N\
MerATive

Curam 8.1.2

Workflow Reference Guide

Note

Before using this information and the product it supports, read the information in Notices on page
135

© Merative US L.P. 2012, 2024

© Merative US L.P. 2012, 2024

Edition
This edition applies to Curam 8.1, 8.1.1, and 8.1.2.

© Merative US L.P. 2012, 2024

Merative and the Merative Logo are trademarks of Merative US L.P. in the United States and
other countries.

© Merative US L.P. 2012, 2024

© Merative US L.P. 2012, 2024

Contents vii

Contents
L0 PP i
o 114 T] PSSP Y
1 Clram WOrKflow RefEreNCEe.......u i 11
1.1 Structure Of thiS DOCUMENL..........uuiiiiii bbb aaeeaaeaaseraseessernsenseensrnnnnes 11
LAY 0] 4 [0V o T0 o =TT = P 11
(D= 1 = N [S PPPPPRRR 11
1Y =T 12
L 0TV o |) S 13
Development and RUNTIME.ii e e e s eaeeeas 14
Inbox Configuration and CUuStoOMIZatioNn...............coooiiiiiiiiii i, 14
1.2 Creating @ WOTKIIOW PrOCESS.......coiiiiiiiiiiiiiie e 14
Process definition lIfECYCIE........oovviiiiiiiieeeeeee 15
(0 To T TSR =3 (=T o U1 1T o 18
Method ReferenCe LiBrary...........oo e 19
WDO tEMPIALES. ... ———————————— 20
1.3 Process Definition Metadata.............ceiiiiiiiiiiiiiiiie e e a e e eaees 22
YT = To = L= TP 22
RV 11T =Y 1 25
Description Of CONIEXE WDOS......ciiiieiiiiiiiiii ittt e e et e e e e e e e e e e s 25
I Yo T i (o1 T D= = N @ o= o £ 25
L= 7=V £ = VPSS 26
ValidatioNS.......cooooi 30
LiSt Of CONIEXE WDIOS. .. .cciiiiiiii e e e ieeeeities s e e e et s e e e e e e e e e et e s e e e e e e e e aeteaa e e e e e eeeenaennan e e eeeas 31
RUNtIME INfOrMALION........ooiiii e e e e e e e e et e e 32
IR T e To =21 SR o F= T 1 1= o 33
Code enactment (ENactMENt SEIVICE API)......coui i 34
Y7o o =T = T 1 1= o 36
1.6 BASE ACHVITY...ceiieiiiiiiiie ettt ettt e e e e ettt e e e e e e et e e e e e e e e e e e e e e e e 38
YT = To = L - TP 38
RV 11T =Y 1 39
BaSIC ACHVITY Ty PSS, iiiiiieiee ettt e e e e e e e e e e e e e e bbb e e e e e e e e 40
AN U (0 1 = [40
PrEIEOUISIIES. ...ttt e ettt e e e e e e et e et e e e e e e e e e e e e e e e e e eeeas 41
CUram BUSINESS MELNOUS.uuuuiiiiiiiiiiiiiiiiiiiiiiiiies e eeeeeeeeeeeeseeseeeeeeeeeeereeereeeteeetreeteeetrertaeeaeeees 41
L 10 1Y/ =T o] o] T 1< 42
(@011 o011 =T o] o] [T 1 TP PP PP TPPPPP 48
Description Of CONEXE WDIOS.......uuuiiiiiiiiiiiiiiiiisiirssissrreessresssesressseeseeeeeeeee. 52

© Merative US L.P. 2012, 2024

Curam 8.1.2 viii

R T V=T | YT V| RO 53
=T C=To TUTES (=TT PSPPI 53
TS A 0T =1 V/=T 01 PR 53
D L=T=To | 1o TR 56
(@110 T0 LAY =T o] o 11 Lo F= 3 60
R =T Lo [T T 61

LS TV T R 63
PrEIEQUISIIES. ...ttt e ettt e e e e e ettt e e e e e e e et e e e e e e e e e as 63
L= 11 Q0 (] =T R 64
F [ToTor= 11 o] g IS] (= 1 (=0 |2 70
BUSINESS ODJECE ASSOCIALIONS.cciiuiitiieiiiee e e ettt e aaa 78
Y=Y VA= 1] SRR 80

N O 1Tt 17T o PSRN 80
PrEIEOUISIEES. ...ttt e e e sttt e e e e e ettt e e e e e e e bbb et e e e e e e e s eeeas 81
=TS G D= = 1] 81
L@ LU T=ES (Lo I =T = 1] £ 85

N YU o)1 01 89
PrEIEQUISIIES. ...ttt e ettt e e e e e ettt e e e e e e e e e e e e e e e e e e eas 89
SUDTIOW PrOCESS. ...uei ittt e e e e e e e e et e e e e et e e s e et e e e e aaa s 89
Fa o T8 LAY, =T o] o1 o 1= 90
L@ 1011 01U LAY/ =T o] o 11 o 91

1.12 Loop Begin and LOOP EN.........i e annannnaane 93
PrEIEQUISIIES. ...ttt e ettt e e e e e ettt e e e e e e e e e e e e e e e e e e eas 93
(XY VAT A 93
=Y =T £ = T 93
RUNIME INFOIMIALION. ...ttt e e e e e e e e e e e et e e e e e rreaeeees 95
Description Of CONEXE WDIOS......uuuuiiiiiiiiiiiiiiiiiriiessreetreereessseesaeeseeeseeeeereeeeerr 95

R =T 1| 1= TSR 95
PrEIEOUISIEES. ...ttt ettt e ettt e e e e s ettt e e e e e e e bbb et e e e e e e e e b eeeas 96
=Y =T £ = T 96

1.14 ACHIVILY NOTTICAUIONS.iiiiiiiiiiiiie e e e e e e e s e eee s 100
N[] 1] To= 1 o] g I D I=] = 11 P 101
Notification AllOCALION SIFAEQY........uuuiiiiiiiiiiiiiiii et e e e e e e e e e 105

T =Y 153 0] TR 108
L= = Lo =1 = VO 108
V=110 F= 1o] 1PN 109
RUNEIME INFOIMALION.coviiieei e e e e e e e e e e e e e e e e e eeeees 110

0 S T o T o T 11 (o 1 110
L= =T P = VR 110
V=110 F= 110] 1PN 113

Y] 17/ Lo o Rt 114
ChoICE XOR SPIIL.. ittt e e e e e e e e e e e e e r e aeeeas 114
Parallel AND SPIit.......oieiiieieeee et e aanne 115

© Merative US L.P. 2012, 2024

Contents ix

1.18 WOTKFIOW SEIUCTUIE.... . ittt e e e e e e e e e r b e e e e e e e e e e esbraa s 116
Graph SHTUCIUME. ... 116
BIOCK STTUCTUIE. ... 117
SHTUCTUIAL RUIES... ...t e e e e e et e e e e e e e e e e bbb e e eeaeeas 118
RV Z= 1T F= o] o RSO PRERPR 119

1.19 WOTKFIOW WED SEIVICES... ..ottt e e e e e e et e e e e e e eeeenes 121
EXposing a WOrkflow WED SEIVICE.........uu i areanneenneenne 121
INVOCAtioN frOM BPEL PrOCESSES.uiiiiiiiiiiiitiie ittt e e e et e e e e e e 122

2 0 I T I Yo 1T £ PRSPPI 123
Workflow Process Definition FileS..........coovviviiiiiiii 123
EVENt DEfINILION FIlES...uuuiii i e e e e e e e e e e aa bbb e e e e eaeeeeesaans 124

R R Ofo o1 i[o [U] = 11 (o] o O PPPP PP P PPPP P PPPPI 125
APPIICALION PrOPEITIES. ..ottt e e et e e e e e e bbb e e e e e e e s baeeeeeeeas 125

2 1 S I PSR 126
WHAt JMSLITE DOES.....covtiiiiii it e e e e e e e e e e e e e aa bt e e e eeeeeeeessbbnsaeeeaaeeens 127
WY IMSLITE?. .. eeeeeeee e ettt ettt e e e e e ettt e e e e e ettt e e e e e e e e nnbe e e e e aeeeeesansbnneneeaeeeaaanns 127
USING IS LI, .ttt ettt e ettt e e e e e e bbbt e e e e e e e b et e e e e e e e e nnnnbn e e e e eeeas 127
Debugging WOTKIIOWS.uiiiiiiiieii e e e e e e e e e e e 128

1.23 Inbox and Task ManNAgEMENT............uiiiiiiiiiiiiii e e e e e e e e e e e e aaanes 128
INDOX CONTIGUIATION.iiiiiiiiie ettt e e e e e s e e e e e e e e s e e e e aeeeas 128
1] oo Q@A TS (o] 1 01 2= L1 o] o PO PR 131

N[0 o = 135

1177 Lo VA To)T 03 PR 136

THAAEIMAIKS.cettiiee et et e e e e e e ettt eeeeeeeeeee e bt eeeeeeeeeeessbaaseeeeeeesasstannaaaeaseeenees 136

© Merative US L.P. 2012, 2024

Curam 8.1.2 x

© Merative US L.P. 2012, 2024

1 Cdram Workflow Reference 11

1 Caram Workflow Reference

The Workflow Management system is used to define processes to achieve certain business
goals. A process definition is the central component that describes the business process. Process
definition metadata is the top-level concept in a process definition. It contains information to
identify and describe the process definition. In-depth descriptions of the workflow metadata can
be entered. The effects of that metadata at run time can be set.

This information provides detailed explanations of the concepts of the Ciram Workflow
Management System (WMS). You can define a process to achieve certain goals by giving in-
depth descriptions of the workflow metadata and the effects of that metadata at runtime.

1.1 Structure of this Document

The guide can be also viewed in a number of distinct sections each of which reflects an area
of the Caram WMS and how these interact with each other. The following sections include a
summary of what these logical sections are, what other sections are included in those logical
sections and what areas of the Caram WMS are covered within those related sections.

Workflow Processes

The Workflow Processes section of the document describes the metadata that is associated with a
workflow process definition. The lifecycle of a process definition is also described.

1.2 Creating a Workflow Process on page 14 describes how to create and visualize a

workflow process by using the Caram workflow system. Releasing a process is also described
while its effect on the versioning associated with process definitions is also detailed. Importing
and exporting process definitions is discussed while the localization of the text contained within
a process is outlined. Running a workflow process by using the Curam workflow engine is
described in detail. A description of the method library and the workflow data object (see 1.4
Workflow Data Objects on page 25) template library is also provided.

1.3 Process Definition Metadata on page 22 describes the metadata that is associated with a
workflow process definition. Each metadata field is outlined while the validations and context
workflow data objects associated with the workflow process as a whole are detailed.

Data Flow

The Data Flow section of the document describes how data is stored and manipulated in a
process instance. In particular issues of how data is conveyed from the outside world (at process
enactment) and between activities and transitions within the process is described.

1.4 Workflow Data Objects on page 25 describes the objects that are used to maintain and

pass data around in the workflow engine. The metadata that constitutes workflow data objects
and their attributes is outlined in detail. Validations that pertain to the creation and modification
of workflow data objects are discussed. Finally, the context workflow data objects that are made
available by the Process Definition Tool and workflow engine are also described in the section.

© Merative US L.P. 2012, 2024

Curam 8.1.2 12

1.5 Process Enactment on page 33 describes the starting of a process instance (that is, the
performing of the work that is defined in the process definition). The enactment service API is
described while the enactment mappings metadata associated with the enactment of a process
is discussed. Associated validations and code examples are also provided. It is also possible to
start a process in response to an event being raised and this is also described in the section. The
configuration data to perform this action is outlined in detail. Any validations that are run when
the mappings between events and workflow processes are created is described.

Activities

Activities are central in a workflow process as they are the steps at which the business processing
for the workflow takes place. The various activity types that are supported by the Ciram WMS
are all described in the Activities section of the document. As notifications are also pertinent to
each activity type, they are also described in the guide.

1.6 Base Activity on page 38 describes the metadata details common to all of the supported
activity types in the Caram workflow system. The validations that are run when creating or
modifying an activity are also outlined. Finally, some of the more simple activity types are
described including the route activity and the start and end process activities.

1.7 Automatic on page 40 describes the metadata details associated with an automatic

activity. Both the input and output mappings that are specified for the method that is associated
with the automatic activity are discussed in detail. The validations run when creating or
modifying the metadata for an automatic activity are outlined. Finally, the Context Result and
Context Error workflow data objects that are available for use in transitions from automatic
activities are also described in the section.

1.8 Event Wait on page 53 describes the metadata details associated with an event wait

activity. This includes the list of events, the deadline details (including any deadline reminders)
associated with an event wait and also any output mappings that can be specified. The validations
that are run when creating or modifying event wait metadata are also described. The runtime
information that is associated with the execution of event wait activities by the workflow engine
is also outlined in detail. Finally, the Context Event and Context Deadline workflow data
objects that are available for use in transitions from event wait activities are also detailed in the
section.

1.9 Manual on page 63 describes the metadata details associated with a manual activity. This
includes the manual task details, the allocation strategy, the business object associations, and

the event wait associated with the manual activity. The validations that are run when creating or
modifying manual activity metadata are also described. The runtime information that is associated
with the execution of manual activities by the workflow engine is also outlined in detail. Finally,
a description of the Context Task workflow data object that is available for use in the various
mappings that are associated with a manual activity is also provided in the section.

1.10 Decision on page 80 describes the metadata details associated with a decision activity.

This metadata includes the decision task details (which is similar to the manual activity task
details) and the question details for multiple choice and free text questions. The various
validations that are run when creating or modifying the task or question details that are associated
with a decision activity are outlined. The section also includes a description of the runtime
information that is present when the workflow engine ran a decision activity. A description of the
Context Decision workflow data object is also provided in the section.

© Merative US L.P. 2012, 2024

1 Cdram Workflow Reference 13

1.11 Subflow on page 89 describes the metadata details associated with a subflow activity.

This includes details of the subflow process that is associated with the subflow activity and any
input mappings that are required to enact that subflow process. The various validations that are
run when creating or modifying this metadata and a description of these is also provided in the

section.

1.12 Loop Begin and Loop End on page 93 describes the metadata details associated

with a loop begin and loop end activity. The loop type, loop condition, and end loop activity
reference of a loop begin activity are described. The section also includes a description of the
runtime information that is present when the workflow engine runs a loop in a workflow process
definition. A description of the Context Loop workflow data object is also provided in this
section.

1.13 Parallel on page 95 describes the metadata details associated with a parallel activity.
Parallel activities wrap existing activity types including 1.9 Manual on page 63 activities

and 1.10 Decision on page 80 activities. Since the metadata that is associated with these

activity types remains the same, it is not described again in the section. The validations run when
creating or modifying parallel activity metadata are also described. The runtime information that
is associated with the execution of parallel activities by the workflow engine is also outlined in
detail. Finally, a description of the Context Parallel workflow data object that is available
for use in the various mappings that are associated with a parallel activity is also provided in the
section.

1.14 Activity Notifications on page 100 describes the metadata details associated with an

activity notification. These details include the delivery mechanism, the subject, the body, the
allocation strategy, and actions associated with the notification. A number of validations that

are run when creating or modifying notification metadata are also outlined in the section. A
description of the runtime information when the workflow engine creates a notification is also
provided. Finally, there are a number of implementation details that are required in the Ctiram
application to allow notifications to be delivered correctly. These are also discussed in the section.

Flow Control

A workflow process models the flow of information through an organization, passing through
steps that are carried out by human agent or computer software to achieve a business goal. The
Flow Control section of the document details how such information flow (between activities) is
specified in and managed by the Ciiram WMS.

1.15 Transitions on page 108 describes the links between activities. The metadata that is
associated with transitions is described in detail. Validations that pertain to the creation and
modification of transitions are also discussed. The runtime information that is associated with the
processing of transitions by the workflow engine is also described.

1.16 Conditions on page 110 describes the process definition metadata construct that
represents a condition. Validations that pertain to the creation and modification of conditions are
also discussed.

1.17 Split/Join on page 114 describes the metadata that is associated with activity splits and
joins, when they are used and the various types available.

1.18 Workflow Structure on page 116 describes the structure of a workflow process as
determined by the activities in the process and the transitions between them. The constraints
present when a process definition is constructed to ensure that it is a valid block structure are
outlined while validations that are executed as part of these constraints are discussed.

© Merative US L.P. 2012, 2024

Curam 8.1.2 14

Development and Runtime

The Development and Runtime section of the document describes the specifics of the
development and runtime environment for Curam workflows. Specifically, it details how to run,
configure, and debug workflows.

1.19 Workflow Web Services on page 121 describes the steps necessary to allow process
enactment through web services by exposing Ctiiram workflow process as a web services.

1.20 File Locations on page 123 details where the various outputs of such utilities as the
Process Definition Tool and other administration user interfaces are exported to and version
controlled. These outputs include process definition metadata files and also the source files that
are associated with events.

1.21 Configuration on page 125 describes the workflow-related application properties, their
names, their default settings and what they are used for in the Curam workflow system.

1.22 JMSLite on page 126 details the Ctram lightweight JMS server that can run alongside

the RMI testing environment in a supported Integrated Development Environment. The steps that
are required to start the JMSLite server are outlined while a detailed description of how to debug
workflows by using JMSLite is also discussed.

Inbox Configuration and Customization

The Inbox Configuration and Customization section of the document describes the configuration
and customization options that are available in the Inbox and Task Management section of the
Curam WMS. Specifically, it details how to configure the number of tasks that are displayed on
the various lists that are displayed in the Inbox and also how to customize the various Inbox and
Task Management actions that are available in the system.

1.23 Inbox and Task Management on page 128 describes the configuration options available to
be used in the Inbox. It also details how to customize the available Inbox and Task Management
functions by using the Google Guice framework.

1.2 Creating a Workflow Process

You can create and visualize a workflow process by using the Ciram workflow system. Read
about how to release a process and how versions are associated with process definitions.
Importing and exporting process definitions is discussed while the localization of the text
contained within a process is outlined. Running a workflow process by using the Caram
workflow engine is described in detail.

© Merative US L.P. 2012, 2024

1 Cdram Workflow Reference 15

Process definition lifecycle

The process definition is the central concept in any workflow system so naturally how it is
created and used is of critical importance. The section describes the facilities that are provided by
the Ctiram workflow system to create and administer process definitions.

Process creation

The Caram workflow system provides a Process Definition Tool (PDT) for creating and
maintaining process definitions, which can then be interpreted by the workflow engine. Creating
a process definition involves by using the Process Definition Tool to describe the wanted process
behavior in terms of activities and transitions.

A number of utilities are provided as part of the Process Definition Tool that can aid in process
creation. The PDT allows a process definition to be visualized during design. Processes can also
be copied, imported, and exported by using the PDT.

Process visualization

A read-only graphical utility is provided as part of the Process Definition Tool, which enables
process administrators to visualize processes as they are being created or modified. This tool
allows administrators to view all activities and transitions in a process definition and provides
a high-level view of all the possible paths through the workflow process during execution.
The following figure shows an example of a graphical representation of a workflow process
definition.

o B

Matity: Case ot ...

OverUnderPmt. OverUnderPMT == true

Po . - ‘B

Route

oy

s

e,
s
iy
s

= = = Y 2. =
Check Case Re... Check Case Re... Check Case Ref... Client Communi... Mai Communic...

@ E®

Notify: Case Clo.

Figure 1: Visualization of Close Case Workflow Process Definition

© Merative US L.P. 2012, 2024

Curam 8.1.2 16

The visualized process comprises a number of nodes on a graph that represents the activities in
the process. The nodes are linked by graph edges and these reflect the transitions that are defined
in the process definition. Clicking an activity in the graph displays the details of the activity in
the PDT. Similarly, clicking a transition between activities on the graph displays the details of the
transition in the PDT.

The graphical tool displays the following information for each process visualized:

» The type and name of each activity. Each activity type is identified by a specific icon.

* The notifications that are defined for each activity (See 1.14 Activity Notifications on page
100). If an activity has an associated notification, it is represented as an envelope, which is
click-able through to the associated activity notification page.

» The split/join type. See 1.17 Split/Join on page 114 for each activity. A split or join type
of "choice" on an activity is represented as a circle, while a split or join type of "parallel" is
represented as a square.

* The transitions between activities. Where a transition between activities has an associated
transition condition (See 1.16 Conditions on page 110), this is represented as an asterisk.
The details of the condition are displayed when the mouse is placed over that asterisk.

* The ordering of each choice split (See 1.17 Split/Join on page 114) from an activity. As
the ordering of a choice split from an activity is important (the first eligible transition in the
list is followed), the order of each transition from the activity is displayed as a number on that
transition.

Releasing a process
When a process definition is created and is ready for use, it must be released before it can be run
by the workflow engine.

See Process execution on page 18. As a process is being released by using the PDT, it

is examined to ensure all the information the engine needs to run the process is present and
internally consistent. The validations that are required to release a process are described in the
various metadata sections of this document.

Only processes that are passed all of the required validations can be released and made available
to the workflow engine. After a process definition is released, it becomes read-only and can no
longer be edited by the Process Definition Tool without creating a new version.

Process versions (process editing)

Changes can be required to a released process over time, but as a released process is read-only,
a new version is required before any modifications can be applied. Attempting to edit a released
process in the PDT automatically creates a new unreleased version of that process.

There can be only one unreleased version of a process at any time. If the administrator wants to
edit a released process, any existing unreleased versions must first be released or deleted.

Process import, export, and copy

The import and export functionality allows developers to move process definitions as required.
For example, a process definition might be developed on a development system and only moved
to a production system after testing is completed.

Exporting a process exports the process metadata to the file system. This metadata can then be
imported by using the import process option in the PDT. A process that is imported in this way
is assigned the highest version number available, and is unreleased regardless of its released

state when imported. This is to ensure that imported process definitions are subject to the same

© Merative US L.P. 2012, 2024

1 Cdram Workflow Reference 17

release validations as other definitions developed locally. An overwrite option is available when
importing that ensures any existing unreleased version of the process is overwritten with the
imported version.

There can be situations where a process definition differs only slightly from another in the
workflow system. A copy process option is available, which allows an existing process to be
copied to a new process when required. The new process is always unreleased when copied with a
version set to 1, regardless of the status of the original process.

Validations

* A process definition cannot be imported if an unreleased version of a process exists already
with the same name, and the overwrite option is not selected.

* A process definition cannot be imported if a name for that process is not specified.

* A process definition cannot be imported if a process exists with the same name and different
process identifier. This validation ensures that an imported definition cannot inadvertently
overwrite an existing process definition unless the process identifiers match.

* When an existing process is copied, the name of the new process must be unique within the
workflow system.

* The length of the name of the workflow process definition to be imported must not exceed the
maximum length that is allowed for such a name. This length is 254 characters.

* The length of the names of any of the workflow data objects that are contained in the
workflow process definition to be imported must not exceed the maximum length that is
allowed for such a name. This length is 75 characters.

* The length of the names of any of the workflow data object attributes contained in the
workflow process definition to be imported must not exceed the maximum length that is
allowed for such a name. This length is 75 characters.

* Any code table values that are contained in the workflow process definition to be imported
must be valid (that is, the code table must exist and the specified code must exist in that
codetable).

» For each localizable text in the process definition to be imported, there must exist at least an
entry for the English (that is, "en") locale. Entries in other locales can also exist (for example,
the different user locales that are supported by the application) but each translation must be
accompanied by an entry for the English locale.

* The identifiers for activities, transitions, transition condition expressions, loop condition
expressions, events, and reminders must be unique in the workflow process definition to be
imported.

Localization

Workflow process definitions contain metadata text that needs to be viewed in different languages
by different users. For example, when a manual activity is run, it creates a task, which has an
associated subject. The Process Definition Tool enables the process developer to localize this
subject string for each of the locales that are supported by the application.

Localizable strings can be identified in a process definition by the metadata that is specified
in Localized Text on page 39. Any localizable text strings that are specified in a process
definition must at least have a corresponding entry for the English (that is, "en") locale. When
a localized string is added to a process definition, the PDT by default adds the string to both
the user's and the English locales. Any subsequent changes to localized text (that is, additions,
deletions or modifications) can be made through the localization screen of the PDT.

The following is a list of the localizable text strings that can be specified in a process definition.

© Merative US L.P. 2012, 2024

Curam 8.1.2 18

* Process display name

* Process description

* Workflow Data Object display name

* Workflow Data Object description

* Workflow Data Object attribute display name
* Activity name

* Activity description

* Manual Activity Task message

* Manual Activity Task Action message

+ Parallel Manual Activity Task message

+ Parallel Manual Activity Task Action message
* Decision Activity Action message

* Decision Activity Question message

* Decision Activity Secondary Action message
* Decision Activity Answer display value

* Parallel Decision Activity Action message

* Parallel Decision Activity Question message

+ Parallel Decision Activity Secondary Action message
» Parallel Decision Activity Answer display value
* Activity Notification Subject message

» Activity Notification Body message

» Activity Notification Action message

* Reminder Notification Subject message

* Reminder Notification Body message

* Reminder Notification Action message

The LocalizableStringResolver API provides routines that resolve and return the various
localizable strings for tasks and notifications that exist in a workflow process definition for the
locale of the current user. Where a text string is not localized for the current user locale, the text
for the English (that is, "en") locale is returned instead.

Process execution

A workflow process definition describes the tasks and flow of a business process in terms that are
understood by the Curam Workflow Management System. To perform the work that is described
in the specified process definition, an instance of it must be created and run by the workflow
engine. The mechanism by which this is done is described in this section. A process instance can
be considered as the runtime data for an enacted workflow process definition.

Basic engine behavior
The Caram Workflow Management System includes a workflow engine, which provides the
runtime execution environment for a process instance.

There are various mechanisms available to enact a workflow process and these are discussed in
Process Enactment on page 121. When a process is enacted, the workflow engine examines the
relevant database table and uses the latest released version of the specified process definition to
create the process instance to run.

© Merative US L.P. 2012, 2024

1 Cdram Workflow Reference 19

As each activity is run, an associated activity instance record is created and managed by the
workflow engine. This record contains the runtime data for an activity instance in the enacted
workflow. As the workflow progresses, the engine evaluates the transitions (see 1.15 Transitions
on page 108) for the various activities to decide which path through the process to take. This
involves determining the types of splits and joins (see 1.17 Split/Join on page 114) that the
activity possesses and also running any conditions (see 1.16 Conditions on page 110) that the
various transitions in the process can have. Transition instance records (which contain the runtime
data for a workflow transition) for each transition that is followed in the workflow process are
also created and managed by the engine.

Executing multiple versions

Modifying and releasing a new version of a process does not affect any currently running
instances of that process. A process runs to completion in the workflow engine with the version
that it was started with, regardless of any subsequent versions that might be released.

Process Instance Administration
A workflow administrator can influence the execution of a running process instance through the
Curam Workflow Administration interface.

The following functions are available for this purpose:

* Suspend a Process Instance
Any currently running process instance can be suspended. When this occurs, the workflow
engine allows all activity instances that are in progress within that process instance to
complete. However, the next set of activities that are required to be run for that process
instance are started by the workflow engine and immediately suspended. Any synchronous
subflow processes (see 1.11 Subflow on page 89) associated with the process instance to
be suspended is also suspended by the workflow engine.

* Resume a Process Instance
Any workflow process instance that is suspended can be resumed. When this occurs, the
activity instances that were previously suspended for that process instance are restarted by the
workflow engine. Any suspended synchronous subflow processes (see 1.11 Subflow on page
89) associated with that process instance is also resumed by the workflow engine.

* Aborting a Process Instance
Any currently running or suspended process instance can be aborted. All activities that are in
progress in the aborted process instance are completed. If the process contains any manual or
decision activities that are in progress, the associated tasks are closed by the workflow engine
when the process instance is aborted. No new activities that are associated with an aborted
process instance are started by the workflow engine. Any synchronous subflow processes (see
1.11 Subflow on page 89) associated with the process instance is also aborted. An aborted
process instance cannot be resumed.

Method Reference Library

Several situations exist in the Cliram Workflow Management System where it is necessary to
interact with the Caram application by calling some business process or entity methods.

See Curam Business Methods on page 41 for one example of such an interaction. Any

business process object (BPO) or entity method in the application can be called by the workflow
engine. However, there are far too many such methods to present to a process designer for

use in their process definitions in an acceptable way. The purpose of this library is to allow

© Merative US L.P. 2012, 2024

Curam 8.1.2 20

an administrator to assign methods that are likely to be of use in process definitions to a more
manageable list for use in process design. Of course, it is not necessary to pre-populate the library
with all methods that might be used in the future. New methods can be added to the library as
required.

Referencing Ciram methods

Business process object (BPO) or entity methods must be added to the Method Reference Library
before they can be referenced in a process definition. The method type that is defined when the
library is added to, dictates where that method is available for use within a process definition.

Removing a method reference from the Method Reference Library does not remove it from any
process definitions that reference it. If the method is still a valid Ctaram application method any
process definitions that reference it remains valid.

Method types

A Curam business process object (BPO) or entity method must be added to the Method Reference
Library with one of the three defined method types. A method can be associated with more than
one method type, but the method must be added repeatedly with the different method type each
time. Detailed here are different method types in the Method Reference Library, along with the
restrictions on their use.

* General
Methods with a type of General are only available as application methods to be started from
automatic activities. See Curam Business Methods on page 41. The Process Definition
Tool restricts access to only these methods when a method to be started is selected from an
automatic activity.

* Allocation
Methods in the library with an A/location type are only available for use as allocation
strategy functions associated with manual activities, decision activities, parallel
activities, and activity notifications. See Allocation strategy on page 70. All
methods that are specified with an allocation method type must have a return type of
curam.util.workflow.struct.AllocationTargetList.
* Deadline
Methods of type Deadline in the method library can be referenced only as deadline handler
methods associated with event-wait, manual, decision, and parallel activities. See Deadline on

page 56.

WDO templates

A description of the method library and the workflow data object template library.

Data is maintained and passed around in the workflow engine as workflow data objects, see:

1.4 Workflow Data Objects on page 25. The workflow data objects that a process can use

are defined in the process definition. However, workflow data objects might be useful in many
process definitions. This library enables workflow data object to be imported from a pool instead
of having to be re-created in each individual process.

Metadata

<wdo is-list-wdo="false" initialize-attributes="false">
<wdo- name>TaskCr eat eDet ai | s</ wdo- nane>
<di spl ay- nane>

© Merative US L.P. 2012, 2024

1 Cdram Workflow Reference 21

<l ocal i zed-t ext >
<l ocal e | anguage="en" >TaskCr eat eDet ai | sNane</ | ocal e>
</l ocalized-text>
</ di spl ay- nane>
<descri ption>
<l ocal i zed-t ext >
<l ocal e | anguage="en">The Task Create Details WO
Tenpl at e</ | ocal e>
</l ocalized-text>
</ descri ption>
<attributes>
<attribute>
<attri but e- name>subj ect </ attri but e- nane>
<di spl ay- nane>
<l ocal i zed- t ext >
<l ocal e | anguage="en">Task Subj ect</I ocal e>
</localized-text>
</ di spl ay- nane>
<t ype>STRI N&/ t ype>
<r equi r ed- at - enact nent >f al se</r equi r ed- at - enact nent >
<process- out put >f al se</ process- out put >
<const ant - val ue/ >
</attribute>
<attribute>
<attri but e- nane>dueDat e</ at tri but e- nane>
<di spl ay- nane>
<l ocal i zed- t ext >
<l ocal e | anguage="en">Task Due Date</| ocal e>
</localized-text>
</ di spl ay- nane>
<t ype>DATE</t ype>
<r equi r ed- at - enact nent >f al se</ r equi r ed- at - enact nent >
<pr ocess- out put >f al se</ process- out put >
<const ant - val ue/ >
</attribute>
</attributes>
</ wdo>

The metadata that is defined for workflow data object templates is the same as that defined for
workflow data objects. For a full description of this metadata, see 1.4 Workflow Data Objects on
page 25. The workflow data object template library is stored on the WDOTemplateLibrary
database table.

Theinitialize-attributes elementof a workflow data object and the r equi r ed- at -
enact ment, process-out put, and the const ant - val ue elements of a workflow data
object attribute are not available for editing in workflow data object templates. These elements
are automatically initialized to their default values in the associated metadata.

Import and syncing

The templates that are defined in the workflow data object template library are available for use
when process definitions are created. Importing a workflow data object template from the library
adds the workflow data object and all its attributes to the current process definition.

After a workflow data object template is imported into a process definition, it can be
synchronized with its corresponding entry in the workflow data object template library at any
time. Synchronizing the template for a process definition forces the name and display name

© Merative US L.P. 2012, 2024

Curam 8.1.2 22

of the workflow data object to be updated from the template library. Along with this, any new
attribute entries that exist in the template library entry is automatically added to the workflow
data object in the process definition. The user can optionally decide to override existing attributes
in the workflow data object with those from the template library when synchronizing. Overriding
existing attributes can invalidate the process definition and require updates where the old attribute
values are used.

Validations

* A workflow data object cannot be imported from a template if one exists already in the
associated workflow process definition with the same name.

1.3 Process Definition Metadata

The process is the top-level concept in a process definition. Primarily, it contains information

to identify and describe the process definition. This information includes the identifier and the
version of the process definition, its name, and a brief description. It also includes a description of
the failure allocation strategy that can be specified for a process.

Descriptions are provided for the metadata that is associated with a workflow process definition.
Each metadata field is outlined while the validations and context workflow data objects
associated with the workflow process as a whole are detailed.

Metadata

<wor kf | ow process id="100" process-version="2"
| anguage- ver si on="1. 0"
rel eased="fal se" cat egory="PC5"
creat edBy="t est user"”
creati onDat e="20050812T135800" >
<name>Appr ovePl annedl t enx/ nane>
<pr ocess-di spl ay- nane>
<l ocal i zed- t ext >
<l ocal e | anguage="en">Approve Pl anned Itenx/I| ocal e>
</localized-text>
</ process-di spl ay- name>
<descri pti on>
<l ocal i zed- t ext >
<l ocal e | anguage="en">Thi s wor kfl ow process nay be
enacted to approve a planned item </l ocal e>
</l ocalized-text>
</ description>
<docunent ati on>Refer to the approve pl anned
i tem docunent ati on
</ docunent at i on>
<web- servi ce expose="true">
<cal | back- servi ce>wsconnect or. ApprovePl annedl t em
</ cal | back-service>
</ web- servi ce>
<failure-allocation-strategy>
<al l ocation-strategy type="target"
i denti fier="FAl LUREALLOCATI ONSTRATEGY" />
</failure-allocation-strategy>

© Merative US L.P. 2012, 2024

1 Cdram Workflow Reference 23

</ wor kf | ow process>

workflow-process

The parent tag of all process definition metadata.

e id
This is a 64-bit identifier that is supplied by the Curam key server when a process is
created in the process definition tool. The process identifier is required to be unique in the
Curam workflow system. The reason for this is that the process identifier along with the
process version number is how the workflow engine distinguishes one process definition
record from another for database reads.

* process-version
This number represents the version of a workflow process definition. A workflow process
definition record is uniquely identified by its identifier and version number. A process
definition may have many released versions and one version that is in edit. When a process
definition is released, a new version is created and it can no longer be updated. Any
subsequent updates require a new version to be created and this version are not active
until it is released. When a process is enacted the highest released version number is used.
Process instances that begin with a version number remain bound to that version until
completion.

* language-version
The process definition metadata is the Ctiram workflow language. As new features and
enhancements are added, this language can change. This version number allows either the
workflow engine to run old language versions different from newer ones or more likely
upgrade tools to convert old process definitions to new language versions.

* released
This represents a Boolean flag that indicates if the process definition is released. Only
process definitions that are released can be enacted or selected as subprocesses in a subflow
activity (see: 1.11 Subflow on page 89).

* category
A process definition must be placed into a category. The category must be selected in
the Process Definition Tool and is taken from the ProcessCategory code-table. This
attribute is intended to be used for process definition search functionality and has no
functional effect on the process in the workflow engine.
* createdBy
This represents the name of the user that created the workflow process definition. This
attribute is intended to be used for process definition search functionality and has no
functional effect on the process in the workflow engine.
* creationDate
This represents the date and time that the workflow process definition was created. This
attribute is intended to be used for process definition search functionality and has no
functional effect on the process in the workflow engine.
process-display-name
This is the display name of the process definition. This is the name of the process that the user
sees in the PDT. It is presented in the user's locale. The process display name is localizable and
can be edited in the localization screen.
name
This is the technical identifier of the process definition. It is the means by which the process
is identified for enactment. The enactment service (the API used to enact a process in code)

© Merative US L.P. 2012, 2024

Curam 8.1.2 24

identifies the process to enact by its name. As such this name is required to be unique within
the workflow system and cannot be changed when the process is created. Since the process
name is effectively a constant, it is not localizable like an activity name.

description

A process can also have an optional description that briefly specifies what the process does for
the benefit of those editing the process definition in the future. This is localizable text field in
the same format as all localizable fields in a process definition (see: Localized Text on page
39).

documentation

A process can also have a link to some documentation that can explain the process in a more
descriptive fashion. This is a free-form text field where the developer can enter the name of a
document pertinent to the workflow process or indeed a link to such a document.

web-service

This optional element describes the web service details of a workflow process. A process

can be marked as a Web Service by setting this metadata value, which indicates that the
process should be exposed as a Web Service. This allows the process to be able to participate
in a BPEL (Business Process Execution Language) orchestrated process and means that the
process can be called from a BPEL process. Further details on this functionality can be seen in
1.19 Workflow Web Services on page 121.

* expose
This attribute represents a Boolean flag that indicates if the process definition should be
exposed as a Web Service. A workflow process definition is not exposed as a Web Service
by default.

» callback-service
This is an optional element because not all invocations from a BPEL process
require a callback. The value is a fully qualified name of a class that extends the
org.apache.axis2.client.ServiceClient class (which is part of the Service (Axis
API) of the Apache Axis 2 project). The org.apache.axis2.client.ServiceClient
class is generated by the Cliram web services connector functionality for outbound web
services.

failure-allocation-strategy

A process can also have an optional failure allocation strategy that is specified for it. When

a task is allocated (associated with a 1.9 Manual on page 63 or 1.10 Decision on page

80 activity), the workflow engine starts the associated allocation strategy to retrieve

the list of allocation targets. If no allocation targets are returned from this invocation, the

workflow engine then checks for the presence of a failure allocation strategy and uses this

strategy to attempt to allocate the task. Since the allocation strategy of type TARGET specifies
an allocation target directly, there is never a need to fall back to the failure allocation strategy.

The failure allocation strategy is a process-wide strategy and if specified is used for all the

manual and decision activities in the process when required.

+ allocation-strategy
This describes the failure allocation strategy that is used for the process. The failure
allocation strategy must be of type TARGET. If the work resolver cannot assign the task
to a user, an organizational object (for example, organization unit, position, or job) or a
work queue by using the specified allocation target the task is assigned to the default work
queue. The identifier attribute represents the identifier of the allocation target that is used as
the failure allocation strategy.

© Merative US L.P. 2012, 2024

1 Cdram Workflow Reference 25

Validations

* A workflow process must have a unique process name. This means that a process cannot be
created if the process name is empty or if a process with the same name exists.

* A workflow process must have a process display name in the English (that is, "en") locale. A
display name in the user's locale should also be specified, but this is optional.

* A workflow process is required to specify a category.

* A released version of workflow process cannot be deleted when it is enacted. This is required
as even if a newer version of a process exists, process instances that are in progress when
the new version becomes available run to completion with the version that they started with.
Process definitions are also a necessary historical record that is drawn upon to create auditing
information.

* A released version of workflow process cannot be deleted if it is referenced by a subflow
activity in a released version of another process, where that released version is the latest
released version.

+ If a failure allocation strategy is specified for the workflow process, then its type must be
TARGET.

» The callback service class name cannot be specified if the workflow process is not exposed as
a webservice.

* The callback service class name must represent a class that can be found on the application
classpath.

* The callback service class name must represent a class that extends the
org.apache.axis.client.Service class.

Description of Context WDOs

Certain generic system runtime information about the workflow engine is required to be made
available to the activities and the transitions during the lifetime of a process instance.

Details of the Context RuntimeInformation workflow data object that provides this
information can see be seen in the following location: List of Context WDOs on page 31.

1.4 Workflow Data Objects

Data is maintained and passed around in the workflow engine as workflow data objects and list
workflow data objects. These logical objects are defined in the process definition and have a
name and a list of attributes of various types to which data can be assigned. They are conceptually
similar to objects in programming languages although their manifestation in the workflow system
is different. Workflow data object values can be written at process enactment or from the output
of various activity types.

Workflow data object instances and list workflow data object instances exist as soon as the
process is enacted and exist until the process completes. As such they are available to be used in
the activities and the transitions throughout the lifetime of that process instance. Therefore, it is
the responsibility of the process designer to ensure that attributes of workflow data objects are
populated before they are used. Attempts to use workflow data object attributes before they are
populated results in failures at run time.

The metadata that constitutes workflow data objects and their attributes is outlined in detail.
Validations that pertain to the creation and modification of workflow data objects are discussed.

© Merative US L.P. 2012, 2024

Curam 8.1.2 26

The context workflow data objects that are made available by the Process Definition Tool and
workflow engine are also described.

Metadata

<wor kf | ow process id="32456" >
<name>Cr eat eManual Task</ name>
</ descri ption>
<enact ment - mappi ngs>
</ enact ment - mappi ngs>
<wdos>
<wdo is-list-wdo="false" initialize-attributes="true">
<wdo- nanme>TaskCr eat eDet ai | s</ wdo- nane>
<di spl ay- nane>
<l ocal i zed-t ext >
<l ocal e | anguage="en">Task Create Detail s</I|ocal e>
</l ocalized-text>
</ di spl ay- nane>
<descri ption>
<l ocal i zed-t ext >
<l ocal e | anguage="en">Thi s wor kf| ow dat a obj ect
contains the attributes required for the
manual creation of a task.</|ocal e>
</localized-text>
</ descri pti on>
<attri butes>
<attribute>
<attri but e-name>subj ect </ attri but e- nane>
<di spl ay- nane>
<l ocal i zed-t ext >
<l ocal e | anguage="en">Task subj ect</I ocal e>
</l ocalized-text>
</ di spl ay- name>
<t ype>STRI NG/ t ype>
<requi r ed- at - enact nent >t r ue</ r equi r ed- at - enact nent >
<pr ocess- out put >t rue</ process- out put >
</attribute>
<attribute>
<attri but e-name>parti ci pant Rol el D</ attri but e- nanme>
<di spl ay- nane>
<l ocal i zed- t ext >
<l ocal e | anguage="en">Partici pant Role |D</
| ocal e>
</l ocalized-text>
</ di spl ay- nanme>
<t ype>l NT64</type>
<requi r ed- at - enact ment >t r ue</ r equi r ed- at - enact nent >
<pr ocess- out put >t rue</ process- out put >
</attribute>
<attribute>
<attri but e- name>deadl i neDat eTi ne</ attri but e- nane>
<di spl ay- nane>
<l ocal i zed- t ext >
<l ocal e | anguage="en">Deadl i ne date</I| ocal e>
</localized-text>

© Merative US L.P. 2012, 2024

1 Cdram Workflow Reference 27

</ di spl ay- nane>
<t ype>DATETI ME</ t ype>
<r equi r ed- at - enact nent >t r ue</ r equi r ed- at - enact nent >
<pr ocess- out put >f al se</ process- out put >
</attribute>
<attribute>
<attri but e- name>deadl| i neDur ati on</ attri but e- nane>
<di spl ay- nane>
<l ocal i zed-t ext >
<l ocal e | anguage="en">Deadl i ne Duration</| ocal e>
</l ocalized-text>
</ di spl ay- nane>
<t ype>l NT32</type>
<r equi r ed- at - enact nent >f al se</requi r ed- at - enact ment >
<pr ocess- out put >f al se</ process- out put >
<initial-value>300</initial-val ue>
</attribute>
<attribute>
<attribute-name>priority</attribute-nanme>
<di spl ay- nane>
<l ocal i zed-t ext >
<l ocal e | anguage="en">Task priority</I|ocal e>
</l ocalized-text>
</ di spl ay- nane>
<t ype>l NT32</type>
<r equi r ed- at - enact nent >f al se</requi r ed- at - enact ment >
<pr ocess- out put >f al se</ process- out put >
<const ant - val ue>TP1</ const ant - val ue>
</attribute>
</attributes>
</ wdo>
<wdo is-list-wdo="true" initialize-attributes="false">
<wdo- nane>Chi | dDet ai | s</ wdo- nane>
<di spl ay- nanme>
<l ocal i zed-t ext >
<l ocal e | anguage="en">Child Detail s</| ocal e>
</l ocalized-text>
</ di spl ay- nane>
<descri pti on>
<l ocal i zed-t ext >
<l ocal e | anguage="en">Thi s wor kfl ow data obj ect
contains the details of all the children
associ ated with the claimant. </l ocal e>
</l ocalized-text>
</ descri pti on>
<attributes>
<attribute>
<attribute-nane>identifier</attribute-nane>
<di spl ay- name>
<l ocal i zed-t ext >
<l ocal e | anguage="en">ldentifier</I|ocal e>
</l ocalized-text>
</ di spl ay- nane>
<type>l NT64</t ype>
<r equi r ed- at - enact nent >t r ue</ r equi r ed- at - enact nent >
<pr ocess- out put >t r ue</ pr ocess- out put >
</attribute>
<attribute>

© Merative US L.P. 2012, 2024

Curam 8.1.2 28

<attri but e-name>f ul | Name</ attri but e- nane>
<di spl ay- nane>
<l ocal i zed- t ext >
<l ocal e | anguage="en">The full nane of the
child. </l ocal e>
</l ocalized-text>
</ di spl ay- nane>
<t ype>STRI NG/ t ype>
<r equi r ed- at - enact nent >t r ue</ r equi r ed- at - enact nent >
<pr ocess- out put >f al se</ process- out put >
</attribute>
<attribute>
</attributes>
</ wdo>
</ wdos>
<activities>

</activities>
</ wor kf | ow process>

* wdos
This is optional (as a workflow process definition does not have to contain any workflow
data objects) and contains the details of all the workflow data objects that are defined for the
workflow process definition.

* wdo
This contains the details of one the workflow data objects that are defined for the workflow
process definition. This includes the generic details of the workflow data object itself and
also details of each of its attributes. The metadata that describe a workflow data object and its
attributes are described here:

* is-list-wdo
This contains a BOOLEAN value, which indicates whether the specified workflow data object
is a list workflow data object or not. When set to t r ue, the specified workflow data object
acts as a list and thus can be used to make lists of data available throughout the workflow.

 initialize-attributes
This contains a BOOLEAN value, which indicates whether the attributes that are associated
with the workflow data object should be initialized when the workflow data object is first
used. The default values that are used are the same as would be set in a Cliram struct.

* wdo-name
This contains the name of the workflow data object.

+ display-name
This contains the display name of the workflow data object. This name represents a short
description of the workflow data object and is displayed throughout the Process Definition
Tool. It is a localizable string that does not contain any parameters. For more details on the
localized text and associated metadata, see Localized Text on page 39.

* description
This contains a more detailed description of the workflow data object. It is also a localizable
string with no parameters. For more details on the localized text and associated metadata, see
Localized Text on page 39.

© Merative US L.P. 2012, 2024

1 Cdram Workflow Reference 29

attributes
This contains the details of all of the attributes that are associated with the workflow data
object.

attribute
This contains the details of one of the attributes that are associated with the workflow data
object. The following metadata described here make up a workflow data object attribute:

+ attribute-name
This contains the name of the workflow data object attribute.

+ display-name
This represents the display name of the workflow data object attribute. This name
represents a short description of the workflow data object attribute. It is a localizable string
that does not contain any parameters. For more details of the localized text and associated
metadata, see Localized Text on page 39.

- type
Each workflow data object attribute that is defined must specify a type, which must be a
valid Curam base domain. When creating a workflow data object attribute in the Process
Definition Tool this type is selected from the DomainType codetable. This codetable
should be consulted to obtain the full list of types available for workflow data object
attributes. The type of a workflow data object attribute is used to ensure that the data
mappings that are contained within a workflow process are compatible and does not cause
failures at runtime. An example of this would be that if a business process object method
parameter field was of type STRING, then the workflow data object attribute used to map
the data into that field must also be of type STRING.

* required-at-enactment
Enactment mappings represent the minimum amount of data that the workflow requires to
be enacted. They must contain an entry for each workflow data object attribute that has its
required at enactment flag set to t r ue. Conversely, setting this flag to f al se (the default)
means that this workflow data object attribute is not required for the enactment of the
associated process. The Process Definition Tool is used to create these enactment mappings
and it does so by examining each workflow data object attribute that is defined and creating
a mapping for those that have the required at enactment flag set to t r ue. When a released
workflow process definition is selected as a subflow process in a subflow activity (see 1.11
Subflow on page 89), all of the workflow data objects that are marked as required for
enactment in the subflow process must be mapped before that parent process definition can
be released.

* process-output
A workflow process can be marked as a Web Service by setting a metadata value,
which indicates that the process should be exposed as a Web Service. This allows the
process to be able to participate in a BPEL (Business Process Execution Language)
orchestrated process and means that the process can be called from a BPEL process
either synchronously or asynchronously. It can also be necessary to map data out from
a workflow process back into the BPEL process that called it. When set to t r ue, this
optional element indicates that the data from this workflow data object attribute should be
passed back to the calling BPEL process when the Caram workflow process completes.
The default for this element is f al se.

* constant-value
This optional element indicates if the workflow data object attribute represents a constant
value. In numerous places throughout a workflow process definition, workflow data object
attributes are used in input mappings (that is, allocation function mappings, deadline

© Merative US L.P. 2012, 2024

Curam 8.1.2 30

function mappings and so on.). In some of these cases, it is required to be allowed to use
constants in some of these mappings. By providing a constant value, workflow data object
attributes of this type can be used for this purpose. A workflow data object attribute cannot
have its required for enactment flag set to t r ue and also contain a constant value. Data
that is passed in as enactment data is deemed to be dynamic and subject to change. The
data that is specified in a constant workflow data object attribute is not suitable for this
purpose as its value is already known.

* initial-value
This element indicates if the workflow data object attribute has an initial value. This
feature can be useful in the situations where a workflow data object attribute is used in the
workflow before it is populated by an automatic activity or otherwise (that is, to prevent
having to use an automatic activity to populate workflow data object attributes just to
ensure that these attributes are not null when they are used as part of transition conditions
later in the workflow). When this element is populated, the workflow data object attribute
is initialized to the specified value the first time it is used. The initial value of a workflow
data object attribute can be overwritten later by the various output mappings that exist in a
workflow process. A workflow data object attribute cannot have both a constant value and
an initial value that is specified for it.

Validations

A workflow process must contain only one Context RuntimeInformation workflow data
object. -

A workflow data object name must be unique in the context of the containing workflow
process definition.

The name of a workflow data object must be a valid Java® identifier.

A user-defined workflow data object name cannot contain the prefix Context as thisis a
reserved prefix in the Caram workflow system. -

Each workflow data object specified in the workflow process definition must contain at least
one associated attribute.

The workflow data object attribute name must be a valid Java identifier.

A workflow data object attribute cannot be created with the name "value". This is a reserved
attribute name in the Ciram workflow system.

The type of a workflow data object attribute must be a valid Caram base domain and must be
contained in the DomainType codetable.

A workflow data object attribute cannot be both marked as required for enactment and also
marked as a constant value.

A workflow data object attribute cannot have both a constant value and an initial value that is
specified for it.

If a workflow data object attribute is marked as a constant, then a constant value must be
supplied. Conversely, if the attribute is not marked as a constant, then no such value should be
specified.

If the workflow data object attribute is marked as a constant, then a blank value can be
specified only for that attribute if the type of the attribute is a STRING.

If the workflow data object attribute is specified with an initial value, then a blank initial value
can be specified only for that attribute if the type of the attribute is a STRING.

If the workflow data object attribute is marked as a constant, then the value that is specified as
that constant must be compatible with the type of the associated attribute.

© Merative US L.P. 2012, 2024

1 Cdram Workflow Reference 31

+ If the workflow data object attribute is specified with an initial value, then the value that is
specified as that initial value must be compatible with the type of the associated attribute.

* The process output flag can be set only to true for a specified workflow data object attribute if
the associated workflow process is exposed as a webservice.

List of Context WDOs

Context workflow data objects are those that are not explicitly defined in the workflow process

definition metadata but are made available by the Process Definition Tool and workflow engine
at various places during the execution of a process. The following is a brief description of these
context workflow data objects and links are provided to where further information can be found
about them.

* Context_RuntimeIlnformation Workflow Data Object
The Context_Runtimelnformation workflow data object is a workflow data object that is made
available and maintained by the workflow engine. It contains information that is pertinent
throughout the lifecycle of a workflow process instance and the attributes available reflect this.
These attributes are as follows:

* processInstancelID : The system generated identifier of the process instance (taken
from the Cram key server by using the workflow key set).

* enactingUser : The username of the user whose actions in the application resulted in the
workflow process that is enacted.

* enactmentTime : The date and time at which the process was enacted.

+ Context_Result Workflow Data Object
A transition from an automatic activity should be able to use the return value of the started
method in its condition directly without the need for mappings to workflow data object
attributes. However, due to the transactional model of the workflow engine this data must
persist outside the transaction of the business process object method invocation. To achieve
this, a workflow data object definition is created at runtime if the return value is used in
outbound transition conditions. These return value definitions never need to be persisted as
they are inferred wherever needed in the workflow engine. The actual workflow data object
data is persisted until after the transitions from the activity instances in question are evaluated,
at which point they are deleted. For more details on the Context Result workflow data object,
see Description of Context WDOs on page 52

* Context_Event Workflow Data Object
The Context_Event workflow data object is available for use in a data item or function
conditions (see 1.16 Conditions on page 110) for a transition from an activity that contains
an event wait. It makes available certain information (for example, the event class and event
type of the event raised, the time the event was raised and so on.) contained in the event
raised to complete that activity instance. This information can then be used to model the path
from that specified activity. For more details on the Context Event workflow data object, see
Description of Context WDOs on page 61.

* Context_Decision Workflow Data Object
The Context Decision workflow data object is available for use in a data item or function
condition (see 1.16 Conditions on page 110) for a transition from a decision activity. The
attributes available depend on the answer format that is defined for the decision activity.
For more details on the Context Decision workflow data object, see Description of Context
WDOs on page 88

© Merative US L.P. 2012, 2024

Curam 8.1.2 32

Context_Task Workflow Data Object

The Context_Task workflow data object is available for use in various mappings that are
associated with a manual activity task (for example, Allocation Function Input mappings,
Deadline Function Input mappings, Manual Activity Action Link parameters). This context
workflow data object makes available the identifier of the task that is created as a result of
the execution of the containing activity. For more details on the Context Task workflow data
object, see Description of Context WDOs on page 70.

Context_Loop Workflow Data Object

The Context_Loop workflow data object is available for use when the loop condition that

is associated with a loop-begin activity is created. It is also available for creating outgoing
transition conditions for any activity within a loop, and for when input mappings, text
parameters and action link parameters for some activities and functions that are contained
within a loop are specified. This context workflow data object makes the number of times that
a loop is iterated over available for such mappings. For more details on the Context Loop
workflow data object, see Description of Context WDOs on page 95.

Context_Deadline Workflow Data Object

The Context_Deadline workflow data object is available for use when creating a data item or
function condition (see 1.16 Conditions on page 110) for a transition from an activity that
has an event wait with a deadline specified for it. It is available to allow a developer to model
different paths of execution from an activity that contains a deadline depending on whether
that deadline is expired. For more details on the Context Deadline workflow data object, see
Description of Context WDOs on page 60.

Context_Parallel Workflow Data Object

The Context_Parallel workflow data object is available for use in the various mappings that
are associated with a parallel manual activity (for example, task subject and task action text
parameters, allocation strategy mappings and so on) and a parallel decision activity (for
example, decision action text parameters, secondary action text parameters, question text
parameters and so on). It makes available the index of the item from the Parallel Activity List
Workflow Data Object that is used to create the specified instance of the wrapped activity. For
more details on the Context Parallel workflow data object, see Description of Context WDOs

on page 100.

Context_Error Workflow Data Object

The Context_Error workflow data object is available for use in a data item or function
condition (see 1.16 Conditions on page 110) for a transition from an automatic activity. It
allows a process developer to model an exception path out of an automatic activity, that is, a
transition that is followed if the automatic activity fails due to an unhandled exception. For
more details on the Context Error workflow data object, see Description of Context WDOs on

page 52

Runtime Information

Instances of workflow data objects and list workflow data objects exist as soon as a workflow
process is enacted and exist until the process completes. These workflow data object instances
are thus available to be used in the activities (for example, pass data to a BPO method) and
the transitions (for example, make data available in the evaluation of transition conditions)
throughout the lifetime of that process instance.

The enactingUser attribute of the Context RuntimeInformation Workflow Data Object
is set to the username of the user whose actions in the application resulted in the workflow

© Merative US L.P. 2012, 2024

1 Cdram Workflow Reference 33

process that is enacted. This does not result in the same value being assigned to the transaction
when a BPO method is subsequently started in the workflow process instance. This is due to the
transaction demarcation in the workflow engine when automatic activities (that is, BPO methods)
are started in the application server. Due to the asynchronous nature of this invocation and the
requirement to ensure that the call to the application code is in its own transaction, the BPO
method is started by the workflow engine (SYSTEM user) rather than the user who enacted the
workflow process in the first place. Indeed in a real business sense, the person who enacted the
workflow cannot even know that they have started that BPO method.

In a similar fashion, it should be noted that the enacting user of a workflow process instance is
not passed into any of the subflow process instances that can be started from the parent process.
If the enacting user of the parent process instance is required in any of the subflow process
instances, it should be passed explicitly by using a workflow data object attribute in the input
mappings for that subflow process.

Care should also be taken when updating workflow data object attribute instance data while
running parallel automatic activities in a workflow process instance. If such automatic activities
start the same BPO method and that method attempts to update the data for the exact same
workflow data object attribute, then a database record deadlock situation can occur. The workflow
process designer should alleviate such situations that occur by designing the workflow process
definition to ensure automatic activities run in parallel do not update the same workflow data
object attribute.

1.5 Process Enactment

A process definition defines the structure of a business process. You must create an instance of
the process to start doing the work that is defined in that process definition.

This information describes the starting of a process instance. That is, doing the work that is
defined in the process definition. The enactment service API is described while the enactment
mappings metadata associated with the enactment of a process is discussed. Associated
validations and code examples are also provided. How to start a process in response to an event
being raised is described. The configuration data to do this action is outlined in detail. Any
validations that are run when the mappings between events and workflow processes are created is
described.

The starting of a process instance is referred to as process enactment. Most process definitions
require a minimum set of initial data, which is used primarily to identify the specific business
objects the process instance operates on. All enactment mechanisms must have a way to accept
the input data for starting a process. This input data is known as the enactment data for a process.

Currently, four enactment mechanisms are supported by Curam workflow:

* Enactment from code
* Enactment from an event

« Enactment as a subflow. For more information about the subflow enactment mechanism, see
1.11 Subflow on page 89.

* Enactment through a web service. For more information about the web service enactment
mechanism, see 1.19 Workflow Web Services on page 121.

© Merative US L.P. 2012, 2024

Curam 8.1.2 34

Code enactment (enactment service API)

The most direct way of enacting a process is by identifying a location in the application from
which a process instance must be started. Code must then be inserted at that point to call the
enactment service API. This API allows the developer to specify the name of the process to start
and to supply the enactment data that is required by the process.

While enacting a process in this way is simple and intuitive, it does have the draw back of

being hardcoded in the application logic. This being the case, alterations such as removing the
enactment, changing the process to start or indeed even minor changes to the required enactment
data requires code changes and redeployment of the application.

Metadata

<enact nent - nappi ngs>
<mappi ng>
<source-attribute
struct-nanme="curam core. sl.struct. TaskCreateDetai |l s"
nane="subj ect" />
<target-attribute
wdo- nane="TaskCr eat eDet ai | s"
name="subj ect" />
</ mappi ng>
<mappi ng>
<source-attribute
struct - nanme="curam core. sl .struct. G oupMenberDetails"
nane="dt| s. nenber Nang" />
<target-attribute
wdo- nane="Menber Cr eat eDet ai | s"
nanme="nenber Nanme" />
</ mappi ng>
<mappi ng>
<source-attribute
struct-name="curam core. sl.struct. Chil dDetail sList"
nanme="dtls.identifier" />
<target-attribute
wdo- nane="Chi | dDet ai | s"
name="identifier" />
</ mappi ng>

</ enact nent - mappi ngs>

* enactment-mappings
Contains a list of mappings that can be used as initial data in enacting the associated process
instance. A process definition is not required to have enactment mappings that are defined in
order for it to be enacted.

* mapping
A mappi ng represents a data item that is supplied from a Curam struct attribute to be used in
enacting the associated process instance.

* source-attribute
This represents a Ctiram struct attribute to be used in populating the enactment data for the
process and is mandatory in an enactment mapping.

© Merative US L.P. 2012, 2024

1 Cdram Workflow Reference 35

* struct-name
The name of a Curam struct that contains an attribute that is required to enact the workflow
process. Aggregated and list structs can also be used to pass enactment data into a
workflow process, as illustrated in the metadata snippet here.

* name
The name of the attribute of a Cliram struct that is required to enact the associated
workflow process. Where a field from an aggregated struct or list struct is being used, this
name represents the fully qualified name of that field. In such a case, the name consists of
the role name from the association between the parent and child struct in addition to the
actual field name. This is illustrated in the metadata snippet here.

* target-attribute
This represents a workflow data object attribute, which is to be populated with enactment data
for the process and is mandatory in an enactment mapping.

* wdo-name
The name of a Curam workflow data object containing the target attribute to be mapped.
(See 1.4 Workflow Data Objects on page 25).

* name
The name of a Curam workflow data object attribute that is marked as being required for
enactment. The value of the corresponding Curam struct source attribute is mapped to this
attribute when the process is enacted.

Validations

» The Curam struct attribute used as a source attribute in an enactment mapping must be valid
and be of the correct type for the associated target workflow data object attribute.

» The target workflow data object attribute in an enactment mapping must be valid and must be
marked as being required for enactment.

 If the target attribute of the enactment mapping is from a list workflow data object, then the
source attribute must be a field from a list struct.

Code

/] Create the list we will pass to the enactnment service.
final List enactmentStructs = new ArraylList();

final TaskCreateDetails taskCreateDetails =
new TaskCreateDetail s();

taskCreateDetail s. subject = "The subject of a Task";
taskCreateDetail s.reservedBy = "soneUser";

enact nent Struct s. add(t askCreat eDetail sStruct);
/1l An aggregated struct.
G oupMenber Det ai | s groupMenberDetail s
= new G oupMenberDetail s();
groupMenberDetail s. dtls. nenber Nane = "Test User";
enact nent St ruct s. add(gr oupMenber Det ai | s) ;

[/ Alist struct.
Chi | dDet ai | sLi st chil dDet ai | sLi st

© Merative US L.P. 2012, 2024

Curam 8.1.2 36

= new Chil dDetail sList();

Chil dDetails recordOne = new Chil dDetail s();
recordOne.identifier = 1;
chil dDet ai | sLi st. dtls. add(recordOne);

ChildDetails recordTwo = new Chil dDetail s();
recordTwo.identifier = 2;
chil dDet ai | sLi st.dtls. add(recordTwo);

enact nent St ructs. add(chi | dDet ai | sLi st);

Enact nent Servi ce. st art Process(
" TASKCREATEWORKFLOW , enactnment Structs);

* The EnactmentService APl is provided to allow for the enacting of workflow processes
from application code. The list of Cram structs provided to the startProcess () method
must be sufficient to fully populate the enactment mappings of the associated process.
Enacting a process in this way is asynchronous and the process gets kicked off when the
current application transaction completes.

* The startProcessInV3CompatibilityMode method is provided for the use of the core
application Task API only. Direct use of this method in custom code is not supported and can
hamper future upgrades.

Event enactment

It is possible to start a process in response to an event being raised. This requires the setup of
some configuration data (either through an administration interface or as pre-configured database
entries). The configuration specifies the process/processes to start in response to a specific event
being raised. Mappings of event data to the enactment data that is required by the process can also
be configured in this way.

Process enactment event configuration is stored on the database and a user interface is supplied to
allow the manipulation of this data. As such process enactment that is created in this way can be
enabled, disabled, changed, and even removed at runtime. The main drawback of this approach is
that since events have a finite amount of information, only process definitions that require such a
small amount of enactment data can be enacted in this way.

A Process Enactment Event Handler is supplied with Cauram and is automatically registered to
listen for events that are raised in the application. Where a process is configured to be enacted
from an event, the data from the event is mapped into the enactment data of the process, and the
process is started.

Configuration data

Enabling an event to enact a process requires an event-process association to be configured.
Every event raised in the application checks to see if any processes are associated and are
required to be enacted. The latest released version of a process is always enacted for an associated
event.

The registration of an event to trigger a process is stored as a record on the ProcEnactmentEvt
table. The process enactment event handler searches a cached representation of this table for

matching entries when an event is raised in the application and enacts any matching processes.
The following table describes the data that is required to populate the ProcEnactmentEvt table.

© Merative US L.P. 2012, 2024

1 Cdram Workflow Reference 37

Table 1: Description of the ProcEnactmentEvt Table

Entity Field Name Description of Field

procStartEvent|D The unique identifier of the event-process
association.

eventClass The event class of the event that is specified

to enact the workflow process.

eventType The event type of the event that is specified
to enact the workflow process.

processToStart If an event containing the specified event
class and type describe here is raised,
the latest released version of the workflow
process that is specified by this name is
enacted.

enabled This Boolean flag indicates if the event-
process association is enabled. This allows
the enactment of a workflow process by a
specified event to be enabled/disabled at
runtime.

The ProcEnactEvtData table stores the data to be mapped from a business event to the workflow
being enacted when that specified event is raised. The following table describes the data that is
required to populate the ProcEnactEvtData table.

Table 2: Description of the ProcEnactEvtData Table

Entity Field Name Description of Field

procEventMappinglD The unique identifier of the process
enactment event data mapping.

procStartEventID The unique identifier of the event-process
association. This field is the unique key on
the associated ProcEnactmentEvt table and
is used to associate all of the data that is
required to enact the workflow process when
a specified event is raised.

eventField This indicates which of the three fields of
an event are used to populate the workflow
data object attribute. The values for this field
are taken from the EventField codetable
and are described in more detail here.

wdoAttribute The fully qualified name of a workflow
data object attribute to populate with data
from the event field when a process is
enacted. This table includes an entry for
each workflow data object attribute that is
marked as required for enactment in the
process being enacted by the raised event.

There are three fields of an event can be used as enactment mappings. These are enumerated in
the EventField codetable and are described here.

© Merative US L.P. 2012, 2024

Curam 8.1.2 38

* primary event data
A unique identifier that is related to the event class from which the event is raised. For
example, where the business object type that is specified for an event is equal to 'Case', the
event data might be case identifier.

* secondary event data
This can be any numeric value and is intended for events that must represent an association
between two entities.

* raised by user
The Clram username of the user who raised the event.

Validations

* The data available from an event must be sufficient to fully populate the enactment data for
the associated process definition.

* Where a process is already configured for event-based enactment, subsequent modifications to
the processes enactment data must satisfy the existing event data mappings.

* Where a process is configured to be enacted from an event, it cannot have its latest released
version that is deleted if the next latest released version is unable to have its enactment data
that is fully populated from the event.

1.6 Base Activity

All the activity types that are supported by Ciram workflow have some base details in common.
This information allows them to be uniquely identified by the workflow engine and displayed
both textually and graphically in the Process Definition Tool. Every activity has a name and

an optional description, both of which are localizable. This allows various administration user
interfaces to display the information in the appropriate locale.

This base level uniformity allows activities to be identified and run by the workflow engine
without the knowing the specific type of the activity. Each activity type knows its own metadata
and how to behave when run. This arrangement allows the addition of new activity types, if
required, without affecting the core behavior of the workflow engine.

Metadata

<automatic-activity id="1" category="ACl">
<nane>
<l ocal i zed- t ext >
<l ocal e | anguage="en" >Appr oveCase</| ocal e>
</l ocal i zed-text>
</ name>
<descri pti on>
<l ocal i zed- t ext >
<l ocal e | anguage="en">This automatic activity
wi Il be executed to approve a case. </l ocal e>
</l ocalized-text>
</ descri pti on>

</autonmatic-activity>

© Merative US L.P. 2012, 2024

1 Cdram Workflow Reference 39

e id
This is a 64-bit identifier that is supplied by the Curam key server when activities are created
in the process definition tool. The activity identifier is required to be unique within a process
definition but global uniqueness within all of the process definitions on the system is not
required.

* category
An activity can optionally be placed into a category. The category must be selected in the
Process Definition Tool and is taken from the ActivityCategory code-table. This attribute
is intended to be used for searching functionality based on activities and has no functional
effect on the activity.

* name
The name of the activity is the means by which the activity is identified for the purpose of
display. This is in contrast to the activity identifier, which is used to identify the activity for
the purpose of execution by the workflow engine.

* description
An activity can also have an optional description that briefly specifies what the activity does
for the benefit of those editing the process definition in the future.

Localized Text

As shown in the XML fragment above, the activity name and description are not just text fields,
but are defined in terms of a | ocal i zed- t ext element. This is general purpose element that is
used throughout the process definition metadata where ever text is required to be localizable.

A valid| ocal i zed- t ext element must have at least one | ocal e child element. Except for
the localization screen, any localizable text that is entered in the process definition tool is saved
under both the user's and the English (that is, "en") locales.

<l ocal i zed-t ext >
<l ocal e | anguage="en" >Appr oveCase</| ocal e>
<l ocal e | anguage="en" country="US">ApproveCase</| ocal e>
<l ocal e | anguage="fr">Approuver Affai re</| ocal e>
<l ocal e | anguage="fr" country="CA">Approuver Af f ai re</I| ocal e>
</localized-text>

* locale
This contains the text for the locale that is specified by the | anguage and count ry
attributes. Note: A locale is uniquely identified by both the language and the country that
mean that en, en_US and en_GB all represent different locales.

* language
This is mandatory and is the two letter ISO language code.

* country
This is optional and is the two letter ISO country code.

Validations

* The activity name is mandatory and must be unique within a specified workflow process
definition. However, the activity name is also a localizable string. This validation also ensures
that a specified activity name is also unique for each locale specified.

* An activity must be one of the permitted activity types. In practice this rule is self-satisfying
as there is no way to create activities without selecting an appropriate type in the process
definition tool. Even when process definitions are constructed manually in a text editor, the

© Merative US L.P. 2012, 2024

Curam 8.1.2 40

activity type names correspond to the metadata element names making it impossible to create
valid markup that represents a nonexistent activity type.

Basic Activity Types

Namely, some activity types route, start-process, and end-process activities have no additional
metadata other than that common to all activity types. Their behavior is also sufficiently intuitive
to be described here. All of the other activity types have dedicated sections.

Route Activity
A route activity is an activity that performs no business functionality. It can be considered a null
activity as its execution does not affect the application data nor the business process in any way.

The primary purpose of the route activity is to help flow control. Route activities are often used
as branch (split) and synchronization (join) points. They are also useful when the activities that
are required by a business process do not naturally form a valid block structure that the workflow
engine can run.

Since all activity types can have notifications that are associated with them (see: 1.14 Activity
Notifications on page 100), route activities can be used to provide the effect of a pure
notification that is not connected to any other functionality.

Start/End Process Activity

The start-process and end-process activities provide markers for the beginning and end of a
process. They are anchor points to which other activities can be attached by using transitions thus
creating a series of steps from the start to the end of the process.

In a valid process definition that traverses all the transitions between activities starting from the
start-process activity should lead to end-process activity (note that in a running process instance
not all paths is necessarily traversed, for example if a split (see 1.17 Split/Join on page 114)

is encountered only some of the paths can be followed depending on the evaluation of transition
conditions). As such the simplest (and incidentally the most useless) process definition is one
that contains only these two activities and a transition from the start-process to the end-process
activity.

Every process definition must have exactly one start-process and exactly one end-process activity.
When a process by using the Process Definition Tool is defined, these two activities are created
automatically on process creation and are not required to be (in fact cannot be) explicitly created
by the user.

The start-process and end-process activities form the outermost block of a validly block-
structured process definition as required by Ciram workflow.

1.7 Automatic

An automatic activity is a step in a workflow process that is fully automated and under normal
circumstances no human intervention is needed to complete the step. An automatic activity

step starts a method in the application to do the processing as part of the overall business
process. Typical uses for automatic activities include doing calculations, updating entities in the
application, and pulling data into the workflow engine.

© Merative US L.P. 2012, 2024

1 Cdram Workflow Reference 41

Note: Due to a limitation in the workflow infrastructure functionality that maps the data to
BPO struct parameters, automatic activities cannot refer to BPO methods that contain Java™ 8
constructs.

Prerequisites

The base details common to all the activity types that are supported by Ctiiram workflow are
applicable to the automatic activity.

For more information about base activities, see 1.6 Base Activity on page 38

Curam Business Methods

Much of the processing for an automatic activity is performed in the application code that is
started. Automatic activities do their work by starting Ctiram business methods (both BPO
(business process object) and entity methods are supported). Technically these are public methods
on Curam business process objects and entities. A critical part of the automatic activity definition
is the method to start and the parameters to pass to it.

The following sections describe these.

Metadata

<automatic-activity id="1" category="ACl">

<bpo- mappi ng
i nt erface-nanme="curam sanpl e. facade. i ntf. Sanpl eBenefit"
met hod-
nane="cr eat eAssoci at edPr oduct Del i ver yFor Pl annedl t em' >
<f or mal - par anet er s>

</ formal - par anmet er s>
</ bpo- nappi ng>
</autonatic-activity>

* bpo-mapping
This contains the details of the Cliram business method that is started when the associated
automatic activity is run. These details include the name of the interface and associated
method and also any input and return mappings that are associated with the method that is
started. The input and output mappings are described in the following sections. The mandatory
attributes of a business process object (BPO) mapping are described here.

* interface-name
This represents the fully qualified name of the Cliram interface that contains the method
that is associated with the automatic activity.

* method-name
This represents the method on the specified Curam interface that is started when the
automatic activity is run.

© Merative US L.P. 2012, 2024

Curam 8.1.2 42

Validations

* Both the interface and method names must be specified for the automatic activity business
process object method mapping.

* The interface name that is specified must be a valid class and this class must exist on the
Cuaram application classpath.

* The method name must be a valid method name and must exist on the specified interface.

Code

Any valid public Caram business method (BPO or entity) can be associated with an automatic
activity in a workflow process and hence be started when that activity is run. In general, a failure
of such a method when an automatic activity is run causes the Workflow Error Handling strategy
to be started.

This can cause, for example, the activity that is associated with the failed method to be retried

a number of times. Based on this fact, the methods that are associated with automatic activities
do not throw in general exceptions. If the modeled exceptions feature is being used, then when

a BPO method throws an exception and is retried the required number of times, all of the
transitions from the automatic activity that contain the Context Error workflow data object
are evaluated. If any of these transitions evaluate to true, their paths are followed and in this way,
remedial processing can take place after the automatic activity BPO method failed.

Input Mappings

There must be a way to supply the parameters that are required by a method to start it in the
workflow engine. The workflow engine has a pool of data at its disposal in the form of workflow
data objects.

Refer to 1.4 Workflow Data Objects on page 25. Input mappings are used to declare which
workflow data object attributes are used to populate the values of the specific method parameters
when the method is started. Input mappings are optional where struct fields are specified as
method parameters. However, primitive base type parameters must be mapped.

Metadata

The following metadata is common to all three types of parameter input mappings (base type,
struct, and aggregated structs) and hence are not described again.

+ formal-parameters
This contains the list of formal parameters as defined in the automatic activity business
method signature.

+ formal-parameter
This contains the details of one formal parameter input mapping as defined in the associated
business method signature. In this instance, a formal parameter mapping entry exists for each
parameter that is defined in the associated business method.

* index
This represents the position of the formal parameter in the list of formal parameters that are
defined for the specified method. It is a zero-based index.

Input mappings for base type parameters

Base type parameters provide the simplest type of input mapping. In this instance, input mappings
are created for each base type formal parameter contained in the business method associated with

© Merative US L.P. 2012, 2024

1 Cdram Workflow Reference 43

the automatic activity. A base type parameter in a Cliram business method represents a domain
definition (see the Curam Modeling Reference Guide for details on domain definitions).

<automatic-activity id="1" category="ACl">

<bpo- mappi ng
i nt erface-nanme="curam sanpl e. facade. i ntf. Sanpl eBenefit"
net hod- nanme="cr eat eDel i very" >
<f or mal - par anet er s>
<f ormal - paraneter index="0">
<base-type type="STRI NG'>
<wdo-attri bute wdo- nanme="SPPr oduct Del i veryPI "
nane="descri ption"/>
</ base-type>
</ formal - par anet er >
<f ormal - paranet er index="1">
<base-type type="1NT64">
<wdo-attri bute wdo- nane="SPPr oduct Del i veryPI "
nane="pl annedl tem D'/ >
</ base-type>
</ formal - par anet er >
</ formal - par amet er s>
</ bpo- mappi ng>
</automatic-activity>

* base-type
This contains the details of one base type input mapping. A base type mapping indicates that
the field being mapped to is primitive (unlike the struct and nested struct mappings described
below). A base type input mapping contains the following mandatory attribute:

- type
This describes the type of the primitive field being mapped to. For a base type input
mapping, this is the type of the domain definition specified as the formal parameter in the
method.
* wdo-attribute
This contains the details of the workflow data object (see 1.4 Workflow Data Objects on page
25) attribute containing the data that will be used to populate the associated base type
parameter when the automatic activity business method is invoked. The mandatory attributes
are described below:

* wdo-name
This describes the name of the workflow data object used in the input mapping.

* name
This describes the name of the attribute on the specified workflow data object used in the
input mapping.

Input mappings for struct parameters

Structs may be specified as parameters to business process object methods. This section describes
the metadata of the input mappings associated with such parameters.

<automatic-activity id="1" category="ACl">

<bpo- mappi ng
i nt erface- name="curam sanpl e. facade. i ntf. Sanpl eBenefit"

© Merative US L.P. 2012, 2024

Curam 8.1.2 44

met hod-
name="cr eat eAssoci at edPr oduct Del i ver yFor Pl annedl t eni >
<f or mal - par anet er s>
<f ormal - paranet er i ndex="0">
<struct
type="curam struct. Sanpl eBenefitPl anltenDetail s">
<field nane="description">
<base-type type="STRI NG' >
<wdo-attri bute wdo- nane="SPPr oduct Del i veryPI "
nane="descri ption"/>
</ base-type>
</field>
<field name="pl annedl t enl DKey" >
<base-type type="I|NT64">
<wdo-attri bute wdo- nane="SPPr oduct Del i veryPI "
name="pl annedl tem D'/ >
</ base-type>
</field>
<field nanme="pl annedl t enNane" >
<base-type type="STRING' />
</field>
</struct>
</ formal - par anet er >
</ formal - par anet er s>
</ bpo- mappi ng>
</autonatic-activity>

* struct
This contains the details of one struct input mapping, including the type of the struct and
mappings for each field defined in that struct. A struct input mapping contains the following
mandatory attribute:

e type
This describes the type of the struct that has been specified as the formal parameter in the
method. This is represented as the fully qualified name of the struct specified as the formal
parameter.

+ field

This contains the details of the input mapping for one of the fields defined in the struct

parameter. A field contains the details of the input mapping for the primitive base type

associated with that field as well as the following mandatory attribute:

* name
This describes the name of the field as defined in the struct specified as the formal
parameter.
* base-type
This contains the details of one base type input mapping for the specified field. A base type
input mapping contains the following mandatory attribute:

- type
This describes the type of the primitive field being mapped to.

* wdo-attribute
This contains the details of the workflow data object (see 1.4 Workflow Data Objects on page
25) attribute containing the data that will be used to populate the associated base type field
when the method is invoked. This will not be present if the user has not specified an input
mapping for this method parameter. This element, when specified, contains the following
mandatory attributes:

© Merative US L.P. 2012, 2024

1 Cdram Workflow Reference 45

* wdo-name
This describes the name of the workflow data object used in the input mapping.

¢ name

This describes the name of the attribute on the specified workflow data object used in the
input mapping.

Input mappings for aggregated struct parameters

Aggregated structs (see the Curam Modeling Reference Guide for details on struct aggregation)
may be specified as parameters to business methods. In this instance, the metadata is similar to
that described above for struct formal parameters (see Input mappings for struct parameters on
page 43). The subtle difference is, however, that a field in the struct parameter defined may
resolve down to another struct and not to a primitive type as seen in the struct mappings example.
In this scenario, the field name is not the name of the field being mapped associated with the
struct parameter but is the name of the role contained in the association between the specified
struct and the struct it aggregates. The following metadata snippet provides an example of such
input mappings. The metadata elements have been previously described above in the struct input
mappings section.

<automatic-activity id="1" category="ACl">

<bpo- mappi ng
i nt erface-nane="curam sanpl e. facade. i ntf. Sanpl eBenefit"
met hod- nane="cr eat eBenefit">
<f or mal - par anet er s>
<f ormal - paranet er i ndex="0">
<struct type="curam struct. Pl annedltenDetail s">
<field name="description">
<base-type type="STRI NG'>
<wdo- attri bute wdo- nane=" SPPr oduct Del i veryPI "
nane="descri ption"/>
</ base-type>
</field>
<field name="pl annedl tem D'>
<base-type type="I1NT64">
<wdo- attri bute wdo- nanme="SPPr oduct Del i veryPI "
name="pl annedl tem D'/ >
</ base-type>
</field>
<field name="dtl s">
<struct type="curam struct. Pl annedltenKey">
<field nane="subject">
<base-type type="STRI NG'>
<wdo-attri bute wdo- nane="SPPr oduct Del i veryPI "
nane="subj ect"/ >
</ base-type>
</field>
<fi el d name="concernRol el D'>
<base-type type="I|NT64">
<wdo-attri bute wdo- nane="SPPr oduct Del i veryPI "
name="concernRol el D'/ >
</ base-type>
</field>
</struct>
</field>

© Merative US L.P. 2012, 2024

Curam 8.1.2 46

</struct>
</ formal - paranet er >
</ f ormal - par anet er s>
</ bpo- mappi ng>
</autonmatic-activity>

Input mappings for list struct parameters

Input mappings for list structure parameters may now also be specified. In this instance, the
metadata is similar to that described above for aggregate formal parameters (see Input mappings
for aggregated struct parameters on page 45). The type of the struct specified in the metadata

for a list struct parameter is the name of the list structure. The name of the first field specifies the
name of the role contained in the association between the specified list struct and the child struct
it aggregates. Typically, this field then resolves down to another struct (the child struct contained
within the list struct). The workflow data object specified in such a mapping is a list workflow
data object. The following metadata snippet provides an example of such input mappings. The
metadata elements have been previously described above in the struct input mappings section.

<automatic-activity id="1" category="ACl">

<bpo- mappi ng
i nterface-nanme="curam sanpl e. facade. i ntf. Sanpl eBenefit"
nmet hod- name="pr ocessd ai mant Dependent s" >
<f or mal - par anet er s>
<f or mal - paranet er i ndex="0">
<struct type="curam sanple.struct.
C ai mant Dependent Det ai | sLi st">
<field name="dtl s">
<struct type="curam sanple.struct.
d ai mant Dependent Det ai | s" >
<field name="identifier">
<base-type type="I|NT64">
<wdo-attri bute wdo- nane="C ai nant Dependent "
name="identifier"/>
</ base-type>
</field>
<field nanme="firstNane">
<base-type type="STRI NG'>
<wdo-attri bute wdo- nane="C ai nant Dependent "
name="first Name"/ >
</ base-type>
</field>
<fi el d name="sur nane">
<base-type type="STRI NG'>
<wdo-attri bute wdo- nane="C ai mant Dependent "
name="sur nane"/ >
</ base-type>
</field>
</struct>
</field>
</struct>
</ formal - paranet er >
</ formal - par amet er s>
</ bpo- mappi ng>
</autonatic-activity>

© Merative US L.P. 2012, 2024

1 Cdram Workflow Reference 47

Input mappings and indexed items from list workflow data objects

For activities contained within loops, an item from a list workflow data object can be used

in an input mapping to populate a formal parameter field. When this type of input mapping

is used, each time the loop containing the activity is iterated over, the formal parameter field
will be populated with the next value from that list workflow data object. This is highlighted
here as the metadata syntax for such a mapping is subtly different than that of the other input
mapping types. The metadata snippet provides an example of such input mappings. The name
of the list workflow data object used to populate the formal parameter field is qualified with
the [Cont ext _Loop. | oopCount] syntax. This is used by the workflow engine at runtime
to determine which iteration of the loop is being executed and hence which item from the list
workflow data object to retrieve the data to populate the formal parameter field with.

<automatic-activity id="1" category="ACl">

<bpo- mappi ng
i nterface-nane="curam sanpl e. facade. i ntf. Sanpl eBenefit"
net hod- nanme="r et ri eved ai mant Dependent Det ai | s" >
<f or mal - par anet er s>
<f ormal - paranet er i ndex="0">
<struct type="curam sanple.struct.
C ai mant Dependent Det ai | s" >
<field name="identifier">
<base-type type="I1NT64">
<wdo-attri bute name="identifier"
wdo- nane=
"Cl ai mant Dependent [Cont ext _Loop. | oopCount] "/ >
</ base-type>
</field>
<field name="ful | Nane" >
<base-type type="STRI NG'>
<wdo-attri bute name="full Nane"
wdo- nanme=
"Cl ai mant Dependent [Cont ext _Loop. | oopCount] "/ >
</ base-type>
</field>
</struct>
</ formal - paranet er>
</ f ormal - par anet er s>
</ bpo- mappi ng>
</autonmatic-activity>

Validations

» The workflow data object attributes specified in the input mappings must be valid. The criteria
that defines a valid workflow data object attribute can be seen in Validations on page 30

* The type of the formal parameter that is mapped to and the type of the workflow data object
attribute being used in that input mapping must be compatible. For example, if the input
mapping that is created is a struct field that has a type of STRING, then the workflow data
object attribute being used for that mapping must also be of type STRING.

* The context Task workflow data object cannot be used in an input mapping if the
associated activity is not a manual or decision activity.

* The Ccontext Loop workflow data object cannot be used in an input mapping if the
associated activity is not contained within a loop.

© Merative US L.P. 2012, 2024

Curam 8.1.2 48

* A validation warning is displayed if all struct parameters that are defined in the business
process object method do not contain an associated input mapping.

» All primitive base type formal parameters that are defined in the business process object
method, which must contain an associated input mapping.

+ If'the formal parameter field that is mapped is a base type parameter, then an attribute from a
list workflow data object cannot be used.

» If the formal parameter field that is mapped is from a list structure, then it must be mapped to
an attribute from a list workflow data object.

+ Ifthe indexed item from a list workflow data object (that is,
Cl ai mant Dependent [Cont ext _Loop. | oopCount]) is being used in an input
mapping, then the associated workflow data object must be a list workflow data object and the
activity that contains the input mappings must be contained within a loop.

Runtime Information

The values of the workflow data object attributes that are defined in the input parameter mappings
are provided as input data to the specified method before it is started when the associated
automatic activity is run.

Output Mappings

Workflow data objects are the workflow engines data store. Some of the attributes on the
specified workflow data objects are populated when the process is enacted. However, it is
useful to update or set the values of workflow data object attributes as the workflow process

is run. In support, some activity types can map data back into the workflow engine. This is
useful for automatic activities as the business methods they start might conceivably access data
that is stored on any entity in the application and return it for use in subsequent activities in

the workflow process. These return mappings from a business process object method that is
associated with an automatic activity are optional.

See 1.4 Workflow Data Objects on page 25.

Metadata
In a similar fashion to input mappings, output mappings are supported for primitive return types,
struct return types, nested (aggregated) struct return types and list struct return types.

See Input Mappings on page 42. If the return type is a primitive type, one return mapping
entry can be specified. If the return type is a struct, an aggregated struct or a list struct, return
mappings for one or more of the fields in the specified struct can be created. The following
metadata snippets provide examples of such mappings:

Primitive return type

<automatic-activity id="1" category="ACl">

<bpo- mappi ng
i nt erface-name="curam sanpl e. facade. i ntf. Sanpl eBenefit"
met hod-
nane="cr eat eAssoci at edPr oduct Del i ver yFor Pl annedl t ent' >
<f or mal - par anet er s>
<f ormal - paranet er i ndex="0">

© Merative US L.P. 2012, 2024

1 Cdram Workflow Reference 49

</ formal - par anet er >

</ formal - par anet er s>

<return>
<base-type>

<wdo- attri bute wdo- nane="SPPr oduct Del i veryPI "
nane="pl annedl tem D'/ >

</ base-type>

</return>

</ bpo- mappi ng>
</autonatic-activity>

Struct return type
<automatic-activity id="1" category="ACl">

<bpo- mappi ng
i nt erface-nane="curam sanpl e. facade. i ntf. Sanpl eBenefit"
met hod-
nane="cr eat eAssoci at edPr oduct Del i ver yFor Pl annedl t em' >
<f or mal - par anet er s>
<f or mal - paranet er i ndex="0">

</ formal - par anet er >
</ formal - par anet er s>
<return>
<struct>
<field name="description">
<base-type>
<wdo- attri bute wdo- nane="SPPr oduct Del i veryPI "
nane="descri ption"/>
</ base-type>
</field>
<field nane="subject">
<base-t ype>
<wdo-attri bute wdo- nane="SPPr oduct Del i veryPI "
nane="subj ect"/ >
</ base-type>
</field>
</struct>
</return>
</ bpo- mappi ng>
</ automatic-activity>

Aggregated struct return type

<automatic-activity id="1" category="ACl">

<bpo- mappi ng
i nt erface-nane="curam sanpl e. facade. i ntf. Sanpl eBenefit"
net hod-
nane="cr eat eAssoci at edPr oduct Del i ver yFor Pl annedl t em' >
<f or mal - par anet er s>
<f ormal - paranet er i ndex="0">

</ formal - par anet er >
</ f ormal - par anet er s>
<return>

<struct>

© Merative US L.P. 2012, 2024

Curam 8.1.2 50

<field name="description">
<base-type>
<wdo-attri bute wdo- nane="SPPr oduct Del i veryPI "
nane="descri ption"/>
</ base-type>
</field>
<field nane="subject">
<base-t ype>
<wdo-attri bute wdo- nane="SPPr oduct Del i veryPI "
nane="subj ect"/ >
</ base-type>
</field>
<field name="dtls">
<struct>
<field name="concernRol el D' >
<base-type>
<wdo-attri bute wdo- nane="SPPr oduct Del i veryPI "
nane="concernRol el D'/ >
</ base-type>
</field>
<field name="participantl D'>
<base-type>
<wdo-attri bute wdo- nanme="SPPr oduct Del i veryPI "
nane="participantl D'/ >
</ base-type>
</field>
</struct>
</field>
</struct>
</return>
</ bpo- nappi nhg>
</autonatic-activity>

List struct return type

<automatic-activity id="1" category="ACl">

<bpo- mappi ng
i nt erface-nane="curam sanpl e. facade. i ntf. Sanpl eBenefit"
net hod- nanme="r eadd ai nant Dependent Det ai | s" >
<f or mal - par anet er s>
<f ormal - paranet er i ndex="0">

</ formal - paranet er >
</ f ormal - par anet er s>
<return>
<struct>
<field name="dtls">
<struct>
<field name="identifier">
<base-t ype>
<wdo-attri bute wdo- nane="C ai nant Dependent "
nane="identifier"/>
</ base-type>
</field>
<field name="first Nane">
<base-type>
<wdo- attri bute wdo- nane="C ai mant Dependent "
nane="first Nane"/ >

© Merative US L.P. 2012, 2024

1 Cdram Workflow Reference 51

</ base-type>
</field>
<field name="sur nane">
<base-type>
<wdo-attri bute wdo- nane="C ai nant Dependent "
nane="sur nane"/ >
</ base-type>
</field>
</struct>
</field>
</struct>
</return>
</ bpo- mappi ng>
</autonatic-activity>

* return
This contains the details of the output mappings that are specified for the business method that
is associated with the automatic activity. For a primitive return type, one entry of the base type
metadata is present as shown in the example here (see Primitive return type on page 48).
For a struct, aggregated struct and list struct return types, the struct metadata tag is specified
and contains fields whose base types are mapped by using workflow data object attributes.

* struct
This contains the details of the struct output mapping. A struct output mapping contains the
following mandatory attribute.

+ field
This contains the details of the output mapping for one of the fields that are defined in the
struct return type. A field contains the details of the output mapping for the primitive base type
that is associated with that field and the following mandatory attribute:

* name
This represents the name of the field as defined in the struct that is specified as the return
type. For non-aggregated struct return types, this represents the name of the field on the
specified return struct that is being mapped. For aggregated struct and list struct return
types, the field name represents the name of the role that is contained in the association
between the specified struct and the struct it aggregates.
* base-type
This contains the details of one base type output mapping for the specified field or a primitive
return type.
* wdo-attribute
This contains the details of the workflow data object (see 1.4 Workflow Data Objects on page
25) attribute that the data present in the associated return type field will be mapped into
and persisted. The mandatory attributes are described below:

* wdo-name
This represents the name of the workflow data object used in the output mapping.

* name
This represents the name of the workflow data object attribute that is used in the output

mapping.

Validations

* No duplicate output parameter mappings are allowed. In other words, a workflow data object
attribute can be specified only once in any list of output return mappings.

© Merative US L.P. 2012, 2024

Curam 8.1.2 52

All of the workflow data object attributes specified in the output mappings must be valid
workflow data object attributes in the context of the containing workflow process definition.
The type of the return field that is mapped from and the type of the workflow data object
attribute being mapped to must be compatible.

Output mappings cannot be created for workflow data object attributes that are marked as
constant workflow data object attributes. Constant workflow data object attributes represent
data that remain constant for the lifetime of the process instance (see Metadata on page

26). If these attributes were allowed to be used in output mappings, this data would be
overwritten with that specified in the output mappings.

If the return struct is a list return struct, then the workflow data object used in the return
mapping must be a list workflow data object.

Runtime information

The values of the return type fields that are defined in the output parameter mappings are
persisted by using the specified workflow data object attributes after the associated automatic
activity is run.

Description of Context WDOs

There are two context workflow data objects that are available when data item and function
conditions for transitions from an automatic activity are created. These data objects are described
here.

Context_Result Workflow Data Object

The Context Result workflow data object is available for use in a data item or function
conditions (see 1.16 Conditions on page 110) for a transition from an automatic activity.
This allows the use of the return value of the started method in the said conditions. The
conventions for the attributes available for the Context Result workflow data object are as
follows:

+ Ifthe return type is a base type, the attribute available is called value (that is,
Context Result.value).

+ If'the return value is a struct then the Context Result attribute values available are all the
fields present on the struct return class (that is, Context Result.description, and so
on).

+ If'the return value is a nested (aggregated struct) then the Context Result
attribute values available are the fields available in the containing struct (that is,
Context Result.description and so on) and also the fully qualified names of those
fields in the nested structs (that is, Context Result.dtls:concernRoleID and so
on). Regardless of the depth of the nesting of the return value struct, there is only one
Context_Result workflow data object available with the names of the nested structs that
form part of the attribute names. The separator between a nested struct and its fields is a
colon as seen in the example here.

» If the return type is a list struct, the Context Result workflow data object is not
available.

Context_Error Workflow Data Object

A BPO method that is called by an automatic activity can sometimes fail (that is, throw an
exception that causes the activity transaction to roll back). When this happens, it can be useful
to be able to model follow-on actions after the failure. The Context Error workflow data

© Merative US L.P. 2012, 2024

1 Cdram Workflow Reference 53

object enables this type of "error path" modeling. It is available for use in a data item or
function conditions (see 1.16 Conditions on page 110) for a transition from an automatic
activity. The Context Error workflow data object has one attribute exceptionOccurred,
which is described here:

* The exceptionOccurred attribute is a boolean value that indicates whether the BPO
method that is associated with an automatic activity failed. It defaults to false and is set to
true if the associated BPO method fails.

At runtime, if the BPO method that is called in an automatic activity fails (and is

retried the prerequisite number of times and still fails), the workflow engine sets the
exceptionOccurred attribute of Context Error to true. Any transitions by using the
Context Error workflow data object are then evaluated and followed if they resolve to true.
This enables a workflow process instance to proceed along the defined error path even though
the automatic activity failed.

If the BPO method that is called fails and there are no transitions by using the
Context Error workflow data object, then the activity is halted and an entry is created in
the Failed Messages Admin console.

Note: The Context Error workflow data object takes no account of the cause of the
failure, only whether there was one.

1.8 Event Wait

The Curam application can raise events at various points to inform any registered listeners
of what is happening. A number of different event listeners can be registered to listen

for a specified event. These event listeners are application functions that implement the
curam.util.events.impl.EventHandler interface.

When a specified event is raised, the workflow engine starts the associated event handler function
(see the Curam Server Developers Guide for more details on events and event handlers).

Workflow uses this facility in a slightly different way through event wait activities. An event wait
activity pauses the execution of a particular branch of a process instance until a particular event
occurs.

Prerequisites

The base details common to all the activity types that are supported by Ciiram workflow are
described in 1.6 Base Activity on page 38 and are applicable to the event wait activity
described here.

List of events

It is not correct to say that an event wait activity pauses a workflow process until a particular
event is raised. An event wait can in fact specify any number of events to wait for. If it is
specified not to wait for all of these events to be raised to complete the activity, the first event that
matches one of the specified events waits completes the activity and progresses the workflow.

© Merative US L.P. 2012, 2024

Curam 8.1.2 54

In this scenario, whether the rest of the events ever get raised has no effect on the process. It is
also possible to specify that all of the event waits must be matched by associated raised events
before completing the activity and continuing the workflow process.

Metadata

<event-wait-activity id="1" category="ACl">

<event-wait wait-on-all-events="true">
<event s>
<event event-cl ass="Task" event-type="Cl ose"
identifier="1">
<event-match-attri bute nane="t askl D"
wdo- narme=" Cont ext _Task"/>
</ event >
<event event-class="Parent" event-type="Approve"
identifier="1">
<event-match-attri bute nane="identifier"
wdo- nanme="Par ent Li st [Cont ext _Loop. | oopCount]"/>
</ event >
<event event-class="Child" event-type="Approve"
identifier="2">
<event-match-attri bute nane="identifier"
wdo- narme="Chi | dDet ai | s"/ >
<mul ti pl e-occurring-event >
<l i st -wdo- nane>Chi | dDet ai | s</| i st - wdo- nane>
</mul tipl e-occurring-event >
</ event >
</ event s>
</ event-wait>

</event-wait-activity>

* event-wait
This contains the details of the event wait associated with the specified activity. This includes
the details of all the events for the event wait.

* wait-on-all-events
The value of this flag indicates to the workflow engine if it can wait for events to be raised
for all of the specified event waits before the associated activity is completed. If set to
false, the first event that matches one of the specified event waits results in the completion
of associated activity and the workflow progressing. When set to true, an event must be
raised for each of the event waits specified for the activity before the activity is completed
and the workflow progressed.
* events
This contains the details of all of the events that the specified activity is waiting on.
* event
This contains the details of one specific event that this activity is waiting on. The event details
contain the following mandatory attributes:

* event-class
This represents the class of business event that this process is waiting on.

© Merative US L.P. 2012, 2024

1 Cdram Workflow Reference 55

* event-type
This represents the type of business event that this process is waiting on. The combination
of event-class and event-type denotes the business event required.
* identifier
This represents the unique identifier of this event. The identifier is required to be unique
only within the list of events for this activity.
* event-match-attribute
This represents the workflow data object attribute (see 1.4 Workflow Data Objects on page
25) that is used to match the required instance of the specific event. For example, in the
first event that is specified in the metadata above, the workflow data object attribute would
refer to the task identifier associated with the closing of a specific task. When this event is
raised, the workflow engine uses the data in the event match attribute to uniquely identify the
task to close.
* multiple-occurring-event
This signifies that this event represents a multiple occurring event. This means that if this
metadata is specified for an event, the workflow engine creates one event wait record for
each item in the list workflow data object specified as the multiple occurring event when that
activity is executed. This allows the workflow engine to wait on multiple occurrences of the
same event.

If the multiple occurring event is specified for an event, then an attribute from the associated
list workflow data object must be used as the event match data for the event. This ensures that
each event that is generated by the workflow engine for the multiple occurring event is unique.

* list-wdo-name
This represents the name of the list workflow data object to be used as the multiple
occurring event.

Validations

* A least one event must be defined for the event wait information that is associated with an
event wait activity.

* The event class and type that is specified for each business event must be valid entries on the
relevant event database tables.

* An event and associated event match attribute can be defined only once in an event wait
activity. That is, the same event class, event type and event match attribute can be used only
once as a specific event that is waited on for an event wait activity.

» The workflow data object attribute mapped to the event match attribute for an event must be
valid, and as it is used as a unique identifier in the event matching mechanism, it must be of
type LONG to reflect the 64-bit identifiers that are used in Caram.

* The Context Task workflow data object can be used only as the event match data workflow
data object attribute if the activity is either a manual or parallel manual activity and the event
is not a multiple occurring event.

+ Ifan indexed item from a list workflow data object (that is,

ParentList[Context Loop.loopCount]) is used as the event match data, then the workflow data
object must be a list workflow data object and the activity that contains the event mapping
must be contained within a loop.

* If an indexed item from the Parallel List Workflow Data Object is used as the event
match data, then the activity that contain the mapping must be a Parallel Activity (that is,
ParallelListWDO[Context Parallel.occurrenceCount]). The workflow data object being

© Merative US L.P. 2012, 2024

Curam 8.1.2 56

indexed by the Context Parallel Workflow Data Object must be the Parallel Activity List
Workflow Data Object.

 If the multiple occurring event list workflow data object is not specified for the event and the
activity that contains the event mapping is not a parallel activity, then an attribute from a list
workflow data object cannot be used as the event match data for that event.

+ If the multiple occurring event list workflow data object is specified for the event, then an
attribute from this list workflow data object must be used as the event match data for that
event.

* The workflow data object attribute that is mapped as the multiple occurring event must be
valid. It must also be a list workflow data object.

Code

A Workflow Event Handler is supplied with Curam and is automatically registered to listen for
events raised in the application. Multiple event waits can be registered for a particular activity
instance in a workflow process. If the waitOnAllEvents flag is set to false for the specified event
wait data, only one of these event waits is required to be matched to complete that activity
instance.

The Workflow Event Handler will process that event by completing the specified activity instance
and driving the process forward by starting the next set of activities in the process. All of the
other event wait records that were registered for the completed activity instance are then removed.
If output mappings (see Output Mappings on page 60) is specified for the event wait, they is
persisted by the workflow engine and can be used in subsequent activities and transitions in the
process.

When the waitOnAllEvents is set to true, all of the event waits specified for the activity instance
must be matched by raised events to complete the activity and progress the workflow. For each
raised event that matches an associated event wait for the activity instance, the Workflow Event
Handler processes the event by deleting the associated event wait record and persisting any
output mappings (see Output Mappings on page 60) that are specified for the event wait. This
processing continues until all of the associated event waits are matched by raised events. It is only
then that the Workflow Event Handler will complete the specified activity instance and drive the
process forward by starting the next set of activities in the process.

Runtime Information

An event that is raised in the application can cause only a process instance to continue if the event
matches that being waited on and the event match attribute that is specified for the event wait
matches the primary event data of the event.

Deadline

An event wait pauses a workflow process in lieu of some event to be raised. However, in many
cases it is not desirable for a process to wait indefinitely. It is possible for a chain of events to
occur that means the event that the process is waiting on can never be raised.

For example, by chance the event might be raised before the process reaches the event wait
activity. To mitigate against this risk, it is possible to optionally specify a deadline for an event to
be raised after which a deadline handler is invoked.

© Merative US L.P. 2012, 2024

1 Cdram Workflow Reference 57

Prerequisites
Deadline handler methods that are specified for an event wait deadline are Cliram business

process object methods.

Note: Due to a limitation in the workflow infrastructure functionality that maps the data to
BPO struct parameters, deadline handler functions cannot refer to BPO methods that contain

Java™ 8 constructs.

For more information about the input mappings for the formal parameters of these methods and
their associated metadata, see 1.7 Automatic on page 40.

Metadata

<event-wait-activity id="1" category="ACLl">

<deadl i ne conpl ete-activity="true">
<dur ati on>
<mapped- dur ati on>
<wdo-attri bute wdo- nane="TaskCr eat eDet ai | s"
nane="deadl i neDur ati on" />
</ mapped- dur ati on>
</ duration>
<deadl i ne- handl er interface-nanme=
"curam core. sl .intf.Wrkfl owDeadl i neFuncti on"
net hod- nanme="def aul t Deadl i neHandl er " >
<f or mal - par anet er s>
<f ormal - paranet er i ndex="0">
<struct type="curam core.struct. TaskKey">
<field name="t askl D' >
<base-type type="1NT64">
<wdo-attri bute wdo- nanme="Cont ext _Task"
nane="taskl D' />
</ base-type>
</field>
</struct>
</ formal - par anet er >
<f ormal - paraneter index="1">
<struct type="curam core.struct. Chil dKey">
<field name="identifier">
<base-type type="I|NT64">
<wdo-attri bute wdo- nane=
" C ai mant Dependent s[Cont ext _Loop. | oopCount]
nane="identifier" />
</ base-type>
</field>
</struct>
</ formal - par anet er >
</ formal - par anet er s>
</ deadl i ne- handl er >
<deadl i ne- out put - mappi ngs>
<dur ati on- expi red wdo- nane="TaskDeadl i neDet ai | s"
name="bool eanVval ue" />
<deadl i ne-expiry-ti me wdo- name="TaskDeadl i neDet ai | s"
nane="dat eTi neVal ue" />

© Merative US L.P. 2012, 2024

Curam 8.1.2 58

</ deadl i ne- out put - mappi ngs>
</ deadl i ne>

</event-wait-activity>

complete-activity

This represents a boolean flag, which indicates whether the activity can complete if the
deadline duration expires. The default for this flag is false.

duration

This represents the duration of time that can elapse before the deadline handler method is
invoked. The duration can be represented in either of the formats below which is then be to
calculate the deadline date time for the event wait:

* seconds
The number of seconds that can elapse before the deadline handler is started
* mapped-duration
The attribute of a workflow data object that can be mapped as representing the number of
seconds that can elapse before the deadline handler is started.
deadline-handler
This represents the method that is to be started once the deadline duration is expired. The
following metadata must be specified for a deadline handler:

* interface-name
This represents the fully qualified name of the deadline handler interface class name.
* method-name
This represents the required method in the deadline handler interface that is required to be
started when the deadline expires.
+ formal-parameters
This contains a list of the deadline handler method parameters and associated workflow
data object attributes that are mapped to those parameters when the deadline handler is
started. For details on method parameter mappings see Input Mappings on page 42.
deadline-output-mappings
This contains the deadline output data, which can be optionally mapped to workflow data
object attributes. This data indicates whether the deadline duration expired and the date and
time the deadline duration expired.

Validations

If a deadline handler is specified, it must reference a valid Ctiram business method that exists
on the application's classpath.

The workflow data object attributes specified in the input mappings must be valid. The criteria
that defines a valid workflow data object attribute can be seen in Validations on page 30

The type of the formal parameter being mapped to and the type of the workflow data object
attribute being used in that input mapping must be compatible. For example, if the input
mapping being created is a struct field that has a type of STRING, then the workflow data
object attribute being used for that mapping must also be of type STRING.

If the indexed item from a list workflow data object (that is,

C ai mant Dependent [Cont ext _Loop. | oopCount]) is being used in an input
mapping, then the associated workflow data object must be a list workflow data object and the
activity that contains the input mappings must be contained within a loop.

© Merative US L.P. 2012, 2024

1 Cdram Workflow Reference 59

» Ifthe Cont ext _Paral | el workflow data object is being used in an input mapping, then
the activity that contains the input mappings must be a Parallel activity.

* Ifan indexed item from the Parallel List Workflow Data Object is being used in an
input mapping, then the activity contains the mapping must be a Parallel Activity (i.e.
ParallelListWDO[Context_Parallel.occurrenceCount]). The workflow data object being
indexed by the Context Parallel Workflow Data Object must be the Parallel Activity List
Workflow Data Object.

* The deadline duration can be specified by using a deadline duration in seconds or a workflow
data object attribute mapping, but not both.

» If the deadline duration is specified by using a workflow data object attribute, the attribute
must be valid and be of type INTEGER.

» Ifa deadline is specified for an activity, then a deadline handler function must be specified
or the complete activity flag must be set to true (or both). If not the workflow would not do
anything when the deadline is reached.

 If the duration expired value of the deadline output mappings is mapped to a workflow data
object attribute, then the attribute must be valid and of type BOOLEAN.

+ If'the deadline expiry time value of the deadline output mappings is mapped to a workflow
data object attribute, then the attribute must be valid and of type DATETIME.

* The complete activity flag cannot be set to t r ue if the activity that contains the deadline is a
parallel activity. This is because parallel activities do not support modeled deadlines.

Code

* Any return parameters that are associated with the deadline handler method are not used in the
workflow engine and are therefore irrelevant.

* The Workflow Deadline Scanner API function DeadlineScanner. scanDeadlines () is
provided to allow the scanning of event wait deadlines that exceed their specified duration.
Any such event waits are processed and their associated handler function started or the
associated activity completed.

Runtime Information
When the workflow engine runs an activity that contains deadline metadata, it creates the
deadline date time as follows:

+ If the duration is specified in seconds, then the calculation is the current date time + seconds
defined in metadata = deadline date time.

 If'the duration is specified as a workflow data object attribute, then the calculation is the
current date time + the value as defined in workflow data object attribute = deadline date time

Deadlines that expire are processed by starting the ScanTaskDeadlines batch job. This batch
job in turn starts the Workflow Deadline Scanner API described above which retrieves a list of
all of the deadlines that are expired and processes them. If a deadline handler method is specified
for the deadline, the values of the workflow data object attributes defined in the parameter
mappings are provided as input parameters to the deadline handler method and it is started. If the
complete activity flag is set to true, then the associated activity is completed. Any deadline output
mappings (duration that is expired and deadline expiry time) that might be specified are persisted
here. The attributes of the Context Deadline workflow data object are also persisted during
this processing to allow them to be used in transitions that emanate from the activity that contains
the deadline.

© Merative US L.P. 2012, 2024

Curam 8.1.2 60

Output

Description of Context WDOs
The Context_Deadline workflow data object is available for use in a data item or function
condition.

Refer to 1.16 Conditions on page 110 for a transition from an activity with an event wait that
has a deadline. The Context Deadline workflow data object attributes available are:

* Context Deadline.durationExpired
Represents a boolean indicating whether the deadline duration that is associated with the
activity is expired.

* Context_Deadline.expiryTime
An attribute that contains the date and time at which the deadline duration expires.

Mappings

The event that is raised has some information in it that can be worth mapping back into the
workflow engine. The event has both primary and secondary event data. The primary event data
is what was used to match the event in the first place so there is little point in mapping this back
into the process. However, the secondary event data can be unknown to the workflow engine and
so can be mapped in.

Also, since an event wait activity can wait on any number of events, the actual event that was
raise can be of interest and so can also be mapped into the workflow engine. Finally, the Ctiram
user that raises the event might be of interest and so this can also be mapped into the workflow
engine.

If an activity instance waits for all of its associated event waits to be matched, any event output
mappings that exist for the activity instance are processed each time that an event is raised that
matches one of the event waits.

Metadata

<event-wait-activity id="1" category="ACl">

<event - out put - mappi ngs>
<event -type wdo- nane="CaseEvent Resul t"
nane="event Type" />
<out put - dat a wdo- nane="TaskCr eat eDet ai | s"
name="concernRol el D' />
<r ai sed- by wdo- name="CaseEvent Resul t"
nane="event Rai sedBy" />
<time-rai sed wdo- nanme="CaseEvent Resul t"
nane="ti neRai sed" />
</ event - out put - mappi ngs>

</event-wait-activity>

* event-output-mappings
This tag contains the data that can be optionally mapped to the workflow engine from the
event that was raised.

© Merative US L.P. 2012, 2024

1 Cdram Workflow Reference 61

* event-type
This tag contains the business event that was raised which the activity instance was waiting
on.
* output-data
This tag contains the secondary event data that is to be mapped into the workflow engine.
* raised-by
This tag contains the username of the Cliram user that caused the event to be raised.
* time-raised
This tag contains the date and time that the event was raised.

Validations

* The event type event output mapping, if specified, must be a valid workflow data object
attribute and must be of type STRING.

* The raised by user name event output mapping, if specified, must be a valid workflow data
object attribute and must be of type STRING.

* The output data event output mapping, if specified, must be a valid workflow data object
attribute and must be of type LONG.

* The time raised output mapping, if specified, must be a valid workflow data object attribute
and must be of type DATETIME.

Runtime Information

When an event is raised in the application that an activity instance is waiting on, any workflow
data object attributes contained in event output mappings that are defined for the event wait are
populated and persisted with the relevant data from the event.

Description of Context WDOs
The Context_Event workflow data object is available for use in a data item or function condition.

Refer to 1.16 Conditions on page 110 for a transition from an activity with an event wait. The
Context_Event workflow data object attributes available are:

* Context_Event.raisedByUserName
The username of the Caram user who raised the event.
* Context Event.timeRaised
The time at which the event was raised.
* Context_Event.fullyQualifiedEventType
The fully qualified (both event class and event type) name of the business event that was
raised.
* Context_Event.outputData
The secondary event data that is associated with the raised event.

Reminders

A reminder can be set on any deadline that is associated with a manual, decision, event wait,
parallel manual, or parallel decision activity. An arbitrary number of reminders can be specified.

Reminders use the notification metadata that is described in the activity notification (see 1.14
Activity Notifications on page 100) section. This means that the typical notification subject,
body, allocation strategy, and actions can be specified for a reminder.

© Merative US L.P. 2012, 2024

Curam 8.1.2 62

Metadata

<rem nder s>

<rem nder id="1" delivery-offset="DOl">
<del i very-tinme>
<seconds>93660</ seconds>
</delivery-time>

or...

<delivery-time>
<mapped- del i very-ti me>
<wdo-attri bute wdlo-nane="CaseWDO'
name="casel D'/ >
</ mapped-delivery-ti ne>
</delivery-tinme>

<notification delivery-nmechani snm="DMVL" >
...standard notification netadata
</notification>
</rem nder >

</ rem nder s>

reminders

This tag is optional and encapsulates all reminder tags for the deadline.

reminder

This tag contains all reminder metadata for the deadline including the associated notification
metadata.

delivery-offset

This tag refers to a value from the codetable ReminderDeliveryOffset indicating what the
seconds or mapped-delivery-time are offset from. For a deadline, it is offset from the deadline
expiry time. This is currently the only offset supported.

delivery-time

This tag contains either the seconds or mapped-delivery-time tag depending on which is
specified.

seconds

This tag represents the seconds before the deadline expiry time that the reminder is sent.
mapped-delivery-time

This tag represents a workflow data object containing the seconds before the deadline expiry
time that the reminder is sent.

Validations

A reminder cannot be created if a deadline is not associated with the relevant activity. In
addition, if a deadline does exist, but the deadline handler is not set, or the complete activity
indicator is set to false, a reminder cannot be created.

Each reminder has an identifier. This must be unique to the deadline upon which it is
associated.

Either a mapped-delivery-time or seconds must be specified for a reminder.
If a second is specified, it must be before the deadline expiry time.

The workflow data object attribute that is referenced by the mapped-delivery-time must be of
type INTEGER.

© Merative US L.P. 2012, 2024

1 Cdram Workflow Reference 63

» All existing validations for activity notifications (see 1.14 Activity Notifications on page
100) are applicable to the notification metadata associated with reminders.

Code

The Workflow Deadline Scanner API function DeadlineScanner. scanDeadlines () includes
a call to the function deliverReminders (), which processes and delivers any reminders that
reach their delivery time.

Runtime Information
When an activity that contains reminders is run, the reminders are persisted onto the Reminders
entity. The time that a reminder is due to be sent on is calculated as follows:

* The delivery duration for the reminder is retrieved in seconds. This may be specified directly
in seconds or in a workflow data object attribute.

» The duration for the deadline that is associated with the reminder is retrieved in seconds. This
may be specified directly in seconds or in a workflow data object attribute.

+ If'the delivery duration for the reminder is a positive number and this number is less than the
deadline duration (reminder deliveries cannot be specified for times that are greater than the
deadline date time for obvious reasons), then the time to deliver the reminder notification is
calculated as the deadline duration - the reminder delivery duration. This duration in seconds
is then converted into a date time and added to the date time the reminder is being created on.
This is then stored on the reminder record as the date time that the reminder notification is due
to be sent on.

Reminders that are configured for deadlines are processed and sent by starting the
ScanTaskDeadlines batch job. This batch job starts the DeadlineScanner.

scanDeadlines () function, which scans for reminders that are due and sends the associated
reminder notifications (by using the reminder notification allocation strategy to determine the
users to send the notifications to). The reminders that are sent are removed from the Reminders
entity to ensure that they are not sent again. When the activity completes any reminders that were
configured for that activity but that were not sent are removed.

1.9 Manual

In any automated business process there is a need to interact with human agents to make
decisions, supply more data or to perform tasks in the real world such as telephoning a client.
In Curam workflow, such steps in a process are modeled by using manual activities. A manual
activity specifies where in the business process human intervention is required. It also specifies
the information that the user receives when notified that they must perform a task and also the
selection of the agents to which the work is assigned.

Prerequisites

The base details common to all the activity types that are supported by Ciiram workflow are
described in 1.6 Base Activity on page 38 and are applicable to the manual activity described
here.

© Merative US L.P. 2012, 2024

Curam 8.1.2 64

Task details

To notify a user that they are required to do some work as part of some automated business
process, a task is assigned to them. A task is a message that appears in the users inbox. This inbox
specifies the work that the user is expected to do. The task can also have a list of actions that

are associated with it. Actions are links to Ctiram application pages where the work required to
complete the task can be performed.

Metadata

<manual -activity id="1">
<t ask>
<message>
<nessage-t ext >
<l ocal i zed-t ext >
<l ocal e | anguage="en">The fol | ow ng
case %n for %s nust be approved</| ocal e>
</l ocalized-text>
</ message-t ext >
<message- par anet er s>
<wdo-attri bute wdo- name="TaskCr eat eDetai | s"
nane="casel D'/ >
<wdo-attri bute wdo- name=
" ai mant [Cont ext _Loop. | oopCount]"
name="casel D'/ >
</ message- par anet er s>
</ message>
<actions>
<action page-i d="Case_vi ewHone" pri nci pal -
action="fal se"
open- nodal ="f al se" >
<message>
<nmessage-t ext >
<l ocal i zed-t ext >
<l ocal e | anguage="en">
Case Honme Page for case: %n</l|ocal e>
</localized-text>
</ message-t ext >
<message- par anet er s>
<wdo-attri bute wdo- name="TaskCr eat eDetai | s"
nane="casel D'/ >
</ message- par anet er s>
</ message>
<l i nk- paranet er nane="chil dl D'>
<wdo-attri bute wdo- nanme="Chi | dDependent s"
name="identifier"/>
</|ink-paraneter>
<li nk- paranmet er name="ful | Nane" >
<wdo- attri bute wdo- name="Chi | dDependent s"
nane="f ul | Nane"/ >
</li nk- par anet er >
<mul ti pl e-occurring-action>
<l i st -wdo- name>Chi | dDependent Li st </|i st - wdo- name>
</mul tipl e-occurring-action>
</ action>
<action page-i d="Person_confirnPersonbDetails"

© Merative US L.P. 2012, 2024

1 Cdram Workflow Reference 65

princi pal -action="true"
open- nodal ="true" >
<nmessage>
<nmessage-t ext >
<l ocal i zed-t ext >
<l ocal e | anguage="en" >
Confirm Person Details for
person: %ls</I| ocal e>
</l ocalized-text>
</ message-t ext >
<nessage- par amet er s>
<wdo-attri bute wdo- nanme=
"PersonDet ai | sLi st[Cont ext_Loop. | oopCount]"
name="f ul | Name"/ >
</ message- par anet er s>
</ message>
<l i nk- paraneter nane="identifier">
<wdo-attri bute wdo- nane="
Per sonDet ai | sLi st[Cont ext Loop. | oopCount]"”
nane="identifier"/>
</ li nk- par anet er >
</ action>
</ actions>
<task-priority>
<priority>TP1</priority>
</task-priority>
<al | ow deadl i ne-overri de>fal se
</ al | ow deadl i ne-overri de>
<al | owt ask-f orwar di ng>t rue
</ al | owt ask-f orwar di ng>
<adm ni stration-si d>Mai nt ai nCase. cl oseCase
</ admi ni stration-sid>
<initial-conment>
<wdo-attri bute wdo- nane="TaskCr eat eDet ai | s"
nane="subj ect"/ >
</initial-conment>
</ task>

</ manual - activity>

+ task
This contains all of the details of a task including the message and details of the associated
actions. The various metadata that is associated with a task are described here.

* message
This contains the details of the parameterized message. When a manual activity is run, a task
is created. When a user views their tasks in the inbox, this message represents the subject of
that task.

* message-text
This contains the details of the message text. The text of the subject can contain replaceable
strings (%k), which is replaced with the associated text parameters. A text parameter is a
mapping to a workflow data object attribute. Parameter k in the list replaces %k in the text
string, where k is the order of the parameter in the list. %k can be repeated within the string
and thus each workflow data object attribute must be mapped only once. A format for the
replaceable strings can optionally be specified by placing another letter after the replaceable
string, for example, %1d, where d will format the value as a date.

© Merative US L.P. 2012, 2024

Curam 8.1.2 66

Table 3: Subject Text Data Conversion

Formatting Letter Format As
s string

n numeric

d date

z date/time

t time

localized-text

This contains details of the localizable task message text. For more details of the localized text
and associated metadata, see Localized Text on page 39.

message-parameters

A task message can have parameters that are associated with it. This contains the details of
the workflow data object attribute parameters that are used to replace the placeholders in the
associated text. For details on workflow data objects and workflow data object attributes see
1.4 Workflow Data Objects on page 25.

actions

This contains the details of all of the actions that are associated with the manual activity task.
These actions are links to Curam application pages where the work required to perform the
task can be performed.

action
This contains the definition of a hyperlink to a Cliram page on which a task can be performed.
The following fields that are associated with the task action are described here:

* page-id
This represents the identifier of the target Cliram page on which a user can perform the
required action.

+ principal-action
Actions can be defined as primary or secondary actions. Principal actions usually contain
the links to the Curam pages on which a user can perform the actual required work.
Secondary actions usually contain links to supporting information that the user who is
assigned to do the work can refer to while the assigned task is carried out.

* open-modal
The pages that are linked from a task action can be specified to open in a modal dialog. If
this indicator is set to true, then the page that is specified by the action link is opened in a
modal dialog. If set to false (the default) then the client infrastructure decides how to open
the link in the same fashion as it does with any other link in the application (that is, if the
page is part of a tab configuration, then it opens the appropriate tab - if not then it replaces
just the action link home page in the content area of the current tab).

message

This contains the details of the parameterized message that is associated with the action to be

performed, including the message text and the optional parameters that can be associated with

the text.

link-parameter

The links to the Cliram pages where the actual work for the task is performed must contain

a page identifier (described here) and optional page parameters. These page parameters are

© Merative US L.P. 2012, 2024

1 Cdram Workflow Reference 67

described by this metadata and they represent a name/value pair where the name attribute is
the name of a link parameter (the page parameter name in the associated Curam client page)
and the value is provided by a workflow data object attribute. The following field that is
associated with the link parameter is described here:

* name

The name of the link parameter.
multiple-occurring-action
This signifies that this action represents a multiple occurring action. This means that if this
metadata is specified for an action, the workflow engine creates one action record for each
item in the list workflow data object specified as the multiple occurring action, when that
activity is run.

When the multiple occurring action is specified for an action, then an attribute from the
associated list workflow data object must be used as a link parameter for the action.
list-wdo-name

The name of the list workflow data object for use with the multiple occurring action.
wdo-attribute

The value used in the action link parameter is provided by the workflow data object attribute
mapping that is specified in this piece of metadata.

task-priority

A task can optionally contain a priority and this metadata contains those details. The priority
of a task is represented in either of the formats here:

e priority
In this instance, the priority is selected in the Process Definition Tool and is taken from the
TaskPriority code-table.

* mapped-priority
The priority of a manual task can be mapped by using a workflow data object attribute. The
following metadata snippet provides an example of how this can be achieved:

<manual -activity id="1">
<t ask>
<nmessage>
</ message>
<actions>
<action page-id="Case_vi ewHone" principal -
action="true">
</ action>
</ actions>
<task-priority>
<mapped-priority>
<wdo- attri but e wdo- name="Wor kf | owTest WDO"'
nane="taskPriority"/>
</ mapped-priority>
</task-priority>

</ task>

</ manual -activity>

© Merative US L.P. 2012, 2024

Curam 8.1.2 68

* initial-comment
This allows an initial comment mapping to be specified for the manual task. The value of
the workflow data object attribute that is used in this mapping is used to place a record in the
TaskHistory table when the associated manual activity is run.

Validations

* A subject must be defined for the manual activity task. This is a localizable string.

» All of the workflow data objects that are used as subject text parameters in the manual activity
task subject message must be valid workflow data object attributes in the context of the
containing workflow process definition.

+ Ifan indexed item from a list workflow data object (that is,

PersonDetailsList[Context Loop.loopCount]) is used as a subject text parameter, then the
workflow data object must be a list workflow data object and the activity that contains the
mapping must be contained within a loop.

» Ifthe Cont ext _Par al | el workflow data object is used as a subject text parameter, then
the activity that contains the mapping must be a Parallel manual activity.

+ Ifan indexed item from the Parallel List Workflow Data Object is used as a subject text
parameter, then the activity that contains the mapping must be a Parallel Activity (that is,
ParallelListWDO[Context Parallel.occurrenceCount]). The workflow data object being
indexed by the Context Parallel Workflow Data Object must be the Parallel Activity List
Workflow Data Object.

» If actions are specified for the manual activity task, any workflow data object attributes used
as mappings for action text parameters must be valid in the context of the containing workflow
process definition.

+ If actions are specified for the manual activity task, any workflow data object attributes used
in the action link parameter mappings of a manual activity action must be valid in the context
of the containing workflow process definition.

+ Ifan indexed item from a list workflow data object (that is,

PersonDetailsList[Context Loop.loopCount]) is used in the action text or action link
parameter mappings, then the workflow data object must be a list workflow data object and
the activity that contains the mapping must be contained within a loop.

» Ifthe Cont ext _Par al | el workflow data object is used in the action text or action link
parameter mappings, then the activity that contains the mapping must be a Parallel manual
activity.

» If an indexed item from the Parallel List Workflow Data Object is used in the action text or
action link parameter mappings, then the activity that contains the mapping must be a Parallel
Activity (that is, ParallelListWDO[Context Parallel.occurrenceCount]). The workflow data
object being indexed by the Context Parallel Workflow Data Object must be the Parallel
Activity List Workflow Data Object.

* The number of placeholders that are used in the subject text and action text of the manual
activity task must equal the number of mapped workflow data object attributes for all the
locales defined.

» The priority of a manual task can be specified by using a codetable code value or a workflow
data object attribute mapping, but not both.

» If a mapped priority is specified for the manual activity task, the workflow data object
attribute that is specified for it must be valid in the context of the containing workflow process
definition. It must also be of type STRING.

© Merative US L.P. 2012, 2024

1 Cdram Workflow Reference 69

+ If an initial comment mapping is specified for the manual activity task, the workflow data
object attribute that is specified for it must be valid in the context of the containing workflow
process definition. It must also be of type STRING.

* The workflow data object specified for use in the multiple occurring action must be a valid
workflow data object in the context of the containing workflow process definition. It must also
be a list workflow data object.

* At least one attribute from the multiple occurring action list workflow data object must be
used in the link parameters that are specified for a multiple occurring action.

Code

* Action Pages and Action Page Parameters
The actions that are specified for the manual activity task are links to Caram application pages
where the work required to complete the task can be performed. The pages that are specified
in the task actions must be valid Curam pages and must be available in the Curam application.
The parameters in these pages must match the parameters that are specified as action link
parameters in the associated task actions.

* LocalizableStringResolver TaskStringResolver API
The task subject and associated task action messages are displayed in the user's inbox
to inform them of the work that is required to be completed for the associated task. The
LocalizableStringResolver.TaskStringResolver API contains the functions to
resolve both the task subjects and action messages for the correct user locale. The replacement
of the placeholders with the associated workflow data object attribute values that are specified
in the associated mappings is also carried out as part of these functions.

* Task Admin API
A number of functions are provided on the TaskaAdmin class to allow the manipulation of
tasks. For further details of the functions available, see the associated Javadoc specification for
the Taskadmin class.

* Task History Admin API
Various lifecycle events for a task (that is, when a task is created; when a task is allocated;
when a task is closed) are written to the TaskHistory table during the lifetime of a task.
A number of search functions are provided on this API class to allow these entries to
be examined. For further details of the functions available, see the associated Javadoc
specification for the TaskHistoryAdmin entity.

* Workflow Deadline Admin API
A number of functions are provided on the WorkflowDeadlineAdmin class to allow the
manipulation of workflow deadlines. For further details of the functions available, see the
associated Javadoc specification for the WorkflowDeadlineAdmin class.

Runtime Information

When a manual activity is run by the workflow engine, a task is created and is allocated to an
agent to perform that work (see Allocation strategy on page 70).

© Merative US L.P. 2012, 2024

Curam 8.1.2 70

Description of Context WDOs

The Context_Task workflow data object allows the unique identifier of the task that is created
as part of the execution of the associated manual activity to be available for use in the various
metadata mappings that are associated with a manual activity.

Examples of some of these mappings include event match data mappings (see List of events
on page 53) and deadline function input mappings (see Deadline on page 56). The one
attribute available on this workflow data object is:

* Context_Task.taskID
The taskID attribute represents the unique identifier of the task that is created when the
associated manual activity is run.

Allocation strategy

An organization typically has many human agents at various levels of responsibility that can
perform work for a process definition. To select a specific agent or group of agents that can do
the work for a specific manual activity, an allocation strategy is assigned to the activity. There
are four types of allocation strategies that are currently supported by Curam workflow: function,
Classic rules, Ciiram Express rules (CER), and target.

Note: Due to a limitation in the workflow infrastructure functionality that maps the data to
BPO struct parameters, allocation strategy functions cannot refer to BPO methods that contain
Java™ 8 constructs.

When an allocation strategy of type target is selected, the agent or group of agents to assign the
work to are named directly. Selecting a function allocation strategy results in the invocation of the
specified allocation function when the associated activity is run by the workflow engine. Finally,
if a classic or Ctiram Express rules (CER) allocation strategy is selected, the specified ruleset is
run when the associated activity is run.

Prerequisites
If the allocation strategy that is associated with a manual activity is of type Function, these
allocation functions are Ctiram business methods with a specific signature.

The input mappings for the formal parameters of these methods and their associated metadata are
described in 1.7 Automatic on page 40. Therefore, this is referenced for a description of these
mappings.

Metadata
As described previously, there are four types of allocation strategies. The required metadata for
each of these types is described in the following sections.

+ allocation-strategy
This contains the details of the allocation strategy that is defined for the manual task. The
following fields that are associated with an allocation strategy are described here:

- type
This contains the type of the allocation strategy. The four types of allocation strategies that
are currently supported by Ctram workflow are function, classic rules, CER rules, and
target.

© Merative US L.P. 2012, 2024

1 Cdram Workflow Reference 71

* identifier
This represents the identifier of the allocation strategy. For an allocation strategy of type
function, this identifier represents the fully qualified name of the allocation function that is
used. For an allocation strategy of type rule or curam express rule, this identifier represents
the identifier of the ruleset that is used. Finally, when an allocation strategy of type target is
selected, this identifier represents the identifier of the allocation target that is used.

Function Allocation Strategy

<manual -activity id="1" category="ACl">
<t ask>
</ task>
<al | ocati on-strat egy
identifier="curamcore.sl.intf.
Wor kf I owAl | ocat i onFuncti on. manual Al | ocati onStrat egy”
type="function">
<f uncti on- nappi ngs>
<f or mal - par anet er s>
<f ormal - paranet er i ndex="0">
<base-type type="1NT32">
<wdo- attri bute wdo- nane="Cont ext _Task"
name="t askl D'/ >
</ base-type>
</ formal - paranet er >
<f ormal - paranet er index="1">
<base-type type="I|NT64">
<wdo-attribute
wdo- narme=" Cont ext _Runti nel nf or nati on"
nane="processl nstancel D'/ >
</ base-type>
</ formal - paranet er >
<f ormal - paranet er i ndex="2">
<struct type="curam struct. TaskDetail s">
<field name="taskl D'>
<base-type type="1NT64">
<wdo-attri bute wdo- name="Cont ext _Task"
nane="t askl D"/ >
</ base-type>
</field>
<fi el d nanme="cat egory" >
<base-type type="STRI NG'>
<wdo-attri bute wdo- name="TaskCr eat eDetai | s"
nane="cat egory"/ >
</ base-type>
</field>
</struct>
</ formal - par anet er >
<f ormal - paranet er i ndex="3">
<struct type="curam struct.PersonDetail s">
<field nanme="identifier">
<base-type type="1NT64">
<wdo-attri bute wdo- nanme=

"PersonDet ai | sLi st[Cont ext _Loop. | oopCount]"
nane="identifier"/>

© Merative US L.P. 2012, 2024

Curam 8.1.2 72

</ base-type>
</field>
<field nanme="ful | Name" >
<base-type type="STRI NG'>
<wdo-attri bute wdo- nane=

"Per sonDet ai | sLi st[Cont ext Loop. | oopCount]"
nane="f ul | Nane"/ >
</ base-type>
</field>
</struct>

</ formal - paranet er >
</ f ormal - par anet er s>

</ functi on- nappi ngs>

</al |l ocation-strategy>

<event-wait >

</ event-wait>
</ manual -activity>
+ function-mappings
This contains the details of the input mappings for the formal parameters of the specified
allocation function. Allocation functions are Ciram business methods (similar to those that
are specified for automatic activities) that have a distinct return signature (allocation functions
must have a return type of curam.util.workflow.struct.AllocationTargetList).
Therefore, the metadata that is used for these mappings are the same as those used for the
input mappings for the business process object methods that are associated with automatic
activities. The reader can refer to the Input Mappings on page 42 section of the automatic
activity chapter for further details of this metadata and it's meaning.

Classic Rules Allocation

<manual -activity id="1" category="ACl">
<t ask>
</ task>
<al |l ocation-strategy type="rule"
i dentifier="PRODUCT_1">
<rul eset - mappi ngs>
<r do- mappi ng>
<source-attribute wdo- name="TaskCreateDetail s"
nane="casel D' />
<target-attribute rdo-nanme="TaskDetail s"
name="casel D' />
</ r do- mappi ng>
<r do- mappi ng>
<source-attribute wdo-nanme="TaskCreat eDet ai | s"
nane="concernRol el D' />
<target-attribute rdo-nane="TaskDetails"
nane="concernRol el D' />
</ r do- mappi ng>
</ rul eset - nappi ngs>
</al |l ocation-strategy>
<event-wait >

</ event-wait>

© Merative US L.P. 2012, 2024

1 Cdram Workflow Reference 73

</ manual - activity>

* ruleset-mappings
This contains the details of all the mappings for the ruleset specified in the allocation
identifier. It is not required to map all of the rules data object attributes specified in the ruleset
(mappings for a subset of them may be created).

* rdo-mapping
This contains the details of one mapping between a rules data object attribute that is specified
in the allocation ruleset and its associated workflow data object attribute. The following
metadata constitute a valid mapping:

* source-attribute
This contains the details of the source attribute in the mapping (that is, where the data is
provided from at runtime). A source attribute consists of a workflow data object name and
its associated attribute name (see 1.4 Workflow Data Objects on page 25).

* target-attribute
This contains the details of the target attribute in the mapping (that is, where the data is
mapped into at runtime). A target attribute consists of a rules data object name and its
associated attribute name.

CER Rules Allocation

<manual -activity id="1" category="ACl">
<t ask>
</ task>
<al | ocation-strategy type="curam express rule"
identifier="Sanple Allocation Rules">
<cer-set-mappi ngs prinmary-cl ass="Sanpl eAl | ocati onCl ass" >
<cer - cl ass- mappi ng>
<source-attribute wdo-nanme="TaskCreat eDet ai | s"
nanme="casel D' />
<target-attribute cer-class-
nane="Sanpl eAl | ocati onCl ass"
nane="casel D' />
</ cer-cl ass- mappi ng>
<cer - cl ass- mappi ng>
<source-attribute wdo- name="TaskCreateDetail s"
nane="subj ect" />
<target-attribute cer-class-name="Rul eCl assA"
name="subj ect” />
</ cer-cl ass- mappi ng>
<cer - cl ass- mappi ng>
<source-attribute wdo- nanme="Li st TaskDet ai | s"
nane="enpl oyer | Ds" />
<target-attribute cer-class-nanme="Rul eCl assA"
nane="1|i st Of Enpl oyer| Ds" />
</ cer-cl ass- mappi ng>
<cer - cl ass- mappi ng>
<source-attribute wdo- name="Li st TaskDet ai | s"
name="concernRol el D' />
<target-attribute cer-class-
name=" Sanpl eAl | ocati onCl ass”
nane="1|i st Concer nRol el Ds" />
</ cer-cl ass- mappi ng>
<cer-cl ass- mappi ng>

© Merative US L.P. 2012, 2024

Curam 8.1.2 74

<source-attribute wdo-name="Li st TaskDet ai | s"
name="partici pantl Ds" />
<target-attribute cer-cl ass-

nane="Sanpl eAl | ocati ond ass. | i st Rul eCl assB. Rul eCl assB"

nane="partici pantl Ds" />
</ cer-cl ass- mappi ng>
</ cer-set - mappi ngs>
</al |l ocation-strategy>
<event-wait >

</é9ént-mait>

</ manual - activity>

cer-set-mappings

This contains the details of all the mappings for the CER rule set specified in the allocation
identifier. The primary-class metadata tag must point to a CER rule class that contains an
attribute called fargets. This is required as the workflow engine uses an attribute of this name
to determine the list of allocation targets for the specified allocation strategy. Mappings must
be created for all of the attributes that are marked as specified in all of the CER rule classes
that are used for the allocation strategy.

cer-class-mapping

This contains the details of one mapping between a rule class attribute that is specified in the
CER rule set and its associated workflow data object attribute. One of these mappings must
exist for each CER rule class attribute that is marked as specified being used in the allocation
strategy. The following metadata constitutes a valid mapping:

source-attribute

This contains the details of the source attribute in the mapping (that is, where the data is
provided from at runtime). A source attribute consists of a workflow data object name and
its associated attribute name (see 1.4 Workflow Data Objects on page 25). Attributes of

list workflow data objects can also be used here if the mapping that is created is related to a
CER rule class attribute list type.

target-attribute

This contains the details of the target attribute in the mapping (that is, where the data is
mapped into at runtime). A target attribute consists of a CER class name and its associated
attribute name. Some but not all CER rule class attribute types are supported for use in
allocation strategy mappings. The supported types include String, Boolean, Number, Date
and DateTime. A list of rule classes can also be specified as well as lists of the base types
that are outlined previously.

Target Allocation Strategy

<manual -activity id="1" category="ACl">

<t ask>
Q)fask>
<al |l ocation-strategy type="target"
i dentifi er="HEARI NGSCHEDULER'/ >
<event-wait >
</ event - vai t >

</ manual - activity>

© Merative US L.P. 2012, 2024

1 Cdram Workflow Reference 75

No further metadata is required to describe an allocation strategy of type target. As stated
previously, the identifier in this case is the identifier of the allocation target that contains the agent
or group of agents that the task is assigned to.

Validations

* An allocation strategy must be defined for a manual task.

» If the allocation strategy is of type function, the function that is specified must be a valid and
must exist on the Ctiram application classpath.

+ If'the allocation strategy is of type function, the return type of the function must be
curam.util.workflow.struct.AllocationTargetList.

+ If the allocation strategy is of type function, any of the input parameters of the specified
function that are mapped must be to valid workflow data object attributes and the type of the
workflow data object attribute must match the type of the input parameter field.

 If the allocation strategy is of type function and an indexed item from a list workflow data
object is used in an input mapping, then the workflow data object must be a list workflow data
object and the activity that contains the mapping must be contained within a loop.

» If the allocation strategy is of type classic or CER rule, the specified ruleset must be valid.

+ If'the allocation strategy is of type CER rule, a primary CER rule class name must be
specified.

+ If the allocation strategy is of type CER rule, the specified primary CER rule class must exist
in the specified CER ruleset.

 If the allocation strategy is of type CER rule, the specified primary CER rule class must
extend the required abstract Workflow Allocation CER rule class.

» If the allocation strategy is of type CER rule, the specified primary CER rule class must
contain an attribute that is named targets.

+ If the allocation strategy is of type CER rule, if CER rule classes other than the primary CER
rule classes are specified in the input mappings, then the CER primary class must contain
attributes that refer to those classes, one for each class.

+ If the allocation strategy is of type CER rule, all of the source attributes specified in the
mappings must be valid workflow data object attributes in the context of the containing
workflow process definition. All of the target attributes must be valid CER class attributes
in the context of the specified ruleset. The type of the workflow data object attribute that is
specified as the source attribute must match the type of the CER class attribute that is specified
as the target attribute in the mapping.

+ If'the allocation strategy is of type CER rule, no duplicate target attribute mappings are
allowed. In other words, a CER rule class attribute can be specified only once in any list of
CER class mappings.

» If the allocation strategy is of type CER rule, all of the attributes that are marked as specified
for all of the CER rules classes that are used for the allocation strategy must contain an input
mapping. CER class attributes that are not marked as specified must not contain an input
mapping.

+ If the allocation strategy is of type classic rule, all of the source attributes specified in the
mappings must be valid workflow data object attributes in the context of the containing
workflow process definition. All of the target attributes must be valid rules data object
attributes in the context of the specified ruleset. The type of the workflow data object attribute
that is specified as the source attribute must match the type of the rules data object attribute
that is specified as the target attribute in the mapping.

© Merative US L.P. 2012, 2024

Curam 8.1.2 76

+ If'the allocation strategy is of type classic rule, no duplicate target attribute mappings are
allowed. In other words, a rules data object attribute can be specified only once in any list of
ruleset mappings.

+ Ifan indexed item from a list workflow data object (i.e.

PersonDetailsList[Context Loop.loopCount]) is used in the function, classic rule, or CER
rule allocation strategy mappings, then the workflow data object must be a list workflow data
object and the activity that contains the mapping must be contained within a loop.

+ Ifthe Cont ext _Par al | el workflow data object is used in the function, classic or CER
rule allocation strategy mappings, then the activity that contains the mapping must be a
Parallel activity.

* If an indexed item from the Parallel List Workflow Data Object is used in the function, classic
or CER rule allocation strategy mappings, then the activity that contains the mapping must
be a Parallel Activity (that is, ParallelListWDO[Context Parallel.occurrenceCount]). The
workflow data object being indexed by the Context Parallel Workflow Data Object must be
the Parallel Activity List Workflow Data Object.

Code
As stated previously, any business process object method that is
specified as an allocation function must return a structure of type

curam.util.workflow.struct.AllocationTargetList.

As 1s the case with business methods that are associated with automatic activities, a failure of the
allocation function when a manual activity is run causes the Workflow Error Handling strategy

to be started. This can cause, for example, the activity that is associated with the failed method

to be retried a number of times. Based on this fact the allocation functions associated with the
allocation strategies of manual or decision activities should in general not throw exceptions unless
an unrecoverable situation occurs.

The application must implement the curam.util.workflow.impl.WorkResolver

callback interface to determine how tasks are allocated in the application. The

application property curam.custom.workflow.workresolver must refer to the
curam.util.workflow.impl.WorkResolver implementation class in the application as the
workflow engine uses this property to determine the correct function to allocate the task.

The curam.util.workflow.impl.WorkResolver class has an overloaded method
resolveWork because the various allocation strategy types return the allocation targets in
different formats. However, this is an implementation detail that developers of custom work
resolver classes must not deal with especially since the business processing for all versions of the
method should be the same.

package curamutil.workflow. inpl;

public interface WrkResol ver {

voi d resol veWr k(
final TaskDetails taskDetail s,
final Cbject allocationTargets,
final bool ean previousl yAl | ocat ed);

voi d resol veWr k(
final TaskDetails taskDetail s,
final Map allocationTargets,

© Merative US L.P. 2012, 2024

1 Cdram Workflow Reference 77

final bool ean previousl yAl |l ocat ed);

voi d resol veWor k(
final TaskDetails taskDetails,
final String allocationTargetlD,
final bool ean previousl yAl |l ocat ed);

}

To mitigate this issue the curam.core.sl.impl.DefaultWorkResolverAdapter provides

a more convenient mechanism for implementing a work resolver. This class implements the
different methods and converts their input parameters into allocation target lists allowing
developers of custom work resolution logic to extend this class and implement one method that is
called regardless of the source of the allocation targets.

package curam core.sl.inpl;

public abstract class Defaul t WrkResol ver Adapt er
i mpl ements curamutil.workflow inpl.WrkResol ver {

public abstract void resol veWork(
final TaskDetails taskDetails,
final AllocationTargetLi st allocationTargets,
final bool ean previousl yAl | ocat ed);

}

In addition to this adapter class, the application comes with a work resolver

implementation that is used immediately after first use. This class is called
curam.core.sl.impl.DefaultWorkResolver and it also serves as an example of how to
extend the adapter.

Runtime Information
When a manual activity is run, the workflow engine processes the allocation strategy that is
defined in the metadata to retrieve the list of allocation targets for that task.

If the allocation strategy is of type function, the workflow engine processes the input mappings
that are defined for the associated allocation function and starts it to retrieve the list of allocation
targets.

If the allocation strategy is of type classic rule, the workflow engine processes the mappings for
the specified ruleset and calls the rules engine to run the ruleset to retrieve the list of allocation
targets.

If the allocation strategy is of type CER rule, the workflow engine processes the CER class
mappings that are specified for the allocation strategy. The data from the workflow data object
attributes is mapped into the corresponding CER class rule attributes. The primary class is then
retrieved and the fargets attribute is queried to retrieve the list of allocation targets.

If the allocation strategy is of type target, the allocation target is the one specified in the metadata
and no further processing is required.

As described in the metadata for a workflow process (see 1.3 Process Definition Metadata
on page 22), a failure allocation strategy can be specified for a process. This strategy is

© Merative US L.P. 2012, 2024

Curam 8.1.2 78

processed and used if the invocation of the allocation strategy that is associated with the task
results in no allocation targets being returned.

The workflow engine then uses the curam.custom.workflow.workresolver property to determine
the implementation of the function that is used to allocate tasks in the application. This function is
then called by the workflow engine passing to it the list of allocation targets as determined by the
allocation strategy and also details of the task to be allocated.

After the work resolver is called for the task, the workflow engine makes a call to the method
checkTaskAssignment in the curam.core.sl.impl.TaskAssignmentChecker class. This
function checks the assignment status of the task (that is, to ensure that it is assigned to at least
one user or organizational object (organization unit, position, or job) or to a work queue). If the
task is not assigned, the application property curam.workflow.defaultworkqueue is examined to
see what is specified as the default work queue for workflow. The task is then assigned to that
work queue.

If the task is assigned to one user and only one user after the work is resolved, the system checks
the value of the application property curam.workflow.automaticallyaddtasktousertasks. This flag
controls whether the system automatically adds the specified task being processed to the list of
that user's tasks to allow them to work on it. The default value for the property is NObut if it is
specified as YES, then the system automatically adds that task to the user's My Tasks list in their
Inbox to allow them to work on it.

Description of Context WDOs
The Context_Task workflow data object is available for both allocation function, classic and CER
ruleset mappings. This context workflow data object and its attribute are already described here.

See Description of Context WDOs on page 70.

Business Object Associations

Manual activities, and indeed workflow in general, perform operations on entities that exist in the
application. For this reason, it can be useful to associate a task with the entities that are related to
it for that process. Business object associations essentially provide links between a task and any
application entities of interest for that process. The quintessential examples in Caram include the
Case and Concern entities.

Metadata

<manual -activity id="1" category="ACl">
<t ask>
</t ask>
<al | ocation-strategy type="target"

identifier="1"/>
<event - wai t >

</ event-wait>
<bi z- obj ect - associ ati ons>
<bi z- obj ect - associ ati on bi z-obj ect-type="BOTl1">
<wdo-attri bute wdo- name="TaskCr eat eDetai | s"
name="casel D'/ >
</ bi z- obj ect - associ ati on>

© Merative US L.P. 2012, 2024

1 Cdram Workflow Reference 79

<bi z- obj ect - associ ati on bi z-obj ect-type="BOI2">
<wdo-attri bute wdo- nanme=
"PersonDet ai | sLi st[Cont ext Loop. | oopCount]"
name="identifier"/>
</ bi z- obj ect - associ ati on>
</ bi z- obj ect - associ ati ons>
</ manual -activity>

* biz-object-associations
This tag contains the details of all the business object associations that are specified for the
manual activity.

* biz-object-association
This tag contains the details of one business object association that are specified for that
manual activity. This includes the business object type and the workflow data object attribute
mapping that is associated with that type. This workflow data object attribute mapping
represents the unique identifier of the business object in the association (that is, for a business
object association of type Case, this would represent the unique identifier of the case that is
linked to the task).

* biz-object-type
This tag details the actual business object type for the business object association for the
manual activity. The business object type must be selected in the Process Definition Tool
and is taken from the BusinessObjectType code-table.

Validations

» The business object type that is specified must be a valid codetable code that is contained
within the BusinessObjectType codetable.

* The workflow data object attribute mapped to the business object type of a manual activity
business object association must be valid. This attribute type must be assignable to a type
LONG as this attribute represents a mapping to a unique identifier (for example, a case
identifier or participant identifier).

+ Ifan indexed item from a list workflow data object (that is,

PersonDetailsList[Context Loop.loopCount]) is used in a business object association
mapping, then the workflow data object must be a list workflow data object and the activity
that contain the mapping must be contained within a loop.

+ Ifthe Cont ext _Paral | el workflow data object is used in a business object association
mapping, then the activity that contains the mapping must be a Parallel manual activity.

* If an indexed item from the Parallel List Workflow Data Object is used in a business object
association mapping, then the activity that contains the mapping must be a Parallel Activity
(that is, ParallelListWDO[Context Parallel.occurrenceCount]). The workflow data object
being indexed by the Context Parallel Workflow Data Object must be the Parallel Activity
List Workflow Data Object.

Code

* Business Object Association Admin API
A number of functions are provided on the BusinessObjectAssociationAdmin
class to allow the manipulation of business object associations. For further
details of the functions available, see the associated Javadoc specification for the
BusinessObjectAssociationAdmin class.

© Merative US L.P. 2012, 2024

Curam 8.1.2 80

Runtime Information

Business object associations have no functional impact on the execution of a manual activity.
The workflow engine examines the metadata and places a record on the BizObjAssociation
entity for each business object association specified. The business object type, the value of

the workflow data object attribute mapping and the identifier of the newly created task that is
associated with the manual activity are all used in this record creation.

Event Wait

Since a manual activity requires some action to be taken by a user before it can be completed and
the process can continue, there must be some way to notify the workflow engine when the work
required is performed. Since this semantic is similar to that of the event wait activity the event
wait mechanism is reused for manual activities.

Prerequisites

The details of an event wait and its associated metadata (which are also applicable to a manual
activity) can be found in 1.8 Event Wait on page 53.

Description of Context WDOs

The Context_Task workflow data object is available for use in the input mappings for deadline
functions that are associated with the event wait of a manual activity. It is available for the input
mappings that are associated with allocation function, classic, or CER rule input mappings. It is
also available to use as a mapping for the event match data of a specified event wait associated
with a manual activity.

This context workflow data object and its attribute are already described here (see Description of
Context WDOs on page 70).

1.10 Decision

A typical requirement in business processes is to have a human agent make decisions that have
simple answers. An example of such a decision is to approve or reject a case or to supply some
simple information such as the age of the claimant. Using manual activities to solicit such
information would require that a different user interface screen for each question be available in
the application. This is cumbersome and since process definitions can change over time, such user
interface screens would be somewhat temporary.

The Decision activity is a specialization of a Manual activity that drives a metadata driven user
interface for asking simple questions. The questions and possible answers are in the activity
metadata thus allowing a single user interface to be used for a wide range of questions. Two types
of questions are currently supported. These are multiple choice type questions and questions that
require an answer that can be supplied in one field on the user interface.

© Merative US L.P. 2012, 2024

1 Cdram Workflow Reference 81

Prerequisites

* The base details common to all the activity types that are supported by Caram workflow
are described in 1.6 Base Activity on page 38 and are applicable to the decision activity
described here.

e The workflow metadata constructs are common between manual activities and decision
activities (that is, allocation strategy, task subject, task deadline, and so on). The details of
these can be found in 1.9 Manual on page 63.

Task Details

Decision activities notify users that they are required to do some work, and assign a task to them
based on the allocation strategy defined.

This activity is similar to a 1.9 Manual on page 63. The task automatically links to a user
interface page in the application that assembles the decision question from the decision activity
question metadata and moves the workflow forward after the decision answer is provided.
Therefore, a decision activity can have only one associated task action and requires no action
page to be defined for that action.

In addition to the task action, a decision activity can have zero or more secondary actions that are
associated with it. Secondary actions contain a link to a page, which can provide supplementary
information to help the user answer the decision question.

Metadata
<deci sion-activity id="1">

<al l ocation-strategy type="target" identifier="1" />
<message>
<nmessage-t ext >
<l ocal i zed-t ext >
<l ocal e | anguage="en">
Deci de the age of the user %s for Case %n. </l ocal e>
</l ocalized-text>
</ message-t ext >
<nmessage- par anet er s>
<wdo-attri bute wdo- nane="TaskCr eat eDet ai | s"
nane="user Nane" />
<wdo-attri bute wdo- nane=
"Caseli st[Cont ext _Loop. | oopCount]"
nane="identifier" />
</ message- par anet er s>
</ message>
<deci si on-acti on>
<nmessage>
<nmessage-t ext >
<l ocal i zed-t ext >
<l ocal e | anguage="en">
Partici pant Home Page %n for Case %n
</l ocal e>
</l ocalized-text>
</ message-t ext >
<message- par anet er s>

© Merative US L.P. 2012, 2024

Curam 8.1.2 82

<wdo-attri bute wdo- nane="TaskCr eat eDet ai | s"
nane="concernRol el D' />
<wdo-attri bute wdo- name=
"CaselLi st [Cont ext _Loop. | oopCount]"
name="identifier" />
</ message- par anet er s>
</ message>
</ deci si on-acti on>
<secondary-actions>
<secondary-action page-id="Case_vi ewDetail s">
<nessage>
<nmessage-t ext >
<l ocal i zed-t ext >
<l ocal e | anguage="en">Vi ew case details. </l ocal e>
</l ocalized-text>
</ message-t ext >
</ message>
</ secondary-action>
<secondary-action page-id="Case_vi ewdserDetail s">
<nmessage>
<message-t ext >
<l ocal i zed- t ext >
<l ocal e | anguage="en">Vi ew details for user %s.
</l ocal e>
</l ocalized-text>
</ message-t ext >
<nmessage- par anet er s>
<wdo-attri bute wdo- name=
" Chi | dDependent s[Cont ext _Loop. | oopCount] "
nane="user Nane" />
</ message- par anet er s>
</ message>
<l i nk- paranet er nanme="user Nane" >
<wdo- attri bute wdo- name="Chi | dDependent s"
name="chi | dNane" />
</|ink-paraneter>
<mul ti pl e-occurring-action>
<l i st-wdo- name>Chi | dDependent s</ | i st - wdo- nane>
</mul tiple-occurring-action>
</ secondary-action>
</ secondary-acti ons>
<deadl i ne>

</ deadl i ne>
</ deci sion-activity>

+ allocation-strategy
This tag describes the allocation strategy that is used to determine the user who is assigned to
the associated task. For details on allocation strategies, see Allocation strategy on page 70.

* message
This tag represents the parameterized subject message of the task created. For full details on
parameterized messages, see 1.9 Manual on page 63.

© Merative US L.P. 2012, 2024

1 Cdram Workflow Reference 83

* decision-action
This tag represents the parameterized action text message that is associated with the task. The
user clicks this action text to open the auto-generated user interface decision screen with the
relevant question.

* deadline
This tag describes the deadline details for the decision activity. If an answer is not provided
for the decision activity within the deadline duration that is specified, the associated deadline
handler method is started. For more details on deadlines, see Deadline on page 56.

* secondary-actions
This tag describes any optional secondary actions, which can be included with the decision
activity.

* secondary-action
A secondary action contains a parameterized message and a parameterized link to
supporting information to help the user answer the decision question. For details of
parameterized messages and parameterized links within actions, see Metadata on page
64

* page-id
This tag represents the identifier of the target Ciram page, which contains the
supplementary information that is linked to by the secondary action.

* multiple-occurring-action
This tag signifies that this secondary action represents a multiple occurring action. This
means that if this metadata is specified for a secondary action, the workflow engine
creates one secondary action record for each item in the list workflow data object
specified as the multiple occurring action, when that activity is run.

If the multiple occurring action is specified for a secondary action, then an attribute
from the associated list workflow data object must be used as a link parameter for the
secondary action.

* list-wdo-name
The name of the list workflow data object for use with the multiple occurring action.

Validations

* An activity subject must be defined.

* Every workflow data object attribute mapped to the decision activity subject must be a valid
workflow data object attribute.

+ Ifan indexed item from a list workflow data object (that is,
CaseList[Context Loop.loopCount]) is used as a decision subject text parameter, then the
workflow data object must be a list workflow data object and the activity that contains the
mapping must be contained within a loop.

» Ifthe Cont ext _Paral | el workflow data object is used as a decision subject text
parameter, then the activity that contains the mapping must be a Parallel decision activity.

+ Ifan indexed item from the Parallel List Workflow Data Object is used as a decision subject
text parameter, then the activity that contains the mapping must be a Parallel Activity (that
is, ParallelListWDO[Context Parallel.occurrenceCount]). The workflow data object being
indexed by the Context Parallel Workflow Data Object must be the Parallel Activity List
Workflow Data Object.

* The number of placeholders that are used in the subject text and action text must equal the
number of mapped workflow data object attributes (for all locales).

© Merative US L.P. 2012, 2024

Curam 8.1.2 84

If an indexed item from a list workflow data object (that is,

CaseList[Context Loop.loopCount]) is used as a decision task action text parameter, then the
workflow data object must be a list workflow data object and the activity that contains the
mapping must be contained within a loop.

If the Cont ext _Par al | el workflow data object is used as a decision action text parameter,
then the activity that contains the mapping must be a Parallel decision activity.

If an indexed item from the Parallel List Workflow Data Object is used as a decision action
text parameter, then the activity that contains the mapping must be a Parallel Activity (that

is, ParallelListWDO[Context_Parallel.occurrenceCount]). The workflow data object being
indexed by the Context Parallel Workflow Data Object must be the Parallel Activity List
Workflow Data Object.

An allocation strategy must be defined.

The allocation target, function, classic, or CER rule set specified as an allocation strategy must
be valid. If the allocation type is function, it must be a valid Ciram business method and must
exist on the application classpath. If the allocation type is classic or CER rule, it must be a
valid ruleset.

The optional deadline handler, if specified, must be a valid Ctiram business method.

All deadline handler input mappings must be valid. This means that all the input parameter
fields that are required by the specified method are mapped to valid workflow data object
attributes of the correct type.

Each secondary action must have a page link that is specified, which cannot contain white
spaces.

Each secondary action must have a message that is specified.

Secondary action message text must contain a number of placeholders equal to the number of
message parameters specified.

Secondary action message parameters must be mapped to valid workflow data object attributes
of the correct type.

Secondary action page link parameters must be mapped to valid workflow data object
attributes.

If an indexed item from a list workflow data object (that is,

ChildDependents[Context Loop.loopCount]) is used in the secondary action text or secondary
action link parameter mappings, then the workflow data object must be a list workflow data
object and the activity that contains the mapping must be contained within a loop.

If the Cont ext _Par al | el workflow data object is used in the secondary action text or
secondary action link parameter mappings, then the activity that contains the mapping must be
a Parallel decision activity.

If an indexed item from the Parallel List Workflow Data Object is used in the secondary action
text or secondary action link parameter mappings, then the activity that contains the mappings
must be a Parallel Activity (that is, ParallelListWDO[Context Parallel.occurrenceCount]). The
workflow data object being indexed by the Context Parallel Workflow Data Object must be
the Parallel Activity List Workflow Data Object.

The workflow data object specified for use in the multiple occurring action must be a valid
workflow data object in the context of the containing workflow process definition. It must also
be of type List.

At least one attribute from the multiple occurring action list workflow data object must be
used in the link parameters that are specified for a multiple occurring action.

© Merative US L.P. 2012, 2024

1 Cdram Workflow Reference 85

Runtime Information

When a decision activity is run, the workflow engine creates the associated task. A snapshot of
the workflow data object data that is required for the decision activity subject and action text
parameters, and any secondary action message text and link parameters, is taken and stored. The
allocation strategy that is associated with the decision activity is started to determine the users
who are assigned the decision task.

The workflow engine also creates an event wait for the DECI SI ON. MADE event with the
associated task identifier as the event match data. The workflow is then paused, awaiting the
raising of this event, which indicates the result of the decision made.

Question Details

The decision activity currently supports both multiple choice and free text questions as question
formats. The auto-generated decision page examines the question format that is required and
generates the relevant question from the question metadata when the user clicks the action that is
associated with the task.

Metadata

Multiple Choice

<deci sion-activity id="1">

<questi on>
<nessage>
<nmessage-t ext >
<l ocal i zed-t ext >
<l ocal e | anguage="en">
Is the clainmant, %s, for Case %n, over 18?
</l ocal e>
</l ocal i zed-t ext>
</ message-t ext >
<message- par anet er s>
<wdo-attri bute wdo-name="Partici pant"
nane="user Nane" />
<wdo-attri bute wdo- nane=
"Caseli st[Cont ext _Loop. | oopCount]"
nane="identifier" />
</ message- par anet er s>
</ message>
<answers multiple-selection="fal se">
<answer nane="yesAnswer">
<answer - t ext >
<l ocal i zed-t ext >
<l ocal e | anguage="en">Yes</| ocal e>
</l ocal i zed-text>
</ answer -t ext >
<choi ce- out put - mappi ng>
<wdo-attri bute wdo- name="Deci si onResul t"
nane="ageBracket" />
<sel ect ed- val ue>18- 65/ sel ect ed- val ue>
<not - sel ect ed- val ue>0-17</ not - sel ect ed- val ue>

© Merative US L.P. 2012, 2024

Curam 8.1.2 86

</ choi ce- out put - mappi ng>
</ answer >
<answer nane="noAnswer">
<answer - t ext >
<l ocal i zed-t ext >
<l ocal e | anguage="en">No</1| ocal e>
</l ocalized-text>
</ answer -t ext >
<choi ce- out put - mappi ng>
<wdo-attri bute wdo- nanme="Deci si onResul t"
nane="ageBracket" />
<sel ect ed- val ue>0- 17</ sel ect ed- val ue>
<not - sel ect ed- val ue>18- 65</ not - sel ect ed- val ue>
</ choi ce- out put - mappi ng>
</ answer >
</ answer s>
</ questi on>

</ deci si on-activity>

* (uestion
This tag represents the question that is associated with the decision activity, which for a
multiple choice question contains the metadata that is outlined here.
* message
This tag represents the parameterized text of the question to be asked for all locales.
s answers
This tag represents a list of answers the user can choose from for the multiple choice question.

* multiple-selection
This tag represents a flag that indicates if the user can select multiple answers from those
supplied, or whether only one can be selected.
e answer
This tag represents an answer that the user can select. There must be at least one answer that is
supplied for a multiple choice question.
* name
This tag represents the name of the answer. After the user selects an answer or answers,
the names of the selected answers are passed to the workflow engine and the process is
progressed. As the engine treats these answers similar to workflow data object attributes,
answer names must be valid Java identifiers.
* answer-text
This tag represents the answer text that the user can select for all locales.
* choice-output-mapping
This tag encloses the metadata that describes how the output from a multiple choice answer is
persisted.

* wdo-attribute
The name of the workflow data object attribute used to store the value of the multiple
choice answer.

* selected-value
If specified, the value in this element is persisted to the workflow data object attribute if
that answer is selected by the user. If the workflow data object attribute is a Boolean type
this value need not be specified, it gets a default value of t r ue.

© Merative US L.P. 2012, 2024

1 Cdram Workflow Reference 87

* not-selected-value
If specified, the value in this element is persisted to the workflow data object attribute if
that answer is not selected by the user. If the workflow data object attribute is a Boolean
type this value need not be specified, it gets a default value of f al se.

Free Text

<deci sion-activity id="1">

<questi on>
<nessage>
<message-t ext >
<l ocal i zed-t ext >;
<l ocal e | anguage="en">
What is the age of the claimnt, %s?
</l ocal e>
</l ocal i zed-t ext >
</ message-t ext >
<message- par anet er s>
<wdo-attri bute wdo-nanme="Parti ci pant"
name="user Nane" />
</ message- par anet er s>
</ message>
<free-text type="INI32">
<wdo-attri bute wdo- nanme="Deci si onResul t"
name="ageO Cl ai mant" />
</free-text>
</ questi on>

</ deci sion-activity>

* question
This tag represents the question that is associated with this decision activity, which for a free
text question contains the metadata that is outlined here.
* message
This tag represents the parameterized text of the question to be asked for all locales.
+ free-text
This tag contains the details of the free text answer that the user must supply.
* type
This tag represents the required data type of the free text answer that must be supplied.
* wdo-attribute
This tag represents the workflow data object attribute that maps the free text answer back into
the workflow engine.

Validations

* The answer format and question text must be specified for a decision activity.

* The number of placeholders that are used in question text must equal the number of mapped
workflow data object attributes (for all locales).

» Ifan indexed item from a list workflow data object (that is,
CaseList[Context Loop.loopCount]) is used as a question text parameter, then the workflow

© Merative US L.P. 2012, 2024

Curam 8.1.2 88

data object must be a list workflow data object and the activity that contains the mapping must
be contained within a loop.

+ Ifthe Cont ext _Par al | el workflow data object is used as a question text parameter, then
the activity that contains the mapping must be a Parallel decision activity.

+ Ifan indexed item from the Parallel List Workflow Data Object is used as a question text
parameter, then the activity that contains the mapping must be a Parallel Activity (that is,
ParallelListWDO[Context Parallel.occurrenceCount]). The workflow data object being
indexed by the Context Parallel Workflow Data Object must be the Parallel Activity List
Workflow Data Object.

» For a question with a Free Form Text answer format, the answer data type must be specified
and the workflow data object attribute that is mapped must be valid and match the answer data
type. The workflow data object attribute that is mapped cannot be a constant workflow data
object attribute.

* For a question with a List answer format, at least one answer option must be listed. All answer
names must be valid Java attribute names.

Runtime Information

When an answer for a decision activity question is supplied, the DEClI SI ON. MADE event is
raised with the task identifier of the decision activity task that is used as the event match data.
The workflow event handler processes this event and this causes the workflow process to be
progressed.

If the answer supplied is a free text answer, it is mapped to the specified workflow data object
attribute for use later in the process where required.

Description of Context WDOs
The Context_Decision workflow data object is available for use in a data item or function
condition.

See 1.16 Conditions on page 110 for a transition from a decision activity. The attributes
available depend on the answer format that is defined for the activity.

* Free Text Answer
If the answer format is a free text, answer the attribute available is:

* Context_Decision.value
The value of the free text answer supplied. This can be used in transition conditions and
can be mapped to a specified workflow data object attribute.

* Multiple Choice Answer
In this instance, the Context Decision workflow data object is populated with attributes for
each of the answers available, each being of type Boolean. This indicates whether that answer
is selected or not. In the multiple choice answer metadata snippet here, (Multiple Choice
on page 85, if the user selected the first answer (Yes), this would be reflected with the
following Context Decision workflow data object attribute that is set to t r ue:

* Context_Decision.yesAnswer
This represents a Boolean that indicates whether the yes answer for the question is selected.
This can be used only in transition conditions from the decision activity.

Alternatively, if the user selected the second answer (No), this would be reflected with the
following Context Decision workflow data object attribute that is set to t r ue:

© Merative US L.P. 2012, 2024

1 Cdram Workflow Reference 89

* Context Decision.noAnswer
This represents a Boolean that indicates whether the no answer for the question is selected.
This also can be used only in transition conditions from the decision activity.

1.11 Subflow

When a complex business process is designed, it might become too large to manage as one
monolithic process definition. A subflow activity allows another process definition to be enacted
as part of another process.

It can be a prudent decision to design process definitions as a set of subflows regardless of
whether there are concerns over size. This would allow sections of the business process to change
without affecting others. Also, the subflow processes might act as reusable components that
customers can reuse in building their own higher-order process definitions.

Prerequisites

» The base details common to all the activity types that are supported by Caram workflow
are described in 1.6 Base Activity on page 38 and are applicable to the subflow activity
described here.

Subflow Process

To enact a process as a subflow, the subflow activity must identify the process that is enacted by
name. As with the other process enactment mechanisms, the released version of the process is the
one that is enacted.

Subflows can be enacted synchronously. This means that the branch of the parent workflow that
contains the subflow activity that started the subflow process waits for that subflow process to
finish before continuing.

Alternatively, a subflow can be enacted asynchronously. This means that after the subflow
activity starts the subflow process, the branch that contains that subflow activity continues
immediately with the outcome of the subflow process that has no effect on the parent process.

Metadata

<subflowactivity id="1">
<subf | ow wor kf | ow pr ocess="ApproveCase" synchronous="true"/>

</ subfl ow activity>
e subflow

* workflow-process
The name of the workflow process to start when the activity is run. Process names are case-
sensitive and the process name that is specified here must exactly match that of the process
to start as a subflow.

© Merative US L.P. 2012, 2024

Curam 8.1.2 90

* synchronous
A flag to indicate whether the subflow is run synchronously or not (see: Subflow Process
on page 89) relative to its parent process.

Validations

* A workflow process for the subflow activity must be specified.
» The workflow process that is specified as the subflow must have at least one released version.

Input Mappings

Data is supplied to the subflow when it is enacted from the parent process workflow data objects.

The subflow activity defines the mapping between the parent process's workflow data objects and
the subflows enactment data.

Metadata

<subflowactivity id="1">

<i nput - mappi ngs>
<mappi ng>
<sour ce-attribute wdo- nanme="Mni nt ai nCase"
name="casel D' />
<target-attribute wdo-name="ApproveCase"
name="casel D' />
</ mappi ng>
<mappi ng>
<source-attribute wdo-name="Mi nt ai nCase"
nane="concernRol el D' />
<target-attribute wdo-name="ApproveCase"
nane="concernRol el D' />
</ mappi ng>
<mappi ng>
<source-attribute wdo-nane=
"PersonDet ai | sLi st[Context Loop. | oopCount]"
nane="identifier" />
<target-attribute wdo-name="PersonDetail s"
nane="identifier" />
</ mappi ng>
<mappi ng>
<source-attribute wdo-nanme="Chil dDetail sLi st"
name="identifier" />
<target-attribute wdo-nanme="0d ai mant Dependent Li st "
name="identifier" />
</ mappi ng>
</i nput - mappi ngs>
</ subfl ow activity>
* input-mappings
This tag specifies how data is mapped from the currently running process to a subprocess
as enactment data when the subprocess is started. The process that is specified as a subflow

cannot have any workflow data object attributes that are marked as required at enactment in
which case no input mappings are required.

© Merative US L.P. 2012, 2024

1 Cdram Workflow Reference 91

* mapping
A mappi ng represents the data that is pushed from a workflow data object attribute to an
attribute in the process that is enacted as a subflow. If a list of data is required to enact the
subflow process, attributes from list workflow data objects can be used for this purpose. The
number of mappings that are specified is governed by how many attributes are marked as
required at enactment in the subflow process, since all such attributes must be populated when
the process starts.

* source-attribute
This tag represents a workflow data object attribute from the parent process to use to populate
the associated attribute in the subflow when it is enacted.

* target-attribute
This tag represents a workflow data object attribute from the subflow to be populated with
data from the associated attribute in the parent process at enactment time.

* source/target-attribute

* wdo-name
This tag represents the name of a Curam workflow data object as described in 1.4
Workflow Data Objects on page 25).

* name
This tag represents the name of a Curam workflow data object attribute as described in 1.4
Workflow Data Objects on page 25).

Validations

» Every workflow data object attribute that is marked as required for enactment in the subflow
must be specified in the input mappings. If no workflow data object attributes are marked as
required for enactment in the subflow process, then no input mappings are specified.

* The data type of the workflow data object attribute that is specified by the t ar get -
at tri but e tag must match or be assignable from the attribute that is specified by the
source-attri but e tag.

+ Ifan indexed item from a list workflow data object (that is,

PersonDetailsList[Context Loop.loopCount)) is specified in the sour ce- att ri but e tag
of the subflow input mapping, then that workflow data object must be a list workflow data
object and the subflow activity that contains the input mapping must be contained within a
loop. The data type of the workflow data object attribute that is specified by the t ar get -
at tri but e tag must match or be assignable from the attribute that is specified by the
source-attri but e tag.

» If the specified subflow input mapping uses a list workflow data object, then the workflow
data object attributes for both the parent sour ce- at t ri but e and subflow process
target-attribut e mustbe list workflow data objects.

Output Mappings

Output Mappings are only applicable to synchronous subflow activities as asynchronous subflows
can continue without completing the activity. Data is supplied to the parent process from the
subflow activity after it completed. The subflow activity defines the mapping between a subflow
workflow data object attribute and the parent process's workflow data object attribute.

Metadata

<subfl owactivity id="1">

© Merative US L.P. 2012, 2024

Curam 8.1.2 92

<out put - nappi ngs>
<mappi ng>
<source-attribute wdo- name="Subf | owCaseWDO'
nane="parti ci pant Nane" />
<target-attribute wdo- nanme="CaseWO'
nane="parti ci pant Nane" />
</ mappi ng>
<mappi ng>
<source-attribute wdo- name="Subf | owChi | dDet ai | sLi st"
name="identifier" />
<target-attribute wdo-nanme="Chil dDetail sList"
nane="identifier" />
</ mappi ng>
</ out put - mappi ngs>

</ subfl owact i vi ty>

* output-mappings
This tag specifies how data is mapped from the started subprocess to the parent process when
the subprocess is completed. The process that is specified as a subflow cannot have any output
mappings that are defined, in which case the subflow completes as normal.

* mapping
This tag represents the data that is pushed from a subflow workflow data object attribute to
an attribute in the parent process. If a list of data is being pushed from the subflow process
to the parent process, attributes from list workflow data objects can be used for this purpose.
The number of mappings that are specified is governed by the number of output mappings
specified.

+ source-attribute
This tag represents a workflow data object attribute from the subflow process, which is used to
populate the associated attribute in the parent process upon completion.

* target-attribute
This tag represents a workflow data object attribute from the parent to be populated with data
from the associated attribute in the subflow process when completed.

* source/target-attribute

* wdo-name
This tag represents the name of a Ciram workflow data object (as described in 1.4
Workflow Data Objects on page 25).

* name
This tag represents the name of a Curam workflow data object attribute (as described in 1.4
Workflow Data Objects on page 25).

Validations

» The parentt ar get - at t ri but e and subflow sour ce- attri but e workflow data
object attributes used in the subflow output mapping must be valid within the context of the
containing process definition.

» The data type of the workflow data object attribute that is specified by the parent t ar get -
at t ri but e tag must match or be assignable from the attribute that is specified by the
subflow sour ce-att ri but e tag.

© Merative US L.P. 2012, 2024

1 Cdram Workflow Reference 93

+ If'the specified subflow output mapping uses a list workflow data object, then the mapped
workflow data object attributes for both the parent t ar get - at t ri but e and subflow
process sour ce- at t ri but e must be of type list.

1.12 Loop Begin and Loop End

Many business processes are required to repeat until some condition is met. In Cliram, this is
implemented by using the loop-begin and loop-end activities. All activities that are between a
loop-begin and its associated loop-end activity are repeated until the loop completes.

Prerequisites

* The base details common to all the activity types that are supported by Caram workflow are
described in 1.6 Base Activity on page 38 and are applicable to the loop begin/loop end
activities described here.

Overview

In a process definition, loop begin and loop end activities come in pairs, and the metadata allows
each loop-begin to know its associated loop-end and vice versa. To add a sequence of activities
to a loop, a transition is created from the loop-begin activity to the first activity to be repeated.
Subsequent activities in the sequence are linked by using transitions as would normally be done
outside a loop; however, the last activity in the sequence has a transition to the loop-end activity.
A common impulse is to also add a transition from the loop-end activity to the start to create the
cycle; however, this is incorrect and results in an invalid process definition.

A loop must also specify the criteria that the loop uses to determine whether to terminate. To
support this, a loop in Curam workflow has a loop-exit condition.

Loops can contain other loops when they are fully nested and do not interleave each other.
Therefore, this ensures that the loops and the process definition remain a valid block structure as
required by the Caram workflow engine (see 1.18 Workflow Structure on page 116).

Loop Type

In addition to the loop-exit condition, a loop also specifies whether the condition should be tested
before the loop runs (a while loop) or at the end of a loop execution (a do-while loop). A while
loop can never run the activities in the loop and jump to the activity that follows the loop if the
exit condition is met at the start of the loop, whereas a do-while loop runs the activities in the
loop at least once.

Metadata

Loop Begin Activity

<l oop- begin-activity id="1">

<l oop-type nanme="do-while"/>

© Merative US L.P. 2012, 2024

Curam 8.1.2 94

<condi ti on>
<expression id="1" data-item| hs="Context Loop.| oopCount"
operation="&t;" data-itemrhs="User Account WDO. si ze()"/>
</ condi tion>

<bl ock- endpoi nt-ref activity-id="5"/>

</l oop-begi n-activity>

* loop-type
The | oop-t ype specifies how the loop is executed as detailed in Loop Type on page 93.
The only two valid values for the namne attribute are Whi | e and do- whi | e.

+ condition
The condi t i on tag specifies the condition that is evaluated based on Workflow Data Object
values (see: 1.4 Workflow Data Objects on page 25). When list workflow data objects are
present in the workflow, two attributes that are not part of that workflow data object metadata
are made available when creating a loop condition expression by using a list workflow data
object. These are as follows:

» size() : This evaluates to a number (of type INTEGER) to indicate the number of items in
the list.

* isEmpty() : This evaluates to a BOOLEAN flag to indicate if the list contains any elements
or not.

The actual condition metadata is used in other places in the process definition metadata and is
thus described in the dedicated chapter, 1.16 Conditions on page 110.

* block-endpoint-ref
The bl ock- endpoi nt - r ef in this context allows the | oop- begi n-activity to
recognize its associated | oop- end- act i vi t y. This information is useful to the workflow
engine when the loop is run. For example, when a while loop's exit condition evaluates to
t r ue before the loop runs, the bl ock- endpoi nt - r ef tells the workflow engine which
activity to jump to and continue the execution of the process.

Loop End Activity

<l oop-end-activity id="3">

<bl ock-endpoi nt-ref activity-id="1"/>

</l oop-end-activity>

* block-endpoint-ref
The bl ock- endpoi nt - r ef in this context allows the | oop- end-activity to
recognize its associated | oop- begi n-acti vi t y. This information is useful to the
workflow engine when the loop is run. For example, if after the execution of a loop the exit
condition evaluates to false, the bl ock- endpoi nt - r ef tells the workflow engine which
activity to jump to in order to begin another iteration of the loop.

© Merative US L.P. 2012, 2024

1 Cdram Workflow Reference 95

Runtime Information

It is expected that any activity within a loop is run more than once during the execution of a
process instance. To prevent the process instance data for the activity that is becoming corrupted
by subsequent iterations, each activity instance is associated with a specific iteration and so is
uniquely identifiable by the workflow engine regardless of the number of times the loop is run.

Description of Context WDOs
The Context Loop workflow data object is available on the following occasions:
* When creating the loop condition associated with a loop-begin activity.

* When creating the outgoing transition conditions from a loop-begin activity, or from any
activity that is contained within a loop (see 1.16 Conditions on page 110).

* When creating the input mappings for any automatic activity or subflow activity within a loop.

* When creating the input mappings for any allocation strategy function or deadline handler
function present in an activity within a loop.

* When specifying a subject text parameter for a Manual or Decision Activity that is contained
within a loop, or for a notification that is attached to an activity that is contained within a loop.

* When specifying action text parameters and action link parameters for a Manual or Decision
Activity that is contained within a loop, or for a notification that is attached to an activity that
is contained within a loop.

* When specifying the identifier for a business object association for a Manual Activity that is
contained within a loop.

* When specifying a question text parameter for both a free-form or multiple choice question for
a Decision Activity that is contained within a loop.

* When specifying a body text parameter for a notification that is attached to an activity that is
contained within a loop.

The Context_Loop workflow data object attributes available are:

* Context Loop.loopCount
The number of times that a loop is iterated over.

1.13 Parallel

In business processes, it can be required to send multiple tasks to different human agents at the
same time to expedite the progress of the overall process. When the number of parallel paths are
known at development time, this can easily be achieved by using a split. However, in some cases
the number of paths is not known until runtime. Such situations can be modeled by using parallel
activities.

A parallel activity acts as a wrapper around existing activities. The effect of using one of these
new activities at runtime is that multiple instances of the wrapped activity are run in parallel. To
date, the only supported types of wrapped activity are Manual (1.9 Manual on page 63) and

© Merative US L.P. 2012, 2024

Curam 8.1.2 96

Decision (1.10 Decision on page 80) activities. Therefore, running a parallel activity currently
equates to the creation and allocation of multiple tasks in parallel.

Prerequisites

» The base details common to all the activity types that are supported by Ciram workflow
are described in 1.6 Base Activity on page 38 and are applicable to the parallel activity
described here.

» As parallel activities wrap existing activities in a workflow process definition, the metadata
that is described in 1.9 Manual on page 63 and 1.10 Decision on page 80 is also
relevant to the parallel activity described here.

Metadata

A parallel activity must specify the type of activity it wraps. A list workflow data object must
also be associated with the parallel activity. The number of items in this list workflow data object
then determines the number of instances of that wrapped activity that is created by the workflow
engine at runtime.

Generic Metadata for a Parallel Activity

<parallel-activity id="1" category="ACl">
<l i st -wdo- name>Enpl oyer Det ai | sLi st WDO</ | i st - wdo- nane>
<manual -activity>
<nane>
<l ocal i zed- t ext >
<l ocal e | anguage="en">
CheckEnpl oyer Det ai | sTasks</ | ocal e>
</l ocalized-text>
</ name>
</ manual -activity>
</parallel-activity>

<paral lel-activity id="1" category="ACl">
<li st-wdo- name>Chi | dDet ai | sLi st WDO</ | i st - wdo- nanme>
<deci si on-activity>
<nane>
<l ocal i zed-t ext >
<l ocal e | anguage="en">Val i dat eChi | dDet ai | s</ | ocal e>
</l ocalized-text>
</ nanme>
</ decision-activity>
</parallel-activity>

* manual-activity/decision-activity
This reflects the type of activity that is wrapped by the parallel activity. Currently, two types
of wrapped activities are supported, 1.9 Manual on page 63 and 1.10 Decision on page

© Merative US L.P. 2012, 2024

1 Cdram Workflow Reference 97

80 activities. The types of activity that can be wrapped by a parallel activity can be seen in
the ParallelActivityType codetable.

* list-wdo-name
Each parallel activity must have a list workflow data object associated with it. The number of
instances of the wrapped activity that are created at runtime is determined by the number of
items in this list workflow data object.

Metadata for a Parallel Manual Activity
This example illustrates the metadata that is associated with the wrapped activity of type Manual.

This metadata is exactly the same that as that seen for a manual activity that is described in 1.9
Manual on page 63 and hence is not described here again. Any validations that pertain to

the parallel manual activity mappings are also described in 1.9 Manual on page 63. The
Context Parallel Workflow Data Object and an indexed item from the Parallel Activity List
WDO can be used in all the available mappings for a Parallel Manual Activity. Examples of such
usage can be seen here:

<paral lel-activity id="1" category="ACl">
<l i st -wdo- name>Enpl oyer Det ai | sLi st WDO</ | i st - wdo- nanme>
<manual -activity>
<t ask>
<nmessage>
<message-t ext >
<l ocal i zed- t ext >
<l ocal e | anguage="en">Check enpl oyer
details for %s. This is enployer nunber: 9%n.
</l ocal e>
</l ocal i zed-t ext >
</ message-t ext >
<nessage- par anet er s>
<wdo-attribute
wdo- nanme=
"Enpl oyer Det ai | sLi st WD(J Cont ext _Paral | el . occurrenceCount]"
nane="ful | Name" />
<wdo-attribute
wdo- nanme=
"Context _Parallel" name="occurrenceCount" />
</ message- par anet er s>
</ message>

</t ask>
<event-wait wait-on-all-events="fal se">
<event s>
<event identifier="1" event-cl ass="EMPLOYER"
event -t ype="DETAI LSCHECKED" >
<event-match-attri bute wdo-nane=

"Enpl oyer Detai | sLi st WD(J Cont ext _Paral | el . occurrenceCount]
name="identifier" />

n

</ event >
</ event s>
</ event -wait >
<bi z- obj ect - associ ati ons>
<bi z- obj ect - associ ati on bi z- obj ect -t ype="BOr2">
<wdo-attribute

© Merative US L.P. 2012, 2024

Curam 8.1.2 98

wdo- nane=

"Enpl oyer Det ai | sLi st Wb(J Cont ext _Paral | el . occurrenceCount]"
nane="identifier" />
</ bi z- obj ect - associ ati on>
</ bi z- obj ect - associ ati ons>
</ manual -activity>
</parallel-activity>

Metadata for a Parallel Decision Activity
This example illustrates the metadata that is associated with the wrapped activity of type

Decision.

This metadata is exactly the same as that seen for a decision activity that is described in 1.10
Decision on page 80 and hence is not described here again. Any validations that pertain to

the parallel decision activity mappings are also described in 1.10 Decision on page 80. The
Context Parallel Workflow Data Object and an indexed item from the Parallel Activity List
WDO can be used in all the available mappings for a Parallel Decision Activity. Examples of
such usage can be seen here:

<parallel-activity id="1" category="ACl">
<l i st -wdo- nane>Chi | dDet ai | sLi st WDO</ | i st - wdo- nane>
<deci si on-activity>

<nmessage>
<nessage-text >
<l ocal i zed-t ext >
<l ocal e | anguage="en">In this task the details
for child %4s nust be validated. This is child
nunber: 9%n.
</l ocal e>
</l ocal i zed-t ext>
</ message-t ext >
<message- par anet er s>
<wdo-attribute
wdo- nane=
"Chil dDet ai | sLi st WD Cont ext _Paral |l el . occurrenceCount]"”
name="ful | Nane" />
<wdo-attribute
wdo- nane=
"Context Parallel"” nane="occurrenceCount" />
</ message- par anet er s>
</ message>
<deci si on-acti on>
<nmessage>
<nessage-t ext >
<l ocal i zed-t ext >
<l ocal e | anguage="en">Validate the child details
for %s associated with this case %2n. </l ocal e>
</l ocalized-text>
</ message-t ext >
<nmessage- par amet er s>
<wdo-attribute
wdo- nane=
"Chi | dDet ai | sLi st Wb Cont ext _Par al | el . occurrenceCount]"
nanme="ful | Nane" />
<wdo-attri bute wdo- nane="CaseDetail s"

© Merative US L.P. 2012, 2024

1 Cdram Workflow Reference 99

nanme="identifier" />
</ message- par anet er s>
</ message>
</ deci si on-acti on>

<questi on>
<nmessage>
<nmessage-t ext >
<l ocal i zed-t ext >
<l ocal e | anguage="en">Are the details for this
child whose first nane is %s and second nane
9%®2s correct ?</| ocal e>
</l ocalized-text>
</ message-t ext >
<nmessage- par amet er s>
<wdo-attribute
wdo- nane=
" Chi | dDet ai | sLi st Wb(J Cont ext _Par al | el . occurrenceCount]"
nane="first Name" />
<wdo-attribute
wdo- nane=
"Chil dDet ai | sLi st WD Cont ext _Paral | el . occurrenceCount]"”
nanme="sur nane" />
</ message- par anet er s>
</ message>
<answers nul tipl e-sel ection="fal se">
<answer nane="answer Yes" >
<answer - t ext >
<l ocal i zed-t ext >
<l ocal e | anguage="en">Yes</| ocal e>
</l ocalized-text>
</ answer -t ext >
</ answer >
<answer nane="answer No" >
<answer - t ext >
<l ocal i zed-t ext >
<l ocal e | anguage="en">No</1| ocal e>
</l ocalized-text>
</ answer -t ext >
</ answer >
</ answer s>
</ questi on>

</ deci si on-activity>
</parallel-activity>

Validations

* A workflow data object must be specified for a parallel activity. This must be a list workflow
data object and it must be valid in the context of the containing workflow process definition.

» All of the other validations that pertain to parallel activities are described in the sections that
describe the activities that a parallel activity can wrap (that is, 1.9 Manual on page 63 and
1.10 Decision on page 80).

© Merative US L.P. 2012, 2024

Curam 8.1.2 100

Runtime Information

The workflow engine loads the instance data for the list workflow data object associated with the
parallel activity. For each item in the list workflow data object, a new instance of the wrapped
activity is created and run.

The details of what occurs when these instances of the wrapped activity are run can be found in
the relevant sections that describe the activities that a parallel activity can wrap (1.9 Manual on
page 63 and 1.10 Decision on page 80).

At runtime, the Workflow Engine treats a Parallel Activity as if it were multiple activities,
contained within a Parallel (AND) Split/Join block. One Activity Instance is created per item in
the Parallel Activity List WDO (for example, if that list contains three items, then three Activity
Instances is created). This ensures that all of the activity instances that are associated with the
parallel activity must be completed before the actual parallel activity is deemed to be complete
and the workflow can progress.

To resolve the mappings that are associated with a Parallel Activity, each instance of
the wrapped activity is associated with one item from the Parallel Activity List WDO.
The item is indexed by using the Context Parallel Workflow Data Object (for example,
ChildDetailsListWDO[Context Parallel.occurrenceCount]).

Description of Context WDOs

Each Parallel Activity Instance is associated with one item from the Parallel Activity List WDO.
This item is accessed by using the Context Parallel Workflow Data Object to index the Parallel
Activity List WDO (for example, ChildDetailsListWDO[Context Parallel.occurrenceCount]).
Indexed items can then be used to map data in the usual way.

Examples of such mappings can be seen in the metadata examples that are shown here (see
Metadata for a Parallel Manual Activity on page 97 and Metadata for a Parallel Decision
Activity on page 98. The one attribute available on this workflow data object is:

* Context_Parallel.occurrenceCount
Each Parallel Activity Instance is associated with one item from the Parallel Activity List
WDO. The occurrenceCount attribute is the index of that item within the Parallel Activity
List WDO. It is of type INTEGER and is a zero-based index.

1.14 Activity Notifications

The workflow engine is able to notify interested users about the progress of a workflow process
instance. Essentially the workflow engine can raise a notification when an activity runs if the
notification is specified in the associated process definition metadata. A notification is specified
for an activity as more metadata that can be attached to any activity type.

When the workflow engine runs an activity it checks whether a notification is configured for that
activity. If one exists, a notification is created by the workflow engine that details that a particular
step in the workflow process is performed. The delivery of these notifications to the user is
determined by the notification delivery mechanism that is configured in the Ctiram application.
Notifications can be delivered by using emails, as alerts sent to a user's inbox, or by using both
emails and alerts.

© Merative US L.P. 2012, 2024

1 Caram Workflow Reference 101

Notification Details

A notification is simply information that is sent to a human agent when a step in the process
executes. Notifications manifest themselves as alerts in a user's inbox or as emails.

The agents to which the notification must be sent are determined by the allocation strategy (see
Notification Allocation Strategy on page 105) specified for the notification. The details that are
displayed to the user in the alert or email are specified as part of the notification metadata.

Metadata

<manual -activity id="1" category="ACl">

<notification delivery-nmechani sm="DML" >
<subj ect >
<nessage>
<nmessage-t ext >
<l ocal i zed-t ext >
<l ocal e | anguage="en">
The case nunber %n for d ai mrant %2s has
been cl osed.
</| ocal e>
</l ocalized-text>
</ message-t ext >
<nmessage- par anet er s>
<wdo-attri bute wdo-nane=
"Caseli st[Cont ext _Loop. | oopCount]"
nanme="identifier" />
<wdo-attri bute wdo- nane="Per sonDet ai | s"
nanme="user Nane" />
</ message- par anet er s>
</ message>
</ subj ect >
<body>
<nmessage>
<nmessage-t ext >
<l ocal i zed-t ext >
<l ocal e | anguage="en">
This case concerned %n and cl ai rant 9%2s.
</l ocal e>
</l ocal i zed-t ext >
</ message-t ext >
<message- par anet er s>
<wdo-attri bute wdo- nane=
"CaselLi st [Cont ext _Loop. | oopCount]"
nanme="identifier" />
<wdo-attri bute wdo- nanme="Per sonDet ai | s"
nane="ful | Nane" />
</ message- par anet er s>
</ nessage>

</ body>
<al l ocation-strategy type="target" identifier="1" />
<actions>
<action page-i d="vi ewlaskHone" principal -action="fal se">
<message>

<nmessage-t ext >

© Merative US L.P. 2012, 2024

Curam 8.1.2 102

<l ocal i zed-t ext >
<l ocal e | anguage="en">
View the task associated with the %n case.
</l ocal e>
</l ocal i zed-t ext>
</ message-t ext >
<message- par anet er s>
<wdo-attri bute wdo- nane="TaskCr eat eDet ai | s"
nane="casel D' />
</ message- par anet er s>
</ message>
<l i nk- paranet er nane="chil dl D"'>
<wdo- attri bute wdo- nanme="Chi | dDependent s"
name="childl D' />
</|ink-paraneter>
<mul ti pl e-occurring-action>
<l i st - wdo- nane>Chi | dDependent s</ | i st - wdo- nane>
</mul tipl e-occurring-action>
</ action>
<action page-i d="vi ewCaseHone" principal -action="fal se">
<message>
<nessage-t ext >
<l ocal i zed-t ext >
<l ocal e | anguage="en">
Vi ew the case details for %n.
</l ocal e>
</l ocal i zed-t ext >
</ message-t ext >
<message- par anet er s>
<wdo-attri bute wdo- nane=
"Caseli st [Cont ext _Loop. | oopCount]™
nane="identifier" />
</ message- par anet er s>
</ message>
<l i nk- par anet er nanme="casel D'>
<wdo-attri bute wdo- nanme=
"Caseli st[Cont ext _Loop. | oopCount]"
name="identifier" />
</|ink-paraneter >
</ action>
</ actions>
</notification>

</ manual -activity>

* delivery-mechanism
This tag describes the mechanism that is used to deliver the notification. The delivery
mechanisms available are specified in the application codetable DeliveryMechanism. Both
the Ctram application and customers can extend this codetable and add further delivery
mechanisms if required. The delivery mechanism that is specified plays no functional role in
the workflow engine as it calls the delivery mechanism that is configured in the application to
deliver the newly created notification.

* subject
This tag represents a parameterized text message that details the subject of the notification for
all locales. This subject is displayed in the user's inbox for the notification alert. For details on
parameterized messages, see 1.9 Manual on page 63.

© Merative US L.P. 2012, 2024

1 Claram Workflow Reference 103

* body
This tag represents a parameterized text message that represents the body of the text that is
associated with this notification for all locales. When the user clicks the notification subject in
the inbox, this body text is displayed as the full text of the notification.

+ allocation-strategy
This tag represents the allocation strategy that is used to determine the agents to which this
notification is sent to (see Notification Allocation Strategy on page 105).

+ actions
In the same way a 1.9 Manual on page 63 can have actions that are associated with its
task, a notification can associate actions that the notified user can take. This piece of metadata
represents the details of these notification actions and the metadata details for actions is
detailed in Task details on page 64.

* multiple-occurring-action
This tag signifies that this notification action represents a multiple occurring action. This
means that if this metadata is specified for a notification action, the workflow engine creates
one action record for each item in the list workflow data object specified as the multiple
occurring action, when that activity is run.

If the multiple occurring action is specified for a notification action, then an attribute from
the associated list workflow data object must be used as a link parameter for the notification
action.

* list-wdo-name
The name of the list workflow data object for use with the multiple occurring action.

Validations

* A subject must be defined for the notification.

* Every workflow data object attribute mapped to a notification subject must exist in the
containing process definition and be a valid workflow data object.

+ Ifanindexed item from a list workflow data object (that is,

CaseList[Context Loop.loopCount]) is used as a notification subject text parameter, then
the workflow data object must be a list workflow data object and the activity containing the
mapping must be contained within a loop.

» Ifthe Cont ext _Paral | el workflow data object is used as a notification subject text
parameter, then the activity that contains the notification must be a Parallel activity.

+ Ifan indexed item from the Parallel List Workflow Data Object is used as a notification
subject text parameter, then the activity that contains the mapping must be a Parallel Activity
(that is, ParallelListWDO[Context Parallel.occurrenceCount]). The workflow data object
being indexed by the Context Parallel Workflow Data Object must be the Parallel Activity
List Workflow Data Object.

* A notification body must be defined.

* Every workflow data object attribute mapped to a notification body must exist in the
containing process definition and be a valid workflow data object.

* Ifan indexed item from a list workflow data object (that is,

CaseList[Context Loop.loopCount)) is used as a notification body text parameter, then the
workflow data object must be a list workflow data object and the activity that contains the
mapping must be contained within a loop.

+ Ifthe Cont ext _Paral | el workflow data object is used as a notification body text
parameter, then the activity that contains the notification must be a Parallel activity.

* Ifan indexed item from the Parallel List Workflow Data Object is used as a notification body
text parameter, then the activity that contains the mapping must be a Parallel Activity (that

© Merative US L.P. 2012, 2024

Curam 8.1.2 104

is, ParallelListWDO[Context Parallel.occurrenceCount]). The workflow data object being
indexed by the Context Parallel Workflow Data Object must be the Parallel Activity List
Workflow Data Object.

* An allocation strategy must be defined for an activity notification.

+ If a function is specified as the notification allocation strategy, it must be a valid Ciram
business method that returns an AllocationTargetList object.

» If the allocation type is classic or CER rule, then the specified ruleset must be valid.

* A delivery mechanism must be defined for an activity notification.

* The workflow data object attributes mapped to the notification action text and notification
action link parameters for a notification action must exist in the containing process definition.

+ Ifanindexed item from a list workflow data object (that is,
PersonDetailsList[Context Loop.loopCount]) is used as a notification action text or
notification action link parameter mapping, then the workflow data object must be a list
workflow data object and the activity that contains the mapping must be contained within a
loop.

» Ifthe Cont ext _Paral | el workflow data object is used as a notification action text or
notification action link parameter mapping, then the activity that contains the notification must
be a Parallel activity.

+ Ifan indexed item from the Parallel List Workflow Data Object is used as a notification action
text or notification action link parameter mapping, then the activity that contains the mapping
must be a Parallel Activity (i.e. ParallelListWDO[Context Parallel.occurrenceCount]). The
workflow data object being indexed by the Context Parallel Workflow Data Object must be
the Parallel Activity List Workflow Data Object.

* The number of placeholders that are used in the notification subject text, notification action
text and notification body text must equal the number of mapped workflow data object
attributes (for all locales).

* The workflow data object specified for use in the multiple occurring action must be a valid
workflow data object in the context of the containing workflow process definition. It must also
be of type List

* At least one attribute from the multiple occurring action list workflow data object must be
used in the link parameters that are specified for a multiple occurring action.

Code

For each action defined, the action page must refer to a valid Cram page in the application
whose page parameters are fully populated by the action link parameters that are contained in the
notification metadata.

A LocalizableStringResolver API is provided to the application, which allows for
parameterized message strings to be resolved. The methods in this API resolve and return the
specified message for the required locale. Along with this, any workflow data objects to be used
in the message placeholders is resolved and included as part of the string returned.

As part of the LocalizableStringResolver APl,aNotificationStringResolver
interface is provided for resolving the parameterized messages that are associated with
notifications. The notification subject, body, and action text can be resolved for use in the
application by using the methods that are contained in this API. The application should use these
methods to process the notification when the workflow engine starts the associated notification
delivery method in the application.

© Merative US L.P. 2012, 2024

1 Caram Workflow Reference 105

Runtime Information

After the workflow engine is completed running an activity, it checks whether an associated
notification is defined for that activity. If one is defined, the engine determines the users to be
notified from the allocation strategy that is employed and calls the notification delivery method in
the application with the notification details.

Notification Allocation Strategy

Prerequisites
The notification allocation strategy determines the user or users to be notified when the associated
activity occurs.

Defining the notification allocation strategy to be used is the same as that used for manual activity
tasks (see Allocation strategy on page 70).

Code
The application must implement the NotificationDelivery callback interface to determine
how notifications are handled in the application.

The workflow engine calls the deliverNotification method in the
curam.util.workflow.impl.NotificationDelivery implementation class to process
the notification. The engine passes both the list of allocation targets that are determined by the
allocation strategy and the details of the required notification to this application method.

The application property curam.custom.notifications.notificationdelivery defines what
implementation of the NotificationDelivery interface is used by the workflow engine to
process the notification.

The deliverNotification method in this default implementation class is overloaded. This

is because the various allocation strategy types return the allocation targets in different formats.
However, this is an implementation detail that developers of custom notification delivery classes
should not have to deal with especially since the business processing for all versions of the
method should be the same.

package curamutil.workfl ow inpl;

public interface NotificationDelivery {

bool ean deliverNotification(
final NotificationDetails notificationDetails,
final Cbject allocationTargets);

bool ean deliverNotification(
final NotificationDetails notificationDetails,
final Map all ocationTargets);

bool ean deliverNotification(
final NotificationDetails notificationDetails,
final String allocationTargetlD);

© Merative US L.P. 2012, 2024

Curam 8.1.2 106

}

To mitigate against this issue the
curam.core.sl.impl.DefaultNotificationDeliveryAdapter provides a more
convenient mechanism for implementing a work resolver. This class implements the different
methods and converts their input parameters into allocation target lists allowing developers of
custom notification delivery logic to extend this class and implement one method that is called
regardless of the source of the allocation targets.

package curam core.sl.inpl;

public abstract class DefaultNotificationDeliveryAdapter
i mpl ements curamutil.workflow inpl.NotificationDelivery

public abstract bool ean deliverNotification(
final NotificationDetails notificationDetails,
final AllocationTargetList allocationTargets);

}

In addition to this adapter class the application includes with a notification

delivery implementation that is ready for immediate use. This class is called
curam.core.sl.impl.DefaultNotificationDelivery and it also serves as an example of
how to extend the adapter.

The notification delivery strategies are listed in the DELIVERYMECHANISM code table.
Adding a new strategy is a matter of extending this code table with a new strategy (for

example SMS) and implementing a delivery strategy that recognizes this code and performs

the appropriate logic. However, since the notification delivery class is set by using a single
application property, replacing the curam.core.sl.impl.DefaultNotificationDelivery
class would disable the immediately available delivery mechanisms. If the goal is to extend
rather replacing the immediately available delivery mechanisms, custom classes should extend
the curam.core.sl.impl.DefaultNotificationDelivery in a way that preserves the
original functionality. The curam.core.sl.impl.DefaultNotificationDelivery classis
implemented with this in mind.

package curam core. sl .inpl

public class Defaul tNotificationDelivery
extends Defaul t NotificationDeliveryAdapter {

publ i c bool ean deliverNotification(
NotificationDetails notificationDetails,
Al l ocati onTarget List allocationTargetlList) {
return sel ectDeliveryMechani sm(
notificationDetails, allocationTargetList);
}

prot ect ed bool ean sel ect Del i ver yMechani sn{
NotificationDetails notificationDetails,
Al'l ocationTargetList allocationTargetlList) {

© Merative US L.P. 2012, 2024

1 Claram Workflow Reference 107

bool ean notificationDelivered = fal se;
if (notificationDetails.deliveryMechani sm equal s(
cur am codet abl e. DELI VERYMECHANI SM STANDARD)) {
notificationDelivered = standardDeliverNotification(
notificationDetails, allocationTargetList);
} elseif (

return notificationDelivered;

}

The curam.core.sl.impl.DefaultNotificationDelivery class implements

the deliverNotification method from the abstract adapter but immediately

delegates the identification of the mechanism to use to a protected method. The protected
selectDeliveryMechanism method can be overridden by subclasses to identify any custom
delivery mechanisms and perform the appropriate operations as shown in the example here:

public class CustonNotificationDeliveryStrategy
extends Defaul t NotificationDelivery {

prot ect ed bool ean sel ect Del i ver yMechani sn{
NotificationDetails notificationDetails,
Al | ocationTarget Li st allocationTargetList) {

bool ean notificationDelivered = fal se;

bool ean superNotificationDelivered = fal se;

superNotificationDelivered = super. sel ectDeliveryMechani sm
notificationDetails, allocationTargetList);

if (notificationDetails.deliveryMechani sm equal s(
curam codet abl e. DELI VERYMECHANI SM CUSTOM)) {
notificationDelivered = custonDeliverNotification(

notificationDetails, allocationTargetList);

return (superNotificationDelivered |
notificationDelivered);

}
}
Notice that the selectDeliveryMechanism method in the custom class first delegates to its
super class before running any of its own logic. Extending the functionality in this was allows
custom classes to start the immediately available delivery mechanism without having to know the
specific codes the parent class recognizes. This approach is also upgrade-friendly as if a future

version of Clram supports more delivery mechanisms immediately available a custom class that
is implemented as shown here does not need to change to avail of the new functionality.

The Boolean flag that is returned from the notification delivery function here is used to indicate to
the Workflow Engine if the notification was delivered to at least one user on the system. If it was
not, then the engine writes a workflow audit record that details this fact.

© Merative US L.P. 2012, 2024

Curam 8.1.2 108

1.15 Transitions

Transitions provide the links between activities. They are the primary flow control construct and
dictate the order in which activities are run. Transitions are unidirectional and an activity can have
multiple outgoing and incoming transitions that form branch and synchronization points in each
case.

Since every process definition must have one start and one end activity, a process definition can
be thought of informally as a directed graph in which activities are the vertices, transitions are
the arcs and every path from the start activity eventually leads to the end activity. See 1.6 Base
Activity on page 38.

Metadata
<wor kf | ow process id="32456" >
<name>Wor kf | owTest Process</ nane>
<wdos>
</ wdos>

<activities>
<start-process-activity id="512">

</§iért-process-activity>
<route-activity id="513" category="ACl">

</route-activity>
<route-activity id="514" category="ACl">

</}6ﬂte—activity>
<end- process-activity id="515">

</ end- process-activity>
</activities>
<transitions>
<transition id="1" fromactivity-idref="512"
to-activity-idref="513" />
<transition id="2" fromactivity-idref="513"
to-activity-idref="514">
<condition>
<expression id="5"
data-item | hs="TaskCreat eDet ai | s. reservedByl nd"
operation="==" data-itemrhs="true"
openi ng- bracket s="2"/>
<expression id="6"
data-item| hs="TaskCreat eDetail s. subj ect”
oper ati on="&anp; gt ;"
dat a-i tem r hs="&anp; quot ; MANUAL&anp; quot ; "
conj uncti on="and" cl osi ng-brackets="1"/>
<expression id="7"
data-item | hs="TaskCreat eDet ai | s. st at us”
operation="!="
dat a-i t em r hs=" &anp; quot ; OPEN&anp; quot ; "
conj unction="or"/ >

© Merative US L.P. 2012, 2024

1 Caram Workflow Reference 109

<expression id="8"
data-item | hs="TaskCreat eDet ai | s. st at us”
operation="&anp;lt;="
dat a-itemrhs="&anp; quot ; | NPROGRESS&anp; quot ; "
conjunction="or" cl osing-brackets="1"/>
</ condi tion>
</transition>
<transition id="3" fromactivity-idref="514"
to-activity-idref="515">
</transitions>
</ wor kf | ow process>

* transitions
A workflow process definition must contain at least one transition. This tag contains the
details of all of the transitions between the activities in the specified workflow process
definition.

* transition

This tag contains the details of one transition between two activities in the specified workflow

process definition. The following mandatory fields that constitute a transition are described

here:

o id
This attribute is a 64- bi t identifier that is supplied by the Ctiram key server when
transitions are created in the Process Definition Tool (PDT). The transition identifier is
required to be unique within a process definition but global uniqueness within all of the
process definitions on the system is not required.

* from-activity-idref
This attribute is the 64- bi t identifier of the source activity of the transition.

* to-activity-idref
This attribute is the 64- bi t identifier of the target activity of the transition.

* condition
Transitions can optionally have a condition to decide whether the transition is followed. A
condition is a list of expressions that perform logical operations on workflow data objects
attributes. Conditions are described in more detail in 1.16 Conditions on page 110.

Validations

» The source activity that is defined for the transition must be a valid activity within the
containing workflow process definition.

* The target activity that is defined for the transition must be a valid activity within the
containing workflow process definition.

» The source and target activities that are defined for a transition cannot be the same activity.

» The start process activity in a workflow process definition must not contain any incoming
transitions.

» The end process activity in a workflow process definition must not contain any outgoing
transitions.

* All activities that are defined in the workflow process definition, except for the end process
activity, must contain at least one inbound transition.

* All activities that are defined in the workflow process definition, except for the start process
activity, must contain at least one outbound transition.

© Merative US L.P. 2012, 2024

Curam 8.1.2 110

Runtime Information

Activities that perform some application-related work (as opposed to workflow engine work

only such as route and end process activities) require a clear transactional boundary between

the engine and application code. It is also useful to have asynchronous invocations between the
workflow engine and the application (for example, a user should not have to wait while workflow
transitions to the next activity before control is returned to them in the user interface).

To this end, there are three distinct functions present in a workflow activity, start (),
execute () and complete (). After the completion of an activity in the workflow process
instance, the workflow engine calls the function to continue the process. This function evaluates
the outgoing transitions from that activity to determine which one(s) are followed.

For each activity to be followed, the corresponding start () function is called. The appropriate
activity instance data is then set up for that activity. If the activity is to be run directly with

no JMS (Java Message Service (JMS) APl is a part of Java EE) messaging required (that is, a
route activity is always run directly as there is no application-related work that is involved), the
execute () method is called here. Otherwise, a JMS message is sent to run the specified activity
(that is, an automatic activity). The workflow message handler resolves the process and activity
that is specified in the message and calls the execute () function on the activity.

After the application code is called to complete the work that is specified by the activity, another
message is sent to complete the activity. Again, the workflow message handler resolves the
process and activity that is specified in the message and calls the complete function for the
activity. After the activity is marked as complete, the function to continue the process is called
again to resolve the set of transitions to be followed from the completed activity and the process
begins again.

1.16 Conditions

The flow control constructs require or support the evaluation of conditions to determine how the
workflow proceeds. The Loop Begin activities must have some metadata that specifies the loop
exit conditions, while transitions can optionally have a condition to decide if the transition is
followed.

See 1.15 Transitions on page 108 and 1.12 Loop Begin and Loop End on page 93.

This section describes the process definition metadata construct that represents a condition.

A condition is a list of expressions that perform logical operations on workflow data objects
attributes. The condition itself is a compound whose value is conjunction or disjunction of its
constituent expressions. The parent constructs (loops and transitions) are responsible for taking
appropriate actions as a result of the evaluation of conditions.

Metadata

<wor kf | ow process id="32456" >
<activities>
Q)éctivities>
<transitions>
<transition id="1" fromactivity-idref="512"

© Merative US L.P. 2012, 2024

1 Claram Workflow Reference 111

to-activity-idref="513">
<condi ti on>
<expression id="5"
data-item | hs="TaskCreat eDetail s. reserveToMel nd"
operation="==" data-itemrhs="true"
openi ng- bracket s="2"/>
<expression id="6"
data-item | hs="TaskCreat eDetail s. casel D'
oper ati on="&anp; anp; gt ; "
data-itemrhs="2" conjunction="and"
cl osi ng- brackets="1"/>
<expression id="7"
data-item | hs="TaskCreat eDetail s. stat us"
operation="1="
data-itemrhs="" Conpl et ed" ;"
conj unction="or"/>
<expression id="8"
data-item | hs="TaskCreat eDetail s. stat us"
oper ati on="&anp; anp; | t; ="
data-itemrhs="" C osed" ;"
conjunction="or" closing-brackets="1"/>
</ condi tion>
</transition>
<transition id="2" fromactivity-idref="512"
to-activity-idref="513">
<condi ti on>
<expression id="9" function="isNot hing"
data-itemrhs="TaskCreat eDetail s. subject"/>
</ condi tion>
</transition>
<transition id="3" fromactivity-idref="513"
to-activity-idref="514">
<conditi on>
<expression id="10"
data-itemrhs="TaskCreateDetail s.reserveToMel nd"
conj unction="and" function="not" />
</ condi tion>
</transition>
<transition id="4" fromactivity-idref="514"
to-activity-idref="515">
<condi ti on>
<expression id="6"
data-item|l hs
="d ai mant Dependent s[Cont ext _Loop. | oopCount]"
oper ati on="&anp; anp; gt ;"
data-itemrhs="20"
conj uncti on="and"
cl osi ng- brackets="1"/>
</ condi tion>
</transition>
</transitions>
</ wor kf | ow- process>

condition

This metadata is mandatory for a loop begin activity (as a loop must have an exit condition
that is specified for it) but optional for a transition (a transition cannot have a condition that is
specified for it). It contains the details of all the expressions that are defined for the condition.

© Merative US L.P. 2012, 2024

Curam 8.1.2 112

expression

This metadata tag contains the details of one expression that is contained in a condition. There
may be one or many expressions that are specified for an associated condition. Two types

of expression can be defined in a condition. These are function expressions (using one of

two predefined functions, not () and isNothing ()) and data item expressions (where the
condition expression created applies the chosen operator to either two workflow data object
attributes, or a workflow data object attribute and a constant). A transition expression consists
of the following attributes:

id

This attribute represents a 64- bi t identifier that is supplied by the Curam key server
when transition expressions are created in the PDT. The expression identifier is required
to be unique within a process definition but global uniqueness within all of the process
definitions on the system is not required.

data-item-rhs

This metadata tag represents the name of the data item to use on the right side of the
condition expression. For a data item condition expression, it can represent a workflow
data object attribute (see 1.4 Workflow Data Objects on page 25 or a constant value

that the chosen operator is applied to. For function condition expressions, this represents a
workflow data object attribute that either of the two predefined functions are used against
to evaluate the condition.

data-item-lhs

This metadata tag is optional as it is not required for a function condition expression. For
a data item condition expression, it represents the name of the data item to use on the left
side of the condition (that is, a workflow data object attribute).

operation

This metadata tag is optional as it is not required for a function condition expression. For
a data item condition expression, it represents an identifier for the logical operation that is
applied to either two workflow data object attributes or a workflow data object attribute
and a constant value. The following is the list of valid operators that can be used in a data
item condition expression:

Table 4: Condition Expression Operators

Operator Explanation

== equal to

I= not equal to

<= less than or equal to

>= greater than or equal to

< less than

> greater than
conjunction

This metadata tag represents an identifier for a logical conjunction that can be used in
either a function or data item condition expression. There are two possible values for this
attribute, and (the default) and or . When a condition consists of multiple expressions, the
logical conjunction is used in the evaluation of the complete condition.

© Merative US L.P. 2012, 2024

1 Claram Workflow Reference 113

* function
This metadata tag is optional as it is only used when a function condition expression
is specified. As stated previously, there are two predefined functions, Not () and
isNothing () . The Not () function acts as a logical inversion operator. In normal cases,
this is applied to a Boolean value. The i sNothing () function is applied to any workflow
data object attribute type other than a Boolean value. It is used to test the scenarios where
required data does not exist or is not provided. The function returns a Boolean value of
Tr ue if the workflow data object attribute being examined does not contain any data.

* opening-brackets
This metadata tag is optional (the default is 0) as it cannot be specified for either type of
condition expression. It represents the number of opening brackets to insert at the start of
the expression.

* closing-brackets
This metadata tag is optional (the default is 0) as it cannot be specified for either type of
condition expression. It represents the number of closing brackets to insert at the end of the
expression.

The number of opening and closing brackets that are specified for an individual expression
do not have to match (unless there is only one expression in the condition). The overall
number of opening and closing brackets in the condition as a whole (with all of the
expressions included) must be the same. Therefore, care should be taken when the number
and position of opening and closing brackets are specified within an individual expression,
and the condition as a whole, as these brackets help determine how the condition and

the individual expressions within that condition are evaluated. The same care should be
taken when the conjunction of an expression is specified as failure to do so can lead to
unexpected results.

Validations

» The workflow data object attribute that is specified as the right side data item of the condition
expression must be a valid workflow data object attribute in the context of the containing
workflow process definition.

+ The workflow data object attribute that is specified as the left side data item of the condition
expression must be a valid workflow data object attribute in the context of the containing
workflow process definition.

* The operator that is specified in a data item condition expression must be a valid and
supported operator.

* The function that is specified in a function condition expression must be a valid and supported
function.

* The conjunction that is specified in a condition expression must be valid and supported
conjunction.

* The number of opening brackets and the number of closing brackets must be equal in the
context of the overall condition.

+ If the function Not () is specified for a function condition expression, then the type of the
workflow data object attribute that is specified as the right side data item of the expression
must be of type BOOLEAN.

+ If'the function isNothing () is specified for a function condition expression, then the type of
the workflow data object attribute that is specified as the right side data item of the expression
must not be of type BOOLEAN.

© Merative US L.P. 2012, 2024

Curam 8.1.2 114

+ If'the right side data item of a data item condition expression is a workflow data object
attribute, the type of this attribute must be compatible with the corresponding left side data
item workflow data object attribute. Likewise, if the right side data item is specified as a
constant value, it must be compatible with the type of the corresponding left side data item
workflow data object attribute.

+ If either the right side or left side of a transition condition expression contains an indexed item
from a list workflow data object (that is, ChildDependents[Context Loop.loopCount].age),
then the associated workflow data object must be a list workflow data object and the activities
that are involved in the transition must be contained within a loop.

» For a loop condition expression, if either the right side or left side of the expression specifies
the size() attribute for a workflow data object, then that workflow data object must be a list
workflow data object.

* For aloop condition expression, if either the right side or left side of the expression specifies
the size() attribute for a workflow data object, then the item on the other side of the expression
must be assignable to the type INTEGER.

* For a loop condition expression, if either the right side or left side of the expression specifies
the isEmpty() attribute for a workflow data object, then that workflow data object must be a
list workflow data object.

» For a loop condition expression, if either the right side or left side of the expression specifies
the isEmpty() attribute for a workflow data object, then the item on the other side of the
expression must be assignable to the type BOOLEAN.

1.17 Split/Join

Transitions link activities in a process definition. In the most basic configuration of activities
and transitions, each activity has only one incoming and one outgoing transition. However it is
often useful to follow more than one path out of an activity that result in a split (that is, multiple
transitions that emanate from an activity).

To support a valid block structure in a process definition (see 1.18 Workflow Structure on page
116), each split must be matched by a join (that is, multiple transitions meeting at one activity).
In general, a split allows multiple threads of work to be done at the same time while a join is the
reciprocal synchronization point for those threads.

There are two reasons for an activity to have a split (and by extension some other activity down
the line to have a join). The first is to allow work that does not have dependencies to be done in
parallel while the second is to allow a choice to be made between a number of different paths in
the workflow.

At the metadata level, each activity has a split and a join type. When the activity has only one
outgoing or incoming transition, a type of none is assigned to the split or join in each case. The
other two split and join types, choi ce (also known as XOR) and par al | el (also known as
AND), are self-explanatory and are the primary subject of this section.

Choice XOR Split

Metadata

<manual -activity id="1" category="ACl">

© Merative US L.P. 2012, 2024

1 Claram Workflow Reference 115

<join type="and"/>

<split type="xor">
<transition-id idref="1"/>
<transition-id idref="2"/>
<transition-id idref="3"/>
<transition-id idref="4"/>

</split>

<t ask>

</ task>

<al | ocation-strategy type="target"

i denti fi er="HEARI NGSCHEDULE"/ >
<event-wait>

</ event-wait>
</ manual - activity>
o split
This tag is present for each activity and it contains the details of the split from the activity.
This includes a list of the transitions from the specified activity that is resolved by the
workflow engine when the associated activity is completed to examine if they can be followed
or not.

The order of the transitions in this list is important for a split type of XOR as it is the first
transition that is eligible in the ordered list of transitions that are followed by the workflow
engine. In the metadata example here, if the transition conditions for transition identifiers 2, 3
and 4 are satisfied, it is the transition with the identifier of 2 that is followed as this is the first
eligible transition in the list of ordered transitions.

- type
This attribute represents the type of the split. As described here, there are three possible
split types. A split type of none indicates that there is only one outgoing transition from
the specified activity. A split type of Xor indicates a choice and this means that the first
eligible transition from the list of ordered transitions is followed. A split type of and
indicates a parallel path of execution, which ensures that all of the eligible transitions listed
in the ordered list of transitions are followed in parallel.
* transition-id
This tag contains a reference to the specified transition. There are multiple entries of this
metadata tag when the split type is xor or and.

o idref
This attribute contains a reference to a transition in the workflow process definition.

Parallel AND split

Metadata

<manual -activity id="1" category="ACl">

<join type="none"/>

<split type="and">
<transition-id idref="1"/>
<transition-id idref="2"/>
<transition-id idref="3"/>

© Merative US L.P. 2012, 2024

Curam 8.1.2 116

<transition-id idref="4"/>
</split>
<t ask>
</ task>
<al l ocation-strategy type="target"

i denti fi er =" HEARI NGSCHEDULE"/ >
<event -wai t >

</ event-wait>

</ manual - activity>
The metadata for the split type of and is similar to the split type of xor (see Choice XOR
Split on page 114). The difference is that the type of split is specified as and. This ensures
that when the workflow engine is determining the list of transitions to follow from a specified
activity, the order of the transitions in this list is not important as all eligible transitions in an and
split is followed. The ordered list of transitions is maintained in this instance for this split type
to facilitate the changing of the split type from and to an Xor , in which case the order of the
transitions becomes important again.

1.18 Workflow Structure

The structure of a workflow process is determined by the activities in the process and the
transitions between them. Hence a workflow forms a Graph in which the activities are vertices.
The transitions are arcs (the graph that is formed by a workflow can be viewed by using the
Visualize Workflow Process feature in the Process Definition Tool).

In order for the workflow engine to successfully interpret and run a process, the graph that is
formed by that process must meet certain criteria. The section presents those criteria under two
main headings: Graph Structure and Block Structure.

Graph Structure

Since a set of activities and transitions in a process form a Graph, Graph Theory can be applied to
detect several well-known structural problems before a process is ever run.

Graph Theory Graph Theory is a branch of mathematics. Fortunately, those parts of graph
theory that are relevant to workflow are simple. Hence, the section does not require any prior
knowledge of graph theory (a degree in mathematics is definitely not required!). There is a
wealth of information about graph theory on the Internet, where further discussion on many of
the topics that are discussed in the section can be easily found.

For example: consider a process in which an activity has a transition to another activity, which in
turn has a transition back to the first activity. This forms a cycle in the process graph.

If there were no conditions on the transitions, the process would be guaranteed to end up in an
infinite loop. These loops are known as informal loops (or 'ad hoc' loops) and their presence
renders several useful structural validations impossible. For this reason (among others), Cliram
workflow provides formal constructs for delimiting iterative sections of a process (the loop-begin
and loop-end activities). This allows it to detect the presence of ad hoc loops in processes and
prevents such processes from being released.

© Merative US L.P. 2012, 2024

1 Caram Workflow Reference 117

Code Analogies Many developers are familiar with the programming-language GOTO
statement and the curly braces that are commonly used to delimit the start ({) and end (}) of a
formal loop.

GOTO is analogous to ad hoc loops in a workflow. The curly braces are analogous to the
formal loop-begin and loop-end activities in a workflow.

Block Structure

There are several workflow elements, which can affect the choice of flow path (or paths) through
a workflow at run time.

These include:

¢ Choice XOR Split on page 114
e Parallel AND split on page 115
e 1.12 Loop Begin and Loop End on page 93

These elements always come in pairs. This is because they demarcate areas where the process
should exhibit a specific behavior (one related to the flow of control). These areas are normally
referred to as 'blocks', because they have a specific start-point that must have a corresponding end
point.

Consider a process with a structure where all paths that are emerging from a Choice Split
(guaranteed to follow only one outbound path) all converge at a Parallel Join (which waits until
all inbound paths complete before the next activity is run). In this case, the process is guaranteed
to stall at the Parallel Join. This is an example of a problem with the block-structure that can be
detected by validations before a process is even run.

An Analogy for Blocks

A common analogy for how "blocks" work in a workflow is the way that brackets (like this!)
work in a sentence. Brackets have an explicit start point '(', which is always matched by a specific
end point). They demarcate an area of the sentence that has a specific meaning.

The way that brackets work in a mathematical expression is a closer analogy. In addition to
matching opening and closing brackets, a mathematical expression can use several types of
brackets. The bracketed expressions can be nested inside one another, but cannot be interleaved.
Blocks work similarly in a workflow.

Block Types Supported by Workflow

The following sections describe the different types of blocks in Curam workflow, how they begin/
end and what their purpose is.

'‘Choice' (XOR) Block

A Choice Block is started at a Choice (XOR) Split and ended at a Choice (XOR) Join (the
'brackets'). It indicates that, of the possible paths within the block, no more than one can be
followed.

The split has several transitions outbound from it, indicating the possible paths that a process
instance might follow. Since this is a Choice block, the paths are mutually exclusive - only one is
followed by a process instance.

© Merative US L.P. 2012, 2024

Curam 8.1.2 118

The Choice Split must be matched by a corresponding Choice Join. This indicates the point at
which the process ceases to be distinct for each path, so the paths are merged back together (that
is, the remaining process is common).

'Parallel' (AND) Block
A Parallel Block is started at a Parallel (AND) Split and ended at a Parallel (AND) Join (the
'brackets'). It indicates that, of the possible paths within the block, many or all can be followed.

The split has several transitions outbound from it, indicating the possible paths that a process
instance might follow. Since this is a Parallel block, any number of the paths can be followed in
parallel (assuming their transition conditions are met).

The Parallel Split must be matched by a corresponding Parallel Join. This indicates the point at
which all the parallel paths must be synchronized before the workflow can continue.

‘Loop’' Block

A Loop Block is started at a loop-begin activity and ended at a loop-end activity (the 'brackets').
It indicates that the section of the workflow that is delimited by the loop-begin and loop-end
activities should be repeated when the loop condition is met.

The loop-begin activity marks the point to which execution should return if the loop condition is
met (that is, the place to return to if the engine determines that the loop should iterate). The loop-
end activity marks the point to which execution should jump if the loop condition is not met.

Structural Rules

There are certain structural rules that workflow designers should be aware of when process
definitions are constructed. When a Ctiram workflow process is validated, the validations assess
whether the structure of the process conforms to these rules. Like all validations, the aim is to
ensure that the process can be run by the workflow engine.

Graph Structure Rules

A Cuaram process must form a graph that has the following properties: directed, connected, and
acyclic. This might sound complicated, but these are just the technical terms for some simple
graph properties.

* A "directed" graph is one in which each edge goes only one way (it is usually referred to as a
digraph). In workflow terms, this means that a transition from activity A to activity B cannot
be used to get from B back to A. This is a given in Ctiram workflow. It is mentioned here only
because the 'acyclic' property (see here) is defined differently for graphs and digraphs.

* A "connected" graph is one in which every vertex can be reached. In workflow terms, this
means that every Activity in the process must be reachable on at least one path from the start
activity to the end activity.

This prevents workflows from having a structure such that one or more activities might never
be run.

* Finally, an "acyclic" digraph is one in which there are no directed cycles. In workflow terms,
this means that there can be no ad hoc loops (that is, loops constructed by using transitions
instead of loop-begin and loop-end activities).

Ad hoc loops might seem convenient, but (like GOTO statements in programming languages)
they can make a process difficult to read and understand. Using explicit loop constructs leads
to clearer, more understandable process definitions.

© Merative US L.P. 2012, 2024

1 Claram Workflow Reference 119

In addition, it allows the engine to know where looping can occur, so it can track how many
times a loop iterates at run time.

Block Structure Rules

As mentioned earlier, the way that brackets work in a mathematical expression is a close analogy
for how "blocks" work in a workflow. Recall - there are several types of blocks: Choice, Parallel,
and Loop.

In Curam workflow:

* Any block-starting constructs (Choice Split, Parallel Split, or Loop- Begin Activity) must be
terminated by a corresponding block-ending construct (Choice Join, Parallel Join, or Loop-
End Activity in each case).

In the case of Splits and Joins - all paths outbound from a split must converge at the
corresponding Join.

Rationale Requiring Splits and Joins (for example) to be matched improves readability.

In a section that contains multiple paths, it makes it clear whether a single path (or many)
can be followed. This in turn makes it clear whether synchronization is required at the point
where the paths merge.

If they were not required to match, it would be possible (easy!) to model processes that
would be guaranteed to stall, or ones in which the end of the process could be reached
before some activities were finished running.

* Blocks can be nested within each other (that is, a Choice Split inside a Loop), but they cannot
be interleaved (for example, none of the transitions from the choice split can go to an activity
outside the loop).

This helps avoid situations that are difficult for the engine to process and are unintuitive for
workflow developers.

Consider a Loop that contains a Join, where the Join has two inbound transitions: one from an
activity inside the loop, the other from an activity outside the loop.

It is difficult in this situation to decide how the join synchronization should work. One
inbound transition can fire only once, the other can fire multiple times. Any rules for handling
such a situation would be arbitrary and hence unintuitive.

Workflows that are defined by using Choice, Parallel, and Loop blocks have a clear, simple
structure whose meaning can be understood at a glance.

Validations

A valid Clram workflow must form a directed, connected, acyclic graph that is block-structured.
Usually these properties (directed, connected, acyclic) are discrete and so they can be checked
independently by the Process Definition Tool (PDT) before a process is released.

The structural validations that are performed on a process definition are done in a distinct order
and these are outlined here.

© Merative US L.P. 2012, 2024

Curam 8.1.2 120

Simple Syntactic Checks
The first set of structural validations that are carried out are simple syntactic checks.

These checks ensure that the activity joins and splits (see 1.17 Split/Join on page 114) in the
process definition are set up correctly. These validations include:

* All activities except the start and end activities must have at least one inbound and one
outbound transition.

* Any activity with more than one inbound transition must have a join type specified (that is, a
join type not equal to NONE).

* Any activity with more than one outbound transition must have a split type (that is, a split type
not equal to NONE).

* Any activity with exactly one inbound transition must have a join type of NONE.

* Any activity with exactly one outbound transition must have a split type NONE.

* The split type for a Parallel activity must be NONE.

* The join type for a Parallel activity must be NONE.

* A parallel activity must have exactly one inbound transition.

* A parallel activity must have exactly one outbound transition.

» The split type of the activity on the far side of the incoming transition to a Parallel activity
must be NONE.

* The join type of the activity on the far side of the outgoing transition from a Parallel
activity must be NONE.

Graph Checks
The second set of structural validations carried out are graph checks. These ensure that the flow
graph is a directed, connected acyclic graph.

These validations include:

* The workflow must form a 'connected' graph. This means that each activity must appear on at
least one path from the start activity to the end activity.

* The workflow must form an acyclic digraph. This means that there can be no path through the
workflow that completes the same activity twice. This validation checks for cycles that are
created by transitions only - cycles that are created with loop-begin and loop-end activities are
perfectly valid.

* Every instance subgraph within the workflow graph must correctly stop. This means that
starting at the start activity, every possible path through the workflow must end up at the end
activity.

Block Checks
The third set of structural validations carried out are block checks. These ensure that the flow
graph is correctly block-structured.

The block-start constructs are: Start Process Activity, Loop Begin Activity, Parallel (AND) Split
and Choice (XOR) Split. Their corresponding block-end constructs are: End Process Activity,
Loop End Activity, Parallel (AND) Join and Choice (XOR) Join.

Based on these, the following block-structure validations are run:

» For every block start, there must be a corresponding block end (that is, if there is a Loop Begin
activity in the workflow, then there must be a corresponding Loop End activity).

© Merative US L.P. 2012, 2024

1 Caram Workflow Reference 121

* The block start/end types must match (that is, if there is a Parallel (AND) Split present in the
workflow graph, then this must be matched by a corresponding Parallel (AND) Join).

* Blocks can be nested but not interleaved.

1.19 Workflow Web Services

Curam workflows can inter-operate with other workflow systems through support for specific
aspects of the Oasis group's Business Process Execution Language (BPEL) standard. BPEL
processes can enact Curam workflow processes and be notified when the process completes.

The Caram workflow engine is not intended to be a fully fledged BPEL orchestration engine.
Instead, the Caram workflows participate in BPEL orchestrated processes. This is done by
providing functionality to expose Ciram workflow processes as web services that can be started
from BPEL process partner links.

Exposing a workflow web service
Workflow web services build over the existing Ctiram web services support.

The workflow engine requires a Business Process Object (BPO) modeled as a Document
Oriented Web Service (see the Curam Inbound Web Services chapter of the Curam Web Services
Guide for details).

The web service BPO is just a front end to the workflow enactment

API (curam.util.workflow.impl.EnactmentService). This

being the case only one such BPO is required per application. An

appropriate BPO is already provided in the Cliram application: Logical

View: :MetaModel: :Curam: :Facades: :Workflow: :WebService: :WorkflowProcessEnactmentWS2.

Curam web services can be customized in other ways, for example, making them secure by using
WS-Security as described in the Secure Web Services section of the Curam Web Services Guide.
All customizations for workflow web services must be made to this BPO.

Note: Since all workflow web services are handled by the same BPO, any customizations
affect all process definitions that are exposed as web services.

Process Enactment
Exposing a Curam workflow process definition as a web service requires marking it as such in the
Process Definition Tool (PDT).

Or directly in the metadata as described in 1.3 Process Definition Metadata on page 22.
After the process definitions are marked as web services the server, the server EAR and the web
services EAR file must be rebuilt.

Like other Caram web services, the WSDL for the service can be accessed only when the web
services EAR is deployed. The name of workflow web service is the same as the process name.
Thus the WSDL can be accessed at a URL similar to the following URL:

http://testserver:9082/CuramWS2/services/<ProcessName>?wsdl

© Merative US L.P. 2012, 2024

Curam 8.1.2 122

The content of the WSDL is determined in part by the input to the process (the WDO attributes
that are marked as required for enactment) and the process output (the WDO attributes marked as
process output. For More information, see Metadata on page 26. The WSDL port type is the
process name and the operation to enact a process is always startProcess.

<wsdl:portType name="SomeCuramWorkflow">
<wsdl:operation name="startProcess">
<wsdl:input message="intf:startProcessRequest"
name="startProcessRequest" />
<wsdl:output message="intf:startProcessResponse"
name="startProcessResponse" />
<wsdl:fault message="intf:InformationalException"
name="InformationalException"/>
<wsdl:fault message="intf:AppException"
name="AppException"/>
</wsdl:operation>
</wsdl:portType>

Figure 2: Process Enactment Port Type

Process completion callback

An external system (probably but not necessarily a BPEL process) that enacts a Ciram workflow
through web services often requires notification that the process that is completed and possibly
some output data from the process definition. Doing this requires a web service that is started
when the process completes to be specified for each process definition.

The callback web service is specified in the process definition metadata by using the PDT or
directly in the metadata as described in 1.3 Process Definition Metadata on page 22.

Note: Before use in a workflow process definition the callback web service must be registered
as a Curam outbound web service connector as described in the Ciiram Outbound Web Service
Connectors chapter of the Curam Web Services Guide.

The callback web service must be implemented by an external system but it must conform to
a port type definition specified by the Ctiram workflow web service, Invocation from BPEL
processes on page 122 has further details.

Invocation from BPEL processes

The creation of BPEL processes that enact Ctiram workflow processes is out of the scope of this
document. However, the WSDL for each workflow process web service contains information that
can be used by BPEL processes.

* Callback Port Type
There is a port type in WSDL for a Ciram workflow web service that is not implemented
by the service itself. The name of this port type is the name of the process with the word
"Complete" appended to it (<ProcessName>Complete).

The purpose of this unimplemented port type is to define the web service interface that a
Curam workflow web service expects to be implemented by the BPEL process that enacted it.
This port type that must be implemented by the callback web service that is configured in the
process definition (see Process completion callback on page 122).

<l--1nmplenmented by the BPEL process-->
<wsdl : port Type nanme="SonmeCur amr kf | owConpl et e" >

© Merative US L.P. 2012, 2024

1 Claram Workflow Reference 123

<wsdl : operati on nane="processConpl et ed" >
<wsdl : i nput message="intf: processConpl et edRequest "
nane="pr ocessConpl et edRequest "/ >
</ wsdl : operati on>
</ wsdl : port Type>

Figure 3: Callback Port Type

* Partner Link Type
Technically the only thing necessary to allow a Ciram workflow process to participate in a
BPEL orchestrated process is to expose the process as a web service. However it is possible
to add some metadata to assist the BPEL process developer by defining the port types that are
involved in the partner link and the roles they play.

The BPEL specification allows partner link types to be defined in the WSDL for the service to
be started in the partner link by using the WSDL extension mechanism. The WSDL generated
for a Ciiram workflow web service defines the partner link type that it expects to participate in
and specifies the port types that play each role.

<l--Partner |link type-->
<partnerLi nkType name="Cur amor kf | owPar t ner Li nk"
xm ns="http://schemas. xm soap. or g/ ws/ 2003/ 05/ par t ner -
l'i nk/ ">
<rol e nane="curantServi ce">
<port Type name="t nsl: SonmeCur amdr kfl ow'/ >
</rol e>
<rol e nane="partner Service">
<port Type nane="tnsl: SoneCur amor kf | owConpl et e"/ >
</rol e>
</ partnerLi nkType>

Figure 4: WSDL extensions for BPEL

1.20 File Locations

While there are utilities like the Process Definition Tool PDT and other administration user
interfaces, the outputs of such tools often need to be exported and version controlled. Of course
these externalized files need to be put back into the runtime system when Caram is built or
installed.

The pattern in Ctiram is to place such files into a predefined source folder from which they are
loaded onto the database (perhaps after some pre-processing). This section describes the location
of workflow-related source files.

Workflow Process Definition Files

Workflow process definitions (both released and unreleased) can be imported onto the relevant
database table by using the standard bui | d dat abase target.

These workflow process definitions must be stored in XML files in a wor kf | ow subdirectory
under the relevant Curam server component directory (for example, . . . \ EJBSer ver

\ conponent s\ cor e\ wor kf | ow for the core component or . . . \ EJBSer ver

\ conponent s\ Appeal \ wor kf | ow for the Appeal component and so on).

© Merative US L.P. 2012, 2024

Curam 8.1.2 124

Each component in the Caram application can have a workflow directory that contains the
process definition XML files relevant to it. Any process definition files that are stored in these
workflow directories are automatically imported when the bui | d dat abase target is run. If
the process definition files are not valid or if the name and version of the definitions do not match
those used in the filenames, the import fails.

The workflow process definition XML files on the file system must follow a strict naming
convention. This is as follows: Process Name vProcess Version.xml where:

* Process Name is the name of the workflow process.
* Process Version is the version of the workflow process.

The same version of a process definition can exist in multiple components in the Cliram
application. The version that is imported is always taken from the component with the highest
component order precedence. Component order precedence is configured by using the
COMPONENT_ORDER_PRECEDENCE environment variable.

Each process definition when imported is assigned a new process definition identifier that is
unique for the database it is imported onto. Different versions of the same process definition

are assigned the same unique identifier and only one unreleased version of a process definition
can be imported. To handle invalid workflow process definitions that are loaded during the

build database target, strict validations are in place in the workflow engine. These ensure that a
workflow process definition cannot be loaded into the process definition cache and run unless it
passes all of the process validations first. These validations are described in the earlier chapters of
this document.

Customizing Workflow Process Definition Files

Creating New Workflow Process Definition Files

All new workflow process definition files must be created in the workflow subdirectory of the
...\ EJBSer ver\ conmponent s\ cust omdirectory. To create a new process definition file,
the PDT can be used to create the required definition and enter all the details. The definition can
then be exported to a file by the tool and placed in the location that is specified here.

Changing An Existing Workflow Process Definition File

Using the PDT, view the latest version of the process definition that requires modification. Create
a version of that process definition by using the tool. Make the changes, validate it and release the
workflow.

Export the newly released workflow process definition by using the PDT and place it into the
workflow subdirectory of the . . . \ EJBSer ver \ conponent s\ cust omdirectory.

Event Definition Files

Events provide a mechanism for loosely-coupled parts of the Caram application to communicate
information about state changes in the system. When one module in the application raises an
event, one or more other modules receive notification of that event occurring provided that they
are registered as listeners for that event.

To use this functionality, some events must be defined, some application code must raise these
events, and some event handlers must be defined and registered as listeners to such events.

Events are defined in Caram in XML files, that specify both the event classes and the event
types. These files are created with a . evX extension and are placed in the event s of a Curam

© Merative US L.P. 2012, 2024

1 Caram Workflow Reference 125

component (for example, . . . EJBSer ver \ conponent s\ cor e\ event s) from where they
are picked up and processed by the build scripts.

There are two types of output that is generated by the evgen command; . j ava files (for code
constants that use events less error prone) and . dnx files (Ctiram database scripts for loading
event definitions onto the database). The Java artifacts that are produced from a merged event file
are placed in the / bui | d/ svr/ event s/ gen/ [package] directory, where [package]

is the package attribute that is specified in the event definition file. The database scripts that

are produced from a merged event file are placed in the / bui | d/ svr/ event s/ gen/ dnx
directory.

The Curam Server Developer's Guide provides a comprehensive description of events and how
they can be used in the Cram application.

1.21 Configuration

Usually, configuration options are not global across all workflow process definitions. Rather they
are specific to each definition and hence are held within the actual process definition itself. That
said, there are a few application properties that affect the Caram Workflow Management System
as a whole. This section describes those properties.

Application Properties

The following application properties can be set in the Application.prx file:

Property Name Description

curam.custom.workflow.workresolver Purpose: The fully-qualified name of the application class that
implements the WorkResolver callback interface. See Allocation
strategy on page 70 for further information.

Type: String

Default Value: curam.core.sl.impl.DefaultWorkResolver

curam.workflow.automaticallyaddtasktousertasks Purpose: After the resolution of the allocation targets for a task, if that
task is assigned to one user and one user only and the value of this
property is set to yes/true, the system will automatically add this task
to a user's My Tasks list in their Inbox to allow them to work on it.

Type: String
Default Value: NO

curam.custom.notifications.notificationdelivery Purpose: The fully-qualified name of the application class that
implements the NotificationDelivery callback interface. See
Notification Allocation Strategy on page 105 for further information.

Type: String

Default Value: curam.core.sl.impl.NotificationDeliveryStrategy

curam.workflow.disable.audit.wdovalueshistory.before Rotpitye: The process instance WDO data auditing table,
'WDOValuesHistory' is populated by the workflow engine at three
distinct points during the execution of a workflow process instance
(before the execution of an activity, after the execution of an activity
and before the evaluation of the transitions from an activity). When
specified to true, this property ensures that no data is written to the
WDO data auditing table before an activity is run.

Type: BOOLEAN
Default Value: FALSE

© Merative US L.P. 2012, 2024

Curam 8.1.2 126

Property Name

Description

curam.custom.workflow.processcachesize

curam.batchlauncher.dbtojms.notification.host

curam.batchlauncher.dbtojms.notification.port

curam.batchlauncher.dbtojms.notification.encoding

curam.workflow.disable.audit.wdovalueshistory.after.agtiippse: The process instance WDO data auditing table,

'WDOValuesHistory' is populated by the workflow engine at three
distinct points during the execution of a workflow process instance
(before the execution of an activity, after the execution of an activity
and before the evaluation of the transitions from an activity). When
specified to true, this property will ensure that no data is written to the
WDO data auditing table after an activity is been run.

Type: BOOLEAN
Default Value: FALSE

curam.workflow.disable.audit.wdovalueshistory.transitiBnrpesiealibe process instance WDO data auditing table,

'WDOValuesHistory' is populated by the workflow engine at three
distinct points during the execution of a workflow process instance
(before the execution of an activity, after the execution of an activity
and before the evaluation of the transitions from an activity). When
specified to true, this property ensures that no data is written to the
WDO data auditing table before the transitions from an activity are
evaluated..

Type: BOOLEAN
Default Value: FALSE

Purpose: The workflow engine caches released versions of process
definitions in memory (to minimize processing when looking up
metadata). This property controls the maximum number of process
versions stored in the cache. When this number is reached, the
engine begins ejecting process versions from the cache, by using

a least-recently-used ejection policy. Runtime modifications to the
value of this property will take effect the next time the workflow engine
attempts to insert a process version in the cache.

Type: Integer
Default Value: 250

curam.batchlauncher.dbtojms.notification.batchlaunch&esoGéram Batch Processing Guide, Section 5.3 for further

information.

See Curam Batch Processing Guide, Section 5.3 for further
information.

See Curam Batch Processing Guide, Section 5.3 for further
information.

curam.batchlauncher.dbtojms.messagespertransactiorBee Cliram Batch Processing Guide, Section 5.3 for further

information.

See Curam Batch Processing Guide, Section 5.3 for further
information.

1.22 JMSL.ite

JMSLite is a Ciram-developed lightweight Java Message Service (JMS) server that runs
alongside the RMI-based test environment. Hence it can run inside supported Integrated

Development Environments (IDEs).

This allows process definitions to be tested inside an Integrated Development Environment, that
is, without requiring the application to be deployed to an EJB server. When used along with the

Process Definition Tool, JMSLite allows developers to define, deploy, and enact workflows - all
within their Integrated Development Environment.

© Merative US L.P. 2012, 2024

1 Caram Workflow Reference 127

What JMSLite Does

JMSLite is a JMS server that implements only those sections of the JMS specification necessary
to support Integrated Development Environment based testing of Ciiram workflows: namely
transactional, point-to-point messaging. This means that JMSLite supports ACID transactions that
involve the application database and the infrastructure-defined workflow queue destinations.

It does not support custom (application-defined) queues or the publish-subscribe domain (that is,
topics).

So, JMSLite allows the workflow enactment service and workflow engine to send JMS messages
asynchronously. This means that application calls to workflow-related infrastructure APIs (such
as the enactment service and event service) are non-blocking. The APIs pass messages to the
workflow engine, which drives process instances asynchronously (for example, runs automatic
activities, creates and allocates Tasks, and so forth).

Why JMSLite?

The purpose of IMSLite is to make the workflow engine behave in an Integrated Development
Environment in the closest possible way to how it behaves when deployed on an application
server. This increases the likelihood of detecting problems early (while testing in the Integrated
Development Environment) rather than late (when testing on an application server). Both risk and
cost are consequently are reduced.

For example, consider the following situation: Suppose the WMS (running in an Integrated
Development Environment) were to enact workflows synchronously.

Reminder In production, workflows are enacted asynchronously because they are assumed to
be long-lived (on the order of hours, days or weeks) relative to normal user operations (order
of seconds or milliseconds).

Suppose also that a developer were to write a method that enacted an automated case-approval
workflow and then (immediately after the call to the enactment service) tried to do something
with the result (for example, check if the case was automatically approved). Since the test
environment operates in a different manner (synchronously) from the production environment -
the code would work fine in test, but would fail in production (this is an example of a 'temporal
coupling' bug).

However, since JMSLite runs asynchronously - this problem would show up in the Integrated

Development Environment in the same way as it would on an application server, consequently
allowing the developer to detect it early.

Using JMSLite

The JMSLite server polls queues and unpacks any messages that it finds on them. These
messages result in calls from the JMSLite server to the RMI server that is required for Integrated
Development Environment -based testing of Curam methods (commonly referred to as
StartServer). The JMSLite server is launched as a thread when the (StartServer) process is
started.

© Merative US L.P. 2012, 2024

Curam 8.1.2 128

Since the JMSLite server dispatches messages to the workflow engine that runs on the RMI
server, it is necessary to start the StartServer in debug mode when workflow methods are
debugged.

Debugging workflows

Normally, Cliram infrastructure methods are started by the application. However, in workflow
the call is often made the other way around, that is, the workflow engine (infrastructure) calls an
application method (for example, a Work Allocation method).

In these cases, it is not possible for an application developer to step from the call to the
curam.util.workflow.impl.EnactmentService.startProcess () method into their
application (Work Allocation) method. In this case, the developer must set breakpoints within
the method they want to debug and then run the method that enacts the workflow. The workflow
engine will then (asynchronously) start the application method, therefore causing the breakpoint
to be reached. The debugger then suspends execution at the specified breakpoint, so allowing
normal debugging.

Application methods that fall into the above category are:

* Automatic Activity methods

* Work Allocation Functions

* The application Notification Delivery Method
» The application Work Resolver Method

1.23 Inbox and Task Management

The following sections describe the configuration and customization options that are available for
the Inbox and Task Management areas of the Ciram WMS.

Tasks are used to assign and track the work of system users and are generated when 1.9 Manual
on page 63, 1.10 Decision on page 80 or 1.13 Parallel on page 95 activities are run by

the Workflow Engine. The Inbox and the associated task management functions are used by the
users of the Caram application to manage these tasks.

Inbox Configuration

Inbox List Sizes Configuration Settings
There are a number of task list views available in the Inbox.

These include the following:

* My Open Tasks : A list of tasks that the user is working on.

* My Deferred Tasks : A list of tasks that the user is working on but is deferred to a later date.
* Available Tasks : A list of tasks that are available to the user to work on.

» Task Query Search Results : A list of tasks that are the result of running a task query.

* Work Queue Tasks : A list of tasks that are assigned to a work queue.

There is also a list in the Inbox that displays the notifications that are delivered to a user.

© Merative US L.P. 2012, 2024

1 Claram Workflow Reference 129

* My Notifications : A list of notifications that are delivered to the user.

The Inbox list views can be configured to limit the number of records that are returned to the user.
The following application properties can be set in the Application.prx file to effect this change.

Table 5: Inbox List Sizes Configuration Settings

Property Name Description

curam.inbox.max.task.list.size Purpose: The value of the property controls the number
of tasks that are displayed in the various Inbox task list
views. The Inbox task lists pages that are affected by
the value of this property include the following: My Open
Tasks; My Deferred Tasks; Available Tasks; Task Query
Search; Work Queue Tasks. If the number of tasks to be
displayed exceeds the specified value, then a message is
displayed informing the user that not all the records that
match the search criteria of the page are being displayed.
This message displays both the number of tasks that are
being displayed and also the total number of tasks that
match the search criteria.

Type: Integer
Default Value: 100

curam.notification.max.list.size Purpose: The value of the property controls the number of
notifications that are displayed in the Inbox My Notifications
list view. If the number of notifications to be displayed
exceeds the specified value, then a message is displayed
informing the user that not all the records that match
the search criteria of the page are being displayed. This
message displays both the number of notifications that are
displayed and also the total number of notifications that
match the search criteria.

Type: Integer
Default Value: 100

Get Next Task Configuration Settings
There are a number of shortcut functions available in the Inbox to retrieve the next task to work
on.

These functions include the following:

* Get Next Task - retrieves the next task from the tasks available to the user.

* Get Next Task From Preferred Org Unit - retrieves the next task assigned to the user's
preferred organization unit.

* Get Next Task From Preferred Queue- retrieves the next task assigned to the user's preferred
work queue.

* Get Next Task From Queue- retrieves the next task assigned to a work queue that the user
selects.

The algorithm that is used by these shortcut functions to retrieve the next task can be configured
by using the following application properties in the Application.prx file:

© Merative US L.P. 2012, 2024

Curam 8.1.2 130

Table 6: Get Next Task Configuration Settings

Property Name Description

curam.workflow.reservenexttaskwithpriorityfilter Purpose: The value of the property controls whether the get
next task algorithm uses the priority of a task to determine the
next task to retrieve. If set to YES, the default, the priority of the
task is used for this purpose (the priorities as specified in the
curam.workflow.taskpriorityorder) property. Otherwise, the task to
be retrieved is based on tasks that are assigned to the user for the
longest period of time.

Type: String

Default Value: Yes

curam.workflow.taskpriorityorder Purpose: There are three task priorities that are specified in the
Workflow Management System, namely High, Medium and Low
(which correspond to the codetable codes TP1, TP2 and TP3 in
the TaskPriority codetable). In some cases, customers can
have a requirement to add a task priority (for example, Critical with
a codetable code value of TP4). Retrieving tasks by using the task
priority that contains this value would therefore ensure that critical
tasks would appear after those that have a low priority (when the
intention would be that tasks with this priority should be retrieved first).
This property allows the task priorities to be specified in whatever
order is required to satisfy the customer's requirements.

Type: String
Default Value: TP1,TP2,TP3

Task Redirection and Allocation Blocking Settings

Task redirection enables the user to redirect tasks to another user, organizational object
(organization unit, position or job), or work queue for a specified period of time. Task allocation
blocking enables the user to ensure that no tasks are assigned to them for a specified period of
time. This functionality is available to the user in the Task Preferences area of the Inbox.

However, all users on the system cannot require access to set up task redirection or task allocation
blocking periods for themselves. To facilitate this requirement, these areas of functionality in the
Inbox can be disabled for specific users by using security identifiers. The following table details
the security identifiers that a user must have to avail of this functionality.

Table 7: Security Identifiers and Associated Actions

Security Identifier Name Action Allowed

UserTaskRedirection.listTaskRedirectionHistoriRanidseuser to view all of the task redirection periods that
are specified for them.

UserTaskRedirection. redirectTasksForUser Allows a user to create a task redirection period for
themselves.

UserTaskRedirection.clearTaskRedirectionForBbews a user to clear one of their task redirection periods.

UserTaskAllocationBlocking.list. Allows a user to view all of the task allocation blocking
TaskAllocationBlockingHistoryForUser periods that are specified for them.

UserTaskAllocationBlocking.blockTaskAllocatidlbartJaarser to create a task allocation blocking period for
themselves.

UserTaskAllocationBlocking.clearTaskAllocatiokiBlaskiraidésdo clear one of their task allocation blocking
periods.

© Merative US L.P. 2012, 2024

Inbox Customization

1 Caram Workflow Reference 131

The default behavior of the Inbox Actions, Task Actions, and Task Search functionalities can be
changed by using Guice to call custom code, which overrides the default behavior.

Note: Guice is a framework that is developed by Google and is beyond the scope of this
document. For more information on Guice please refer to the Guice user's guide.

The Caram Workflow Management System contains the following customization points and their

corresponding default implementations:

Table 8: Customization Points

Customization Point Interface Class Default Implementation Class
Inbox Actions curam.core.hook.task.impl. InboxAem.awmge.hook.task.impl.Inb
Task Actions curam.core.hook.task.impl.Taskiaeimrere.hook.task.impl.Tas
Task Search and Available Task curam.core.hook.task.impl.SeawthBaskore.hook.task.impl.Sea}
Search

Task(}uen/ curam.core.hook.task.impl.Task@uemy: core.hook.task.impl.Tas
Task Search SQL generation curam.core.hook.task.impl.SearcirBask®de . hook.task.impl. Seaj

The following Inbox Actions can be customized:

* Get Next Task

* Get Next Task From Preferred Organization Unit
* Get Next Task From Preferred Queue

* Get Next Task From Work Queue
* Subscribe User To Work Queue

* Unsubscribe User From Work Queue

The following Task Actions may be customized:

* Add Comment

* Close

* Create

e Defer

¢ Restart

e Forward

* Modify Time Worked
* Modify Priority

* Modify Deadline

» Reallocate

* Add To My Tasks

The following Task Search and Available Task Search methods can be customized:

* countAvailableTasks

¢ countTasks

xActionsImp

ActionsImpl

chTaskImpl

QueryImpl

chTaskSQLIm

© Merative US L.P. 2012, 2024

Curam 8.1.2 132

* searchAvailableTasks
* searchTask

* validateSearchTask
The following Task Query methods can be customized:

* createTaskQuery
* modifyTaskQuery
* runTaskQuery

* validateTaskQuery

The following Task Search SQL generation methods can be customized. These methods are used
to generate the SQL for all of the task search functionalities shown here.

* getBusinessObjectTypeSQL
* getCategorySQL

* getCountSQLStatement
* getCreationDateSQL

* getDeadlineSQL

* getFromClause

* getOrderBySQL

* getOrgObjectSQL

* getPrioritySQL

* getReservedBySQL

* getRestartDateSQL

* getSelectClause

* getSQLStatement

* getStatusSQL

* getTaskIDSQL

* getWhereClause

How to customize the Inbox

The following is a description of how to customize the Inbox action
curam.core.hook.task.impl.InboxActionsImpl.getNextTask. The same process can
be followed to customize any of the other customization points.

A custom hook point class must be created. This class must extend the default implementation
class:

* CustomTaskActionsImpl class
The CustomTaskActionsImpl class implements the getNextTask method and it
implements the TaskActionsImpl class.

* TaskActionsImpl class
The TaskActionsImpl class implements the following methods:

o getNextTask

+ getNextTaskFromWorkQueue

+ getNextTaskFromPreferredWorkQueue
» getNextTaskFromPreferredOrgUnit

* subscribeUserToWorkQueue

» unsubscribeUserFromWorkQueue

© Merative US L.P. 2012, 2024

1 Claram Workflow Reference 133

The TaskActionsImpl class implements the TaskActions interface class:

* TaskActions interface class
The TaskActions interface class implements the following methods:

» getNextTask

+ getNextTaskFromWorkQueue

» getNextTaskFromPreferredWorkQueue
» getNextTaskFromPreferredOrgUnit

» subscribeUserToWorkQueue

» unsubscribeUserFromWorkQueue

Note: The custom class must never directly implement the interface class, as this might lead
to compile time exceptions during an upgrade if new methods were added to the interface.

In this case, the custom class would not implement the new methods and hence the contract
between the interface class and the implementation class would be broken leading to compile-
time exceptions.

Customizing the default implementation
The signature of the getNextTask function on the
curam.core.hook.task.impl.InboxActions interface is as follows:

package curam core. hook. task. i npl;

@ npl enent edBy(| nboxAct i onsl npl . cl ass)
public interface InboxActions {

public | ong get Next Task(String user Nane);

}

The default implementation for the function is specified in the
curam.core.hook.task.impl.InboxActionsImpl class

package curam core. hook. task. i npl;
public class | nboxActionslnpl inplenents |InboxActions {

public | ong get Next Task(String userNanme) {
/1 Default inplementation code is here....

}

}

To customize getNextTask, the method must be implemented in the new custom class created
earlier, which extends the default curam.core.hook.task.impl.InboxActionsImpl
implementation class.

© Merative US L.P. 2012, 2024

Curam 8.1.2 134

package custom hook. task. i npl
public class Custom nboxActionsl npl extends |nboxActionslnpl {

public | ong get Next Task(final String userName) ({
/1 Custominpl enentati on code goes here

}
}

To ensure that the application runs the new custom class rather than the default
implementation a new class custom.hook.task.impl.Module.java, which extends
com.google.inject.AbstractModule must be written with the configure method
implemented as the following example shows:

package custom hook. task. i npl

public class Mdul e extends com googl e. i nj ect. Abstract Modul e {
protected void configure() {
bi nd(
curam core. hook. task. i npl . I nboxActions. cl ass).to(
cust om hook. t ask. i npl . Cust ol nboxAct i onsl npl . cl ass);

}

Finally, the custom.hook.task.impl.Module class name must be inserted into the
ModuleClassName column of the ModuleClassName database table. This can be inserted by
adding an extra row to the Modul eC assNane. DVX file or directly into the database table if
required.

Using this approach, when the application is redeployed, the system now starts the customized
version of the getNextTask function rather than the default implementation.

© Merative US L.P. 2012, 2024

Notices

Permissions for the use of these publications are granted subject to the following terms and
conditions.

Applicability
These terms and conditions are in addition to any terms of use for the Merative website.
Personal use

You may reproduce these publications for your personal, noncommercial use provided that all
proprietary notices are preserved. You may not distribute, display or make derivative work of
these publications, or any portion thereof, without the express consent of Merative

Commercial use

You may reproduce, distribute and display these publications solely within your enterprise
provided that all proprietary notices are preserved. You may not make derivative works of these
publications, or reproduce, distribute or display these publications or any portion thereof outside
your enterprise, without the express consent of Merative.

Rights

Except as expressly granted in this permission, no other permissions, licenses or rights are
granted, either express or implied, to the publications or any information, data, software or other
intellectual property contained therein.

Merative reserves the right to withdraw the permissions granted herein whenever, in its
discretion, the use of the publications is detrimental to its interest or, as determined by Merative,
the above instructions are not being properly followed.

You may not download, export or re-export this information except in full compliance with all
applicable laws and regulations, including all United States export laws and regulations.

MERATIVE MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE
PUBLICATIONS. THE PUBLICATIONS ARE PROVIDED "AS-IS" AND WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT
LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT,
AND FITNESS FOR A PARTICULAR PURPOSE.

Merative or its licensors may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this documentation does not grant you any license
to these patents.

Information concerning non-Merative products was obtained from the suppliers of those products,
their published announcements or other publicly available sources. Merative has not tested those
products and cannot confirm the accuracy of performance, compatibility or any other claims
related to non-Merative products. Questions on the capabilities of non-Merative products should
be addressed to the suppliers of those products.

Any references in this information to non-Merative websites are provided for convenience only
and do not in any manner serve as an endorsement of those websites. The materials at those
websites are not part of the materials for this Merative product and use of those websites is at
your own risk.

© Merative US L.P. 2012, 2024

This information contains examples of data and reports used in daily business operations.

To illustrate them as completely as possible, the examples include the names of individuals,
companies, brands, and products. All of these names are fictitious and any similarity to actual
people or business enterprises is entirely coincidental.

The licensed program described in this document and all licensed material available for it are
provided by Merative under terms of the Merative Client Agreement.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate
programming techniques on various operating platforms. You may copy, modify, and distribute
these sample programs in any form without payment to Merative, for the purposes of developing,
using, marketing or distributing application programs conforming to the application programming
interface for the operating platform for which the sample programs are written. These examples
have not been thoroughly tested under all conditions. Merative, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample programs are provided
"AS IS", without warranty of any kind. Merative shall not be liable for any damages arising out of
your use of the sample programs.

Privacy policy

The Merative privacy policy is available at https://www.merative.com/privacy.

Trademarks

Merative ™ and the Merative ™ logo are trademarks of Merative US L.P. in the United States and
other countries.

IBM®, the IBM® logo, and ibm.com® are trademarks or registered trademarks of International
Business Machines Corp., registered in many jurisdictions worldwide.

Adobe™, the Adobe™ logo, PostScript™, and the PostScript™ logo are either registered
trademarks or trademarks of Adobe™ Systems Incorporated in the United States, and/or other
countries.

Oracle and Java are registered trademarks of Oracle and/or its affiliates.

The registered trademark Linux® is used pursuant to a sublicense from the Linux Foundation, the
exclusive licensee of Linus Torvalds, owner of the mark on a worldwide basis.

Microsoft™, Windows™, and the Windows™ logo are trademarks of Microsoft™ Corporation in
the United States, other countries, or both.

UNIX™ is a registered trademark of The Open Group in the United States and other countries.

Other company, product, and service names may be trademarks or service marks of others.

© Merative US L.P. 2012, 2024

https://www.merative.com/privacy

	Note
	Edition
	Notices
	Privacy policy
	Trademarks

	Contents
	1 Cúram Workflow Reference
	1.1 Structure of this Document
	Workflow Processes
	Data Flow
	Activities
	Flow Control
	Development and Runtime
	Inbox Configuration and Customization

	1.2 Creating a Workflow Process
	Process definition lifecycle
	Process creation
	Process visualization
	Releasing a process
	Process versions (process editing)
	Process import, export, and copy
	Validations

	Localization

	Process execution
	Basic engine behavior
	Executing multiple versions
	Process Instance Administration

	Method Reference Library
	Referencing Cúram methods
	Method types

	WDO templates
	Metadata
	Import and syncing
	Validations

	1.3 Process Definition Metadata
	Metadata
	Validations
	Description of Context WDOs

	1.4 Workflow Data Objects
	Metadata
	Validations
	List of Context WDOs
	Runtime Information

	1.5 Process Enactment
	Code enactment (enactment service API)
	Metadata
	Validations
	Code

	Event enactment
	Configuration data
	Validations

	1.6 Base Activity
	Metadata
	Localized Text

	Validations
	Basic Activity Types
	Route Activity
	Start/End Process Activity

	1.7 Automatic
	Prerequisites
	Cúram Business Methods
	Metadata
	Validations
	Code

	Input Mappings
	Metadata
	Input mappings for base type parameters
	Input mappings for struct parameters
	Input mappings for aggregated struct parameters
	Input mappings for list struct parameters
	Input mappings and indexed items from list workflow data objects

	Validations
	Runtime Information

	Output Mappings
	Metadata
	Primitive return type
	Struct return type
	Aggregated struct return type
	List struct return type

	Validations
	Runtime information

	Description of Context WDOs

	1.8 Event Wait
	Prerequisites
	List of events
	Metadata
	Validations
	Code
	Runtime Information

	Deadline
	Prerequisites
	Metadata
	Validations
	Code
	Runtime Information
	Description of Context WDOs

	Output Mappings
	Metadata
	Validations
	Runtime Information
	Description of Context WDOs

	Reminders
	Metadata
	Validations
	Code
	Runtime Information

	1.9 Manual
	Prerequisites
	Task details
	Metadata
	Validations
	Code
	Runtime Information
	Description of Context WDOs

	Allocation strategy
	Prerequisites
	Metadata
	Function Allocation Strategy
	Classic Rules Allocation
	CER Rules Allocation
	Target Allocation Strategy

	Validations
	Code
	Runtime Information
	Description of Context WDOs

	Business Object Associations
	Metadata
	Validations
	Code
	Runtime Information

	Event Wait
	Prerequisites
	Description of Context WDOs

	1.10 Decision
	Prerequisites
	Task Details
	Metadata
	Validations
	Runtime Information

	Question Details
	Metadata
	Multiple Choice
	Free Text

	Validations
	Runtime Information
	Description of Context WDOs

	1.11 Subflow
	Prerequisites
	Subflow Process
	Metadata
	Validations

	Input Mappings
	Metadata
	Validations

	Output Mappings
	Metadata
	Validations

	1.12 Loop Begin and Loop End
	Prerequisites
	Overview
	Loop Type

	Metadata
	Loop Begin Activity
	Loop End Activity

	Runtime Information
	Description of Context WDOs

	1.13 Parallel
	Prerequisites
	Metadata
	Generic Metadata for a Parallel Activity
	Metadata for a Parallel Manual Activity
	Metadata for a Parallel Decision Activity
	Validations
	Runtime Information
	Description of Context WDOs

	1.14 Activity Notifications
	Notification Details
	Metadata
	Validations
	Code
	Runtime Information

	Notification Allocation Strategy
	Prerequisites
	Code

	1.15 Transitions
	Metadata
	Validations
	Runtime Information

	1.16 Conditions
	Metadata
	Validations

	1.17 Split/Join
	Choice XOR Split
	Metadata

	Parallel AND split
	Metadata

	1.18 Workflow Structure
	Graph Structure
	Block Structure
	An Analogy for Blocks
	Block Types Supported by Workflow
	'Choice' (XOR) Block
	'Parallel' (AND) Block
	'Loop' Block

	Structural Rules
	Graph Structure Rules
	Block Structure Rules

	Validations
	Simple Syntactic Checks
	Graph Checks
	Block Checks

	1.19 Workflow Web Services
	Exposing a workflow web service
	Process Enactment
	Process completion callback

	Invocation from BPEL processes

	1.20 File Locations
	Workflow Process Definition Files
	Customizing Workflow Process Definition Files
	Creating New Workflow Process Definition Files
	Changing An Existing Workflow Process Definition File

	Event Definition Files

	1.21 Configuration
	Application Properties

	1.22 JMSLite
	What JMSLite Does
	Why JMSLite?
	Using JMSLite
	Debugging workflows

	1.23 Inbox and Task Management
	Inbox Configuration
	Inbox List Sizes Configuration Settings
	Get Next Task Configuration Settings
	Task Redirection and Allocation Blocking Settings

	Inbox Customization
	How to customize the Inbox
	Customizing the default implementation

