xmlns:curam="http://www.curamsoftware.com" >

© Merative US L.P. 2012, 2024

Cúram 8.1.2 34

 /soapenv:Envelope/soapenv:Header/curam:Credentials/Password
 </sp:XPath>
</sp:EncryptedElements>

(See Defining the Axis2 Security Configuration on page 35 for more information on the
contents of this file.)

2. Engage and invoke Rampart in your client code as per Using Rampart With Web Services on
page 35.

With WS-Security applied as per above the credentials portion of the wsse:Security header will
be encrypted in the SOAP message as shown in this example below, which you can contrast with
Figure 8: Sample Custom SOAP Header on page 33:

In the following example encryptedParts was used to encrypt the Cúram credentials.

...

<?xml version='1.0' encoding='UTF-8'?>
 <soapenv:Envelope
 xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:wsa="http://www.w3.org/2005/08/addressing"
 xmlns:xenc="http://www.w3.org/2001/04/xmlenc#">
 <soapenv:Header>
 <wsse:Security
 xmlns:wsse="http://docs.oasis-open.org/wss/
 2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd"
 soapenv:mustUnderstand="1">
 <xenc:EncryptedKey
 Id="EncKeyId-A5ACA637487ECDA81713059750729855">
 <xenc:EncryptionMethod
 Algorithm="http://www.w3.org/2001/04/xmlenc#rsa-1_5" />
 <ds:KeyInfo
 xmlns:ds="http://www.w3.org/2000/09/xmldsig#">
 <wsse:SecurityTokenReference>

 </wsse:Security>

 <!-- Credential data is then encoded in sections
 that follow as illustrated -->
 <xenc:EncryptedData Id="EncDataId-3"
 Type="http://www.w3.org/2001/04/xmlenc#Element">
 <xenc:EncryptionMethod
 Algorithm="http://www.w3.org/
 2001/04/xmlenc#aes128-cbc" />
 <ds:KeyInfo
 xmlns:ds="http://www.w3.org/2000/09/xmldsig#">
 <wsse:SecurityTokenReference
 xmlns:wsse="http://..oasis-
 200401-wss-wssecurity-secext-1.0.xsd">
 <wsse:Reference
 URI="#EncKeyId-A5ACA637444e87ECDA81713059750729855"/>
 </wsse:SecurityTokenReference>

 </ds:KeyInfo>
 <xenc:CipherData>
 <xenc:CipherValue>
 eZFRrk6VSncaDanYCjyVD=</xenc:CipherValue>
 </xenc:CipherData>

© Merative US L.P. 2012, 2024

1 Integrating with External Applications through Web Services 35

 </xenc:EncryptedData>
 <wsa:Action>urn:simpleXML</wsa:Action>
 </soapenv:Header>

Figure 9: Example Encrypted Custom SOAP Header

Using Rampart With Web Services

There are a number of parts to Rampart security. Covering them in detail is outside the scope of
this information. However, the following gives a high-level view on using Rampart with your
Cúram Axis2 web services.

These are the steps for using web services security with Axis2:

1. Define configuration data and parameters for your client and server environments;
2. Provide the necessary data and code specified in your configuration;
3. Code a client to identify and process the configuration.

There is a lot of flexibility in how you fulfill the above steps and the following sections will show
some possible ways of doing this.

Defining the Axis2 Security Configuration
While the necessary configuration will depend on what security features you choose to use,
the overall set of activities will be similar regardless. On the client side, you can define the
security configuration via a client Axis2 descriptor file (axis2.xml), Rampart policy file, or
programmatically (now deprecated).

On the server side, you can define the security configuration via the service descriptor file
(services.xml) or through a Rampart policy that is embedded in the service WSDL.

The following examples show the client and server configurations in the context of a client Axis2
descriptor and Rampart policy files and the server configuration via the context of the service
descriptor file.

Client configuration:

<axisconfig name="AxisJava2.0">
 <module ref="rampart" />

 <parameter name="InflowSecurity">
 <action>
 <items>Signature Encrypt</items>
 <signaturePropFile>
 client-crypto.properties
 </signaturePropFile>
 <passwordCallbackClass>
 webservice.ClientPWCallback
 </passwordCallbackClass>
 <signatureKeyIdentifier>
 DirectReference
 </signatureKeyIdentifier>
 </action>
 </parameter>

 <parameter name="OutflowSecurity">
 <action>
 <items>Signature Encrypt</items>

© Merative US L.P. 2012, 2024

Cúram 8.1.2 36

 <encryptionUser>admin</encryptionUser>
 <user>tester</user>

 <passwordCallbackClass>
 webservice.ClientPWCallback
 </passwordCallbackClass>

 <signaturePropFile>
 client-crypto.properties
 </signaturePropFile>
 <signatureKeyIdentifier>
 DirectReference
 </signatureKeyIdentifier>

 <encryptionParts>
 {Element}{http://www.curamsoftware.com}Credentials
 </encryptionParts>

 </action>
 </parameter>
...

Figure 10: Sample Client Descriptor Settings (Fragment)

Server configuration:

<serviceGroup>
 <service name="SignedAndEncrypted">

 ...

 <module ref="rampart" />

 <parameter name="InflowSecurity">
 <action>
 <items>Signature Encrypt</items>
 <passwordCallbackClass>
 webservice.ServerPWCallback
 </passwordCallbackClass>
 <encryptionUser>admin</encryptionUser>
 <user>tester</user>
 <signaturePropFile>
 server-crypto.properties
 </signaturePropFile>
 <signatureKeyIdentifier>
 DirectReference
 </signatureKeyIdentifier>
 </action>
 </parameter>

 <parameter name="OutflowSecurity">
 <action>
 <items>Signature Encrypt</items>
 <encryptionUser>admin</encryptionUser>
 <user>tester</user>
 <passwordCallbackClass>
 webservice.ServerPWCallback
 </passwordCallbackClass>

© Merative US L.P. 2012, 2024

1 Integrating with External Applications through Web Services 37

 <signaturePropFile>
 server-crypto.properties
 </signaturePropFile>
 <signatureKeyIdentifier>
 DirectReference
 </signatureKeyIdentifier>
 </action>
 </parameter>

 ...

 </service>
</serviceGroup>

Figure 11: Sample Server Security Settings (services.xml Fragment)

All Rampart clients must specify a configuration context that at a minimum identifies the location
of the Rampart and other modules. The following example illustrates this and includes a client
Axis2 descriptor file. Later code examples will utilize this same structure assuming it is located in
the C:\Axis2\client directory.

modules/
 addressing-1.3.mar
 rahas-1.5.mar
 rampart-1.5.mar
conf/
 client-axis2.xml

Figure 12: Axis2 Client File System Structure

The equivalent specification to the parameters in Defining the Axis2 Security Configuration on
page 35 and Defining the Axis2 Security Configuration on page 35 via a Rampart policy
file would be as follows:

(policy.xml Fragment)

...
<ramp:RampartConfig
 xmlns:ramp="http://ws.apache.org/rampart/policy">
 <ramp:user>beantester</ramp:user>
 <ramp:encryptionUser>curam</ramp:encryptionUser>
 <ramp:passwordCallbackClass>
 webservice.ClientPWCallback
 </ramp:passwordCallbackClass>

 <ramp:signatureCrypto>
 <ramp:crypto
 provider="org.apache.ws.security.components.crypto.Merlin">
 <ramp:property

 name="org.apache.ws.security.crypto.merlin.keystore.type">
 JKS
 </ramp:property>
 <ramp:property
 name="org.apache.ws.security.crypto.merlin.file">
 client.keystore
 </ramp:property>
 <ramp:property
 name=

© Merative US L.P. 2012, 2024

Cúram 8.1.2 38

 "org.apache.ws.security.crypto.merlin.keystore.password">
 password
 </ramp:property>
 </ramp:crypto>
 </ramp:signatureCrypto>
 <ramp:encryptionCypto>
 <ramp:crypto
 provider="org.apache.ws.security.components.crypto.Merlin">
 <ramp:property

 name="org.apache.ws.security.crypto.merlin.keystore.type">
 JKS
 </ramp:property>
 <ramp:property
 name="org.apache.ws.security.crypto.merlin.file">
 client.keystore
 </ramp:property>
 <ramp:property
 name=
 "org.apache.ws.security.crypto.merlin.keystore.password">
 password
 </ramp:property>
 </ramp:crypto>
 </ramp:encryptionCypto>
</ramp:RampartConfig>
...

Figure 13: Sample Rampart Policy

Providing the Security Data and Code
Use the example configurations in the Axis Security Configuration section to specify an
encryption property file and password call back routine that is used to encrypt your web service
data.

The value of signaturePropFile specifies the name of the signature crypto property file to use.
This file contains the properties used for signing and encrypting the SOAP message. An example
server crypto property file is shown in Providing the Security Data and Code on page 38.
When you use a Rampart policy file, as shown in Defining the Axis2 Security Configuration
on page 35, these property files are not relevant as the policy itself contains the equivalent
settings.

org.apache.ws.security.crypto.provider=
org.apache.ws.security.components.crypto.Merlin
org.apache.ws.security.crypto.merlin.keystore.type=jks
org.apache.ws.security.crypto.merlin.keystore.password=password
org.apache.ws.security.crypto.merlin.file=server.keystore

Figure 14: Example Rampart server-crypto.properties File

The client-crypto.properties file has similar properties as above, but with client-
specific values:

org.apache.ws.security.crypto.provider=
org.apache.ws.security.components.crypto.Merlin
org.apache.ws.security.crypto.merlin.keystore.type=jks
org.apache.ws.security.crypto.merlin.keystore.password=password
org.apache.ws.security.crypto.merlin.file=client.keystore

© Merative US L.P. 2012, 2024

1 Integrating with External Applications through Web Services 39

The creation of the keystore file and the related properties are discussed in Creating Keystore
Files on page 45.

When you configure a secure web service, you must place the server signature property file
and keystore file (server-crypto.properties and server.keystore) in the
%SERVER_DIR%/project/config/wss/ directory so that the build will package them and
they will be available on the classpath at execution time.

The password callback handlers are specified in the passwordCallbackClass parameter
entities.

Coding the client
Code snippets show you how to add to the basic client examples.

Code snippets show to add to the basic client examples in Creating a Client and Starting the Web
Service on page 15 to use the preceding security illustrations.

To use a client axis2.xml descriptor file, make the following API call where C:/Axis2/
client also contains the Axis2 modules directory as indicated in Defining the Axis2 Security
Configuration on page 35:

final ConfigurationContext ctx =
 ConfigurationContextFactory.
 createConfigurationContextFromFileSystem(
 // Looks for modules, etc. here:
 "C:/Axis2/client",
 // Axis2 client descriptor:
 "C:/Axis2/client/conf/client-axis2.xml");

Figure 15: Identifying Axis2 Client Rampart Configuration

To use a Rampart policy file you would need to create a context as shown in figure 1, but the
client Axis2 descriptor is not necessary in this example, just the Axis2 modules directory:

final ConfigurationContext ctx =
 ConfigurationContextFactory.
 createConfigurationContextFromFileSystem(
 // Looks for modules, etc. here:
 "C:/Axis2/client",
 null);

When not using an Axis2 configuration that specifies the necessary modules (as shown in
Defining the Axis2 Security Configuration on page 35) you must engage the necessary
modules that are requiredbefore starting the service. The modules depend on the security features
and configuration you are using; for example,:

client.engageModule("rampart");

Failing to do this results in a server-side error, for example:

org.apache.rampart.RampartException:
 Missing wsse:Security header in request

© Merative US L.P. 2012, 2024

Cúram 8.1.2 40

To use a Rampart policy, create a policy object and set it in the service options properties:

final org.apache.axiom.om.impl.builder.StAXOMBuilder builder =
 new StAXOMBuilder("C:/Axis2/client/policy.xml");
final org.apache.neethi.Policy policy =
 org.apache.neethi.PolicyEngine.
 getPolicy(builder.getDocumentElement());
 options.setProperty(
 org.apache.rampart.RampartMessageData.KEY_RAMPART_POLICY,
 loadPolicy(policy);

Note: Any number of client coding errors, policy specification errors, configuration errors,
and so on, can manifest in the client and/or the server. Often an error in the client cannot
be debugged without access to the Apache Log4j 2 trace from the server. For instance, the
error when the proper modules are not engaged (discussed earlier) and appear in the client as
follows:

OMException in getSOAPBuilder
 org.apache.axiom.om.OMException:
 com.ctc.wstx.exc.WstxUnexpectedCharException:
 Unexpected character 'E' (code 69) in prolog; expected '<'
 at [row,col {unknown-source}]: [1,1]

© Merative US L.P. 2012, 2024

1 Integrating with External Applications through Web Services 41

The following example combines the fragments above, and show how to provide a Cúram custom
SOAP header using Rampart to encrypt it:

import wsconnector.MyServiceStub;
import java.io.File;
import java.net.URL;
import org.apache.axiom.om.impl.builder.StAXOMBuilder;
import org.apache.axiom.om.OMAbstractFactory;
import org.apache.axiom.om.OMElement;
import org.apache.axiom.om.OMFactory;
import org.apache.axiom.om.OMNamespace;
import org.apache.axis2.addressing.EndpointReference;
import org.apache.axis2.client.Options;
import org.apache.axis2.client.ServiceClient;
import org.apache.axis2.context.ConfigurationContext;
import org.apache.axis2.context.ConfigurationContextFactory;
import org.apache.axis2.transport.http.HTTPConstants;
import org.apache.neethi.Policy;
import org.apache.neethi.PolicyEngine;
import org.apache.rampart.RampartMessageData;

...

/**
 * Invoke a web service with encrypted credentials.
 *
 */
public void webserviceClient() {

 final String serviceName = "myService";
 final String operationName = "myOperation";

 // Instantiate the stub.
 final MyServiceStub stub =
 new MyServiceStub();

 // Get the end point of the service and convert it to a URL
 final Options options = stub._getServiceClient().getOptions();
 final EndpointReference eprTo = options.getTo();
 final URL urlOriginal = new URL(eprTo.getAddress());

 // Use that URL,
 // plus our service name to construct a new end point.
 final URL urlNew = new URL(
 urlOriginal.getProtocol(),
 urlOriginal.getHost(),
 urlOriginal.getPort(),
 "/CuramWS2/services/" + serviceName);
 final EndpointReference endpoint =
 new EndpointReference(urlNew.toString());

 // Load configuration.
 final ConfigurationContext ctx = ConfigurationContextFactory.
 createConfigurationContextFromFileSystem(
 "C:/Axis2/client", // Looks for modules, etc. here.
 null); // Configuration provided via API engaging rampart.

 final ServiceClient client = new ServiceClient(ctx, null);

 // Set the credentials - illustrated as an example earlier
 setCuramCredentials(client, "tester", "password");

 // Set the operation in the endpoint.
 options.setAction("urn:" + operationName);
 options.setTo(endpoint);

 // Set client timeout to 30 seconds for slow machines.
 options.setProperty(
 HTTPConstants.SO_TIMEOUT, new Integer(30000));
 options.setProperty(
 HTTPConstants.CONNECTION_TIMEOUT, new Integer(30000));

 // Load the Rampart policy file.
 final StAXOMBuilder builder =
 new StAXOMBuilder("C:/Axis2/client" + File.separator
 + "policy.xml");
 final Policy policy =
 PolicyEngine.getPolicy(builder.getDocumentElement());
 options.setProperty(RampartMessageData.KEY_RAMPART_POLICY,
 policy);
 client.setOptions(options);

 // Because we are not using an axis2.xml client
 // configuration file we MUST explicitly load
 // Rampart.
 client.engageModule("rampart");

 // Setup the SOAP message.
 // For this example three integers are to be summed.
 final OMFactory factory = OMAbstractFactory.getOMFactory();
 final OMNamespace ns = factory.
 createOMNamespace("http://remote.custom.util.curam", "ns1");
 final OMElement element = factory.
 createOMElement("myOperation", ns);

 final OMElement childElem1 = factory.
 createOMElement("args0", null);
 childElem1.setText("One");
 element.addChild(childElem1);

 final OMElement childElem2 = factory.
 createOMElement("args1", null);
 childElem2.setText("Two");
 element.addChild(childElem2);

 final OMElement childElem3 = factory.
 createOMElement("args2", null);
 childElem3.setText("Three");
 element.addChild(childElem3);

 // Invoke the service.
 final OMElement response =
 client.sendReceive(element);

 // Process the return data.
 final String sData = response.getFirstElement().getText();

 System.out.println("Service returned: " + sData);
 }

Figure 16: Sample Client Code to Encrypt a Custom SOAP Header

© Merative US L.P. 2012, 2024

Cúram 8.1.2 42

The following shows an equivalent technique for setting the security parameters
programmatically, although it is deprecated, it would replace the block of code commented "Load
the Rampart policy file" in Coding the client on page 39, above as well as the related policy
file:

final OutflowConfiguration outConfig =
 new OutflowConfiguration();
 outConfig.setActionItems("Signature Encrypt");
 outConfig.setUser("tester");
 outConfig.
 setPasswordCallbackClass("my.test.ClientPWCallback");
 outConfig.
 setSignaturePropFile("client-crypto.properties");
 outConfig.setSignatureKeyIdentifier(
 WSSHandlerConstants.BST_DIRECT_REFERENCE);
 outConfig.setEncryptionKeyIdentifier(
 WSSHandlerConstants.ISSUER_SERIAL);
 outConfig.setEncryptionUser("admin");

 final InflowConfiguration inConfig =
 new InflowConfiguration();
 inConfig.setActionItems("Signature Encrypt");
 inConfig.
 setPasswordCallbackClass("my.test.ClientPWCallback");
 inConfig.setSignaturePropFile("client-crypto.properties");

 //Set the rampart parameters
 options.setProperty(WSSHandlerConstants.OUTFLOW_SECURITY,
 outConfig);
 options.setProperty(WSSHandlerConstants.INFLOW_SECURITY,
 inConfig);

Figure 17: Sample Client Code (Deprecated) for Setting the Client Security Configuration

© Merative US L.P. 2012, 2024

1 Integrating with External Applications through Web Services 43

Here is an sample working axis2 client descriptor that provides the functionality to send
a soap request message using Rampart, with UserNameToken, wsse-Timestamp, Signing,
Encryption:

Use the following code snippet in the axis2 java client to load the axis2 client
 descriptor.
ConfigurationContext ctx = ConfigurationContextFactory
.createConfigurationContextFromFileSystem(
"base directory under which the axis2 modules are present",
// pass the absolute path of your client axis2 descriptor, as this is very important.
"absolute path of your client-axis2.xml");

Sample client-axis2.xml

<?xml version="1.0" encoding="UTF-8"?>

<axisconfig name="AxisJava2.0">

 ref="rampart" />

 <parameter name="OutflowSecurity">
 <action>
 <items>UsernameToken Timestamp Signature Encrypt</items>
 <!-- encryption user is the certificate alias , that is present in
 keystore -->
 <encryptionUser>verisignsecondarycacert</encryptionUser>
 <!-- the username that is passed in username token-->
 <user>scmca</user>
 <!-- the client password callback class ,
 where at runtime, the username and password can be manipulated-->
 <passwordCallbackClass>curam.mm.verification.service.impl.MMClientPWCallback
 </passwordCallbackClass>
 <!-- the client crypto property file that provides the keystore
 related information for the axis2 client engine-->
 <signaturePropFile>client-crypto.properties</signaturePropFile>
 <signatureKeyIdentifier>DirectReference</signatureKeyIdentifier>
 </action>
 </parameter>

 <parameter name="InflowSecurity">
 <action>
 <items>Signature Encrypt</items>
 <signaturePropFile>client-crypto.properties</signaturePropFile>
 <passwordCallbackClass>
 curam.mm.verification.service.impl.MMClientPWCallback</passwordCallbackClass>
 <signatureKeyIdentifier>DirectReference</signatureKeyIdentifier>
 </action>
 </parameter>

 <!-- === -->
 <!-- Message Receivers -->
 <!-- === -->
 <!--This is the Default Message Receiver for the system ,
 if you want to have MessageReceivers for -->
 <!--all the other MEP implement it and add the correct entry
 to here , so that you can refer from-->
 <!--any operation -->
 <!--Note : You can override this for particular
 service by adding the same element with your requirement-->
 <messageReceivers>
 <messageReceiver mep="http://www.w3.org/2004/08/wsdl/in-only"

 class="org.apache.axis2.receivers.RawXMLINOnlyMessageReceiver"/>
 <messageReceiver mep="http://www.w3.org/2004/08/wsdl/in-out"
 class="org.apache.axis2.receivers.RawXMLINOutMessageReceiver"/
>
 </messageReceivers>

 <!-- === -->
 <!-- Transport Outs -->
 <!-- === -->

 <transportSender name="http"

 class="org.apache.axis2.transport.http.CommonsHTTPTransportSender">
 <parameter name="PROTOCOL" locked="false">HTTP/1.1</parameter>
 <parameter name="Transfer-Encoding" locked="false">chunked</parameter>
 </transportSender>
 <transportSender name="https"

 class="org.apache.axis2.transport.http.CommonsHTTPTransportSender">
 <parameter name="PROTOCOL" locked="false">HTTP/1.1</parameter>
 <parameter name="Transfer-Encoding" locked="false">chunked</parameter>
 </transportSender>

 <!-- === -->
 <!-- Phases -->
 <!-- === -->
 <phaseOrder type="InFlow">
 <!-- System pre-defined phases -->
 <phase name="Transport">
 <handler name="RequestURIBasedDispatcher"
 class="org.apache.axis2.engine.RequestURIBasedDispatcher">
 <order phase="Transport"/>
 </handler>
 <handler name="SOAPActionBasedDispatcher"
 class="org.apache.axis2.engine.SOAPActionBasedDispatcher">
 <order phase="Transport"/>
 </handler>
 </phase>
 <phase name="Security"/>
 <phase name="PreDispatch"/>
 <phase name="Dispatch" class="org.apache.axis2.engine.DispatchPhase">
 <handler name="AddressingBasedDispatcher"
 class="org.apache.axis2.engine.AddressingBasedDispatcher">
 <order phase="Dispatch"/>
 </handler>

 <handler name="SOAPMessageBodyBasedDispatcher"
 class="org.apache.axis2.engine.SOAPMessageBodyBasedDispatcher">
 <order phase="Dispatch"/>
 </handler>

 <handler name="InstanceDispatcher"
 class="org.apache.axis2.engine.InstanceDispatcher">
 <order phase="Dispatch"/>
 </handler>

 </phase>
 <!-- System pre defined phases -->
 <!-- After Postdispatch phase module author or
 service author can add any phase he want-->
 <phase name="OperationInPhase"/>
 </phaseOrder>
 <phaseOrder type="OutFlow">
 <!-- user can add his own phases to this area -->
 <phase name="OperationOutPhase"/>
 <!--system predefined phase-->
 <!--these phase will run irrespective of the service-->
 <phase name="PolicyDetermination"/>
 <phase name="MessageOut"/>
 <phase name="Security"/>
 </phaseOrder>

 <phaseOrder type="InFaultFlow">
 <phase name="PreDispatch"/>
 <phase name="Security"/>
 <phase name="Dispatch" class="org.apache.axis2.engine.DispatchPhase">
 <handler name="RequestURIBasedDispatcher"
 class="org.apache.axis2.engine.RequestURIBasedDispatcher">
 <order phase="Dispatch"/>
 </handler>

 <handler name="SOAPActionBasedDispatcher"
 class="org.apache.axis2.engine.SOAPActionBasedDispatcher">
 <order phase="Dispatch"/>
 </handler>

 <handler name="AddressingBasedDispatcher"
 class="org.apache.axis2.engine.AddressingBasedDispatcher">
 <order phase="Dispatch"/>
 </handler>

 <handler name="SOAPMessageBodyBasedDispatcher"
 class="org.apache.axis2.engine.SOAPMessageBodyBasedDispatcher">
 <order phase="Dispatch"/>
 </handler>

 <handler name="InstanceDispatcher"
 class="org.apache.axis2.engine.InstanceDispatcher">
 <order phase="Dispatch"/>
 </handler>

 </phase>
 <!-- user can add his own phases to this area -->
 <phase name="OperationInFaultPhase"/>
 </phaseOrder>
 <phaseOrder type="OutFaultFlow">
 <!-- user can add his own phases to this area -->
 <phase name="OperationOutFaultPhase"/>
 <phase name="PolicyDetermination"/>
 <phase name="MessageOut"/>
 <phase name="Security"/>
 </phaseOrder>
</axisconfig>

Figure 18: Sample Client Axis2 Descriptor for Setting the Client Security Configuration for UserNameToken,
wsse-Timestamp, Signing, Encryption for a Outbound webservice

© Merative US L.P. 2012, 2024

Cúram 8.1.2 44

Securing Web Service Network Traffic with HTTPS/SSL

HTTPS/SSL might be a part of your web services security strategy. Details about setting up
HTTPS/SSL are beyond the scope of this document. However, the use of HTTPS/SSL can be
established in either of the following ways.

• Application server environment
Setting up this environment is specific to your particular application server, but essentially
involves exporting the appropriate server certificates and making them available to your client
environment.

• Rampart WS-Security policy
There are a number of web articles that cover this subject in more detail.

For client access, the end point must reflect the protocol and port change, which can be done
dynamically at run time. Client code such as the following example, can change the endpoint:

 // stub is a previously obtained service stub.
 // nHttpsPort is an integer identifying the HTTPS port of
 // your application server.
 // serviceName is a String identifying the service name.

 ServiceClient client = stub._getServiceClient();

 // Get the end point of the service and convert it to a URL

 final Options options = stub._getServiceClient().getOptions();
 final EndpointReference eprTo = options.getTo();
 final URL urlOriginal = new URL(eprTo.getAddress());

 // Use that URL, plus our service name to construct
 // a new end point.

 final URL urlNew = new URL("https", urlOriginal.getHost(),
 nHttpsPort,"/CuramWS2/services/" + serviceName);
 client.setTargetEPR(new EndpointReference(urlNew.toString()));

Figure 19: Example of Dynamically Changing the Web Service End Point

Your client needs to identify the keystore and password that contains the necessary certificates,
for example:

System.setProperty("javax.net.ssl.trustStore",
 "C:/keys/server.jks");
 System.setProperty("javax.net.ssl.trustStorePassword",
 "password");

Otherwise, client coding for HTTPS is similar to that of HTTP.

Note: In a WebSphere environment, the SSL socket classes are not available by default and
you might experience this error:

org.apache.axis2.AxisFault: java.lang.ClassNotFoundException:
 Cannot find the specified class
 com.ibm.websphere.ssl.protocol.SSLSocketFactory

Resolve this error with code like the following:

Security.setProperty("ssl.SocketFactory.provider",
 "com.ibm.jsse2.SSLSocketFactoryImpl");
 Security.setProperty("ssl.ServerSocketFactory.provider",
 "com.ibm.jsse2.SSLServerSocketFactoryImpl");

© Merative US L.P. 2012, 2024

1 Integrating with External Applications through Web Services 45

Creating Keystore Files

For secure web service configuration, you can create the server.keystore and
client.keystore files.

• Generate the server keystore in file server.keystore:

%JAVA_HOME%/bin/keytool -genkey -alias curam-sv -dname
"CN=localhost, OU=Dev, O=Curam, L=Dublin, ST=Ireland, C=IRL"
-keyalg RSA -keypass password -storepass password -keystore
server.keystore

• Export the certificate from the keystore to an external file server.cer:

%JAVA_HOME%/bin/keytool -export -alias curam-sv -storepass
password -file server.cer -keystore server.keystore

• Generate the client keystore in file client.keystore:

%JAVA_HOME%/bin/keytool -genkey -alias beantester -dname
"CN=Client, OU=Dev, O=Curam, L=Dublin, ST=Ireland, C=IRL" -
keyalg RSA -keypass password -storepass password -keystore
client.keystore

• Export the certificate from the client keystore to external file client.cer:

%JAVA_HOME%/bin/keytool -export -alias beantester -storepass
password -file client.cer -keystore client.keystore

• Import the server's certificate into the client's keystore:

%JAVA_HOME%/bin/keytool -import -v -trustcacerts -alias curam -
file server.cer -keystore client.keystore -keypass password -
storepass password

• Import the client's certificate into the server's keystore:

%JAVA_HOME%/bin/keytool -import -v -trustcacerts -alias curam -
file client.cer -keystore server.keystore -keypass password -
storepass password

1.5 Inbound Web Service Properties: ws_inbound.xml

Use this information to learn about the name/value pairs in the ws_inbound.xml property
file, which are used to build services.xml descriptor files for a web service. These files are
generated by default, but you can also customize them.

Property Settings

The following default properties are produced by the Cúram generator:

• classname
The fully qualified name of the web service class, from the IBM® Rational® Software
Architect Designer model. This property should never be overridden and should always be
provided by the generator.

• ws_binding_style
The web service binding style, based on the Rational® Software Architect Designer class
property WS_Binding_Style. Values: document (default) or rpc.

© Merative US L.P. 2012, 2024

Cúram 8.1.2 46

• ws_is_xml_document
Indicator of a service class whose operations process W3C Documents, based on the Rational®
Software Architect Designer class property WS_Is_XML_Document property. This property
should always be determined by the generator. Values: true or false (default).

An example ws_inbound.xml property file that the generator would create is shown.

<curam_ws_inbound>
 <classname>my.util.component_name.remote.WSClass</classname>
 <ws_binding_style>document</ws_binding_style>
 <ws_is_xml_document>false</ws_is_xml_document>
</curam_ws_inbound>

The following are the properties that can be provided and/or customized through a custom
ws_inbound.xml property file:

• ws_binding_style
The web service binding style. This property has no direct dependency on the Rational®
Software Architect Designer model. It is used for passing the corresponding argument to the
Apache Axis2 Java2WSDL tool. See also the description of the ws_binding_use property
below.

Values: document (default) or rpc.
• ws_binding_use

The web service binding use. It is used for passing the corresponding argument to the Axis2
Java2WSDL tool.

Values: literal (default) or encoded.
• ws_service_username

A username (see ws_service_password below) to be used for authentication by the Cúram
receiver. Not set by default as the default is to utilize a custom SOAP header for specifying
authentication credentials. If specified, results in the corresponding descriptor parameter in
services.xml being set.

Values: A valid Cúram user.
• ws_service_password

A password (see ws_service_username above) to be used for authentication by the Cúram
receiver. Not set by default as the default is to utilize a custom SOAP header for specifying
authentication credentials. If specified, results in the corresponding Axis2 descriptor parameter
in services.xml being set.

Values: A valid password for the corresponding Cúram user.
• ws_client_must_authenticate

An indicator as to whether custom SOAP headers are to be used for Cúram web service client
authentication. Should not be specified with ws_service_username and ws_service_password
(above), but if specified this setting overrides, causing the credentials in those properties
to be ignored. If specified, results in the corresponding Axis2 descriptor parameter in
services.xml being set.

Values: true (default) or false.
• ws_disable

An indicator as to whether this web service should be processed by the build system for
generating and packing the service into the WAR file. Typically you would use this to
temporarily disable a service from being built and thus exposed.

Values: true or false (default).

© Merative US L.P. 2012, 2024

1 Integrating with External Applications through Web Services 47

An example, custom ws_inbound.xml property file is shown.

<curam_ws_inbound>
 <ws_binding_style>document</ws_binding_style>
 <ws_client_must_authenticate>false</ws_client_must_authenticate>
 <ws_service_username>beantester</ws_service_username>
 <ws_service_password>password</ws_service_password>
</curam_ws_inbound>

When providing a custom ws_inbound.xml properties file place the file in your
components/custom/axis/<service_name> directory (the <service_name>
and class name must match). During the build the properties files are combined based on the
following precedence order:

• Your custom ws_inbound.xml properties file
• The generated ws_inbound.xml properties file
• The default values for the properties

1.6 Deployment Descriptor File: services.xml

Each web service class requires an Axis2 deployment descriptor file called services.xml.
Use this information to learn about the services.xml file.

Descriptor File Contents

The Cúram build automatically generates a suitable deployment descriptor for the default
settings that are described in Inbound Web Service Properties File on page 24 and 1.5
Inbound Web Service Properties: ws_inbound.xml on page 45. The format and contents
of the services.xml are defined by Axis2. For more information, see the Apache Axis2
Configuration Guide (http://axis.apache.org/axis2/java/core/docs/axis2config.html.

Based on the settings from the ws_inbound.xml property files the
app_webservices2.xml script generates a services.xml file for each web service
class. This descriptor file contains a number of parameters that are used at runtime to define and
identify the web service and its behavior.

<serviceGroup>
 <service name="ServiceName">

 <!-- Generated by app_webservices2.xml -->
 <description>
 Axis2 web service descriptor
 </description>

 <messageReceivers>
 <messageReceiver
 mep="http://www.w3.org/2004/08/wsdl/in-out"
 class=
 "curam.util.connectors.axis2.CuramXmlDocMessageReceiver"/>
 <messageReceiver
 mep="http://www.w3.org/2004/08/wsdl/in-only"
 class=
 "curam.util.connectors.axis2.CuramInOnlyMessageReceiver"/>
 </messageReceivers>

 <parameter

© Merative US L.P. 2012, 2024

http://axis.apache.org/axis2/java/core/docs/axis2config.html

Cúram 8.1.2 48

 name="remoteInterfaceName">
 my.package.remote.ServiceName</parameter>
 <parameter
 name="ServiceClass" locked="false">
 my.package.remote.ServiceNameBean</parameter>
 <parameter
 name="homeInterfaceName">
 my.package.remote.ServiceNameHome</parameter>
 <parameter
 name="beanJndiName">
 curamejb/ServiceNameHome</parameter>

 <parameter
 name="curamWSClientMustAuthenticate">
 true</parameter>

 <parameter
 name="providerUrl">
 iiop://localhost:2809</parameter>
 <parameter
 name="jndiContextClass">
 com.ibm.websphere.naming.WsnInitialContextFactory
 </parameter>

 <parameter
 name="useOriginalwsdl">
 false</parameter>
 <parameter
 name="modifyUserWSDLPortAddress">
 false</parameter>

 <!--
 NOTE: For any In-Only services (i.e. returning void) you must
 explicitly code those operation names here as per:
 http://issues.apache.org/jira/browse/AXIS2-4408
 For example:
 <operation name="insert">
 <messageReceiver
 class="curam.util.connectors.axis2.
 CuramInOnlyMessageReceiver"/>
 </operation>
 -->

 </service>
</serviceGroup>

Figure 20: Sample Generated services.xml Descriptor File

The following lists the mapping of the services.xml parameters to the settings in your build
environment:

• messageReceiver
Specifies the appropriate receiver class for the MEPs of the service. For Cúram there are three
available settings/classes:

• curam.util.connectors.axis2.CuramXmlDocMessageReceiver - For service
classes that process W3C Documents as arguments and return values.

© Merative US L.P. 2012, 2024

1 Integrating with External Applications through Web Services 49

• curam.util.connectors.axis2.CuramMessageReceiver - For service classes that
process Cúram classes and use the in-out MEP.

• curam.util.connectors.axis2.CuramInOnlyMessageReceiver - For service
classes that process Cúram classes and use the in-only MEP.

This value is set by the app_webservices2.xml script as per the description above.
(Required)

• remoteInterfaceName, ServiceClass, homeInterfaceName, beanJndiName
Specify the class names and JNDI name required by the receiver code for invoking the service
via the facade bean.

These values are set by the app_webservices2.xml script based on the generated
classname value in the ws_inbound.xml properties file. (Required)

• curamWSClientMustAuthenticate, jndiUser, jndiPassword
Specify credential processing and credentials for accessing the operations of the web service
class.

These are set by the app_webservices2.xml script based on the corresponding
properties in ws_inbound.xml (see Inbound Web Service Properties File on page 24).
Default for curamWSClientMustAuthenticate is true, but can be overridden at
runtime by custom receiver code. (Optional)

• providerUrl, jndiContextClass
Specify the application server-specific connection parameters.

These values are set by the app_webservices2.xml script based on your
AppServer.properties settings for your as.vendor, curam.server.port, and
curam.server.host properties. Can be set at runtime by custom receiver code. (Optional)

• useOriginalwsdl, modifyUserWSDLPortAddress
Specify the processing and handling of WSDL at runtime.

These are explicitly set to false by the app_webservices2.xml script due to
symptoms reported in, for instance, Apache Axis2 JIRA: AXIS2-4541. (Required for proper
WSDL handling.)

1.7 Troubleshooting

Troubleshoot Axis2 web services. The tips and techniques are not new or comprehensive, but
help you to consider options and ways to increase the effectiveness of your web services.

You modeled your web services, developed your server code, built and deployed your application,
and your web service EAR files. Finally, you are now ready to begin testing and delivering your
web service.

Axis2 represents a complex set of software and third-party products, especially when viewed
from the perspective of running in an application server environment. While the Cúram
environment simplifies many aspects of web service development, the final steps of testing and
debugging your services can be daunting.

© Merative US L.P. 2012, 2024

Cúram 8.1.2 50

Initial Server Validation and Troubleshooting

Because web services process through many layers, one effective technique for more quickly
identifying and resolving problems is to keep the server and client side of your service testing
separate.

When deployed, first focus your testing on the server side to ensure everything works properly
and then introduce your client development and testing so that you know where to focus to
resolve errors.

If this is your first deployment of a web service, did the application server and deployed
application EAR or WAR files start without errors? If not, investigate and resolve these errors.

If your application starts successfully the next step is to ensure that your service is available.
This is done differently for Axis2. But, in general, it involves entering the web service URL with
the ?wsdl argument to verify that your service can be accessed. Details for validating the Axis2
environment are in the sections following.

Validating Your Axis2 Environment

To use the Axis2 web app, first you must download it from Apache.

Follow the instructions in 1.8 Including the Axis2 Admin Application in Your Web Services
WAR File on page 54 for details about how to include this application in your environment.
Axis2 provides an initial validation step that is provided by its built-in validation check. You
invoke this by entering the URL for your Axis2 web service application as defined by your web
services application root context and application server port configuration. For instance, this
might look like: http://localhost:9099/CuramWS2/axis2-web/index.jsp.
This page brings up the Welcome! page with an option to validate your environment, which
you should select. Out of the box, the only error you should see on the resulting page is in the
Examining Version Service section where it warns you about not having the sample Apache
Axis2 version web service.

You can rectify this error (which is not really an error, but a good validation check) by including
that service as external content when you build your Axis2 web services WAR/EAR file. For
more information, see Building and Packaging Web Services on page 22.

After you successfully validate your Axis2 environment, click the Back Home link on that page
and select the Services link on the Welcome! page. The resulting Available services page lists all
available services (classes) and their operations. If there is an invalid service, (for example, due to
a missing implementation class), it is flagged in more detail and you need to use the diagnostics
provided to resolve any errors. For all valid services, selecting a service name link from the
Available services page generates and displays the WSDL for that service. This verifies your
deployed services and it is now be available for invocation.

Key Points to be Aware of

Key points to be aware of when you validate your Axis2 environment.

• On the Available services page, you might see the operation setSessionContext, which you
did not model and code. This behavior relates to the issue that is described in Modeling and
Implementing an Inbound Web Service on page 19 and in the Cúram Release Notes. It has
no impact and can be ignored.

• The WSDL generated from the "Available services" links is not equivalent to the WSDL
generated by the Axis2 Java2WSDL tool. Use the Java2WSDL tool to develop outbound

© Merative US L.P. 2012, 2024

1 Integrating with External Applications through Web Services 51

web services. You can find the Java2WSDL tool in the build/svr/wsc directory of your
development environment after a web services EAR file build.

• Axis2 has capabilities for checking, investigating your environment using its external
administration web application (the Administration link on the Welcome! page). See 1.8
Including the Axis2 Admin Application in Your Web Services WAR File on page 54
for details on including this application in your environment. If you don't explicitly build or
include this application, the functionality is not available.

Using an External Client to Validate and Troubleshoot

Begin validating the service on the server side first by using an external client because unless
the web service class exists, deployment is set up properly. A client failure might not be clearly
distinguishable.

To keep the path length and areas, you might have to investigate for possible errors as small
as possible. Use a known, working client to start your service. Common areas of failure that a
known, working external client can help validate include: service packaging, receiver processing,
security configuration, and implementation processing. An example of an external client you
might use is the freely available soapUI client (www.soapui.org), which is relatively easy and
fast to set up and begin using. While a detailed treatment of soapUI is beyond the scope of this
document the following is an outline of the steps you would use, which are similar for Axis2:

• Download, install, and start soapUI.
• When validating your service(s) (above) save the generated WSDL.
• In soapUI select the File menu -> New soapUI Project and in this dialog specify the location

of your saved WSDL and click OK. This creates and opens a new soapUI project from where
you can invoke your web services.

• From the soapUI tree control, expand your newly created project and expand the
"Soap12Binding" or "Soap11Binding". Under this tree branch you will see your service
operations and under each operation a "Request 1" (default name) request. Double-clicking
the request opens a request editor. In the left pane you must code your SOAP message (e.g.
parameters, etc.) and a template is provided for doing this. In the right pane is where the result
is displayed. Once you've coded your SOAP message click the right green arrow/triangle in
the tool bar to execute the service. If you've coded the SOAP message correctly the service
output will be displayed in the right pane. However, if an error occurs there will be error
information in this pane. In the event of an error verify your SOAP message syntax and
content; also see Using an External Client to Validate and Troubleshoot on page 51 for
some further techniques for resolving and addressing these.

© Merative US L.P. 2012, 2024

Cúram 8.1.2 52

Note: For Axis2 you must keep in mind the default security behavior and that you must
include the custom SOAP header credentials in your request. This would look something like
this:

<soap:Envelope
 xmlns:soap="http://www.w3.org/2003/05/soap-envelope"
 xmlns:rem="http://remote.my.package">
 <soap:Header>
 <curam:Credentials
 xmlns:curam="http://www.curamsoftware.com">
 <Username>beantester</Username>
 <Password>password</Password>
 </curam:Credentials>
 </soap:Header>
 <soap:Body>
...
 </soap:Body>
</soap:Envelope>

Note: For Axis2 the first access of a web service may timeout due to the large number of jar
files and processing done at first initialization. This can easily be mitigated in a Java client
(e.g. see Creating a Client and Starting the Web Service on page 15), but for soapUI you
can just re-invoke the service and the subsequent request will likely not timeout; otherwise,
see Troubleshooting Axis2 errors on page 52 for further techniques for resolving and
addressing general web services errors.

Troubleshooting Axis2 errors

Troubleshoot errors with Axis2 web services. The tools available might vary by operating system
and application server environment.

To understand why a service fails, consider the following situations:

• To debug axis2 soap request/response messages effectively, add the following as JVM
Arguments in Eclipse (for axis2 Java clients) or pass it in the IBM® WebSphere® Application
Server console, JVM Process definition VM Arguments, or as JAVA_OPTS for Oracle
WebLogic Server. A server restart is required if applied in the application server. Use this step
for debugging only.

-Dorg.apache.commons.logging.Log=org.apache.commons.logging.impl.SimpleLog
-Dorg.apache.commons.logging.simplelog.showdatetime=true
-Dorg.apache.commons.logging.simplelog.log.httpclient.wire=debug
-Dorg.apache.commons.logging.simplelog.log.org.apache.commons.httpclient=debug
-Dorg.apache.commons.logging.simplelog.log.org.apache.axis2=debug

This Java™ system property enables console logging of the soap request that is sent and soap
response received. This is another alternative to using soap monitor.

• Use a monitoring tool (Apache TCPMon or SOAP Monitor) to view the SOAP message
traffic. It's easier to set up TCPMon (download from http://ws.apache.org/commons/tcpmon,
extract, and run; also, available within soapUI), but it requires changing your client end points
or your server port. When set up, SOAP Monitor doesn't require any client or server changes,
but does require special build steps for your WAR/EAR files. Apache includes SOAP Monitor

© Merative US L.P. 2012, 2024

1 Integrating with External Applications through Web Services 53

as an Axis2 module and see 1.9 Including the Axis2 SOAP Monitor in Your Web Services
WAR File on page 55 on how to include this in your built Axis2 environment.

• Look at the failure stack trace and investigate any messages there. Try to understand where
in the processing the error occurred. The following example Apache Log4j 2 properties file
logs verbosely in a C:\Temp\axis2.log file, you can adjust these settings to suit your
requirements.

set root logging level
rootLogger.level=DEBUG

appenders=LOGFILE,CONSOLE

bind appenders to the root logger
rootLogger.appenderRefs=ref1,ref2
rootLogger.appenderRef.ref1.ref=CONSOLE
rootLogger.appenderRef.ref2.ref=LOGFILE

appender.CONSOLE.type = Console
appender.CONSOLE.name = CONSOLE
appender.CONSOLE.layout.type = PatternLayout
appender.CONSOLE.layout.pattern=[%p] %m%n

appender.LOGFILE.type = File
appender.LOGFILE.name = LOGFILE
appender.LOGFILE.fileName=./temp/axis2.log
appender.LOGFILE.layout.type = PatternLayout
appender.LOGFILE.layout.pattern=%d [%t] %-5p %c %x - %m%n

You need to place the log4j2.properties somewhere in the class path of the Axis2
WAR file.

• Check the application server logs for more information.
• Turn on Apache Log4j 2 tracing for Axis2, as this gives you the most detailed picture of the

web service processing or error at the time of the failure. This tracing can be voluminous so
use it with care.

• Turn on the Cúram application Apache Log4j 2 trace to gives you more context for the failure.
• Consider remote debugging the service that is running on the application server by using

Eclipse. Consult your application server-specific documentation for setting up this kind of an
environment. Remember that if you are setting breakpoints in this kind of environment that
timeouts in the client or server are a high probability and appropriate steps should be taken; for
the client see Creating a Client and Starting the Web Service on page 15 and for the server
consult your application server-specific documentation for setting timer values.

Note: Application verbose tracing (trace_verbose) is the highest level of logging
available for tracing with web services because the SDEJ employs a proxy wrapper object for
ultra verbose (trace_ultra_verbose) tracing to provide detailed logging. Due to the fact
that the SDEJ uses reflection for forwarding a web service request to the underlying process
class, the use of a proxy wrapper object is not compatible with the web services infrastructure.

Avoiding Use of anyType

Avoid using anyType in your WSDL because it makes interoperability difficult as both service
platforms and any client platforms must be able to map, or serialize or deserialize the underlying
object.

WSDL is typically generated with anyType when the underlying data type (for example, object)
cannot be resolved.

© Merative US L.P. 2012, 2024

Cúram 8.1.2 54

You might find with Axis2 that your WSDL works with anyType because some vendors/platforms
map it to, for instance, java.lang.Object, which allows it, if it's XML-compliant, to be processed
into a SOAP message, and allows processing from XML to a Java object.

Generate your WSDL as early as possible, checking it for the use of anyType. In your
development, focus on implementing the overall web service structure first and implement the
actual service functionality last. For instance, code your web service operations as stubs that
merely echo back with minimal processing the input parameters to ensure they can be processed
successfully from end to end.

Axis2 Exceptions

Exceptions in web services are returned to the client as an AxisFault exception and the message
string from the original exception is retained where possible.

For example, client code might look like this:

// Processing
...
} catch (final AxisFault a) {
 System.out.println(a.getMessage());
}

The structure and contents of the fault SOAP message vary depending on whether the request
is a SOAP 1.1 or SOAP 1.2 request. Also, you need to ensure that, depending on the context of
the web service client, the web service provides a meaningful exception message. Otherwise, it
might not be possible for the handler of the AxisFault exception to react. However, sometimes
failures occur unexpectedly and you must resolve them along with the application server logs and
the Apache Log4j 2 output from Cúram and/or Axis2.

1.8 Including the Axis2 Admin Application in Your Web
Services WAR File

Use this information to learn about how to set up your Axis2 web services build to include the
Axis2 Administration web application. The Axis2 Administration web application provides
useful functionality for working with your Axis2 environment.

Warning: The dynamic functionality of Axis2, for example, hot deployment is not intended
for production application server environments such as WebSphere Application Server and
WebLogic Server and this functionality should not be attempted in these environments.

Steps to Build
Do not use Axis2 to dynamically modify a production environment. However Axis2 is useful
for validating settings, viewing services, and modules. To build your EAR file to include this
application:

• Download the Axis2 binary distribution (http://axis.apache.org/axis2/java/
core/download.cgi) corresponding to the supported Apache Axis2 version and unload it
to your hard disk. For example, C:\Downloads\Axis2).

© Merative US L.P. 2012, 2024

1 Integrating with External Applications through Web Services 55

• Create a location on your disk to contain the necessary Axis2 artifacts, for example:

cd C:\
mkdir Axis2-includes

• Put the class files AdminAgent.class and AxisAdminServlet.class in the C:
\Downloads\Axis2\webapp\WEB-INF\classes\org\apache\axis2\webapp
\ into a JAR file that you place into the WEB-INF\lib directory in your newly created C:
\Axis2-includes location. For example:

mkdir C:\Axis2-includes\WEB-INF\lib
cd C:\Downloads\Axis2\webapp\WEB-INF\classes
jar -uvf C:\Axis2-includes\WEB-INF\lib\WebAdmin.jar
org/apache/axis2/webapp/

• Additionally, you might want to add a custom axis2.xml descriptor file to a WEB-
INF\conf folder to change the default credentials. You can copy the existing included
axis2.xml file to this example location:

mkdir C:\Axis2-includes\WEB-INF\conf
copy %CURAMSDEJ%\ear\webservices2\Axis2\conf\axis2.xml
C:\Axis2-includes\WEB-INF\conf

• Then, change the existing userName and password parameters, for example:

<parameter name="userName">restricted</parameter>
<parameter name="password">special</parameter>

• To secure the username and password, the axis2.xml file must be secured in your
development and deployed environments without access in the runtime environment to the
Axis2 configuration.

• Use the following properties when you start your web services ear target (see Building and
Packaging Web Services on page 22):

-Daxis2.include.overwrite=true
-Daxis2.include.location=C:\Axis2-includes

• On deployment, access the Administration link using the Axis2 Welcome! page menu. For
example: http://localhost:9082/CuramWS2/axis2-web/index.jsp).

1.9 Including the Axis2 SOAP Monitor in Your Web Services
WAR File

Use this information to learn about how to set up your Axis2 web services build to include the
Axis2 SOAP Monitor module in your Axis2 web services WAR file. You can also exclude SOAP
Monitor from being packed into the webservices2.war if needed.

Steps for Building

The SOAP Monitor provides the ability to view SOAP message requests and responses,
which is useful in debugging. The SOAP Monitor module is included with the binary
distribution of Axis2 and its module (soapmodule.mar) is included in the packaging of the
webservices2.war lib directory during the build. The web.xml file that is included with

© Merative US L.P. 2012, 2024

Cúram 8.1.2 56

the webservices2.war has the necessary entries to support the SOAP Monitor. Complete the
following steps to enable this functionality:

1. Create a location on your disk to contain the necessary Axis2 artifacts, for example:

cd C:\
mkdir Axis2-includes

2. As indicated in the Axis2 documentation, you must place the SOAPMonitor applet classes at
the root of the WAR file. For example:

cd C:\Axis2-includes
jar -xvf %CURAMSDEJ%\ear\webservices2\Axis2\modules\soapmonitor.mar
org/apache/axis2/soapmonitor/applet/

3. Then, use the following properties when you start your web services ear target
(websphereWebServices or weblogicWebServices):

-Daxis2.include.overwrite=true
-Daxis2.include.location=C:\Axis2-includes

4. The included axis2.xml file defines the necessary SOAP Monitor phase elements, but to
be functional the following entry needs to be added (similarly to other module entries):

<module ref="soapmonitor"/>

This change can be made to the EAR file before deployment or for WebSphere in the
deployed file system.

5. To access the SOAPMonitor, use a URL, for example: http://localhost:9082/
CuramWS2/SOAPMonitor.

6. Unfortunately the applet does not give much information if there is an issue. If you see the
error:

"The SOAP Monitor is unable to communicate with the server."

Ensure that there is no port conflict. The default that is set in web.xml is 5001. If so, change
that port.

7. You can change the default port by setting soap.monitor.port = <port number> in the
AppServer.properties.

Excluding SOAP Monitor

You can exclude SOAP Monitor from the deployed EAR file by setting the property
exclude.soapmonitor in the AppServer.properties to TRUE.

© Merative US L.P. 2012, 2024

Notices

Permissions for the use of these publications are granted subject to the following terms and
conditions.

Applicability

These terms and conditions are in addition to any terms of use for the Merative website.

Personal use

You may reproduce these publications for your personal, noncommercial use provided that all
proprietary notices are preserved. You may not distribute, display or make derivative work of
these publications, or any portion thereof, without the express consent of Merative

Commercial use

You may reproduce, distribute and display these publications solely within your enterprise
provided that all proprietary notices are preserved. You may not make derivative works of these
publications, or reproduce, distribute or display these publications or any portion thereof outside
your enterprise, without the express consent of Merative.

Rights

Except as expressly granted in this permission, no other permissions, licenses or rights are
granted, either express or implied, to the publications or any information, data, software or other
intellectual property contained therein.

Merative reserves the right to withdraw the permissions granted herein whenever, in its
discretion, the use of the publications is detrimental to its interest or, as determined by Merative,
the above instructions are not being properly followed.

You may not download, export or re-export this information except in full compliance with all
applicable laws and regulations, including all United States export laws and regulations.

MERATIVE MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE
PUBLICATIONS. THE PUBLICATIONS ARE PROVIDED "AS-IS" AND WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT
LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT,
AND FITNESS FOR A PARTICULAR PURPOSE.

Merative or its licensors may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this documentation does not grant you any license
to these patents.

Information concerning non-Merative products was obtained from the suppliers of those products,
their published announcements or other publicly available sources. Merative has not tested those
products and cannot confirm the accuracy of performance, compatibility or any other claims
related to non-Merative products. Questions on the capabilities of non-Merative products should
be addressed to the suppliers of those products.

Any references in this information to non-Merative websites are provided for convenience only
and do not in any manner serve as an endorsement of those websites. The materials at those
websites are not part of the materials for this Merative product and use of those websites is at
your own risk.

© Merative US L.P. 2012, 2024

This information contains examples of data and reports used in daily business operations.
To illustrate them as completely as possible, the examples include the names of individuals,
companies, brands, and products. All of these names are fictitious and any similarity to actual
people or business enterprises is entirely coincidental.

The licensed program described in this document and all licensed material available for it are
provided by Merative under terms of the Merative Client Agreement.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate
programming techniques on various operating platforms. You may copy, modify, and distribute
these sample programs in any form without payment to Merative, for the purposes of developing,
using, marketing or distributing application programs conforming to the application programming
interface for the operating platform for which the sample programs are written. These examples
have not been thoroughly tested under all conditions. Merative, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample programs are provided
"AS IS", without warranty of any kind. Merative shall not be liable for any damages arising out of
your use of the sample programs.

Privacy policy
The Merative privacy policy is available at https://www.merative.com/privacy.

Trademarks

Merative ™ and the Merative ™ logo are trademarks of Merative US L.P. in the United States and
other countries.

IBM®, the IBM® logo, and ibm.com® are trademarks or registered trademarks of International
Business Machines Corp., registered in many jurisdictions worldwide.

Adobe™, the Adobe™ logo, PostScript™, and the PostScript™ logo are either registered
trademarks or trademarks of Adobe™ Systems Incorporated in the United States, and/or other
countries.

Oracle and Java are registered trademarks of Oracle and/or its affiliates.

The registered trademark Linux® is used pursuant to a sublicense from the Linux Foundation, the
exclusive licensee of Linus Torvalds, owner of the mark on a worldwide basis.

Microsoft™, Windows™, and the Windows™ logo are trademarks of Microsoft™ Corporation in
the United States, other countries, or both.

UNIX™ is a registered trademark of The Open Group in the United States and other countries.

Other company, product, and service names may be trademarks or service marks of others.

© Merative US L.P. 2012, 2024

https://www.merative.com/privacy

	Note
	Edition
	Notices
	Privacy policy
	Trademarks

	Contents
	1 Integrating with External Applications through Web Services
	1.1 Using Web Services
	Overview of Web Services
	Benefits of the Apache Axis2 Platform
	Types of Web Services
	Web Services Security

	1.2 Building Outbound Web Service Connectors
	Including the WSDL Files in Your Components File System
	Adding the WSDL File Location to the Outbound Web Services File
	Generating the Web Service Stubs
	Creating a Client and Starting the Web Service
	Client Stub Pool Configuration

	1.3 Developing Inbound Web Services
	Getting Started
	Modeling and Implementing an Inbound Web Service
	Creating Inbound Web Service Classes
	Adding Operations to Inbound Web Service Classes
	Adding Arguments and Return Types to Inbound Web Service Operations
	Processing of Lists
	Data Types

	Building and Packaging Web Services
	Providing Security Data for Web Services
	Providing Web Service Customizations
	Inbound Web Service Properties File
	Deployment Descriptor File
	Customizing Receiver Runtime Functionality
	Custom Credential Processing
	Accessing the SOAP Message
	Custom Application Server-Specific Parameters
	Custom SOAP Factory
	Building Custom Receiver Code

	Providing schema validation

	1.4 Securing Web Services
	Axis2 Security and Rampart
	Custom SOAP Headers
	Encrypting Custom SOAP Headers
	Using Rampart With Web Services
	Defining the Axis2 Security Configuration
	Providing the Security Data and Code
	Coding the client

	Securing Web Service Network Traffic with HTTPS/SSL
	Creating Keystore Files

	1.5 Inbound Web Service Properties: ws_inbound.xml
	1.6 Deployment Descriptor File: services.xml
	1.7 Troubleshooting
	Initial Server Validation and Troubleshooting
	Using an External Client to Validate and Troubleshoot
	Troubleshooting Axis2 errors
	Avoiding Use of anyType
	Axis2 Exceptions

	1.8 Including the Axis2 Admin Application in Your Web Services WAR File
	1.9 Including the Axis2 SOAP Monitor in Your Web Services WAR File

