N\
MerATive

Curam 8.1.2

REST API Accelerator Guide

Note

Before using this information and the product it supports, read the information in Notices on page
75

© Merative US L.P. 2012, 2024

© Merative US L.P. 2012, 2024

Edition
This edition applies to Curam 8.1, 8.1.1, and 8.1.2.

© Merative US L.P. 2012, 2024

Merative and the Merative Logo are trademarks of Merative US L.P. in the United States and
other countries.

© Merative US L.P. 2012, 2024

© Merative US L.P. 2012, 2024

Contents vii

Contents
L0 PP i
o 114 T] PSSP Y
1 CUram REST APl QCCEIEIALON.......uui ittt e e e e e e e r e e e e e eaaes 9
1.1 Overview of the REST APl and mobile acCelerators...........ccuuvviviiiiiiiiiiiiiiiee e 9
REST AP aCCelerator PEISONAS.cccuuuiiiiiiiieeiieeiiisse e e e e e e e et s s e e e e s e e e atera e e e e e e e e e ernna e eeeeees 9
ATCNITECIUINE OVEIVIEW. .. . utiiiiiiiiiiiiiiiteiteeeeeeteeeeeeeeeesseesseessseesseesaeesseseeeeaeseeeeeaeeseeesseneeeeeeeneeeneeeees 10
Overview of the REST API GCCEIETALON..........uuuiiiiiieiiiiiiiiiiiiee et 12
Overview of the Adult Social Care mobile application..............ccovvviiiiiii e, 18
1.2 Installing the REST AP QCCEIEIALON...........cuviiiiiiiiieiiiieieeeeeeeeeeeeeeeee e eeee e e e eeeeeeeeeeeeeeereeeeeeeeeeeeeees 20
b ez LT Lo I o] (=T C=T0 [N | P 20
Generating the Social Program REST APIS.......ccooiiiiiieeiiieee e 20
Testing a REST API for Adult SOCIAl CaAr€..........uuvviiiiiiiiiiiieiiiieeieeeeeeeeeeeeee e e e e e ee e 21
1.3 ANAlYZINg the TEQUITEMIENTS.iii ittt e e e e e e e e e e e s et e e e e e e e e e aannes 23
Completing a fit gap analysisS SCENANIO...........ccoeiiiiiiii e 23
Defining the mobile application reqUIrEMENTS...........ueeiiii i e 26
Analysis results for the mobile appliCatION..............eviiiiiiiii e 29
1.4 Creating a CUStOM REST APL.....co i e e e e e e e e 29
REST AP OBSIGNS. ... ettiiiiiiiiitet ettt ettt e e e e e ettt e e e e e e et e e e e e e e s e anbb e s e e e eeaeeans 29
I Y o] o= o | 57
Retrieving the case details CUram APIS.........oooiiiiiiiiiiiie e 57
Dynamic evidence CUram APIS. ..o e 59
N[] 1 o =S 75
PrIVACY POLICY ... e ——————————————— 76
I T L2110 = 1 TP SUSPPPPIRPPIN 76

© Merative US L.P. 2012, 2024

Curam 8.1.2 viii

© Merative US L.P. 2012, 2024

1 Cdram REST API accelerator 9

1 Curam REST API accelerator

The REST API accelerator is built on the Curam Platform Version 6.1, Curam Outcome
Management, and the Adult Social Care accelerator. The REST API accelerator demonstrates
how to integrate an external mobile application with Curam by using the REST API
infrastructure.

1.1 Overview of the REST APl and mobile accelerators

The Caram REST API accelerator provides a worked example of creating REST APIs, which
are based on requirements that are specified for the Adult Social Care mobile application. The
example is designed to help you with creating your own REST APIs.

REST API accelerator personas

For the REST API accelerator, three personas were defined; the business analyst, the Ciram
developer, and the mobile application developer. The accelerator documentation provides
guidance on how each persona can complete their tasks.

Table 1: REST API accelerator personas

Persona Description Tasks Relevant Persona
Documentation

Business Analyst The business « Performs a fit gap For more information, see the
analyst performs a analysis of the project ~ following sections:
fit gap analysis and requirements against . Qverview of the Adult
defines the mobile the Caram application. i i
application functional Defines the mobile jsglls:laigrzeor:%zgee 18
requireme_nts. The application functional « Performing the Adult
analyst might be requirements. Social Care mobil
solely responsible . oclal Lare mobiie
for the functional Documents the mobile application caseworker
requirements or mlght appllcatlon wire frames. scenario 0['1 page 53
work together with a * 1.3 Analyzing the
the wire frames for the 23

mobile application.

© Merative US L.P. 2012, 2024

Curam 8.1.2 10

Persona

Description

Tasks

Relevant Persona
Documentation

Curam developer

Mobile application
developer

A Cuaram developer
designs and
implements the
custom REST APIs.

The mobile
application developer
builds the mobile
application in their
preferred application
development
environment. They
can integrate with

the Social Program
REST APIs to use the
business functionality
that is required for the
mobile application.

« Designs and performs
a fit gap analysis to
understand which
Curam APIs can be
reused.

¢ Models the REST
APlIs by using IBM®
Rational® Software
Architect Designer.

¢ Implements and tests
the REST APIs.

¢ Implements the
configuration-based
REST API definitions
that use Curam
facades.

¢ Designs the user
interface.

¢ Implements the

application logic for the

user interface.

e Integrates with the
REST services to
consume data.

For more information, see the
following sections:

¢ Overview of the REST API

accelerator on page 12

e 1.2 Installing the REST
API accelerator on page
20

¢ Overview of the Adult
Social Care mobile
application on page 18

e Performing the Adult
Social Care mobile
application caseworker
scenario on page 53

e 1.3 Analyzing the
requirements on page
23

e Creating a custom REST
API

For more information, see the
following sections:

¢ Overview of the Adult
Social Care mobile
application on page 18

* Installing the Adult Social
Care mobile accelerator on

page 51

¢ Performing the Adult
Social Care mobile
application caseworker
scenario on page 53

¢ 1.3 Analyzing the
requirements on page
23

< Integrating with a mobile
application on page 50

Architecture overview

The following architecture diagram displays the connection between the mobile application and
the Ctiram application server.

Mobile application accelerator

The mobile application is built by using IBM MobileFirst and is simulated through the IBM
MobileFirst development environment. The IBM MobileFirst platform was used to build the
mobile application. It is a suite of products that enables partners and customers to efficiently build
and deliver mobile applications for their enterprise.

From using the IBM MobileFirst simulator in your development environment, the mobile
application is rendered with HTML and CSS. When the user selects an action in the mobile
application, it triggers business logic that is written as a JavaScript application.

© Merative US L.P. 2012, 2024

../../MSDK/msdk_r_rest_api_design_overview2.html
../../MSDK/msdk_r_rest_api_design_overview2.html

1 Cdram REST API accelerator 11

The JavaScript application sends a REST API request by using an IBM MobileFirst HTTP

adapter with a data payload written in JSON or HTTP.
Curam REST API accelerator

On the Caram server side, a REST API intercepts the call. The Ctram application server
processes the REST API request with a server-side application, such as Enterprise Java

components.

Mobile Application
Accelerator

MobileFirst Application

Simulator

User Interface:
HTTP/ CSS
(index_.html)

HTTP Adapter

JSON/MHTTP
Business Logic:
JavaScript application
(main.js) [—
(<adapter_name>xml),
<adapter_name>-impl js)

Figure 1: An architecture diagram

REST API Accelerator

Platform

Adult Social Care
Accelerator

Enterprise Java
components

REST Engine
(REST APls)

© Merative US L.P. 2012, 2024

Curam 8.1.2 12

Overview of the REST API accelerator

The main objective of the REST API accelerator is to familiarize you with how to create your
own custom REST APIs.

The REST API accelerator is based on the existing Adult Social Care accelerator. It would be
beneficial for you to go through the overview and performing sections for the Adult Social Care
accelerator first to gain a fuller understanding of the Cliram components involved.

The REST APISs that are built as part of this accelerator can be integrated with an external system.
For this accelerator, the decision was made to integrate the REST APIs with a mobile application,
which was built by using IBM MobileFirst.

The mobile application is not the main focus of this accelerator. The main objective is to provide
you with guidance on how to create your own custom REST APIs. For this reason, less emphasis
was placed on the front-end mobile application, in particular the look and feel. Documentation
for how the mobile application was built is out of scope for this accelerator. Steps are included
on how to install the mobile application, where you can see yourself how the application was
implemented.

For more information about the Adult Social Care Accelerator, see the Adult Social Care
Accelerator Guide guide.

REST API accelerator business process

A caseworker uses the Curam Adult Social Care mobile application on their tablet to search

for a client and view their detailed client profile. From the Client Profile page, the caseworker
can view client and case information. The caseworker can also create and manage practitioner
certificate evidence and diagnosis evidence that is associated with the client's Adult Social Care
integrated case.

© Merative US L.P. 2012, 2024

1 Cdram REST API accelerator 13

REST API accelerator
Adult Social Care accelerator

EEMponents Outcome Management
Platform
- Ipersons . - lasc_casesl{case_id}/certificates
REST - fpersons/concern_role_id} fasc_cases - jfasc_casesH{case_id}{certificate_id}
resources - icodetablesi{table_name}
Adult Social Care iti
Mobile Applicati Search and view View Adult Social Manag_e practitioner
obile Application client profile details Care case details certificate and
System Flow P diagnosis evidence
i 1 T

System User ‘ ‘ ‘

Caseworker Caseworker Caseworker

Figure 2: The Ciram REST API overview diagram

The business process uses the following components to satisfy the requirements:

Curam Platform
This platform provides the processing and components necessary to enable the business

process. The Ctiram Case Management component helps to search for a client and to view
their client details and case information.

Ciaram Outcome Management

Outcome Management is a separately purchased application module. It is designed to help
organizations assess needs, establish goals, plan for goal attainment, and track progress for
citizens and their families by creating and managing outcome plans. The Adult Social Care
mobile application uses REST APIs included in this module.

Adult Social Care accelerator

The Adult Social Care accelerator provides a straightforward, worked example of a basic
application work flow. The example is designed to familiarize you with the key features
and underlying infrastructure of a basic application. The Adult Social Care accelerator is
available for download only to members of Merative such as Lab Services developers who

© Merative US L.P. 2012, 2024

Curam 8.1.2 14

are assigned to work on a Curam project on a customer site. However, you can reproduce the
sample application on the default product by following the detailed step-by-step instructions in
Building the Adult Social Care application.

Caram REST API accelerator

The REST API accelerator is based on the Adult Social Care accelerator. It demonstrates how
to integrate an external mobile application with Curam by using the Social Program REST
API infrastructure. The accelerator is available for download only to members of Merative
such as Lab Services developers who are assigned to work on a Cliram project on a customer
site..

REST API design decisions
The main decisions that were made during the design of the REST APIs for Adult Social Care are
examined here.

Initially, three REST APIs were designed to retrieve the Adult Social Care integrated case details,
payment details, and eligibility and entitlement details. The payment details, and eligibility and
entitlement details are retrieved from the product delivery case. After an architecture review
within Curam, the decision was made to combine these three REST APIs into one.

1. Case details, payment details, and eligibility and entitlement details are separate concepts in

Curam. However, for the purposes of this API they represent the data that is associated with
an Adult Social Care case. Granularity is an important consideration when you design a REST
API, and a balance must be struck between the amount of data that is returned in a resource
and the number of resources required. The types of operations that are performed on the

data should also be considered when defining the granularity. In this instance, no additional
operations were required on the case details, payment details, and eligibility and entitlement
details, resulting in a single resource.

The resource / asc_cases is specifying the acronym for Adult Social Care for this
accelerator. When you design your resource names, you should try to stay away from the use
of acronyms. It is worth noting that there are restrictions on the length of the resource name
and it might not always be possible to avoid using them.

. The second decision was made during the design of the resource (GET, PUT, POST, and

Delete) methods for both the practitioner certificate and the diagnosis dynamic evidence
types. The practitioner certificate and diagnosis details are stored as dynamic evidence, and
both are configured for the Adult Social Care accelerator. The entities are configured in a
parent-child relationship, with the practitioner certificate as the parent and diagnosis as the
child.

Due to the parent-child nature of the evidence, it was decided to structure the diagnosis as
part of the practitioner certificate resource representation. The diagnosis evidence is always
referenced within the context of the parent resource. That is, a practitioner certificate record
must exist before a diagnosis record can be created for it.

As diagnosis is nested within the practitioner certificate, the diagnosis resource (GET, PUT,
POST, and Delete) methods are performed as part of the nodi f yCerti fi cat e REST
API. That is, diagnosis records can be created, updated and deleted as part of modifying a
practitioner certificate.

. Lastly, the decision was made to reuse three existing Social Program REST APIs that

fitted the business requirements for the Adult Social Care mobile application. To keep this
accelerator as simple as possible, the assumption is that these APIs fit.

© Merative US L.P. 2012, 2024

1 Cdram REST API accelerator 15

» The GET/ per sons REST API. This REST API takes the full name, which is the
combination of the first and surname that is separated by a space. It is not case-sensitive
and if you pass in one name, searches across both first and surnames.

» The GET/ per sons/{concern_rol e_i d} REST API to retrieve a person details.

* The GET/ codet abl es/ {t abl e_nanme} REST API to retrieve a code table details.

Related concepts

Nested resources on page 30

Nesting resources provide REST API consumers an easy and efficient way to manage data by
allowing the consumer to send and receive only the required object. The nested resource must be
a business object, that is, it must still represent a complete business object.

REST API development process

The following overview includes information for the development process, which was done

as part of the creation of the REST API accelerator. It is not intended to go into development
methodology, but for you to use as a guidance for the creation of your own custom REST APIs.
Process diagram

The following diagram illustrates the different processes that are required for creating your own
REST APIs, from design right through to integration.

A 4
DIE = -
]
A 4
O oure “\.,|
|
h 4
puUlld & P)

Figure 3: The development process diagram.

© Merative US L.P. 2012, 2024

Curam 8.1.2 16

REST APl implementation overview
The implementation overview provides a short description of all the different processes that are
required for creating a custom REST API, from design right through to integration.

Before you begin

Before you start designing your own REST APIs, it is beneficial for you to read the 'Developing
Social Program REST APIs' and the 'Connecting to a Social Program REST API' documentation.
Some of the content, which exists in this documentation, is also referenced where applicable as
part of this accelerator.

It is also recommended that you review the existing REST APIs supported by Curam to
determine whether they meet the needs of your mobile application. Follow the steps that are
defined in the 'Using existing Social Program REST APIs' documentation to perform your review
of the existing REST APIs supported by Curam.

Alternatively, you can create your own custom REST APIs. The following overview describes
the development process, which was used for creating the REST APIs for the Adult Social Care
mobile application.

About this task
Design

As part of your design you need to define the resources, the methods and the JSON
representation, which are the major elements of the API.

* Resources: are identified by using URI path components.
* Methods: define the available operations on a REST resource.

» Representations: are the definition of the structure of the business object that is being
represented.

Fit gap

It is recommended that you review the existing REST APIs supported by Caram to determine
whether they meet the needs of your mobile application. You can perform this by using Swagger-
enabled tools.

When you know which REST APIs need to be created, you need to perform a fit gap to
understand which Caram APIs can be used to retrieve the information that is required for each
one.

Test Driven Development (TDD) was used, where unit tests were created before the REST APIs
were modeled. The benefit of creating unit tests up front proves that the Ciram APIs defined as
part of the fit gap meet the needs of each of the REST APIs. It also helps in understanding exactly
what needs to be modeled, which eliminates the need for remodeling. Handcrafted structs were
created to assist with the unit tests and were removed when the structs were modeled by using
Rational Software Architect.

Model

For modeling the REST APIs, the following are the key differences that were found from the
typical web services modeling.

* The stereotype is of the type rest.

© Merative US L.P. 2012, 2024

1 Cdram REST API accelerator 17

* The aggregation names are different at the top level; you must specify data if you want to
follow the REST standards.

» There are new conventions to set mandatory fields on input keys for the GETS, as well as for
the creates and modifies that you are familiar with.

Implement

After the modeling was complete, the implementation was straightforward due to the Test Driven
Development approach that was taken. The entire design and workings of the APIs were driven
out by JUnit testing. The JUnit tests tried out the APIs that were going to be used by the modeled
code. The implementation consisted of moving the code from the JUnit tests into the APIs and
then updating the tests to call those APIs.

The nodi f yCerti fi cat e method, that provides the implementation for the certificates
resource PUT method, was the most complex REST API to implement. The reason for this is
that the resource (GET, PUT, POST and DELETE) methods for the diagnosis evidence type need
to be implemented as part of the modify certificate operation. The reason is due to the parent-
child nature of the evidence, with diagnosis structured as a nested resource of the practitioner
certificate.

Resource configuration

You need to create the “CURAM DI R¥ EJBSer ver / “COVPONENT _NAMEY% r est /

confi g/ Resour cesConfi g. xm file. The REST configuration file is an XML file that
defines the REST resources, including the versions and supported methods, in a REST API.
%CURAM DI R%is the Ctram installation directory, which by default is C: \ Mer at i ve\ Cur am
\ Devel opnent .

All Resour cesConfi g. xm files are combined with the facade and struct information from
the Ctiram model to generate a Swagger document. The Swagger document defines all the REST
resources and methods that are supported for the API, and a Swagger document is generated for
each version of the API. You can define the following resource configurations for each REST
API:

* The resource path.

* The type of method, whether a GET, PUT, POST, or DELETE.

» The fagade class name, for example, Adul t Soci al Car eAPI .
* The method name, for example, r eadASCCases.

* A tag name, which allows the resources to be displayed together when you view a Swagger
document, by using the Swagger-enabled tools.

You can also create the Rest Conf i g. properti es file to update the title to be displayed
within the Swagger document.

Build & Test

After you build Ctram, a number of different mechanisms can be used to test the REST APlIs:

* Unit testing.
* Swagger-enabled tools with the Ctiram application.
* Mobile application with the Ctiram application.

Integrate

© Merative US L.P. 2012, 2024

Curam 8.1.2 18

The Adult Social Care mobile application, which is built by using IBM MobileFirst, was used to
integrate with the REST APIs. Adapters were created within IBM MobileFirst, which connects
the mobile application with the Cram application server. An adapter is used for integrating
between the client application, through the IBM MobileFirst Platform, with enterprise back-end
applications and cloud services.

Overview of the Adult Social Care mobile application

The Adult Social Care mobile application is a basic hybrid mobile application. The application

is built on top of Adult Social Care and is designed to familiarize you with how to integrate the
REST APIs with the mobile application. The mobile application represents a basic path through a
Curam social program. The mobile application was designed using a cascading style sheet that is
optimal on a tablet device.

The mobile application is simulated through the IBM MobileFirst development environment, and
the deployment to and testing on an android or iOS device is out of the scope for this accelerator.
Also, the mobile application is not productized and does not perform any security integration. The
main focus of the mobile accelerator is to integrate with the Social Program REST APIs.

Using the mobile application, the caseworker can search for a client and view client contact
information, payment information, and eligibility and entitlement information. The caseworker
can also create and manage practitioner certificate and diagnosis evidence that is associated with
the client's Adult Social Care integrated case.

The Adult Social Care mobile application business scenario
The goal of the Adult Social Care mobile application scenario is to allow a caseworker to access
limited client and case information from an off-site location.

Jane is a Community Welfare Officer and deals primarily with people who are incapacitated. Jane
spends her time with clients and managing their cases.

Jane needs to finish some work at home tonight that she didn't have a chance to finish at the office
today. Jane has a few updates to make to her client, James Smith's, Adult Social Care case.

Jane navigates to the Ctiram mobile application on her tablet. She searches for James Smith and
accesses his detailed client profile. She can see his full address, and contact details. From the
client profile she can also see that he has an on-going Adult Social Care case, which was created a
month ago, and he’s receiving Sickness Benefit.

She scans through the case information and looks at the evidence. She can see he has a
practitioner certificate that began a month ago and is about to expire. He is diagnosed with lower
back pain and neck pain.

Jane can also see the current determination and knows that he is receiving Sickness Benefit while
he is out of work. The mobile application allows her to learn about James and his benefits at a
glance. She can see lots of important summary information without having to access different
screens, and print information.

James was recently hospitalized for cardiovascular disease. He spent the last two weeks in the
hospital. The doctor told him that he cannot return to work for 8 more weeks. Jane has a copy of
the practitioner certificate document. She extends the existing practitioner certificate evidence
end date for another 8 weeks. She also creates the new diagnosis evidence. When she is complete,
all the case evidence is up to date.

© Merative US L.P. 2012, 2024

1 Cdram REST API accelerator 19

Adult Social Care mobile application example requirements
A targeted set of business requirements were defined for the mobile application accelerator.

The business requirements are as follows:

» Search for an existing client in the system.

* Manage practitioner certificate and diagnosis case evidence. The user can create, retrieve,
update, and delete the evidence from the Client Profilepage.

* View the eligibility and entitlement information for a client. The user can view the current
determination results for the active benefit case.

* View benefit payment information. The Client Profile page must display the last payment that
was made to the client and the next payment due.

Adult Social Care mobile application design decisions
Analysis of the mobile application requirements resulted in four key design decisions.

1. The first design decision was to use a hybrid application for the Adult Social Care mobile
application. The hybrid application was selected because it provided a way to quickly build a
mobile application to test with the custom REST APIs.

2. The second design decision was to display both client and case information on the mobile
application. The Client Profile page displays client and case information that is pulled from
the registered person, Adult Social Care integrated case, and associated product delivery
case. It allows the user to view the information from one place without having to navigate to
separate pages, as is required in the existing Adult Social Care application.

3. The third design decision was to display key features and content that are core to the mobile
application use case. The information on the mobile application is a subset of what you find
on the Adult Social Care application. The mobile application displays only the data that is
required to perform the use case.

4. The fourth design decision was to display only the most recent information on the mobile
application. Only the most recent, active practitioner certificate evidence record, and
its associated active diagnosis evidence records, are displayed. Also, the most recent
determination result from the product delivery case is displayed. The mobile application
supplements the existing Adult Social Care application. If needed, the user can access older
data from the Adult Social Care application.

© Merative US L.P. 2012, 2024

Curam 8.1.2 20

1.2 Installing the REST API accelerator

Download and install the REST API accelerator. The REST API accelerator is available for
download only to members of Merative, such as Lab Services developers who are assigned to
work on a Curam project on a customer site.

Installing prerequisites

You must follow the prerequisites before you install the Ciram REST API accelerator. Make sure
to follow the prerequisites and the installation steps that are specified in the release notes for each
of the installers.

Procedure

1. Install a Caram Development Environment for application development. The basic Cliram
Development Environment consists of the Caram Application Development Environment
(ADE), a Java IDE, and IBM® Rational® Software Architect Designer.

Install Caram Platform.

Install the Cliram Outcome Management application module.
Install the Adult Social Care accelerator.

Install the Ciram REST API accelerator.

ok W

For more information about how to install a development environment, see the Development
Environment Installation Guide.

Generating the Social Program REST APIs

Complete the following steps for building the Caram REST APIs and run the API resources in the
development environment by using Tomcat to view the Swagger document.

Procedure

1. From the “CURAM DI R%directory, update the Set Envi r onnment . bat and
Set Envi ronnment . sh files.
%CURAM DI R%is the Ctram installation directory, which by defaultis C: \ Mer ati ve
\ Cur am Devel oprent .
2. Addthe CATALINA HOME environment variable.
This environment variable defines the home directory of the Tomcat installation, and is used
to automatically deploy the REST API resources into Tomcat.

3. From the “%CURAM DI R¥% EJBSer ver directory, run the following build target:

build rest

This build target combines the defined REST resources from each component and deploys the
REST API to the Tomcat web server in the development environment.

4. From Eclipse, start your application server and Tomcat as normal.

© Merative US L.P. 2012, 2024

1 Cdram REST API accelerator 21

5. Using a web browser, open the following URL to confirm successful deployment of the REST
APIL:

http://1 ocal host: 9080/ Rest/ api /definitions

where 9080 is the default Tomcat port.

Results

A list of the Swagger documents for each version of the API defined is displayed. Select a version
to open the Swagger document for that version.

Testing a REST API for Adult Social Care

To test that the Ciram REST API accelerator is built successfully, complete the following steps to
view the JSON representation for one of the REST APIs.

Procedure
1. From the Adult Social Care accelerator, run through the performing the Adult Social Care
caseworker scenario to create an Adult Social Care case for James Smith.

2. From a web browser, enter the following URL to confirm whether the asc_cases GET
resource method is working. A JSON object with an array of case details is displayed.

http://localhost:9080/Rest/vl/asc_cases?concern_role id=101& limit=1

© Merative US L.P. 2012, 2024

Curam 8.1.2 22

Results

The following example JSON representation is displayed successfully in the web browser.

{
{

"data" : [

"concern role id"
"case id" "86440

: "101",
96534784245760",

"startDate" "2015-07-26T23:00:00.000+0000",
"expectedEndDate" null,
"receivedDate" "2015-07-26T23:00:00.000+0000",
"registrationDate" "2015-07-26T23:00:00.000+0000",
"priorityCode"™ : {
"tableName" "CasePriority",
"value" nCcpl" ,
"description" "High"
}I
"integratedCaseType" : {
"tableName" "ProductCategory",
"value" "pCc24000",
"description" "Adult Social Care"
}I
"decisions" : [
{
"startDate" "2015-08-30T23:00:00.000+0000",
"endDate" null,
"amount" 0.00,
"frequency” o
"decision" : {
"tableName" "CaseDetIntervalResult",
"value" "CDIR2",
"description" "Not Eligible"
}
}I
{
"startDate" : "2015-07-26T23:00:00.000+0000",
"endDate" "2015-08-29T23:00:00.000+0000",
"amount" 132.23,
"frequency" "Weekly",
"decision" : {
"tableName" "CaseDetIntervalResult",
"value" "CDIR1",
"description" "Eligible"
}
}
] ’
"payment" : {
"lastPayment" 0.00,
"nextPayment" 132.23,
"lastPayDate" null,
"nextPayDate" "2015-07-26T23:00:00.000+0000"

Related tasks

© Merative US L.P. 2012, 2024

1 Cdram REST API accelerator 23

1.3 Analyzing the requirements

Use the following practices for analyzing the default system functions against the customer's
mobile application business processes and to document project requirements.

Completing a fit gap analysis scenario

You can use the following guidance to complete a fit gap analysis between the project
requirements and the default application.

Fit gap analysis scenario

Fiona, a business analyst, is asked to do a fit gap analysis of the differences between the Adult
Social Care application and the customer’s mobile application project requirements. Fiona is
focusing on the requirements for the practitioner certificate and person phone details.

These are the project requirements:

* The mobile application must allow the user to create and manage practitioner certificate
evidence. The certificate details include the received date, medical practitioner name, medical
certificate type, examination date, certification from date, certification to date, date certificate
was signed, claim form signed indicator, inpatient indicator, and facility name.

* The mobile application must display the client's home telephone number.

At the start of the fit gap analysis, Fiona must have a solid understanding of the Ctiram default
features. Fiona read the overview and performing sections for the Adult Social Care accelerator
first to gain a fuller understanding of the Caram components involved.

Analyzing the default functionality

You can use the following resources to help you with your analysis.

Reading product documentation

You can read the product documentation to learn about Ctram product features.

About this task

The product documentation includes business and technical documentation for specific versions
and editions of the Ctram product family. Links to Redbooks, and white papers are also provided
when articles about the product are available. Business analysis documentation is written to
provide an overview of the business processes supported by Ctram applications. You can use
this information to understand the default features, and how they can be applied to your business
processes.

For the business analyst scenario, Fiona finds documentation on how phone numbers are
managed in Curam. The documentation provides a high-level overview of how phone numbers
are maintained as person evidence.

© Merative US L.P. 2012, 2024

Curam 8.1.2 24

Evaluating the default application scenario

Fiona logs in to the Caram application to explore the default application features to see whether
they meet the project requirements, or if there are gaps. Fiona is analyzing the practitioner
certificate and person phone project requirements.

Complete the Adult Social Care application intake script

Fiona completes the Adult Social Care application intake script to see if the script captures the
required data.

Fiona creates an application case by entering the client's details, a practitioner certificate, and
diagnosis information. After examining the default Adult Social Care application, Fiona notes
gaps in the script. The practitioner certificate questions do not capture the inpatient indicator and
facility name.

Examining the practitioner certificate evidence
Fiona examines the default practitioner certificate evidence to see whether there are any gaps.

Procedure

1. Select the Care and Protection > Applications > Cases tab to view the application case.
2. Select the reference number to open the application case.

3. Select the Evidence tab to view the default evidence types that are associated with the
application case. Fiona can see that the inpatient indicator and facility name are not captured
on the practitioner certificate evidence. This is a gap.

Examining person evidence

Fiona is analyzing the person phone requirements. After reading participant documentation, she
knows there is a fit with the Curam product, but needs to do further analysis to determine the
alignment. She decides the next thing she should do is explore the person phone evidence on her
local installation of the Adult Social Care application.

Before you begin

The person must exist on the Curam system.

Procedure

1. From the Person tab, select the Evidence tab and select New from the page level menu.

2. The system displays the New Phone Number window. Select the Phone Type drop-down
field.

What to do next

Fiona can see the phone number details on the New Phone Number modal page. She verifies it
is the same as the layout required for her project. She sees that the label 'Phone Number' is used
instead of "Telephone', which is inconsistent with other systems in her project. Fiona notes this as
a gap. She also notes that ‘Home’ is not displayed in the Phone Type code table.

Now that Fiona has tested the application’s person phone functionality, she knows that there is a
medium-level solution fit since configuration is required.

Caram Analysis Documentation Tooling (CADT)
The Curam Analysis Documentation Tooling (CADT) is a tool that technical users can download
and run on a Caram application to generate analysis documentation that is specific to that

© Merative US L.P. 2012, 2024

1 Cdram REST API accelerator 25

application. Technical users can share the analysis documentation with non-technical users to
facilitate technical and business analysis of a Ctiram application. The analysis documentation
primarily supports fit gap analysis and customization impact analysis that relates to Ctiram pages
and database tables.

Use the analysis documentation to help you to explore the metadata and business functions of an
Curam application and the interactions between them. It supports you in exploring the metadata
that is associated with those pages and database tables. In addition, you can see information about
related artifact types like Tabs, Domain Definitions, Code Tables, Message Files, Application
Properties, and Workflows.

The Caram Analysis Documentation Tooling (CADT) is available for download from Ctram
Support. You must request access to download software.

Analyzing requirements using the Ciram Analysis Documentation Tooling (CADT)

You can use the Ciram Analysis Documentation to determine which application artifacts are used
by a particular feature, in this case the person phone feature. Fiona can further explore application
artifacts by using the Ctiram Analysis Documentation, which is generated by using the Ciram
Analysis Documentation Tooling (CADT).

Before you begin

The Curam Analysis Documentation Tooling (CADT) is run on the Adult Social Care application
that is built on top of the Cliram Platform and Fiona is provided with the Caram Analysis
Documentation.

About this task

You can complete these steps of the design process, but information is also provided on how
Fiona completes them as part of the Fit Gap Analysis scenario.

Procedure

1. From the Clram Analysis Documentation search text box, enter Phone, select Pages from the
drop-down list, and click Search.

Fiona can see from the search results several pages that contain the string 'phone'. Fiona wants
to understand the context in which phone numbers are used in Caram. By glancing at the
pages that contain the string 'phone’, she sees that phone number details are used in the Ctram
application pages.

2. From the search results, select New Phone Number (Participant_createPhoneNumber)
from the Name column. You see the New Phone Number page details.

Fiona verifies that it is the same as the layout used for her project. She sees that the label
'Phone’' is used instead of "Telephone', which is inconsistent with other systems in her project.
Fiona notes this different label as a gap.

3. Scroll to the Fields section. Select the Phone_Type_Code from the Fields section. You see the
Domain Definition details for Phone_Type Code.

4. From the Options domain definition details, select the PhoneType link to see the code table
details for the phone type code table.

Fiona observes that there is no 'home' telephone number type in the PhoneType code table.
This is a requirement for her project, so she notes this as a gap; however, she needs to
determine if this is a requirement across the organization.

© Merative US L.P. 2012, 2024

https://merative.my.site.com/mysupport/s/
https://merative.my.site.com/mysupport/s/

Curam 8.1.2 26

5. From the Related Pages section, it contains a list of pages that use the PhoneType code table.
Any modification made to the PhoneType code table impacts all of the pages in this list.

6. Scroll to the Phone section. You see the phone number attributes.

Fiona verifies that the phone number consists of the same three elements as her project’s
phone number (country code, area code, and phone number). She confirms that the number
can be stored in the format that is required by the project.

7. Scroll to the Messages section. You see the validations for telephone numbers and an indicator
to show if'it is configurable. You see the fields that are mandatory and the ones that are
conditionally displayed.

Fiona verifies that the messages are consistent with the project’s requirements.

8. From the Curam Analysis Documentation search text box, enter Phone and select Code
Tables from the drop-down list and click Search.

Fiona can see from the search results a list of code tables that contain the string 'phone'. One
of these code tables is the BusinessPhoneType code table. Fiona remembers when she was
assessing the impact of changing the word ‘phone number’ to ‘telephone’, there were other
screens in the application that are related to phone numbers that the project plans to use, but
that don’t seem to use the PhoneType code table. She wants to make sure that there are no
changes that are required to any other code tables. Based on the information that is shown to
her for the BusinessPhoneType code table, she realizes that this code table contains phone
number types that businesses would use and should therefore not contain the value ‘home’.
This is not a gap.

Defining the mobile application requirements

The mobile application is a software application that is developed specifically for use on small,
wireless computing devices, such as smart phones or tablets. The Curam mobile application
provides the caseworker with quick and easy access to Ciramdata. You must define the business
requirements for your Cirammobile application.

Before you begin defining the mobile application requirements, you must decide what format is
best suited for your project. Mobile applications are categorized according to whether they are
web-based or native applications, which are created specifically for a given platform. A third
category, hybrid applications, combine elements of both native and web-based applications.

Native applications, web-based applications, and hybrid applications are all ways to meet

the needs of the mobile user. There is no unique best solution: each type has strengths

and weaknesses. The choice of one versus the other depends on the organization's project
requirements. Table 1 provides a list of some of the strengths and weaknesses for each mobile
application type.

© Merative US L.P. 2012, 2024

1 Cdram REST API accelerator 27

Table 2: Mobile Application Types

Mobile Application Strengths Weaknesses
Type
Native application « Access to all the device-specific « Higher development costs. Building
features, including GPS, camera, a native application requires more
gestures, and notifications. specialized talent. Developers not
« Can be used without an internet familiar with the development process
connection. for their target platform need to upskill
« Provides a full experience to in order to develop the application.
the user on their iOS or Android ¢ Maintenance can be complicated for
smartphone. users and developers. Changes must
+ Most responsive option that is key to be packaged in a new version and
usability. placed in the app store.
« As native applications are platform- * L€ss discoverable. The user must
specific and written in the platform's go to the app store, search for an
native language, they can be fully application, and download it.

optimized for the platform making
them more efficient.

Web-bajﬁed « Most discoverable. A user can » The web-based application system
application easily search for a web application performance can be much slower than
by using a search engine. the native application.

* The web-based application can e Cannot do work offline.
typically be developed much faster « Web applications are not optimized
than a native application. for the platform they are running on as

* Maintenance is simple. It can be they are not written in the platform's
done as often as needed. native programming language.

* Lower development costs. It's e Cannot use any of the platform's
cheaper to develop hybrid and web features such as the camera, contacts
applications, as these require skills list, accelerometer.
that build upon previous experience « Web applications cannot access
with the web. platform-specific Ul features so they

* No need to distribute the software to cannot avail of the same style that
machines that use the application. native and hybrid applications can

« Any application updates are made avail of.

to the application alone and are
immediately available to the user.

» Inherent cross platform support as
they run solely on the browser and
are platform agnostic.

© Merative US L.P. 2012, 2024

Curam 8.1.2 28

Mobile Application
Type

Strengths

Weaknesses

Hybrid application

Less expensive option for
organizations that want to sell an
application in an app store without
spending significant development
effort on a native application.
Maintenance is simple. It can be
done as often as needed.

Lower development costs. It's
cheaper to develop hybrid and web
applications, as these require skills
that build up on previous experience
with the web.

The application can target

multiple platforms reducing cost of
development and negating the need
to hire experts to develop for each
platform.

Hybrid applications can avail of the
platforms Ul style features allowing
the application to be developed to
look as close to a native application
as possible.

The hybrid application system
performance can be much slower than
the native application.

Hybrid applications cannot avail of

a device's full range of features as
they are often restricted while running
through the WebView.

Hybrid applications will not be fully
optimized for the device they are
running on as the bulk of their code is
written in platform independent web
development languages.

The mobile application is meant to provide quick access to client and case information. When
you define the requirements, keep in mind that you do not need to recreate the existing Caram
functions in the mobile application. At the same time, do not create unnecessary new functions.
The basic idea is to cut features and content to eliminate things that are not core to the mobile

application use case.

You must decide what client and case information to display on the mobile application pages.
Try to use only the most recent information unless there is a valid business reason to display
older data. For example, if the user needs to create and maintain case evidence, then consider
displaying only the most recent, active, evidence records. It might not be necessary to display
older data as the caseworker can view that information from the Curam application. You must
also consider the impact that the older data has on system performance. It is important to make
sure your mobile site loads quickly. Users can become frustrated if they must wait a long time to
see your content. Any data that is not necessary can slow down the system performance.

As part of the requirements definition process, try to identify customer pain points that can
be addressed by the mobile application. If possible, meet with real system users to validate
assumptions about customer pain points.

When you design the user interface, follow the relevant UI design guidelines for your mobile
application. Apple and Android each have their own guidelines. Following a method for
displaying data and interacting with content makes your app easier to learn by end users.
Following these conventions also ensures that your application is consistent with the other Cliram
applications already on a mobile device.

© Merative US L.P. 2012, 2024

1 Cdram REST API accelerator 29

Analysis results for the mobile application
Analysis of the mobile application requirements resulted in four key design decisions.

The first design decision was to use a hybrid application for the Adult Social Care mobile
application. The hybrid application was selected because it provided a way to quickly build
a mobile application to test with the custom REST APIs. Also, there were no iOS or Android
development dependencies. For these reasons, the hybrid application was selected as the best
solution.

The second design decision was to display both client and case information on the mobile
application. The Client Profile page displays client and case information that is pulled from the
registered person, Adult Social Care integrated case, and associated product delivery cases. It
allows the user to view the information from one place without having to navigate to separate
pages, as is required in the existing Adult Social Care application.

The third design decision was to display key features and content that are core to the mobile
application use case. The information on the mobile application is a subset of what you find on
the Adult Social Care application. The mobile application displays only the data that is required
to perform the use case.

The fourth design decision was to display only the most recent information on the mobile
application. Only the most recent, active practitioner certificate evidence record, and its
associated active diagnosis evidence records, are displayed. Also, the most recent determination
result from the product delivery case is displayed. The mobile application supplements the
existing Adult Social Care application. If needed, the user can access older data from the Adult
Social Care application.

1.4 Creating a custom REST API

You can use the following documentation as a basis for creating your own custom REST APIs.

REST API designs

Before you start developing REST APIs, ensure that you read through the design principles and
design basics to ensure good REST API design.

Social Program REST API design principles
When you design custom REST API resources, follow these conventions to ensure good REST
API design.

General design conventions

» Use plural nouns and lowercase letters for resource path names, for example, / not es for the
note resource or / per sons for the person resource.

» Use snake case for URL query parameters and resource names, for example, concern role_id
and full name.

* Representations must remain consistent across operations. The same representations need to
be used for GET, PUT, and POST.

+ Identifiers must not be in URI form. Do not use HATEOAS style.

© Merative US L.P. 2012, 2024

Curam 8.1.2 30

Conventions for collection resources and member resources

* A collection resource returns all objects in the collection, for example, / per sons returns
all persons in the system. Typically, collection resources have a required query parameter to
reduce the results set, for example, / per sons/ ful | _nane=Janes Smit h.

» The response to a collection request is an object with a property named dat a. This property is
an array that holds all of the matching members of the collection.

* A request for a collection where the query parameter does not match any resources returns a
successful 200 status code and an empty data array.

* A member resource is an individual item in a collection, for example, / per sons/ 106.

* A request for a member resource that does not exist returns a 4xx status code

Nested resources

Nesting resources provide REST API consumers an easy and efficient way to manage data by
allowing the consumer to send and receive only the required object. The nested resource must be
a business object, that is, it must still represent a complete business object.

To decide whether a resource should be nested, you must consider the following:

» Ifthe nested array is a stand-alone entity that is referred to outside of the context of the parent
resource.

If the nested array is referenced outside the context of the parent resource, it may be defined as
a root resource.

+ If'the resource is modified frequently.

If a small part of a resource is frequently modified, each modification invalidates the cache
state of the whole resource. In this case, it is good design practice to separate the content into a
nested resource. For example, PUT requests on an entire resource that only adds a single item
in an array, in cases where the array changes frequently, are wasteful and not a good design.

+ If the size of the representation is large or small.

If it is small, perhaps it can be included in the main representation. If it is large, it can
dominate the main representation and might be more ideal as a nested resource.

Social Program REST API design basics
A Social Program REST API is a collection of URL resources that can be used to create, read,
and modify data in a Clram system.

Resources are complete business objects and each resource represents an object in Caram. Each
resource, which is identified by a path, has a set of methods that can act on the resource to create,
read, modify, or delete the resource. The resource is represented by a JSON object.

REST is different from the RPC (Remote Procedure Call) style APIs developed within Caram.
RPC APIs usually target specific information or data to be displayed on a particular user
screen, and for performing modifications to that information. REST APIs transfer and act on
representations of complete business objects.

The design and granularity of REST APIs is important and you must carefully design the REST
API before you begin development.

To design a REST API you must identify the major elements of the API, specifically:

* Resources: are identified by using URI path components.
* Methods: define the available operations on a REST resource.

© Merative US L.P. 2012, 2024

1 Cdram REST API accelerator 31

» Representations: are the definition of the structure of the business object that is being
represented.

Resource values for Adult Social Care

The following include the URL path resource values that are specified for the Adult Social Care
mobile application. The sample resource URL paths can help you design your own resources for
your custom REST APIs.

Table 3: Adult Social Care REST APIs

Resource Path Description

| asc_cases The collection resource is used to retrieve the list of Adult
Social Care case details and its associated payment and
decision details.

The resource / asc_cases is specifying the acronym for
Adult Social Care for this accelerator. When you design your
resource names, you should try to stay away from the use
of acronyms. It is worth noting that there are restrictions on
the length of the resource name and it might not always be
possible to avoid using them.

The default sort order of this list is by the registration date.
This resource supports 1 optional query parameter (_limit) to
limit the list of items returned.

For example, with the following URL, you can retrieve all the
Adult Social Care cases:

http://<host>:<port>/Rest/vl/asc_cases/

To retrieve the latest Adult Social Care case details, the input
struct supports 2 query parameters:

o _limit
e case_id (mandatory)

Example URL for this REST resource:

http://<host>:<port>/Rest/vl/asc_cases?
concern role id=101& limit=1

/asc_cases/{case_i d}/ The collection resource to retrieve the list of practitioner

certificates certificates and its associated diagnoses details. The default
sort order of this list is by the registration date. This resource
supports 1 optional query parameter (_limit) to limit the list of
items returned.

For example, with the following URL, you can retrieve all the
practitioner certificates:

http://<host>:<port>/Rest/vl/asc_cases/<case_id>/
certificates/

You can also retrieve the latest certificate details with the
following URL example:

http://<host>:<port>/Rest/vl/asc_cases/
case 1d=1253456789/certificates? limit=1

© Merative US L.P. 2012, 2024

Curam 8.1.2 32

Resource Path

Description

/asc_cases/ {case_i d}/
certificates/{certificate_id}

The member resource is used to retrieve, update, and delete
a certificate record.

For the REST API PUT method, this method is used to
perform the create, retrieve, update, and delete operations for
the certificate associated diagnosis records.

Table 4: Ciram REST API resources

The mobile application is using the following 3 existingCaram REST APIs.

Resource Path Description

first and | ast nane>

/ persons/{concern_rol e_i d} Returns a list of persons that match the search filters specified. The
returned list is sorted by name, in alphabetical order.

/ persons?ful | _name=<users Returns the details of a specific person.

/ codet abl es/ {t abl e_nane} Return the details for each codetable. For example,

http://localhost:9080/Rest/vl/codetables/
IncapacityDiagnosis

Methods defined for Adult Social Care
To help you design the methods for your custom REST APIs, you can view the following sample
methods, which are defined for the Adult Social Care mobile application.

Table 5: Methods

Method Resource

Query Description
Parameter

GET / asc_cases

GET /asc_cases/ {case_i d}/
certificates

POST /asc_cases/ {case_i d}/
certificates

GET /asc_cases/ {case_i d}/

. limit A collection resource to return specific

« concern\flylt $gcial Care case details for a
person.

. limit A collection resource that returns a list
Ease id°f practitioner certificate records for a
~ person.

To adheres to the REST API standard,
this api is provided, but not used in the
Adult Social Care mobile application.

When the _limit query parameter

is specified, it limits the number of
certificate records to be returned and
retrieves the latest Adult Social Care
case based on the registration date.
This resource is being used by the
mobile application.

A member resource to create a
practitioner certificate that is associated
with a person's Adult Social Care case.

A member resource to retrieve

certificates/{certificate_id} a practitioner certificate and its

associated list of diagnoses details.

© Merative US L.P. 2012, 2024

1 Cdram REST API accelerator 33

Method Resource Query Description
Parameter
PUT /asc_cases/ {case_i d}/ A member resource to modify a specific
certificates/{certificate_id} certificate, as well as create, update,
and delete a diagnosis record. The full
object is required to be passed in.
DELETE /asc_cases/{case_id}/

certificates/{certificate_id}

A member resource to delete a specific
certificate or diagnosis. A delete

only requires the path parameter
(certificate_id).

© Merative US L.P. 2012, 2024

Curam 8.1.2 34

JSON representation for Adult Social Care

To help you design the JSON representation for your custom REST APIs, you can view the
sample JSON representation, which is defined for a REST resource. The following JSON
representation is defined for the Adult Social Care mobile application.

The following JSON representation is the full representation for retrieving the Adult Social Care
case details.

Resource Path JSON
[/ asc_cases
{
"concern role id": "24011",
" case id": "24012",
" startDate": "2015-07-27",
" expectedEndDate": null,
" receivedDate": "2015-07-27",
" registrationDate": "2015-07-27",
" priorityCode": {
"tableName ": "CasePriority"
" value ": "CP1"
" description ": "High"
}I
" integratedCaseType": ({
"tableName ": "ProductCategory" ,
" value ": "PC24000" ,
" description ": "Adult Social Care"
}I
" decisions": [
{
"startDate ": "2015-08-31"
" endDate ": null ,
" amount ": 0 ,
" frequency nw. uwn
" decision ": {
"tableName ": "CaseDetIntervalResult" ,
" value ": "CDIR2" ,
" description ": "Not Eligible"
}
} 4
{
" startDate ": "2015-07-27" ,
" endDate ": "2015-08-30"
" amount ": 132.23 ,
" frequency ": "Weekly" ,
" decision ": {
"tableName ": "CaseDetIntervalResult" ,
" value ": "CDIR1" ,
" description ": "Eligible"
}
}
]I
" payment": {
"lastPayment ": 132.23 ,
" nextPayment ": 132.23 ,
" lastPayDate ": "2015-07-27"
" nextPayDate ": "2015-08-03"
}
}
]
}

The following JSON representation is the full representation for the practitioner certificate and its
associated diagnosis details.

The practitioner certificate and diagnosis details are both stored in dynamic evidence entities that
are configured for the Adult Social Care accelerator. The evidence entities are configured where
the practitioner certificate is stored as parent evidence and the diagnosis details are configured as
a child entity of the practitioner certificate.

© Merative US L.P. 2012, 2024

1 Cdram REST API accelerator 35

As a result of the parent-child evidence structure, it was decided to structure the JSON
representation where the diagnosis is defined as part of the certificate JSON object.

The resource (GET, PUT, POST and DELETE) methods for a diagnosis are performed as part of
the same JSON representation as part of the asc_cases/ {case_i d}/certificates/
{certificate_id} resource REST API.

Table 6: JSON representations

Resource Path JSON

| asc_cases/
{case_id}/

certificates "certificate id": "24027",

" case id": "24012",

" fromDate": "2015-07-25",

" toDate": "2015-08-30",

" examinationDate": "2015-07-25",
" signatureDate": "2015-07-25",

" claimFormSignedInd": true,

" receivedDate": "2015-07-26",

" comments": "",

" changeReason": null,

" practitionerName": "John Lynch",
versionNo": 0,

updatedBy": "SYSTEM",
updatedOn": "2015-07-26T23:00:00.000+0000",
certificateType": null,

" diagnoses": [
{

"diagnosis id ": "24029" ,

" examinationDate ": "2015-07-25" ,

" receivedDate ": "2015-07-26" ,

" changeReason ": null ,

" name ": {
"tableName ": "IncapacityDiagnosis" ,
" value ": "ICD24000" ,
" description ": "Gastroenteritis" ,

} ’

" versionNo ": 2 ,

" updatedBy ": "SYSTEM" ,

" updatedOn ": "2015-07-26T23:00:00.000+0000"

Analyzing the REST APIs

Before you start developing REST APIs, ensure that you do a gap analysis on the existing REST
APIs. You should also do a gap analysis of the existing Ctiram functionality to determine the
correct domain definitions to use for your resource representation. In addition, this gap analysis
might identify any existing APIs within Ctram that can be used to implement the functionality of
the new REST APIs.

Analyzing existing REST APIs

It is recommended that you review the existing REST APIs supported by Cliram to determine
whether they meet the needs of your mobile application.

About this task

Follow the steps that are defined in the 'Using existing Social Program REST APIs'
documentation to perform your review of the existing REST APIs supported by Caram.

Related tasks

© Merative US L.P. 2012, 2024

Curam 8.1.2 36

Analyzing the new REST APIs
You need to identify any existing APIs within Curam that can be used to implement the
functionality for the new REST APIs.

About this task

For the fit gap analysis of the dynamic evidence entities, it was a little difficult to identify the
Curam APIs that were required. As a result, the Caram APIs that are used for the Adult Social
Care mobile application are defined in the appendix section. You can use the same Ctram APIs
for the creation of your own custom dynamic evidence configurations.

The fit gap analysis for Adult Social Care case details, the payment, and eligibility and
entitlement details, was easier. You can use the Curam Analysis Documentation, which is
generated by using the Curam Analysis Documentation Tooling (CADT), to search for the page
which displays the details you need to retrieve. Once you have found your page, the Technical
information section displays the Page Load Interface. For more information, see the appendix
for the Cram APIs.

Test Driven Development (TDD) was used, where unit tests were created for each REST API
before the REST APIs were modeled. The benefit of creating unit tests up front proves that the
Curam APIs defined as part of the fit gap meet the needs of each of the REST APIs. It also helps
in understanding exactly what needs to be modeled, which eliminates the need for remodeling.
Handcrafted structs were created to assist with the unit tests and were removed when the structs
were modeled by using Rational® Software Architect Designer.

Related tasks

Appendix on page 57

The following specifies the Ciram APIs that are used for implementing the Social Program REST
APIs for the Adult Social Care mobile application.

© Merative US L.P. 2012, 2024

1 Cdram REST API accelerator 37

Modeling the REST APIs

When you complete the REST API design, you must use IBM Rational Software Architect to
model the facade, operations and structs.

REST API class diagram

Class diagram representing the modeling of the required structs and operations for the Adult
Social Care REST API.

astructs astructs wstructs
.~ | Payment |~ | Decision |~ | Diagnosis
I »defaults lastPayment : CURAM_AMOUNT I »defaults startDate : CURAM_DATE 5 »defaults diagnosis_id : DIAGNOSIS_ID
g #defaults nextPayment : CURAM_AMOUNT g #defaults endDate : CURAM_DATE £ #defaults examinationDate : CURAM_DATE
g »defaults lastPayDate : CURAM_DATE £ #defaults amount : CURAM_AMOUNT g #defaults receivedDate : CURAM_DATE
g #defaults nextPayDate : CURAM_DATE 5, #defaults frequency : DESCRIPTION 5 #defaults changeReason : EVIDENCE_CHANGE_REASON
5, #defaults decision : CASE_DETERMINATION_INTERVAL_RESULT £ #defaults name : INCAPACITY_DIAGNOSIS
5, #defaults versionNo : VERSION_NO
1 . g #defaults updatedBy : USER_FULL NAME
payment e 5 #defaults updatedOn : CURAM_DATETIME
- decisions : N
'y - diagnoses
1
astructs “ 1
1 [] DecisionList
Y astructs
= Certificate
astructs P
= Gase 5y «defaults certificate_id : PRACTIIONER_CERTIFICATE _ID
g, defaults case_id : CASE_ID
adefaults le_id : CONCERN_ROLE_ID L]
EI d:’:t'”t ::;‘:E‘;"—’:A:—E‘ o LROLE g #defaults framDate : CURAM_DATE
G wdefaults case id : CASE | defaults .
5 =defaults startDate : CURAM_DATE 5 wdefaull» toDate : CURAM.DATE
5 =defaults expectedEndDate : CURAM_DATE [wdefaull» examinationDate : CURAMDATE
S <defaults receivedDate : CURAM_DATE estructs - data G defaults signatureDate : CURAM_DATE
T etaut. regitraionbate: CURAHYDATE (2] Cetncatenetansiie [- g “defauils daimFormSigneding : CURAM INDICATOR
I =defaults priorityCode : CASE_PRIORITY_CODE Ea "‘:E?”::” 'ECE'"Ed?EFECBi:J’:“:’z%DATE
[=defaults integratedCaseType : PRODUCT_CATEGORY_CODE g =defaull- comments :
=] 5 #defaults changeReason : EVIDENCE_CHANGE_REASON

[Eg «default» practitionerName : CONCERN_ROLE_NAME

- data . 5 defauits versionMo : VERSION_NO
- — g defaults updatedBy: USER_FULL_NAME
= g #defaults updatedOn : CURAM_DATETIME
¢ <defaults readASCEases) g #defaults certificateType : PRACTITIONER_CERT_TVPE

astructs wdefault= searchCertificates (]

®
®
[= Caselist §f, wdefaults createCertificate (]
®
®

«defaults readCertificate ()
«defaults modifyCertificate (}

E wdefault= deleteCertificate (]

Figure 4: The Adult Social Care REST APIs class diagram.

© Merative US L.P. 2012, 2024

Curam 8.1.2 38

Modeling the JSON representation
The JSON representation of the Adult Social Care REST API is modeled as a number of structs

in IBM® Rational® Software Architect Designer.

Procedure

In the model, create the following domain definitions, with the specified types. Also ensure
to associate the code-table with the domain definition in the model, where applicable.

Domain Definition Name Basic Curam Type Associated Codetable
INCAPACITY_DIAGNOSIS CURAM_CODETABLE IncapacityDiagnosis
PRACTITIONER_CERT_TYPE CURAM_CODETABLE PractitionerCertType
PRACTITIONER_CERTIFICATE_INTERNAL_ID N/A

DIAGNOSIS_ID INTERNAL_ID N/A

Model a new struct, called Case, to represent the / asc_cases REST resource. This struct
contains nested content, and each piece of nested content requires a new Curam struct to

be modeled. The Case struct contains the following parameters, with the relevant domain
definitions in the model:

Parameter Name Domain Definition

case_id CASE_ID

concern_role_id CONCERN_ROLE_ID
startDate CURAM_DATE
expectedEndDate CURAM_DATE
registrationDate CURAM_DATE
receivedDate CURAM_DATE

priorityCode PRIORITY_CODE
integratedCaseType INTEGRATED_CASE_TYPE

Model a new struct, CaseList, to represent a list of cases. This struct contains no parameters.

Create a one to many (1-*) aggregation between the CaseList struct and the Case struct and
set the aggregation role to data.

Model a new struct, Decision, to represent a case decision. The Decision struct contains the
following parameters, with the relevant domain definitions in the model:

Parameter Name Domain Definition

amount CURAM_AMOUNT

decision CASE_DETERMINATION_INTERVAL_RESULT
startDate CURAM_DATE

toDate CURAM_DATE

frequency DESCRIPTION

Create a one to many (1-*) aggregation between the Decision struct and the Case struct, and
set the aggregation role to decisions. Aggregating the Decision struct in a one to many (1-
*) relationship with the Case struct deviates slightly from standard modeling practice, where
the one to many (1-*) relationship would typically be to a DecisionList struct. This in turn
would be aggregated in a one to one (1-1) relationship with the Case struct. The rationale

© Merative US L.P. 2012, 2024

10.

11.

12.

1 Cdram REST API accelerator 39

behind aggregating Decision directly in a one to many (1-*) relationship with the Case struct
is to minimize, as much as possible, the layers inside the JSON representation.

Model a new struct, DecisionList, to represent a list of decisions. This struct contains no
parameters.

Create a one to many (1-*) aggregation between the DecisionList struct and the Decision
struct and set the aggregation role to dtls. This struct is not used as part of the resource
respresentation but is used in a utility function for retrieving the list of decisions on a case.

Model a new struct, Payment, to represent a payment. The Payment struct contains the
following parameters, with the relevant domain definitions in the model:

Parameter Name Domain Definition
nextPayment CURAM_AMOUNT
lastPayment CURAM_AMOUNT
nextPayDate CURAM_DATE
lastPayDate CURAM_DATE

Create a one to one (1-1) aggregation between the Payment struct and the Case struct and set
the aggregation role to payments.

Model a new struct, called Certificate, to representa/ asc_cases/ {case_i d}/
certificates REST resource. The Certificate struct contains the following parameters,
with the relevant domain definitions in the model:

Parameter Name Domain Definition

case_id CASE_ID

certificate_id PRACTITIONER_CERTIFICATE_ID
fromDate CURAM_DATE

toDate CURAM_DATE

examinationDate CURAM_DATE

signatureDate CURAM_DATE

receivedDate CURAM_DATE

changeReason EVIDENCE_CHANGE_REASON
practitioner CASE_PARTICIPANT_ROLE_ID
practitionerName CONCERN_ROLE_NAME
claimFormSignedind CURAM_INDICATOR
householdMember CASE_PARTICIPANT_ROLE_ID
latestActivity LOCALIZED _MESSAGE
comments COMMENTS

versionNo VERSION_NO

Model a new struct, called Diagnosis, to represent a Diagnosis. The Diagnosis struct
contains the following parameters, with the relevant domain definitions in the model:

Parameter Name Domain Definition
diagnosis_id DIAGNOSIS_ID
examinationDate CURAM_DATE
receivedDate CURAM_DATE

© Merative US L.P. 2012, 2024

Curam 8.1.2 40

13.

14.

15.

16.

Parameter Name Domain Definition

evidenceType CASE_EVIDENCE_TYPE_CODE
changeReason EVIDENCE_CHANGE_REASON
name INCAPACITY_DIAGNOSIS
latestActivity LOCALIZED_MESSAGE

Create a one to many (1-*) aggregation between the Diagnosis struct and the Certificate
struct and set the aggregation role to diagnoses.

Model a new struct, Caseldentifier. This struct is not part of the resource representation,

but it is required for the asc_cases/ {case_i d}/certificates/
{certificate_id} GET resource method to represent the case id query parameter. The
Caseldentifier struct should contain the following parameters:

Parameter Name Domain Definition
case_id CASE_ID
_limit NUMBER_OF_RECORDS

Model a new struct, ConcernRoleldentifier. This struct is not part of the resource
representation, but it is required for the / asc_cases GET resource method to represent
the concern_role id query parameter. The ConcernRoleldentifier should contain the
following parameters:

Parameter Name Domain Definition
concern_role_id CONCERN_ROLE_ID
_limit NUMBER_OF_RECORDS

Model a new struct, PractitionerCertificateKey. This struct is not part of the resources
representation, but it is required for the asc_cases/ {case_i d}/certifi cates/
{certificate_id} GET resource method to represent the certificate id query
parameter. The PractitionerCertificateKey should contain the following parameter:

Parameter Name Domain Definition

certificate_id PRACTITIONER_CERTIFICATE_ID

Modeling the REST facade
REST API resource methods are implemented by Ciaram modeled facade operations.

Before you begin
You must have created the required structs.

About this task
You must create a facade class, with a number of operations to represent the REST API resource
methods.

Procedure

1. Inthe model, create a facade called Adul t Soci al Car eAPI with a stereotype of rest.
2. For each entry in the following table, create a new operation on the

Adul t Soci al Car eAPI facade, with the specified structs defined for input and output:

© Merative US L.P. 2012, 2024

1 Cdram REST API accelerator 41

Facad Input Returr Resou Description
Opera Struct Struct Metho
Mappil

r ead ASZaxsesRdlalsielnttier The

asc_caSascernRoleldentifier
GET struct

defines

the

concern_role_id

query

parameter

that is

supported.

cr eat élentificdterbetitidnerCerfifieateKey
asc_camstitionerCertificateKey
{ concesutputol e_i d} /
certi fstamt es
POST contains
the
certificate_id
of the
newly
created
practitioner
certificate.

r ead CRrecfiiare@stiffasite Key The
asc_camstitionerCertificateKey
{concenputr ol e_i d}/
certi fstamt es/
{certimapst e_i d}
GET directly
to the
certificate_id
path
parameter.

nodi f yCatificdted2earéficdte The
asc_cdBerificate
{concestructol e_i d}/
certi freaahed/
{certiddntaine_i d}
PUT the
updated
content.

del et d@actilidrier@edificateKey The

asc_camstitionerCertificateKey
{concenputr ol e_i d}/
certi fstamt es/
{certimapst e_i d}
DELETHirectly

to the

certificate_id

path

parameter.

© Merative US L.P. 2012, 2024

Curam 8.1.2 42

Facad Input
Opera Struct

Returr Resou Description
Struct Metho
Mappil

sear c {CesaHdad@xeficdteDetaildiast

asc_cdsaseldentifier
{concénputr ol e_i d}/
certi ftamt es
GET maps

directly

to the

case_id

path

parameter.

3. Complete the documentation field for the facade class and all the operations. The
documentation is used in the generation of the Swagger document representing the definition

of the REST APIs.

What to do next

Model the mandatory properties for each REST resource method.
Modeling the mandatory properties

When you complete the REST API design, you must use IBM® Rational® Software Architect

Designer to model the facades, operations and structs.

Procedure

In the model, for each of the operations defined in the Adul t Soci al Car eAPI , set the
mandatory field values as outlined in the following table:

createCertificatkasc_cases/

readCertificate /asc_cases/

nodi fyCertificate

del eteCertificate

{concern_rol e_id}/
certificates

certificate_id
{concern_rol e_id}/
certificates/
{certificate_id}}

certificate_id

Facade Operation Resource Method Mandatory Fields Description
Mapping Value
r eadASCCases /asc_cases GET concern_role_id The

concern_role_id us
used to retrieve the
list of cases.

case_id,claimFormSigheel imdymlatditionerName,receivedDate,sig

fields that are
needed to be
specified to create
a certificate.

The certificate_id is
used to retrieve the
member resource.

fromDate,toDate,signdthecatejat@minationDate,claimFormSign

fields that are
needed to be
specified to modify
a certificate.

The certificate_id is
used to retrieve the
member resource.

natureDate,ex

edInd,receivel

© Merative US L.P. 2012, 2024

1 Cdram REST API accelerator 43

Facade Operation Resource Method Mandatory Fields Description
Mapping Value

searchCertificates case_id The case_id is
used to retrieve
the practitioner
certificates.

Implementing the REST APIs

After the modeling is complete, you need to generate the Ctiram model. Refer to the appendix
section for details on how to implement the facade methods that are created for the REST API
accelerator.

About this task

The implementation was straightforward due to the Test Driven Development approach

that was taken. The entire design and workings of the APIs was driven out by JUnit testing.
Implementation entailed moving code from the JUnit tests into the APIs and then updating the
tests to call those APIs.

The asc_cases/{case_id}/certificates REST API PUT resource was the most
complex REST API to implement. The reason for this is that the resource (GET, PUT, POST
and DELETE) methods for the diagnosis evidence type needed to be implemented as part of
the modify certificate method. This is due to the parent-child nature of the evidence, and the
diagnosis evidence is structured as a nested resource of the practitioner certificate.

Related tasks

Analyzing the new REST APIs on page 36

You need to identify any existing APIs within Caram that can be used to implement the
functionality for the new REST APIs.

Appendix on page 57
The following specifies the Caram APIs that are used for implementing the Social Program REST
APIs for the Adult Social Care mobile application.

Generating the Ciram model
When you create a REST API operation in IBM® Rational® Software Architect Designer run the
following build targets.

About this task

The build generated target generates the code from the model, builds code tables, messages,
and events but does not compile handcrafted code. If you run a build server target, the
compile.implemented substep would fail as the handcrafted implementation class is not
present. At the very least, you need to provide a dummy implementation of the modeled
operations before you run the build compile.implemented target.

The build database target inserts the security identifiers that are associated with the facade
operations into the database.

Procedure

1. From %CURAM DI R% EJBSer ver, run: build generated.

%CURAM DI R%is the Ctiram installation directory, which by default is C: \ Mer at i ve
\ Cur am Devel opnent .

© Merative US L.P. 2012, 2024

Curam 8.1.2 44

2. In Eclipse, you need to refresh and build the EJBServer project. The separate build of the
projects in Eclipse is only required if you have the 'Perform build automatically on resource
modification' setting switched off. This setting is in the workbench preferences.

3. Open up the modeled implementation class and right click and select Source > Override/
Implement Methods to add the stubs for the modeled operations.

4. From “CURAM DI R EJBSer ver , run: build compile.implemented database.
Implementation files for Adult Social Care

The following table includes the location of the classes, which were created to implement the
Adult Social Care REST APIs.

Class Name Location

Adul t Soci al Car eAPI . j ava “CURAM DI R EJBSer ver \ conponent s\ Adul t Soci al Car eREST
\ sour ce\ Adul t Soci al Car eREST_src. zi p\ cur aml ascpr oduct
\rest\inpl\

Note: %CURAM DI R%is the Curam installation directory, which by
defaultis C: \ Mer at i ve\ Cur am Devel opnent .

The following file includes the constants that are used by the Adult Social Care REST API. They
represent the attributes on the following two entities. They are used for the getting and setting the
attribute values on the respective dynamic evidence types.

» Practitioner Certificate
* Diagnosis

Class Name Location

ASCRESTConst . j ava Y%CURAM DI R EJBSer ver \ conponent s\ Adul t Soci al Car eREST
\ sour ce\ Adul t Soci al Car eREST_src. zi p\ cur aml ascpr oduct
\rest\inpl\

Configuring the resource configuration files
You must create a REST configuration file in XML format to define the mapping of the REST
resource paths to the Cliram fagade operations.

Before you begin

Before the REST configuration file can be created, you must model and implement the Ctiram
facade class, which will have a stereotype of rest.

About this task

The REST configuration file defines all the resource paths for the API, and the methods that are
available for each resource. Each resource method is mapped to a Ciram fagade operation, and
extra configuration values, such as mime-type and cache-control, can be set as required.

© Merative US L.P. 2012, 2024

1 Cdram REST API accelerator 45

Resource configurations specified for Adult Social Care
The following includes the XML and property details, which is specified for the Adult Social

Care REST API configurations.

Resour cesConfi g. xmi

You can view the Resour cesConfi g. xm and the Rest Confi g. properti es files
from the %CURAM DI R% EJBSer ver \ conponent s\ Adul t Soci al Car e\ r est

\ conf i g directory. CURAM DI R%is the Ctram installation directory, which by default is C:
\ Mer ati ve\ Cur am Devel opnent .

© Merative US L.P. 2012, 2024

Curam 8.1.2 46

The following includes the resource configurations that are specified for theCaram REST API
accelerator:

<api>
<version number="v1">

<resource path="asc cases">

<!-- Get all, or the latest, Adult Social Care case record -->
<method verb="GET">
<facade class="AdultSocialCareAPI" method="readASCCases" />
<tags>
<tag>AdultSocialCare</tag>
</tags>
</method>
</resource>

<resource path="asc cases/{case id}/certificates">

<!-—- Get all, or the latest, Practitioner Certificate records -->
<method verb="GET">

<facade class="AdultSocialCareAPI" method="searchCertificates"/>
<tags>

<tag>AdultSocialCare</tag>
</tags>
</method>

<!-- Create a Practitioner Certificate record -->
<method verb="POST">
<facade class="AdultSocialCareAPI" method="createCertificate"/>
<tags>
<tag>AdultSocialCare</tag>
</tags>
</method>
</resource>

<resource path="asc cases/{case id}/certificates/{certificate id}">

<!-- Get a specific Practitioner Certificate record -->
<method verb="GET">
<facade class="AdultSocialCareAPI" method="readCertificate"/>
<tags>
<tag>AdultSocialCare</tag>
</tags>
</method>

<!-- Modify a certificate record -->
<method verb="PUT">
<facade class="AdultSocialCareAPI" method="modifyCertificate"/>
<tags>
<tag>AdultSocialCare</tag>
</tags>
</method>

<!-- Delete a certificate record -->
<method verb="DELETE">
<facade class="AdultSocialCareAPI" method="deleteCertificate"/>
<tags>
<tag>AdultSocialCare</tag>
</tags>
</method>
</resource>

<!-- New resources can be added below -->
</version>
</api>

© Merative US L.P. 2012, 2024

1 Cdram REST API accelerator 47

Rest Confi g. properties

The following includes the rest configuration properties that are specified for theCuram REST
API accelerator:

title=Partner Enablement REST API
description=This is the Partner Enablement REST API.

Building and testing REST APIs

After you model the facades and create the REST configuration file, you need to generate and test
the REST APIs.

Generating the Social Program REST APIs

Complete the following steps for building the Ciram REST APIs and run the API resources in the
development environment by using Tomcat to view the Swagger document.

Procedure

1. From the %CURAM DI R%directory, update the Set Envi r onnment . bat and
Set Envi ronnent . sh files.

Y%CURAM DI R%is the Ctram installation directory, which by default is C: \ Mer at i ve
\ Cur am Devel opnent .

2. Addthe CATALINA _HOME environment variable.
This environment variable defines the home directory of the Tomcat installation, and is used
to automatically deploy the REST API resources into Tomcat.

3. From the %CURAM DI R% EJBSer ver directory, run the following build target:

buil d rest

This build target combines the defined REST resources from each component and deploys the
REST API to the Tomcat web server in the development environment.

4. From Eclipse, start your application server and Tomcat as normal.

5. Using a web browser, open the following URL to confirm successful deployment of the REST
API:

http://1ocal host: 9080/ Rest/ api / definitions

where 9080 is the default Tomcat port.

Results

A list of the Swagger documents for each version of the API defined is displayed. Select a version
to open the Swagger document for that version.

© Merative US L.P. 2012, 2024

Curam 8.1.2 48

Testing a Social Program REST API

A number of different testing mechanisms were used to test the REST APIs, such as unit

testing, by using a Swagger-enabled tools, and by using the mobile application with the Ctiram
application.

Testing a REST API for Adult Social Care

To test that the Cliram REST API accelerator is built successfully, complete the following steps to
view the JSON representation for one of the REST APIs.

Procedure
1. From the Adult Social Care accelerator, run through the performing the Adult Social Care
caseworker scenario to create an Adult Social Care case for James Smith.

2. From a web browser, enter the following URL to confirm whether the asc_cases GET
resource method is working. A JSON object with an array of case details is displayed.

http://localhost:9080/Rest/vl/asc_cases?concern _role id=101& limit=1

© Merative US L.P. 2012, 2024

1 Cdram REST API accelerator 49

Results

The following example JSON representation is displayed successfully in the web browser.

{

"data" : [
{
"concern role id" : "101",
"case id" : "8644096534784245760",
"startDate" : "2015-07-26T23:00:00.000+0000",
"expectedEndDate" : null,
"receivedDate" : "2015-07-26T23:00:00.000+0000",
"registrationDate" : "2015-07-26T23:00:00.000+0000",
"priorityCode"™ : {
"tableName" : "CasePriority",
"value" : "CP1",
"description" : "High"
}I
"integratedCaseType" : {
"tableName" : "ProductCategory",
"value" : "PC24000",
"description" : "Adult Social Care"
}I
"decisions" : [
{
"startDate" : "2015-08-30T23:00:00.0004+0000",
"endDate" : null,
"amount" : 0.00,
"frequency” o
"decision" : {
"tableName" : "CaseDetIntervalResult",
"value" : "CDIR2",
"description" : "Not Eligible"
}
}I
{
"startDate" : "2015-07-26T23:00:00.000+0000",
"endDate" : "2015-08-29T23:00:00.000+0000",
"amount" : 132.23,
"frequency" : "Weekly",
"decision" : {
"tableName" : "CaseDetIntervalResult",
"value" : "CDIR1",
"description" : "Eligible"
}
}
]I
"payment" : {
"lastPayment" : 0.00,
"nextPayment" : 132.23,
"lastPayDate" : null,
"nextPayDate" : "2015-07-26T23:00:00.000+0000"

Social Program REST API unit testing
Curam REST resources are HTTP URL endpoints, so you can take a number of different
approaches to test your REST APIs.

It is good practice to develop unit tests for REST APIs, and JUnit is one example tool that
provides an approach for such testing.

In addition to JUnit, it can be worth considering the following open source libraries to make
writing automated tests simpler:

» Jackson for JSON handling
» Apache HTTP Client.

© Merative US L.P. 2012, 2024

Curam 8.1.2 50

In the absence of these libraries, simple tests can be performed that uses the Java Standard Edition
alone, for example:

/**
* Tests the JSON response when the /asc_cases resource is executed for
* concern role id=24011 and the 1limit parameter is set to 1.
*
* @throws Exception
*/
public void test json response() throws Exception ({

final URL url = new URL(
"http://localhost:9080/Rest/vl/asc_cases?concern role id=24011& limit=1");
final HttpURLConnection conn = (HttpURLConnection) url.openConnection();

// Verify the response code is what is expected
assertEquals (200, conn.getResponseCode());

final StringBuilder responseBuilder = new StringBuilder();
final BufferedReader in = new BufferedReader (new InputStreamReader (
conn.getInputStream()));

while (in.ready()) {
responseBuilder.append (in.readLine());

}

// Get the expected response from a flat file

final String responseFileLocation = "C:\\";

final String responseFile = "Response.txt";

final String file = responseFilelLocation + responseFile;

final BufferedReader fileBufferedReader = new BufferedReader (
new FileReader (file));
final String expectedResponse = fileBufferedReader.readLine();

// Check if the expected response is what was retrieved
assertEquals (expectedResponse, responseBuilder.toString());

Integrating with a mobile application

You can integrate the Social Program REST APIs with other applications, either within your
enterprise or with external systems. In this accelerator, the Social Program REST APIs are
integrated with a mobile application.

About this task

The Adult Social Care mobile application, which is built by using IBM MobileFirst, was used to
integrate with the REST APIs. Adapters were created within IBM MobileFirst, which connects
the mobile application with the Ctram application server.

Documentation for how the mobile application was built is out of scope for this accelerator.
Steps are included on how to install the mobile application, where you can see yourself how the
application was implemented. There are also steps on how to create an adapter to integrate with a
Social Program REST API.

Installing IBM MobileFirst development environment
Complete the following steps for installing the Eclipse Marketplace widget and the IBM
MobileFirst Studio in Eclipse.

Before you begin

For installing IBM MobileFirst, you must have an existing instance of the Eclipse development
environment. You need to install a compatible version of Eclipse such as Juno SR2, Kepler SR1,
Kepler SR2, Luna SR1, or Luna SR2.

© Merative US L.P. 2012, 2024

1 Cdram REST API accelerator 51

Procedure
Installing the Eclipse Marketplace widget

Some Eclipse versions come without the Eclipse marketplace widget, which is required to install
IBM MobileFirst. Follow these steps to add the Eclipse Marketplace widget only if it does not
exist already in your Eclipse.

From Eclipse, click Help > Install New Software.

From the Work with input field, select the drop-down and click All Available Sites.
In filter text input field type Marketplace.

Under General Purpose Tools, select Marketplace Client.

Click Next and finish the installation.

Installing MobileFirst Studio in Eclipse

A

6. From Eclipse, click Help > Eclipse Marketplace.

7. From the search bar, enter Mobile First Platform and click Go.

8. Scroll down to IBM MobileFirst Platform Studio and click Install.

9. Select IBM MobileFirst Platform Studio if it is not already selected and click Confirm.
10. Accept the terms and conditions, click Finish.

11. Ifyou get a security warning click OK.

12. Restart Eclipse when prompted.

What to do next

You are able to access the MobileFirst menu from Eclipse. It is denoted by a mobile phone icon.

File Edit Navigate Search Project Page Run Window Help

Isp el O

[t5 Project Explorer &2 - % Y =08

Installing the Adult Social Care mobile accelerator

The Adult Social Care mobile application accelerator is available for download fis available
for download only to members of Merative, such as Lab Services developers who are assigned
to work on a Curam project on a customer site. Complete the following steps to get the mobile
application up and running with IBM MobileFirst.

Procedure

1. Extract the Adult Social Care mobile accelerator at the root of the Cram installation
%CURAM DI R% which by default is C: \ Mer at i ve\ Cur am Devel opnent . A folder
that is named Mobi | e is added to “CURAM DI R%directory.

In this documentation, the variable %VIOBl LE%denotes the directory of the mobile
application.

2. From Eclipse, click File > Import > General > Existing Projects into Workspace.

3. From the Select root directory option, click Browse and navigate to the %CURAM DI R%
\ Mobi | e directory.

4. From the list of available applications, select ASCMobile and click Finish.

Related concepts
Installing the REST API accelerator on page 20

© Merative US L.P. 2012, 2024

Curam 8.1.2 52

Download and install the REST API accelerator. The REST API accelerator is available for
download only to members of Merative, such as Lab Services developers who are assigned to
work on a Curam project on a customer site.

Installing third-party libraries
The following third-party libraries are required to be installed for the Adult Social Care mobile
application user interface.

About this task

For this task, the path %MOBILE _APPLICATION% refers to the location: “CURAM DI R%

\ Mobi | e\ ASCMbbi | eAppl i cati on\ ASCMVbbi | e\ apps\ ASCVbbi | eAppl i cati on
\ conmon\ . %CURAM DI R%is the Cuaram installation directory, which by default is C.

\ Mer ati ve\ Cur am Devel oprent .

Table 7: Third-part libraries

The following table lists all third-party libraries that are required and their version numbers.

Library name Version no.
jQuery Ul 1.11.0
Foundation 5.0
Procedure
Installing jQuery Ul

1. From a web browser, go to the following URL: JQuery-UI.
2. Select jQuery UI 1.11.0 (concatenated JS and CSS files).
3. Save and extract the file.
4

From the extracted folder, copy the j quer y- ui . j s file to the
9%VOBI LE_APPLI CATI ON% j s directory.

5. From the extracted folder, copy the j quer y- ui . css file to the
9%VOBI LE_APPLI CATI ON% css directory.

Installing Foundation

6. From a web browser, go to the following URL: Foundation.

7. Browse to the download page, and click Download Everything.
8. Save the compressed download file.

9. Extract the file to a temporary folder.

10. From the extracted folder, copy the content from the ¢SS directory to the
%vOBI LE_APPLI CATI ON%A css\ | i b directory.

11. From the extracted folder, copy the content from the j S directory to the
%vOBI LE_APPLI CATI ON%A j s\ | i b directory.

© Merative US L.P. 2012, 2024

https://jqueryui.com/download/all/
http://foundation.zurb.com/sites.html

1 Cdram REST API accelerator 53

Deploying the mobile application

From your IBM MobileFirst development environment, you need to deploy the mobile
application and adapters before you can preview the mobile application that uses the simulator.
Complete the following steps to view the Adult Social Care mobile application.

Procedure

1. From Eclipse, right-click on the ASCVbbi | e directory and click Open MobileFirst
Console.
You can ignore the message in red in the Eclipse console, which includes the host
name and other console warnings. The Eclipse console displays (in green) Application
'ASCMobileApplication' with all environments build finished. Once the deployment is
complete, the IBM MobileFirst Platform Operations Console is opened in an internet browser
where you can see the mobile application and the adapters deployed.

2. From the Home>ASCMbbi | e directory, select Applications to view the mobile application
deployed.
3. From the Home>ASCMobi | e>Appl i cat i ons directory, select ASCMobileApplication.

4. From the Common Resources section, select Preview to view the mobile application through
the IBM MobileFirst web simulation environment.

Performing the Adult Social Care mobile application caseworker scenario
Detailed steps are provided for you to walk through the sample mobile application, and
experience the full end-to-end business work flow.

Before you begin

You need to install the Adult Social Care mobile application accelerator and start your Curam
application as normal.

Related tasks

Installing the Adult Social Care mobile accelerator on page 51

The Adult Social Care mobile application accelerator is available for download fis available
for download only to members of Merative, such as Lab Services developers who are assigned
to work on a Cliram project on a customer site. Complete the following steps to get the mobile
application up and running with IBM MobileFirst.

Searching for a client
Complete the following steps to find a client who is already registered as a person on the system.

Procedure

1. From the mobile application landing page, enter the client's full name in the search for a client
field and click Search.

Table 8: Search for a client value

Name Value

Full Name James Smith

2. From the Search Results page, if the search criteria is met, click on the person link to open
the Client Profile page.

© Merative US L.P. 2012, 2024

Curam 8.1.2 54

Editing a practitioner certificate
Complete the following steps to edit the practitioner certificate evidence record.

Procedure

1. From the Client Profile window, click Edit.
2. From the Edit Practitioner Certificate window, modify the following details and click Save.

Name Description Value

Change Reason The reason why the evidence Reported by Client.
needs to be changed.

Specified Certification The last day that is covered by Current date + 8 weeks.

To Date the practitioner certification.
Comments Comments that are captured by Extended the certification by 6 months due
the caseworker. to new diagnosis.

What to do next

You can check the Adult Social Care eligibility worker Ctiram workspace to see your changes.
Creating a diagnosis

Complete the following steps to create a diagnosis that is associated with the practitioner
certificate.

Procedure

1. From the Client Profile window, click New Diagnosis.

2. From the New Diagnosis window, enter the following values and click Save.

Name Description Value
Received Date The date that the practitioner certificate Current date
evidence was received by the organization.
Examination Date The date on which the medical examination Current date
took place.
Diagnosis Type The code for the physical disorder or illness Cardiovascular disease

the claimant is suffering.

What to do next

You can check the Adult Social Care eligibility worker Ciram workspace to see your changes.
Integrating the mobile application with a Social Program REST API

You can integrate an existing Social Program REST API with an IBM MobileFirst application
by using a IBM MobileFirst adapter. Complete the following steps for creating an adapter to
integrate with a REST API and connect with the Ctram application server. The following tasks
describe how to integrate a GET and PUT Ctram REST request with an IBM MobileFirst
application and discusses how to handle date-time formats between Curam and the mobile
application.

Related information

Overview of MobileFirst adapters

© Merative US L.P. 2012, 2024

https://www-01.ibm.com/support/knowledgecenter/SSHS8R_7.0.0/com.ibm.worklight.dev.doc/devref/c_overview_of_ibm_adaps_top_level.html

1 Cdram REST API accelerator 55

Integrating a custom GET request with a mobile application

The following task describes how to integrate a custom Ciram GET request with an IBM
MobileFirst mobile application. For the purposes of this task, a custom GET request from the
REST API accelerator is used as an example.

Procedure

1. From Eclipse, open your IBM MobileFirst application and create a new IBM MobileFirst
HTTP adapter. For more information, see Creating an IBM MobileFirst adapter.

2. From the new adapters XML file, create a procedure that is called
get Evi denceByCasel Das follows:

<procedure name="getEvidenceByCaseID"/>

3. From the new adapters JavaScript file, implement the get Evi denceByCasel D function to
retrieve data from the existing Social Program REST API as follows:

function getEvidenceByCaseID (case id) {

var input = {
method : 'get',
returnedContentType : 'json',
path : '/Rest/vl/asc cases/' + case id + '/certificates? limit=1"',

};

return WL.Server.invokeHttp (input) ;

}

4. From the adapter's XML file, enter the following port and domain details to point to the
Cuaram application server, where 9080 is the default Tomcat port.

Table 9: Adapter connection settings

Port Domain Description

9080 localhost Using the default port 9080 on
the localhost domain.

5. From the IBM MobileFirst project, right-click the adapter's folder, click Run as > Call
MobileFirst Adapter to test the adapter.

6. From the adapter wizard window, select the get Evi denceByCasel D function and enter
the following parameter details:

Table 10: Adapter parameter settings

Parameter Name Parameter Value Description

case_id Enter the case_id for the case, which is
associated with the evidence to be retrieved.

7. Click Finish.

© Merative US L.P. 2012, 2024

https://www-01.ibm.com/support/knowledgecenter/SSHS8R_7.0.0/com.ibm.worklight.dev.doc/devref/t_creating_a_new_javascript_adap.html

Curam 8.1.2 56

Integrating a custom PUT request with a mobile application

The following task describes how to integrate a custom Ctiram PUT request with an IBM
MobileFirst mobile application. For the purposes of this task, a PUT request from the Curam
REST API accelerator is used as an example.

Procedure
1. From Eclipse, open your MobileFirst application and create a new MobileFirst HTTP adapter.

For more information, see Creating a MobileFirst adapter.

2. From the new adapters XML file, create a procedure that is called put Evi dence as follows:

<procedure name="putEvidence"/>

3. From the new adapters JavaScript file, implement the put Evi dence function to send data
by using the existing Social Program REST API as follows:

For more information about sending REST requests to Curam, see the 'Request Header'
documentation.

function putEvidence (certificate id, case id, data) {

var input = {
method : 'put',
returnedContentType : 'json',
path : '/Rest/vl/asc_cases/' + case id + '/certificates/' + certificate id,

//CGram PUT, POST and DELETE requests require a 'Referer' header to
be included in all requests.
//The Referer header should contain the value 'curam://' followed by
an identifier for the application.
headers : { 'Referer': 'curam://acceleratorApp' },
body: {
contentType: 'application/json; charset=utf-8',
content: data,
}
}i
return WL.Server.invokeHttp (input) ;

}

4. From the adapters XML file, enter the following port and domain details to point to the Caram
application server.

Table 11: Adapter connection settings

Port Domain Description

9080 localhost Using the default port 9080 on
the localhost domain.

5. From the MobileFirst project, right-click the adapter's folder, click Run as > Call
MobileFirst Adapter to test the adapter.

6. From the adapter wizard window, select the put Evi dence function and enter the following
parameter details:

Table 12: Adapter parameter settings

Parameter Name Parameter Value Description

certificate_id Enter the certificate_id for the evidence to be
modified.

case_id Enter the case_id for the case, which is
associated with the evidence.

© Merative US L.P. 2012, 2024

https://www-01.ibm.com/support/knowledgecenter/SSHS8R_7.0.0/com.ibm.worklight.dev.doc/devref/t_creating_a_new_javascript_adap.html

1 Cdram REST API accelerator 57

Parameter Name Parameter Value Description
evidence JSON representation for the evidence that is to be
modified.

7. Click Finish.
For more information about request headers, see the Ciiram™ REST API Guide.

The Curam date-time format
The date-time format in Caram supports the ISO 8601 format. The ISO 8601 format is not always
suitable for consumption by the user interface of an application.

You need to write your own functions to control the format of any date-time information that is
being retrieved or sent as an outgoing request for your application.

For more information about the date-time format, see the Ciiram™ REST API Guide.

1.5 Appendix

The following specifies the Caram APIs that are used for implementing the Social Program REST
APIs for the Adult Social Care mobile application.

Retrieving the case details Caram APIs

For the Adult Social Care mobile application, you are required to get the case, decision, and
payment details. The REST API, / asc_cases, returns all this information. The following
sample code defines the existing Ciiram APIs used to retrieve the case, decision, and payment
details.

About this task

The following include the list of attributes that are required to be retrieved for the client and
displayed on the mobile application.

Case Attributes Decision Attributes Payment Attributes
« startDate List of decision details: + nextPayment
» expectedEndDate « startDate ¢ nextPaymentDate
» dateReceived « endDate e lastPayment
» priorityCode « amount ¢ lastPayDate

e decision

« frequency

Procedure

1. The following API is used to retrieve all the cases for a person.

final CaseHeaderConcernRoleDetailsListl list =
MaintainCaseFactory.newInstance ()
.getCasesByConcernRoleIDl (participantKey) ;

2. For the Adult Social Care mobile application, you are only interested in the Adult Social Care
integrated Cases and the Incapability Benefit product deliveries. You need to iterate through

© Merative US L.P. 2012, 2024

Curam 8.1.2 58

the list and filter it to retrieve the integrated case of type Adult Social Care and the product
delivery cases of type Incapability Benefit.

3. For the mobile application, there is a requirement to retrieve the latest Adult Social Care case,
therefore you need to sort the list by start date with a descending order.

4. Iterate through the sorted list to process the number of cases the /imit input parameter allows.
Within the iteration, you need to call the following APIs to read the case details, retrieve the
list of decisions, and payment details for the associated product delivery.

Table 13: APIs to get the case, decision, and payment details

API Description

This APl is used to read the case detalils.

final CaseHeaderDtls icCaseHeaderDtls = | receivedDate
CachedCaseHeaderFactor%/.newInstance() o expectedEndDate
.read (caseHeaderKey) ; A
e priorityCode

¢ registrationDate

This APl is used to retrieve a list of case decision

. details for a specified case. Iterate through the list
final

CaseDeterminationDecisionDetailsList to assign the quiSion y6.l|UeS, which are added to
list = the returned list of decisions.
CaseDeterminationFactory.newInstance () e startDate
i o i i i *« endDate
.listDecisionPeriodsForDetermination (key) ; .
¢ decision
e amount

« frequency

This APl is used to get the details of the next

il St ing ebaiataing = B payment, including amount and next payment

Simulatetnel () £ date. The simulate indicator is set to false as you
simulateInd.simulateInd = false; do not want to save this simulation.
simulatePaymentResult =

SimulatePaymentFactory.newInstance () * nextPayment
. .simglatePayment(caseIDStruct, . nexﬂDayDaue
simulationDate,

simulateInd) ;

This APl is used to get the details for the last

T payment, including the amount and payment date.

lastPaymentDetails = ¢ lastPayment

InstructionlLineIltemFactory.newInstance ()| ® Ia-StPayDate
.readLastPaymentAndEffectiveDate
(iLICaseStatusAndTypeKey) ;

The following include the resource URLs that can be used to retrieve either the list of cases or
a specific number of cases.

Table 14: Resource URLs

Resource URL Description

[asc_cases Retrieves a list of Adult Social Care case records.
[asc_cases? Retrieves the latest Adult Social Care case record.
concern_rol e_id=<concern_role_id>& | imt=1

© Merative US L.P. 2012, 2024

Dynamic evidence Caram APIs

1 Cdram REST API accelerator 59

The following include the APIs used to create, retrieve, update, and delete dynamic evidence
details that are configured for the Adult Social Care mobile application.

Retrieving the parent-child evidence details

The/ asc_cases/{case_id}/certificates/{certificate_id} REST APIGET
resource retrieves the practitioner certificate (parent evidence) and a list of associated diagnosis
(child evidence) details. The following Caram APIs can be used in the implementation of this

APL

About this task

The following include the list of practitioner certificate and diagnosis attributes that are needed

for display on the mobile application.

Certificate Attributes

Diagnosis Attributes

» fromDate

» toDate

» practitionerName
» certificateType

* examinationDate
» signatureDate

» claimFormSignedind
e updatedOn

e updatedBy

* receivedDate

» changeReason

e comments

» versionNo

List of diagnoses details:

e name
¢ examinationDate
e updatedOn

e updatedBy

* receivedDate

e evidenceType

e changeReason

Procedure

1. The following Ctram APIs are needed to read the dynamic evidence details.

API

Description

final EvidenceServicelInterface esl

This APl is used to get the evidence service
interface, which is used to read the evidence
detalils.

EvidenceGenericSLFactory.instance (key.cgrtificate id);

final EvidenceCaseKey evKey
EvidenceCaseKey () ;
evKey.evidenceKey.evidencelD
key.certificate id;
evKey.evidenceKey.evType =

readEvidenceDetails =
esl.readEvidence (evKey) ;

CASEEVIDENCE.ASCPRACTITIONERCERTIFICATE;

This APl is used to read the practitioner certificate
evidence details based on the dynamic evidence
type and certificate identifier.

© Merative US L.P. 2012, 2024

Curam 8.1.2 60

2. You need to convert the dynamic evidence attributes that are returned into their respective
Curam types and assign to the practitioner certificate details.

Sample code

Description

certificate.fromDate
(Date) DynamicEvidenceTypeConverter
.convert (dynamicEvidence

.getAttribute (ASCConst.kCertFromDate)) ;

certificate.versionNo =
.getVersionNo () ;

dynamicEvidence

You need to get the following practitioner
certificate evidence attributes values.

e certificate_id

» fromDate

e toDate

e practitionerName

« certificateType

e examinationDate

e signatureDate

e claimFormSignedind
e comments

You can retrieve the version number for
the evidence that is retrieved from the
readEvi dence REST API.

¢ versionNo

The following Ctiram APIs are used to retrieve the remaining practitioner certificate details.

API

Description

final EvidenceDescriptorDtls descriptor

EvidenceDescriptorFactory.newInstance ()

.readByRelatedIDAndType (relatedIDAndEvid
receivedDate =
receivedDate;
changeReason
changeReason;
case id
caselD;

certificate.
descriptor.
certificate.
descriptor.
certificate.
descriptor.

final EvidenceDescriptorKey
descriptorKey
new EvidenceDescriptorKey();

descriptorKey.evidenceDescriptorID
descriptor.evidenceDescriptorID;

final EvidenceChangeHistoryDtlsList
historyList

EvidenceChangeHistoryFactory.newInstancg

.searchInstanceHistoryByEvidenceDescript

certificate.updatedBy

getUpdatedBy (historyList.dtls.item(0)) ;
certificate.updatedOn

historyList.dtls.item(0) .changeDateTime;

This APl is used to read the receivedDate and
changeReason attributes, which are not stored on
the practitioner certificate dynamic evidence entity.

¢ receivedDate
« changeReason

i G

The r eadUpdat edBy AndUpdat edOn protected
method is used to read the updatedBy and
updatedOn attributes, which are not stored on the
practitioner certificate dynamic evidence entity.
The updatedBy uses the get Updat edBy utility to
retrieve the full name of the user who last updated
the evidence.

e updatedOn
(¢ updatedBy

orID(descriptorKey) ;

© Merative US L.P. 2012, 2024

1 Cdram REST API accelerator 61

4. AreadChi | dEvi dence protected method is used to read the list of child diagnosis
evidence records for its associated parent practitioner certificate evidence. The following
sample code is used to get the list of diagnosis details.

final EIEvidenceKey eiEvidenceKey = new EIEvidenceKey();
eiEvidenceKey.evidenceID = key.certificate id;
eiEvidenceKey.evidenceType = CASEEVIDENCE.ASCPRACTITIONERCERTIFICATE;
final ChildList childList =
EvidenceRelationshipFactory.newInstance ()
.getChildKeylList (eiEvidenceKey) ;

5. You need to loop through the returned list and read the diagnosis details. A
readDi agnosi s protected method is used to

API Description

This APl is used to get the evidence service
interface, which is used to read the evidence

final EvidenceServiceInterface esl = .
details.

EvidenceGenericSLFactory

.instance (key.evidenceKey.evidencelD) ;

This APl is used to read the practitioner
certificate evidence details based on the

final EvidenceCaseKey evKey = new
EvidenceCaseKey () ;
evKey.evidenceKey.evidencelID =
key.evidenceKey.evidencelID;
evKey.evidenceKey.evType =

dynamic evidence type and certificate identifier.
The r eadEvi dence API performs a read

on the DYNAMICEVIDENCEDATA and the
DYNAMICEVIDENCEDATATTRIBUTE entities.

CASEEVIDENCE .ASCDIAGNOSIS;

final ReadEvidenceDetails
readEvidenceDetails =
esl.readEvidence (evKey) ;

final DynamicEvidenceDataDetails
dynamicData =
readEvidenceDetails.dtls;

© Merative US L.P. 2012, 2024

Curam 8.1.2 62

6. You need to convert the dynamic evidence attributes that are returned into their respective
Cuaram types and assign to the diagnosis details.

Sample code Description

You need to get the following diagnosis evidence
, , , attributes values.
diagnosis.name = dynamicData

L]
.getAttribute(ASCConst.kDiagnosisName).getVangv%;
diagnosis.examinationDate = ¢ examinationDate
(Date) DynamicEvidenceTypeConverter
.convert (dynamicData

.getAttribute (ASCConst.kCertExaminationDate)) ;

Set the following attributes with the details

, , , returned from the readEvidenceDetalils.
diagnosis.receivedDate =

+ receivedDate

[\
s

readEvidenceDetails.descriptor.receivedDate;
diagnosis.changeReason = e changeReason

* versionNo

readEvidenceDetails.descriptor.changeRedson; . .
¢ "diagnosis_id

diagnosis.versionNo =

readEvidenceDetails.dtls.getVersionNo () ;
diagnosis.diagnosis_id =
readEvidenceDetails.dtls.getID();

The r eadUpdat edBy AndUpdat edOn protected

final EvidenceDescriptorKey method is used to read the updatedBy and

descriptorKey = upda_tngn attri_b_utes, which are not stored on the
new EvidenceDescriptorKey () ; practitioner certificate dynamic evidence entity.
descriptorKey.evidenceDescriptorID = The updatedBy uses the get Updat edBy utility to

retrieve thPDf,uII name of the user who last updated
scriptorlD;

readEvidenceDetails.descriptor.evidencele T
the evidence.

final EvidenceChangeHistoryDtlsList

historyList = ¢ updatedOn
EvidenceChangeHistoryFactory . updatedBy
.newlInstance ()

.searchInstanceHistoryByEvidenceDescripforID (descriptorKey) ;
diagnosis.updatedBy =

getUpdatedBy (historyList.dtls.item(0));
diagnosis.updatedOn =

historyList.dtls.item(0) .changeDateTime;

7. Add the diagnosis details to the certificate, which is being returned as part of the REST API.

Retrieving all the parent-child evidence details
The/ asc_cases/ {case_id}/certificat es REST API GET resource retrieves the list
of practitioner certificate and associated diagnosis details. The steps describe the logic, which

© Merative US L.P. 2012, 2024

1 Cdram REST API accelerator 63

is created for the Adult Social Care mobile application and the sample code for the Caram API,
which can be used for this AP

Procedure

1. This API is used to read the list of evidence descriptor details for the case. The evidence
descriptor contains all the information across all evidence types.

final ListAllActiveEVDInstanceWorkspaceDtls list = EvidenceFactory.newlInstance ()
.listAllActiveEVDInstanceWorkspaceDtls (searchKey) ;

2. You need to iterate through the evidence descriptor list to retrieve the list of practitioner
certificate details. Within the iteration, you are calling the r eadCer t i f i cat emethod to get
the certificate details. For more information, see Retrieving the parent-child evidence details
on page 59.

3. For the mobile application, there is a requirement to retrieve the latest practitioner certificate
details. Therefore, you need to sort the list of practitioner certificate details by start date with a
descending order.

4. Iterate through the sorted list to get the latest practitioner certificate details. Iterate through the
sorted list and return the number of records according to the _| i mi t parameter. If _| i m t
is set to zero, then all records are returned otherwise the specified number of records are
returned. The mobile application specifies the input parameter as _/imit=1 as the requirement
is to get the latest record. The following specified example resource URLSs:

Table 15: Resource URLs

Resource URL Description

asc_cases/{concern_rol e_id}/ Retrieves a list of practitioner certificate records.

certificates

asc_cases/{concern_rol e_id}/ Retrieves the latest practitioner certificate record.

certificates?_limt=1 If the _limit=2, retrieves the latest 2 records from
the list.

Creating a practitioner certificate
The asc_cases/{case_id}/certificates REST API POST resource is used to create a
practitioner certificate record.

Procedure

1. The following sample code is needed to map the certificate for modifying the evidence.

Sample code Description

The mapCertificateDetail s is a protected method

T to map the certificate details to the evidence details.

gemerleliEls = , , For more information, see Mapping the practitioner
mapCertificateDetails (details); . E
certificate evidence details on page 66.

© Merative US L.P. 2012, 2024

Curam 8.1.2 64

2. The following Caram APIs are called to create the evidence record.

API Description

This APl is used to get the evidence service

. . interface, which is used to create evidence.
final EvidenceTypeKey evType =

new EvidenceTypeKey () ;
evType.evidenceType =

CASEEVIDENCE .ASCPRACTITIONERCERTIFICATE;

final EvidenceServicelInterface
evidenceServicelInterface =
EvidenceGenericSLFactory.instance
(evType, details.receivedDate);

This APl is used to create the evidence record,
which passes in the evidence and descriptor

// Set the genericDtls to create the .
details.

evidence
final GenericSLDataDetails genericDtls

new GenericSLDataDetails();
genericDtls.setData (evidence) ;
genericDtls.setDescriptor (descriptor) ;
genericDtls.setCaselIdKey (descriptor.caselD) ;

// Create the evidence record
final ReturnEvidenceDetails
evidenceDetails =

evidenceServicelInterface.createEvidence (genericDtls);

Updating a practitioner certificate

The asc_cases/{case_id}/certificates REST API PUT resource is created to
modify a practitioner certificate record. As the diagnosis is a child of the practitioner certificate,
you need to create, update, or delete a diagnosis record as part of this REST API.

Procedure

1. The following sample code is needed to map the certificate for modifying the evidence.

Sample code Description

The mapCertifi cat eDet ai | s is a protected method

el GemerleE e abe e e to map the certificate details to the evidence details.

geaciiclitls , , For more information, see Mapping the practitioner
mapCertificateDetails (details); . . .
certificate evidence details on page 66.

2. Checks are done to see whether the user is trying to create, update, or delete a diagnosis
record.

Sample code Description

The cr eat eUpdat eDel et eDi agnhosi s protected
method checks to see whether the user is trying to

createUpdateDeleteDiagnosis (details); .
create, update, or delete a diagnosis record.

For more information, see Creating, updating. or
deleting a child evidence record on page 66.

© Merative US L.P. 2012, 2024

1 Cdram REST API accelerator 65

3. The following Curam APIs are used to update the dynamic evidence details.

API Description

This APl is used to get the evidence service
interface, which is used to modify the evidence

final EvidenceTypeKey evType = .
ypeny e details.

new EvidenceTypeKey () ;
evType.evidenceType =

CASEEVIDENCE .ASCPRACTITIONERCERTIFICATE;

final EvidenceServicelInterface
evidenceServicelInterface =
EvidenceGenericSLFactory.instance
(evType, details.receivedDate);

This APl is used to modify the practitioner

T certificate evidence details.

evidenceDetails =

evidenceServicelInterface.modifyEvidence (genericDtls) ;

Return the practitioner certificate details, which
are returned from the readCertificate

return readCertificate (certKey);
Y method.

For more information, see Retrieving the parent-
child evidence details on page 59.

© Merative US L.P. 2012, 2024

Curam 8.1.2 66

Mapping the practitioner certificate evidence details

Before you create or update evidence, you are required to convert the details in to evidence
specific format. This sample code includes the mapping details that is required for creating and
updating a practitioner certificate record.

Sample code Description

Set the practitioner certificate evidence attributes.

final String practitionerName = e practitionerName
;ertDetalls.prgctltlonerName; e ﬂ?pﬁD%KB

evidence.getAttribute (ASCConst.kPractitionerName

.setValue (practitionerName) ; « toDate

« certificateType

e examinationDate

¢ signatureDate

¢ claimFormSignedind
e comments

Set the ID and versionNo as they are needed for

difying evidence.
evidence.setID(certDetails.certificatewaQ;fy 9
evidence.setVersionNo (certDetails.versionNo) ;

Set the evidence descriptor details.

final EvidenceDescriptorDetails
descriptor =
new EvidenceDescriptorDetails();

descriptor.evidenceType =

CASEEVIDENCE.ASCPRACTITIONERCERTIFICATE;
descriptor.receivedDate =
certDetails.receivedDate;
descriptor.caselD =
certDetails.case id;
descriptor.relatedID =
certDetails.certificate id;
descriptor.changeReason =
certDetails.changeReason;

Set the genericDtls, which is needed as an input

T N P parameter for modifying the evidence.

genericDtls =

new GenericSLDataDetails() ;
genericDtls.setData (evidence) ;
genericDtls.setDescriptor (descriptor);
genericDtls.setCaseldKey (evidenceCaseKe¢y.caselDKey) ;
genericDtls.setEvidenceCaseKey (evidenc¢CaseKey) ;

Creating, updating, or deleting a child evidence record

As the diagnosis evidence is a nested array in the resource representation of the practitioner
certificate evidence. The diagnosis creation, update, and delete operations need to be done as part
ofthe asc_cases/{case_id}/certificates/{certificate_id} REST APIPUT
resource. As a result, logic is required to understand which action the user is trying to perform.
This logic is described here.

Procedure

1. Add the following check to see whether the user wants to create a diagnosis record. Loop
through the diagnosis list that is passed in to check to see whether the diagnosis_id equals

© Merative US L.P. 2012, 2024

1 Cdram REST API accelerator 67

zero. If so, you need to create the diagnosis record. The following includes sample code for

creating a diagnosis record.

Table 16: Create diagnosis

Sample code

Description

final GenericSLDataDetails genericDtls

mapDiagnosisDetails (diagnosis,
caseKey, certKey);

This APl is used to map the details that are
passed in to dynamic evidence data details
format.

For more information, see Mapping the diagnosis
details on page 71.

final EvidenceTypeKey evType = new
EvidenceTypeKey () ;
evType.evidenceType =

CASEEVIDENCE .ASCDIAGNOSIS;

final EvidenceServicelInterface
evidenceServicelnterface =

diagnosis.receivedDate) ;

EvidenceGenericSLFactory.instance (evTypg

// Create the evidence record

final ReturnEvidenceDetails
evidenceDetails =
evidenceServicelInterface.createEvidence

// Return the key
diagnosisKey.diagnosis id =

evidenceDetails.evidenceKey.evidencelID;

This APl is used to get the evidence service
interface, which is used to create evidence.

The cr eat eEvi dence method is used to create
the evidence record, which passes in the evidence
and descriptor details.

genericDtls) ;

© Merative US L.P. 2012, 2024

Curam 8.1.2 68

2. Add the following check to see whether the user wants to delete a diagnosis record.

Sample code Description

Loop through the diagnosis details that are passed
in, read the child evidence keys. Add the child

// Checks to see if a diagnosis record

1) meeds o be deleted evidence keys to an array list, vyhich is_ used
final List<Long> diagnosisKeys = further on to check whether a diagnosis record
new ArrayList<Long>(); does not exist for the practitioner certificate

// Loop through the diagnosis details identifier that is passed into the REST API.

// brought in, read the child evidence Therefore, you delete the record.
keys
for (final Diagnosis diagnosis
details.diagnoses) {

// BAdd the diagnosis keys to the
array list

diagnosisKeys.add (diagnosis.diagnosis id);

}

Retrieve the list of child diagnosis records for the

// Retrieve the child records for parentcenmcana

// this certificate

final EIEvidenceKey eiEvidenceKey =
new EIEvidenceKey () ;

eiEvidenceKey.evidencelID =
details.certificate id;

eiEvidenceKey.evidenceType =

CASEEVIDENCE.ASCPRACTITIONERCERTIFICATE;
final ChildList childList =

EvidenceRelationshipFactory.newInstance ()
.getChildKeyList (eiEvidenceKey) ;

3. Loop through the child list.
a) Check to see whether the user is trying to delete a diagnosis record.

© Merative US L.P. 2012, 2024

1 Cdram REST API accelerator 69

Table 17: Delete diagnosis

Sample code Description

If a diagnosis record does not exist which is being

// If a diagnosis record does not passed in, then delete the diagnosis record.

exist

// being passed in delete the
record.

if (!

diagnosisKeys.contains (childList.listJdtls.item(i).childID))
{

final DiagnosisKey key =
new DiagnosisKey () ;
key.diagnosis id =

childList.list.dtls.item(i).childID;
// remove the child record

deleteDiagnosis (key) ;
}

The following sample code is from the The r emoveEvi dence Caram API is used to
del et eDi agnosi s protected method: remove the evidence record and added an InEdit
status.

final EvidenceDescriptorKey evKey =
new EvidenceDescriptorKey () ;
final RelatedIDAndEvidenceTypeKey
relatedKey =
new RelatedIDAndEvidenceTypeKey () ;
relatedKey.evidenceType =
CASEEVIDENCE.ASCDIAGNOSIS;
relatedKey.relatedID =
key.diagnosis id;

final EvidenceDescriptorDtls
descriptor =

EvidenceControllerFactory.newInstance ()
.readEvidenceDescriptorByRelatedIDAndType (relatedKey) ;

evKey.evidenceDescriptorID =
descriptor.evidenceDescriptorID;

// Remove the diagnosis evidence
record
EvidenceControllerFactory

.newlInstance () .removeEvidence (evKey)

The appl yRenoval Curam API is used to apply

// Apply Changes the deletion.
final
curam.core.sl.infrastructure.struct.BvidenceKey
evidenceKey =

new

curam.core.sl.infrastructure.struct.EvidenceKey () ;
evidenceKey.evidencelID =
relatedKey.relatedID;
evidenceKey.evidenceType =
CASEEVIDENCE.ASCDIAGNOSIS;
evidenceKey.evidenceDescriptorID =
descriptor.evidenceDescriptorID;
evidenceKey.correctionSetID =
descriptor.correctionSetID;
evidenceKey.successionID =
descriptor.successionID;

EvidenceControllerFactory.newlInstance () .applyRemoval (evidenceKey) ;

© Merative US L.P. 2012, 2024

Curam 8.1.2 70

a) Else check to see whether the user wants to modify a diagnosis record.

Table 18: Modify diagnosis

Sample code

Description

final CaseKey caseKey = new
CaseKey () ;
caseKey.caselID = details.case id;

final Diagnosis diagnosis = new
Diagnosis () ;

final EvidenceServicelInterface esl =
EvidenceGenericSLFactory

.instance(childList.list.dtls.item(1)
final EvidenceCaseKey evKey = new
EvidenceCaseKey () ;

evKey.evidenceKey.evidencelID =
childList.list.dtls.item (i) .childID;

evKey.evidenceKey.evType =
CASEEVIDENCE.ASCDIAGNOSIS;

final ReadEvidenceDetails
readEvidenceDetails =
esl.readEvidence (evKey) ;

final DynamicEvidenceDataDetails
originalData =
readEvidenceDetails.dtls;

// Loop through the modified data
being passed in

for (final Diagnosis updatedData
details.diagnoses) {

final GenericSLDataDetails result

mapDiagnosisDetails (updatedData,
caseKey) ;

// if any incoming attribute has
changed value,
// an update is required
final boolean updateRequired =
isUpdateRequired (originalData,
result.getData());

if (updateRequired) {

final Diagnosis
returnedDiagnosisDetails =
modifyDiagnosis (updatedData,
caseKey,
new
PractitionerCertificateKey());;

}

From looping though the child list of evidence
record keys, read the evidence details from the
database to get the original evidence details.

childID) ;

Loop through the diagnosis details, which are
being passed in. The details that are passed in
need to be in mapped to they dynamic evidence
data details format.

For more information, see Mapping the diagnosis
details on page 71.

An i sUpdat eRequi r ed utility method
checks to see whether there is a difference
between the original details that are retrieved
from the database and the details, which are
being passed in. If there is a difference, the
nodi f yDi agnosi s method is called.

© Merative US L.P. 2012, 2024

1 Cdram REST API accelerator 71

Mapping the diagnosis details

Before you create or update evidence, you are required to convert the details in to evidence
specific format. This sample code includes the mapping details that is required for creating and
updating a diagnosis record.

Sample code Description

This APl is used to get the evidence details by type
final DynamicEvidenceDataDetails evidence chilzf;?:tlve date as there can be multiple versions

DynamicEvidenceDataDetailsFactory.newInstance (CASEEVIDENCE.ASCDIAGNOSIS,
diagnosis.receivedDate) ;

The following diagnosis dynamic evidence attributes

.) , , need to be set.
evidence.getAttribute (ASCConst.kDiagnosisN mé?

.setValue (diagnosis.name) ; ¢ name

final String examinationDate = * examinationDate
formatDate (diagnosis.examinationDate) ;
evidence.getAttribute (ASCConst.kDiagnosisExaminationDate)
.setValue (examinationDate) ;

Before you create the evidence, you need to set the
// Set the parent evidence key evidence descriptor details.

final EvidenceKey evKey = new
EvidenceKey () ;
evKey.evidencelID =
certKey.certificate id;
evKey.evType =

CASEEVIDENCE .ASCPRACTITIONERCERTIFICATE;

// Set the genericDtls to create the
evidence

final GenericSLDataDetails genericDtls =
new GenericSLDataDetails() ;
genericDtls.setData (evidence) ;
genericDtls.setDescriptor (descriptor);
genericDtls.setCaseldKey (caselID.caselD);
genericDtls.addParent (CASEEVIDENCE.ASCPRACTITIONERCERTIFICATE,
evKey) ;

Deleting a practitioner certificate
The asc_cases/{case_id}/certificates REST API PUT resource deletes a
practitioner certificate record and its associated diagnosis records.

About this task

For the Adult Social Care mobile application, the requirement is to delete a practitioner certificate
record and its associated child diagnosis records. In order for you to delete the practitioner
certificate record, you are required to delete the associated diagnosis evidence records first or else
an error message is displayed. For better user experience, the REST resource DELETE method
includes the deletion of the child records first before the deletion of the practitioner certificate.

© Merative US L.P. 2012, 2024

Curam 8.1.2 72

Procedure

1. The following APIs are used to remove the child diagnosis evidence records associated
with the practitioner certificate evidence. This functionality was separated out into its own
protected method that is called r enmoveChi | dEvi dences.

API Description

This APl is used to get the list of child evidence
// Retrieve the child records for this records.
certificate
final EIEvidenceKey eiEvidenceKey = new
EIEvidenceKey () ;
eiEvidenceKey.evidenceID =
certKey.certificate id;
eiEvidenceKey.evidenceType =
CASEEVIDENCE .ASCPRACTITIONERCERTIFICATE;
final ChildList childList =
EvidenceRelationshipFactory.newInstance ()
.getChildKeyList (eiEvidenceKey) ;

2. You need to loop through the childList and call the following Ctram APIs to remove the child
evidence:

API Description

This APl is used to read the evidence descriptor
unique identifier, which is needed to delete an

final RelatedIDAndEvidenceTypeKe
YPEREY evidence record.

relatedKey =
new RelatedIDAndEvidenceTypeKey () ;

relatedKey.relatedID = child.childID;
relatedKey.evidenceType =
child.childType;

final EvidenceDescriptorDtls descriptor

EvidenceControllerFactory.newInstance ()

.readEvidenceDescriptorByRelatedIDAndTygde (relatedKey) ;

This APl is used to remove an evidence record.

final EvidenceDescriptorKey
descriptorKey =
new EvidenceDescriptorKey () ;
descriptorKey.evidenceDescriptorID =
descriptor.evidenceDescriptorID;

EvidenceControllerFactory.newInstance () .gyemoveEvidence (descriptorKey) ;

This APl is needed to apply the evidence removal
final EvidenceKey evKey = new changes

EvidenceKey () ;
evKey.evidenceDescriptorID =
descriptor.evidenceDescriptorID;
evKey.evidenceType =
descriptor.evidenceType;
evKey.evidencelD =
relatedKey.relatedID;
evKey.successionID =
descriptor.successionID;
evKey.correctionSetID =
descriptor.correctionSetID;

EvidenceControllerFactory.newInstance () .applyRemoval (evKey) ;

© Merative US L.P. 2012, 2024

1 Cdram REST API accelerator 73

3. Once the child evidence is created, you can now delete the parent evidence record. The
following Ctiram APIs are used to delete the practitioner certificate record.

API Description

This APl is used to read the evidence descriptor
unique identifier, which is needed to delete an

final RelatedIDAndEvidenceTypeKe
yPEREY evidence record.

relatedKey =
new RelatedIDAndEvidenceTypeKey () ;
relatedKey.evidenceType =
CASEEVIDENCE.ASCPRACTITIONERCERTIFICATE;
relatedKey.relatedID =
key.certificate id;

final EvidenceDescriptorDtls descriptor

EvidenceControllerFactory.newInstance ()

.readEvidenceDescriptorByRelatedIDAndTyge (
relatedKey) ;

This APl is used to remove an evidence record.

final EvidenceDescriptorKey
evDescriptorKey =
new EvidenceDescriptorKey();
evDescriptorKey.evidenceDescriptorID =
descriptor.evidenceDescriptorID;

EvidenceControllerFactory.newInstance () .gemoveEvidence (evDescriptorKey) ;

This APl is used to apply the evidence removal
final EvidenceKey evKey = new changes
EvidenceKey () ;
evKey.evidenceDescriptorID =
descriptor.evidenceDescriptorID;
evKey.evidenceType =
descriptor.evidenceType;
evKey.evidenceID =
relatedKey.relatedID;
evKey.successionID =
descriptor.successionID;
evKey.correctionSetID =
descriptor.correctionSetID;
EvidenceControllerFactory.newInstance () .applyRemoval (evKey) ;

© Merative US L.P. 2012, 2024

Curam 8.1.2 74

© Merative US L.P. 2012, 2024

Notices

Permissions for the use of these publications are granted subject to the following terms and
conditions.

Applicability
These terms and conditions are in addition to any terms of use for the Merative website.
Personal use

You may reproduce these publications for your personal, noncommercial use provided that all
proprietary notices are preserved. You may not distribute, display or make derivative work of
these publications, or any portion thereof, without the express consent of Merative

Commercial use

You may reproduce, distribute and display these publications solely within your enterprise
provided that all proprietary notices are preserved. You may not make derivative works of these
publications, or reproduce, distribute or display these publications or any portion thereof outside
your enterprise, without the express consent of Merative.

Rights

Except as expressly granted in this permission, no other permissions, licenses or rights are
granted, either express or implied, to the publications or any information, data, software or other
intellectual property contained therein.

Merative reserves the right to withdraw the permissions granted herein whenever, in its
discretion, the use of the publications is detrimental to its interest or, as determined by Merative,
the above instructions are not being properly followed.

You may not download, export or re-export this information except in full compliance with all
applicable laws and regulations, including all United States export laws and regulations.

MERATIVE MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE
PUBLICATIONS. THE PUBLICATIONS ARE PROVIDED "AS-IS" AND WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT
LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT,
AND FITNESS FOR A PARTICULAR PURPOSE.

Merative or its licensors may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this documentation does not grant you any license
to these patents.

Information concerning non-Merative products was obtained from the suppliers of those products,
their published announcements or other publicly available sources. Merative has not tested those
products and cannot confirm the accuracy of performance, compatibility or any other claims
related to non-Merative products. Questions on the capabilities of non-Merative products should
be addressed to the suppliers of those products.

Any references in this information to non-Merative websites are provided for convenience only
and do not in any manner serve as an endorsement of those websites. The materials at those
websites are not part of the materials for this Merative product and use of those websites is at
your own risk.

© Merative US L.P. 2012, 2024

This information contains examples of data and reports used in daily business operations.

To illustrate them as completely as possible, the examples include the names of individuals,
companies, brands, and products. All of these names are fictitious and any similarity to actual
people or business enterprises is entirely coincidental.

The licensed program described in this document and all licensed material available for it are
provided by Merative under terms of the Merative Client Agreement.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate
programming techniques on various operating platforms. You may copy, modify, and distribute
these sample programs in any form without payment to Merative, for the purposes of developing,
using, marketing or distributing application programs conforming to the application programming
interface for the operating platform for which the sample programs are written. These examples
have not been thoroughly tested under all conditions. Merative, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample programs are provided
"AS IS", without warranty of any kind. Merative shall not be liable for any damages arising out of
your use of the sample programs.

Privacy policy

The Merative privacy policy is available at https://www.merative.com/privacy.

Trademarks

Merative ™ and the Merative ™ logo are trademarks of Merative US L.P. in the United States and
other countries.

IBM®, the IBM® logo, and ibm.com® are trademarks or registered trademarks of International
Business Machines Corp., registered in many jurisdictions worldwide.

Adobe™, the Adobe™ logo, PostScript™, and the PostScript™ logo are either registered
trademarks or trademarks of Adobe™ Systems Incorporated in the United States, and/or other
countries.

Oracle and Java are registered trademarks of Oracle and/or its affiliates.

The registered trademark Linux® is used pursuant to a sublicense from the Linux Foundation, the
exclusive licensee of Linus Torvalds, owner of the mark on a worldwide basis.

Microsoft™, Windows™, and the Windows™ logo are trademarks of Microsoft™ Corporation in
the United States, other countries, or both.

UNIX™ is a registered trademark of The Open Group in the United States and other countries.

Other company, product, and service names may be trademarks or service marks of others.

© Merative US L.P. 2012, 2024

https://www.merative.com/privacy

	Note
	Edition
	Notices
	Privacy policy
	Trademarks

	Contents
	1 Cúram REST API accelerator
	1.1 Overview of the REST API and mobile accelerators
	REST API accelerator personas
	Architecture overview
	Overview of the REST API accelerator
	REST API accelerator business process
	REST API design decisions
	REST API development process
	Process diagram
	REST API implementation overview

	Overview of the Adult Social Care mobile application
	The Adult Social Care mobile application business scenario
	Adult Social Care mobile application example requirements
	Adult Social Care mobile application design decisions

	1.2 Installing the REST API accelerator
	Installing prerequisites
	Generating the Social Program REST APIs
	Testing a REST API for Adult Social Care

	1.3 Analyzing the requirements
	Completing a fit gap analysis scenario
	Fit gap analysis scenario
	Analyzing the default functionality
	Reading product documentation

	Evaluating the default application scenario
	Complete the Adult Social Care application intake script
	Examining the practitioner certificate evidence
	Examining person evidence
	Cúram Analysis Documentation Tooling (CADT)
	Analyzing requirements using the Cúram Analysis Documentation Tooling (CADT)

	Defining the mobile application requirements
	Analysis results for the mobile application

	1.4 Creating a custom REST API
	REST API designs
	Social Program REST API design principles
	Nested resources

	Social Program REST API design basics
	Resource values for Adult Social Care
	Methods defined for Adult Social Care
	JSON representation for Adult Social Care

	Analyzing the REST APIs
	Analyzing existing REST APIs
	Analyzing the new REST APIs

	Modeling the REST APIs
	REST API class diagram
	Modeling the JSON representation
	Modeling the REST facade
	Modeling the mandatory properties

	Implementing the REST APIs
	Generating the Cúram model
	Implementation files for Adult Social Care

	Configuring the resource configuration files
	Resource configurations specified for Adult Social Care

	Building and testing REST APIs
	Generating the Social Program REST APIs
	Testing a Social Program REST API
	Testing a REST API for Adult Social Care
	Social Program REST API unit testing

	Integrating with a mobile application
	Installing IBM MobileFirst development environment
	Installing the Adult Social Care mobile accelerator
	Installing third-party libraries

	Deploying the mobile application
	Performing the Adult Social Care mobile application caseworker scenario
	Searching for a client
	Editing a practitioner certificate
	Creating a diagnosis

	Integrating the mobile application with a Social Program REST API
	Integrating a custom GET request with a mobile application
	Integrating a custom PUT request with a mobile application
	The Cúram date-time format

	1.5 Appendix
	Retrieving the case details Cúram APIs
	Dynamic evidence Cúram APIs
	Retrieving the parent-child evidence details
	Retrieving all the parent-child evidence details
	Creating a practitioner certificate
	Updating a practitioner certificate
	Mapping the practitioner certificate evidence details
	Creating, updating, or deleting a child evidence record
	Mapping the diagnosis details

	Deleting a practitioner certificate

