N\
MerATive

Curam 8.1.3

Server Developer's Guide

Note

Before using this information and the product it supports, read the information in Notices on page
225

© Merative US L.P. 2012, 2024

© Merative US L.P. 2012, 2024

Edition
This edition applies to Caram 8.1, 8.1.1, 8.1.2, and 8.1.3.

© Merative US L.P. 2012, 2024

Merative and the Merative Logo are trademarks of Merative US L.P. in the United States and
other countries.

© Merative US L.P. 2012, 2024

© Merative US L.P. 2012, 2024

Contents vii

Contents
L0 PP i
o 114 T] PSSP Y
1 CUram SErVEr GEVEIOPEottt e et e e e e e e e e e e e e e e e e e eeeeasnnnnaeeaeas 9
1.1 Building and configuring a Clram appliCation.............cceeeviiiiiiiiiiiiiiiiiccceeeeeeeeeeeeeee e 9
ST od (o] YA U o (= 10
Build files and theil targetS.ooiiiiiiiiii e e e e 17
CuUram Configuration SEEHNGS.ueeiiiiiiiiiiie e e e s e e e e e e e s s annnraeeeaee s 43
D 1= R\ F= T g =T [T PP SUPP PP 51
SOQL CRECKET....cci i 77
1.2 SDEJ development and application programming interfaces..........ccccoevvvieiiiieiiiiiinneeeeeeeeennnns 78
o110 LT OO PP T PPPPPPPPPPP 78
Logging that uses Apache 10g4] 2 APL.......coo e 82
[(01T (o TN LY =Yo7 =T o] (o) 1= 91
MESSAGE TS ..ttt e et e e e e e e e e e e e e 100
(@00 [r=T o] [N {1 1= TP PPPRRTT 107
Specialized readmulti OPEratiONS........couuuiiiii e e e e e e e errr 127
(D727 o] £=Tor= 11T0] o IO PP PP PPPPPPPI 132
8 G e 1] (=] (=T o1 PP PPPPPR 141
1.3 APPIICALION RESOUITES......eeiiiiiiiiiiiitee ettt ettt e e e e e e e e e e e e e e s asbb b e e eeeeeeaaann 145
Locale of ApPliCatioN RESOUICE..........coviiiiiiiiiiiiieeeeeee ettt 145
Fallback for properties fil@S.... .o e e 146
1.4 CUram runtime DERNAVION..........uuiiiie e et e e e s e e e e s e e e e eaaas 146
Transaction CONTIOL...........ooiiiiiiiiii 147
Use of the transaction SQL QUETIY CACKNE...........uiiiiiiiiiiiiiiiieiee e 149
Deferred ProCESSING......ccooiii i ———————— 152
(@1 =T T (10 =T £ EEERR 158
Events and eVENt NANUIEIS.uuuuiiiieiiieiiieieieiiiee ettt et et e e e e e e e e e eeeeeeeeeeeeeeeeeeteeeteeeeeeees 163
UNIQUE IDS...cciiiiiieeeeeeeeeee ettt 171
1.5 Clram configuration ParamEterS..........ueieiiiiiieeiiiiiee ettt e ettt e e e et re e e s nbne e e s annees 176
2 T0T01 Y= oI o] 0] 0 1= 1 1= 177
Dynamic properties in APPlICALION.PIX........uuiiiir i eeee e e e e e e e e e e e e e ee e e e e e eeeeeananns 183
Static properties iN APPIICALION.PIX.....uiiiiiieiiiiiii e e e e e e e e e 198
Variable PrOPEIY SO NG S. . oo ii i i eei e e e aaa b aneansaanneannrenrennrennre 202
1.6 Infrastructure auditing SEINGS.uuuiiiiiiiiiiiiii e e e e 203
Default table-level audit SEHING.........ccoooiiiiii i, 204
N[] o =PRSS 225

© Merative US L.P. 2012, 2024

Curam 8.1.3 viii

PEIVACY POIICY ..ttt ettt e e e e e e bttt e e e e e e e e bbb et e e e e e e e eeaeee s
THAOBIMEAIKS. ...ttt ettt e e e ettt e oo e e ettt eeeas

© Merative US L.P. 2012, 2024

1 Curam server developer 9

1 Caram server developer

Use this information to learn about the server development environment, which enables the
development of high-quality, low-cost client/server applications through model driven code
generation. This generation facilitates client/server development by taking a UML model and
producing generated Java™ code; a data definition language which describing the database
entities in the model, and support for remote invocation.

Model-driven generation facilitates client and server development by taking a Unified Modeling
Language (UML) model and producing the following generated artifacts:

* Generated Java® code

» Data Definition Language (DDL) describing the database entities in the model, enabling
instances of a database to be defined in a human and machine-readable form

* Support for remote invocation

1.1 Building and configuring a Caram application

Use this information as a starting point for building and configuring a Caram application, to
find out what is supported in the build, and see how to configure the infrastructure. You can use
the Data Manager tool to create a database. Use the SQL Checker to check the correctness of
handcrafted SQL.

» « Directory Structure on page 10 provides an introduction to the layout of the
application.

* Build files and their targets on page 17 details the build support provided.
» Curam Configuration Settings on page 43 enumerates the various configuration
settings supported by the infrastructure.

» Data Manager on page 51 details the Data Manager tool that can be used to create a
database to support the Cliram application.

* SQL Checker on page 77 details the SQL Checker tool that can be used to ensure the
semantic and syntactic correctness of SQL which has been handcrafted by an Application
Developer.

© Merative US L.P. 2012, 2024

Curam 8.1.3 10

Directory Structure

Use this information to learn about the directory structure for the server side Ctram application,
and the underlying Server Development Environment.

Application components

The Curam server application is organized into collections of artifacts called components.
Use this information to learn about the component folders and the component order, which is
fundamental to the manner in which server artifacts are customized.

Component folders

Each component has its own folder in the <EJBSer ver >/ conponent s folder. The cor e
component is always present. This contains all of the artifacts needed for the core functionality of
the Ctiram Platform. The name of the component folder is used as the name of the component.

Component order

There can be any number of application components, but they are processed in a strict component
order. This order determines the priority that will be given to artifacts that share the same name
but appear in different components.

The component order is defined by the SERVER _COMPONENT_ORDER environment variable.
This is a comma-separated list of component names. Use only commas; do not use spaces. You
must place the component with the highest priority first in the list and continue in descending
order of priority. The cor € component always has the lowest priority and implicitly is assumed
to be at the end of the list. You do not need to add it explicitly.

For example, setting the component order to My Conponent One, My Conponent Two will
give the highest priority to artifacts in the My Conponent One folder within <EJBSer ver >/
conmponent s, a lower priority to artifacts in the My Conponent Two folder, and the lowest
priority to artifacts in the cor e folder. Any component folder not listed in the component
order will not will automatically be added to the end of the component order in alphabetical
order. If you do not set the component order at all, the default component order will include all
components in alphabetical order.

Localized components

Localized components contains translated artifacts for the base components and are of the

format <component name> <locale>. It is not necessary for these to be added to the
SERVER COMPONENT_ ORDER environment variable as the tooling that processes

this environment variable will prepend any available components that match entries in the
SERVER LOCALE_LIST environment variable. Localized components are matched both on
complete locale entry and on the two-character, lower-case language code. Localized components
are prepended before the base component in the complete component order.

© Merative US L.P. 2012, 2024

1 Cudram server developer 11

Application directory structure
Use this information to understand two aspects of the Caram application directory structure.

Two aspects of the Curam application directory structure are described. These aspects are the
structure that is related to the source artifacts associated with an application, and the resultant
structure when the application is built.

Source artifacts of the Cldram application
Use this information to understand the directory structure for the source artifacts of a Ciram
application project.

Source artifacts of the Curam application shows the directory structure for the source artifacts
of a Ctram application project; for instance, the structure before it runs a build. The details
that follow describe in more detail each directory within the directory structure, includes the
SERVER_DI R, ProjectPackage, and CodePackage as place holders.

» The SERVER_DI Ris the root of the server directory structure, the location of the
EJBSer ver directory within the Caram application.

* The ProjectPackage is a global setting, set at build time. It is set to Curam in the reference
application that is included with Caram.

* The CodePackage is based on a model setting that is described in the Curam Modeling
Reference Guide. It allows individual components to be scoped within their own logical
packages. Any number of Code Packages might be nested inside each other.

SERVER DI R
+ project
+ config
+ properties
+ conponent s
+ core
+ codet abl e
dat a
doc
event s
l'ib
nmessage
nodel
properties
rul esets
sanpl e
webservi ces
wor kf | ow
+ wsdl
+ custom
+ source
+ <Proj ect Package>
+ inp
+ <Code Package>
+ i npl
+ wsdl
+ bui | d. bat
+ bui |l d. sh
+ buil d. xm

++ 4+ + A+ o+

© Merative US L.P. 2012, 2024

Curam 8.1.3 12

bui | dhel p. bat
deprecati onreport. xni
.classpath

. pr oj ect

+ + + +

Figure 1: Curam application structure

Table 1: Caram application installation structure

Name

Contents

pr oj ect

project/config

proj ect/properties

conponent s

conponent s/ core

conmponent s/ cor e/ codet abl e

conponent s/ cor e/ dat a
conmponent s/ cor e/ doc

conponent s/ core/ events

conmponents/core/lib

conponent s/ cor e/ nessage

A top-level directory that contains all information that is relevant to
the entire project rather than specific components.

Configuration information related to the project, including top-
level configuration files for the data manager and web services
connector.

Properties that relate to the project as a whole.

Each project is made up of a number of components. This
directory is a place holder for those components.

A pre-defined component that is used by all other components.

Code table XML (ct x) files that are created by the developer

are kept here. These files are used to define code tables for a
Curam application. The outputs that are produced from a code
table file consist of an SQL script to populate the code table in the
database, and a Java® file that provides the necessary constants
to the application. For more information, see Code table files on
page 107.

The Data Manager for this component.
The JavaDaoc for this component.

Event XML (evx) files that are created by the developer are kept
here. These files are used to define event classes and event types
for a Clram application. The outputs that are produced from an
event file consist of an SQL script to populate the event class and
event type tables in the database, and a Java file that provides the
necessary constants to the application. For more information, see
Events and event handlers on page 163.

Contains the built component code packaged in a compressed file:
suchascore.jar.

Additionally, any third-party Java Archive (JAR) files that are
specified here automatically are included in the class path used
during compilation or a Batch Launcher run. Files that are listed
here also are added to any Enterprise ARchive (EAR) file that is
created and an entry added to the manifest file to reference this
file.

Message (. xm) files that are created by the developer are stored
here. The Java artifacts that are produced from a message file
are a Java file and a properties file. For more information, see
Message files on page 100.

© Merative US L.P. 2012, 2024

1 Cudram server developer 13

Name

Contents

conponent s/ cor e/ nodel

conponent s/ core/ properties

conponent s/ core/ rul esets

conponent s/ cor e/ sanpl e

conponent s/ cor e/ webser vi ces

conponent s/ cor e/ wor kf | ow

conponent s/ cor e/ wsdl

conponent s/ cust om

conponent s/ cust onl sour ce

bui | d. bat, build.sh

bui l d. xm

deprecati onreport.xni

bui | dhel p. bat

The elements of a Cdram application Unified Modeling Language
(UML) model that relate to this component are available here.

The component-specific application property definitions are stored
here.

Rules (. xnl) files that are created by the developer are stored
here. These files might be hand-crafted or created by way of an
online client (Rules Editor).

An optional directory that contains a compressed file of a set of
sample java source files that match the component built code
within the | i b directory. Used for debugging or reference,

An optional directory that contains the . xsd schema files that are
referenced by web services in this component.

Workflow process definition (. xn) files that are created by the

developer are stored here. These files might be hand-crafted or
created by way of an online client (Process Definition Tool). The
Curam Workflow Reference Guide describes these files in some
detail.

An optional directory that contains the . wsdl Web Service
Description Language (WSDL) files that are started from this
component. A WSDL description can be spread over several files
that reference each other possibly in some arbitrary directory
structure. These references can be resolved when they are
relative

Any number of new components might be added. They all have
the same structure as the core component.

All handcrafted Java source code, produced by the developer, is
located here.

A command file that builds your project. This command file wraps
the bui | d. xm file (an Apache Ant build file) that is contained
within the EJBSer ver . The build structure and use of this file is
described in Build files and their targets on page 17.

An Ant build file that extends the Cdram Server Development
Environment (SDEJ) build scripts to enhance a number of targets.

An Ant build file that provides deprecation reporting.
A command file that displays project help. This command file

wraps the bui | d. xml file. The use of this file is described in Build
files and their targets on page 17.

© Merative US L.P. 2012, 2024

Curam 8.1.3 14

Caram application build structure
Use this information to understand the directory structure that is created when a Ciram

application is built.

The directory structure that is created when a Ctiram application is built is described in the
example and table that follow. TheCutram application build structure on page 14 presents the
new directories that are created during the build process while Ctiram application build structure
on page 14 gives more details on the contents of each directory.

SERVER DI R
+ build
+ dat ananager
+ ear
+ WAS

+

WS

+ jar
+ sql check
+ Svr

+
+

+

+ + +

+

cls
codet abl e
+ cls

+ gen

+ scp

+ sql
event s
+ cls

+ gen

+ scp
gen
nmessage
+ cls

+ gen

+ scp

webser vi ces

wor kf | ow
WS C
wsc?2

+ bui | dl ogs

Figure 2: The Caram application build structure

Table 2: Build directory structure

Name

Contents

build/datamanager

build/ear/WAS

Contains intermediate files produced by the Data Manager and the
resulting merge Data Mining Extensions (DMX) files from the initial
demonstration and test directories. The Data Manager creates the
intermediate files when it is converting the database independent
files into a format that can be loaded onto the database. Five
database-dependent . sql files are produced in addition to one
database-independent . xni file that is responsible for loading the
Large Objects (LOBs) onto the database.

The . ear file produced for WebSphere Application Server.

© Merative US L.P. 2012, 2024

1 Curam server developer 15

Name

Contents

build/ear/WLS
build/jar

build/sglcheck

build/svr
build/svr/cls
build/svr/gen

build/svr/gen/ddl

build/svr/gen/<ProjectPackage>
build/svr/gen/int
build/svr/codetable/cls
build/svr/codetable/gen

build/svr/codetable/scp

build/svr/events/cls

build/svr/events/gen

build/svr/events/scp

build/svr/message/cls
build/svr/message/gen

build/svr/message/scp

build/svr/webservices

The . ear file produced for WebLogic.

JAR files that are created by the command line project build.

A database-dependent sql j file that contains a subset of the
dynamic SQL statements from the model and the inserts from the
Data Manager collated together.

All build artifacts for the server side.

All of the compiled class files for the application.

Generated server-side sources.

Database independent definition scripts that establish the
structure of a Caram server application's database tables are
generated into this directory. Some intermediate files (including a
representation that is used to build to database-dependent sql j
file) are also generated into this directory.

Root of the generated server source code hierarchy.
Intermediate files produced during the build.

The compiled codetable files.

The generated codetable file artifacts.

A copy of the results of merging the individual

codetable files according to the component order

(SERVER_COMPONENT_ORDER).

The compiled event class and event type files. These files can be
used as constants in the Cudram application.

The generated events file artifacts that include the . j ava files that
contain the event class, event type constants and . dnx files to

be used to populate the event class, and event type tables on the
database.

A copy of the results of merging the individual event files
according to the component order (SERVER_COMPONENT ORDER).

The compiled message files.
The generated message file artifacts.

A copy of the results of merging the individual message files
according to the component order (SERVER_COMPONENT ORDER).

Compiled class files for the web service support elements of the
application.

© Merative US L.P. 2012, 2024

Curam 8.1.3 16

Name

Contents

build/svr/workflow

build/svr/wsc2

<app.xml>

buildlogs

A copy of the results of determining the individual workflow
process definition files to be loaded onto the database according
to the component order (SERVER_COMPONENT ORDER)

Compiled class files for the Apache Axis2-generated client stubs
for each registered outbound web service connector.

Extracted Unified Modeling Language (UML) model contents,
which are named according to model.

A log file is created each time that a build is run and is stored
here. This log file can be used to investigate any problems with
the build process.

Artifacts of the SDEJ

Use this information to understand the directory structure of the SDEJ after installation is

complete.

Artifacts of the SDEJ shows the directory structure of the Curam Server Development
Environment (SDEJ) when installation is complete, while Artifacts of the SDEJ gives more
details on the contents of each directory. The CURAMSDE] is the root of the directory structure -
the name that is given to wherever the SDEJ is set up or installed.

2
2
5
i

bi n
codet abl e
doc
drivers
ear

lib
nessage
rsa
scripts
util

xm server

+ + 4+ + A+ 4+

Figure 3: SDEJ structure

Table 3: SDEJ structure at installation

Name

Contents

bin

codetable

This directory contains all Ant build scripts necessary to build,
verify, and configure a Clram application. The bui | d. bat script
file that is delivered with the Clram application hooks into this
directory to start the bui | d. xml file contained here. Use of this
file is described in Build files and their targets on page 17

This directory contains the set of codetable files included with the
SDEJ. These files use the file extension . i t x. Each of these files
can be customized, see Localizing SDEJ code table files on page
126 for more details.

© Merative US L.P. 2012, 2024

1 Cdram server developer 17

Name Contents

doc This directory contains the Javadoc information included with the
SDEJ.

drivers This directory contains the drivers that are used by the SDEJ to

access the database.

ear This directory contains the deployment descriptors and templates
necessary to build application ear (enterprise archive) files for the
chosen application server.

lib This directory contains the compiled SDEJ source, Third-Party
JAR files, XML schemas, and stylesheets necessary to fulfill all
SDEJ functions.

message This directory contains the set of message files included with
the SDEJ. Unlike the Ciram application message files, these
infrastructure message files use the file extension . i ml . Each of
the files can be customized. See Localizing SDEJ Message Files
on page 107 for more details.

rsa This directory contains the Eclipse plug-in artifacts that are used
to provide Curam functions in IBM® Rational® Software Architect
Designer. For more information, see the Working with the Caram
Model in Rational Software Architect Designer.

scripts This directory contains the database independent XML files
necessary to create the database required by the SDEJ.

util This directory contains useful utilities included with the SDEJ.
xmlserver This directory contains the artifacts and build scripts necessary

to run the xmlserver. For more information, see Ciram XML
Infrastructure Guide.

Build files and their targets

Use this information to understand how the Ctiram Server Development Environment (SDEJ)
uses Ant to process its build files and how to build a Ciram application after it is installed. The
optional parameters that can be specified when you perform a build also are described.

The Ant build files are in the / bi n directory of the SDEJ. The build files are started through
bui | d. bat and bui | dhel p. bat .
How to initiate the build

Starting bui | dhel p at the command line in SERVER DI R shows all available targets. A
single build target is required to build the Ctram application for development from its initial
configuration. The user needs to initiate these actions:

+ Start a command prompt and change directory to the top level of the Curam project, that is,
SERVER_DI R

© Merative US L.P. 2012, 2024

Curam 8.1.3 18

* Set up any environment variables that were not set as system properties during the installation
process (for example, JAVA HOME, J2EE JAR, and ANT HOME). This process is described
in the Development Environment Installation Guide.

* Setup SERVER DIR to point to the top level of your Caram project.
* Setup SERVER MODEL NAME to be the name of your Ctram project.
* Enterbui |l d server to start the build target.

Overriding default JUNIT.JAR

The j uni t.j ar file is set by default relative to the JUNIT HOME environment variable; for
example, ${ sysenv. JUNI T_HOME}/ j uni t . j ar. To override the location or naming of
thej uni t.j ar file, a new system property JUNIT JAR is available for this purpose. If the
JUNIT JAR system property is set, this setting takes precedence over the default. An example of
its usage (for example, Microsoft® Windows): set JUNIT JAR =c:\junit-4.8.jar

How to configure the build

Optional parameters that can be provided when you build the Caram application are explained.

Caram Build Settings

A number of parameters may be passed when performing the build. They should be passed in the
following way bui | d server -Dsone. setting=soneval ue. These parameters are:

Table 4: Build Configuration Settings

prp.maxcodetablecodelengttumber

Parameter Values Description
dir.sde directory name The name of the directory containing the
installed SDEJ that you want to use for this build.
The default is the directory referred to by the
CURAMSDEJ environment variable.
prp.loglevel info The logging level used when recording build
progress to the build log. The default is info.
warn
error
verbose
debug
prop.file.location directory name Override the location of the directory that is

used to pick up the property files. By default the
<Pr oj ect Nanme>/ pr operti es directory is used.

Override the maximum length of a code table
code. This is used for validation of codetables
during generation, where it is desired to ensure
that the code length defined in the codetables
being generated do not exceed the length
specified. This is to ensure, you catch errors before
entering codetables onto the database. This does
not override the maximum length on the database
Curam Build Settings on page 18.

© Merative US L.P. 2012, 2024

1 Curam server developer 19

Parameter Values Description

prp.maxcodetablenamelengthiimber Override the maximum length of a code table
name. This is used for validation of codetables
during generation, where it is desired to ensure
that the name length defined in the codetables
being generated do not exceed the length
specified. This is to ensure, you catch errors before
entering codetables onto the database. This does
not override the maximum length on the database
Curam Build Settings on page 18.

prp.maxcodetabledescriptionierugth Override the maximum length of a code table
descri pti on. This is used for validation of
codetables during generation, where it is desired
to ensure that the description length defined in the
codetables being generated do not exceed the
length specified. This is to ensure, you catch errors
before entering codetables onto the database.
This does not override the maximum length on the
database Curam Build Settings on page 18.

prp.warningstoerrors true Indicates that warnings thrown when extracting
and generating from the model, code table and
message files should be treated as errors (an error
typically terminates the process). The default is
fal se.

false

prp.forcegen “-force:modelgen” Indicates that the build should progress even if
errors are found when generating code from the
model. The default is that this should not occur.

This means that if this flag is set and errors are
found during generation, the build is not interrupted
after the nodel gen build target is executed. Once
this target is complete it will eventually pass onto
the conpi | e. gener at ed target. See What is
happening under the hood on page 23 for more
details.

Note: The errors are still reported.

prp.noninternedstrings true Indicates whether code table artefacts should be
generated with strings which will not be interned.
This is described in more detail in ctgen on page
27. The defaultis t r ue.

false

curam.using.dbcs true Should be set if the Cdram model contains DBCS
(Double Byte Character Set) characters. If defined
the Cdram application model is first processed

by the utility native2ascii. The Model Extractor
then uses this new reworked model to produce
<project>.xml file. If this property is not specified
the Model Extractor takes original model file as its
input.

false

© Merative US L.P. 2012, 2024

Curam 8.1.3 20

Parameter Values Description
curam.using.nonascii true Should be set if the Clram model contains non
false ascii characters. If defined the application model
is first processed by the utility native2ascii. The
Model Extractor then uses this new reworked
model to produce <project>.xml file. If this property
is not specified the Model Extractor takes original
model file as its input.
extra.generator.options String Specifies additional command line parameters
for the server code generator. These settings are
described in Generator Settings on page 22.
portability.warnings BUILD, Specifies whether the SQL Checker should
determine if the build is portable to other database
DMX)
platforms and whether the Data Manager files are
valid. The default is to check all of these.
enablefacade true Specifies that the build should generate the
session beans and their corresponding deployment
false . o
artefacts for model elements identified as facades.
The default is f al se which means they will not be
generated.
prp.genschemavalidation true Indicates that the.xml file produced by the model
extractor will be validated against a schema when
false . .
it is being parsed and used by the code generator
to generate the application code. The default is
fal se.
appserver.failonerror true Indicates whether the application server command
false will trigger an error if the start/stop command fails.

The defaultis t r ue.

Database update for code table property changes The relevant database column
lengths must be altered to support the changes made by using the prp.maxcodetablecodelength,
prp.maxcodetablenamelength, or prp.maxcodetabledescriptionlength properties.

The columns should be altered using the Data Manager. In each case a handcrafted SQL script
that alters the relevant column's length should be added to the custom database scripts folder.
This script should then be added as an entry to the dat amanager _confi g. xm file before
loading the code tables into the database. Please refer to Data Manager on page 51 for

further information on using the Data Manager.

Java Compiler Settings

These parameters can be passed when performing the build and they control the behavior of the

Java compiler.

The parameters are passed in the following way: bui | d server -Dcnp. debug=on. The

settings are:

© Merative US L.P. 2012, 2024

1 Curam server developer 21

Table 5: Java Compiler Settings

Parameter Values Description
cmp.debug on Indicates whether the source should be compiled
off with debug information. The default is on.
cmp.maxmemory Number The maximum size of the memory for the
underlying VM. The default is 768.
cmp.nowarn on Indicates whether the - nowar n switch should be
off passed to the compiler. The default is of f .
cmp.maxwarnings Number Asks the compiler to set the maximum number of
warnings to print. The default is 10000.
cmp.optimize on Indicates whether source should be compiled with
off optimization The default is of f .
cmp.deprecation on Indicates whether source should be compiled with
off deprecation information. The default is of f .
cmp.verbose true Asks the compiler for verbose output. The default
isfal se.
false
cmp.include.AntRuntimgsg Indicates whether the Ant run-time libraries should
no be included on the classpath. The default is yes.
cmp.include.JavaRuntifpey Indicates whether the default run-time libraries,
no from the executing VM (Virtual Memory), should
be included on the classpath. The default is no.
cmp.failonerror true Indicates whether compilation errors will fail the
build. The defaultis t r ue.
false
cmp.listfiles yes Indicates whether the source files to be compiled
o will be listed. The default is no.
cmp.gc -J-XX:+UseG1GC -J-XX: Controls the type of garbage collection used by
+UseParallelGC -J-XX: the compiler. The default is -J-XX:+UseG1GC.
+UseSerialGC -J-XX:
+UseConcMarkSweepGC
PRE_CLASSPATH Filename An environment variable to allow jar files to be
added to the start of the classpath used during
compilation or a Batch Launcher run. Files
listed here will be added to any EAR (Enterprise
ARchive) file created and an entry added to the
manifest file to reference this file. Files should be
separated with the relevant Path separator for
your operating system.

© Merative US L.P. 2012, 2024

Curam 8.1.3 22

Parameter values

Description

POST_CLASSPATH Filename

An environment variable to allow jar files to be
added to the end of the classpath used during
compilation or a Batch Launcher run. Files listed
here will be added to any EAR file created and an
entry added to the manifest file to reference this
file. Files should be separated with the relevant
Path separator for your operating system.

Java Task Settings

The following parameters may be passed when performing the build and control the behavior of
the Java runtime used by the build scripts. They should be passed in the following way bui | d
server -Dj ava. fork=true. These settings are:

Table 6: Java Task Settings

Parameter Values Description
java.fork true Specifies whether any external classes are
executed in another VM. The defaultist r ue.
false
java.maxmemory Number The maximum size of the memory to allocate to the
forked VM. The default is 768m
java.failonerror true Specifies whether the build process should be
false stopped if an external java command exits with a
return code other than 0. The defaultist r ue.
java.jvmargs String Specifies the arguments to pass to the forked VM
The defaultist he enpty string.

Generator Settings

The following parameters may be passed when performing the build and control the behavior of
the Curam Generator. These parameters should be passed in the following way bui | d ser ver
- Dextra. generator.options=-settingl -setting2.

These settings are:

Table 7: Generator Settings

Option

Meaning

-nomessage <nnnnn>

Prevent the message with this number from being
displayed or acted upon. Note that this can be used
to suppress errors which would normally cause the
generator to terminate. Doing so can cause the
generator to behave unpredictably or produce code
which cannot be built.

© Merative US L.P. 2012, 2024

1 Curam server developer 23

Option Meaning

-primarykeyconstraintprefix <prefix> Specify a prefix to be applied to primary key
constraint names in IBM® DB2® and Oracle®
Database. See the Curam Modeling Reference
Guide for more details.

-primarykeyindexprefix <prefix> Specify a prefix to be applied to primary key index
names in DB2. See the Ciram Modeling Reference
Guide for more details.

-progresslevel <n> Specify the level of progress to be reported by the
generator.
-nonamedprimarykeyconstraint Specify that names should not be provided for the

primary keys. This is off by default i.e. primary keys
are named. See the Ciram Modeling Reference
Guide for more details.

-nonamedforeignkeyconstraint Specify that names should not be provided for the
foreign keys. This is off by default, i.e., foreign keys
are named. See the Clram Modeling Reference
Guide for more details

LANG Environment variable for Linux®
If you are building on Red Hat® Enterprise Linux® you might get an error during compilation.

<errortext>unmappable character for encoding UTF8</errortext>

This error is due to an encoding mismatch between Windows™ and Linux® and can be worked
around by setting the LANG environment variable as follows:

LANG=en_US.IS0-8859-1

What is happening under the hood

While building the application is as simple as invoking the default target listed above, it is useful
for the reader to understand the steps that are involved. Each of these are ant targets which may
be invoked separately:

generated
This target generates and compiles the code for use in an IDE and wraps the following targets:

* wsconnect or step generates client stub connectors for outbound web services from
.wsdl (WSDL is an acronym for Web Service Definition Language) files registered in the
configuration file, <SERVER DI R>/ pr oj ect/ confi g/ webservi ces_confi g. xm .

* wsconnect or 2 Generates client stub connectors for outbound Axis2 web services from the
registered WSDL files.

* enx2xmnl - this extracts an intermediate XML representation from a Curam application UML
model.

© Merative US L.P. 2012, 2024

Curam 8.1.3 24

» nodel gen - this generates source code and other artefacts from the XML representation of
a Curam application model. It also deletes any artefacts that are no longer represented in the
model.

* msggen - this merges the message file definitions according to the component order and
generates source code and properties from the resultant message definitions.

» ct gen - this merges the code table definitions according to the component order and
generates source code from the resultant code table definitions.

* evgen - this merges the event definitions according to the component order and generates
source code from the resultant event definitions.

« conpil e. gener at ed - this compiles any generated source code that doesn't depend on the
i npl directory.

wsconnector

The wsconnect or step generates client stub connectors for outbound web services from
.wsdl files registered in the configuration file, <SERVER_DI R>/ pr oj ect/ confi g/
webservi ces_config. xm .

An example is shown in wsconnector on page 24

<servi ces>
<service |l ocation=
"conponent s/ <conponent _name>/ wsdl / sorme_servi ce/ TopLevel . wsdl "
/>
</ services>

Figure 4: Example Web Services Configuration

The location attribute is the location of the top level WSDL file relative to the SERVER_DIR.
This configuration file also gives the ability to turn a particular Web Service Connector on and off
at will (bearing in mind that business code that accesses the connector would be affected by this).
It is acceptable to have no service elements in this file.

The generated connector client stubs must not be treated as source. They are intended to be
overwritten during each build, based on the WSDL files provided, to ensure the connectors are
always synchronized with the web services they represent.

emx2xml

The emx2xm step transforms the UML model (which is located in the
<SERVER DI R>conponent s/ */ nodel directory) into an intermediate XML representation.
The intermediate representation is stored at the top level of the directory tree.

modelgen
The nodel gen target transforms the intermediate XML representation into a set of data

definition XML files, the final Java™ code, deployment support artifacts, and web service support
artifacts.

Data definition XML files

The data definition XML files are placed in the bui | d/ svr/ gen/ ddl directory and are made
up of the following files:

.« <SERVER MODEL_NAME> Tabl es. xni

© Merative US L.P. 2012, 2024

1 Curam server developer 25

+ <SERVER _MODEL_NAME>_| ndi ces. xmi

+ <SERVER MODEL_NAME> Pri maryKeys. xm

+ <SERVER MODEL NAME> Uni queConstraints. xm
+ <SERVER MODEL_ NAME>_For ei gnKeys. xm

+ <SERVER MODEL_ NAME>_ Bat ch. xm

« <SERVER MODEL_NAME> Fi ds. xm

+ <SERVER MODEL NAME> Fi el dsRet ur ned. xmi

+ <SERVER MODEL_ NAME> SQ.J. xmi

The first five files contain database-independent definitions for creating tables on the database
and placing constraints on these tables. <SERVER _MODEL _NAME>_Bat ch. xnl describes the
persistent data that is necessary to support the batch process-related information that is captured
in the UML model. <SERVER _MODEL_NANME> fi d. xm describes the persistent data that

is necessary to support the security-related information that is captured in the UML model.
<SERVER _MODEL_NAME>_Fi el dsRet ur ned. xm describes the persistent data that is
necessary to support Field Level Security. <SERVER _MODEL_NAME>_SQLJ. xmi contains

a representation of all the hand-crafted SQL in the model and is used by the targetchecksql .
More information on the contents of these files is provided in Data Manager on page 51.

The final output of the nodel gen target is a merged version of the data definition XML files,
which are placed in the bui | d/ ddl . These merged files are named as follows:

* Merged_Tabl es. xni

* Merged_I ndi ces. xm

* Merged_PrimaryKeys. xm

+ Merged_Uni queConstraints. xm
» Merged_Forei gnKeys. xm

» Merged_Bat ch. xm
 Merged_Fids. xm

* Merged_Fi el dsRet ur ned. xni

* Merged_SQ.J. xm

Foreign Keys Ctram enforces referential integrity and foreign keys are generated to test
integrity. The use of declarative referential integrity (foreign keys) in a production system
impacts the performance of that system and is therefore not supported.

Java™ code

Many Java™ code artifacts are generated as part of this model generation build. They are
generated according into a number of categories (and are all located under the / bui | d/

svr/ gen/ <Proj ect Package>/ and/ bui | d/ svr/ gen/ <Pr oj ect Package>/
<CodePackage> directories). A CodePackage might be empty or there might be a number
of CodePackage elements within each other (for example, <Pr 0j ect Package>/i nt f
and <Pr oj ect Package>/ <CodePackageA>/ <CodePackageB>/i nt f may both be
generated depending on the options that are chosen).

* intf - Defines the interface for the objects that are modeled.

© Merative US L.P. 2012, 2024

Curam 8.1.3 26

« fact - Provides factory wrappers for the objects that are identified in bizinterface.

* base - Ensures that the developer provides implementations for those methods, which must
be hand-crafted.

* renot e - Provides remote interfaces for the objects that can be exposed to the client.

* sStruct - Defines the classes which model parameters between the objects.

* rul es/rdo - Defines the classes for the rules data objects. RDOs cannot be stored in
code packages so the rules folder is always at the top level. This directory also contains a
rdoi ndex. properti es file that contains a listing of all the generated objects.

Deployment artifacts

A number of deployment artifacts are also generated by the model build. This section does not
attempt to detail the meaning of these files but introduces the files and their locations. These
artifacts are used when you build an application . ear file, they are generated according to the
following categories:

* IBM-specific metadata:

Supports deployment on IBM® WebSphere® Application Server. These artifacts are generated
into the / bui | d/ ear / WAS directory and contain the necessary . xm files.

* Oracle-specific metadata:

Supports deployment on WebLogic. These artifacts are generated into the / bui | d/ ear/
VLS directory and contain the necessary . X files.

WebSphere® Application Server Liberty ignores user-defined bindings, so a Liberty-
specific descriptor is not needed.

Web service artifacts

A number of web service artifacts are generated. This section does not attempt to detail the
meaning of these files but introduces the files and their locations. These artifacts are used when
you build an . ear file that supports web service invocation. The artifacts consist of special

st ruct s that contain web service conversion routines and are generated into the / bui | d/
svr/ gen/ directory.

msggen

Curam message files allow a Curam application to be localized without needing manipulation of
hand-crafted code. These files should be used in preference to hard-coded strings within hand-
crafted code.

Message files are located in the / message directory of a component. The Ctiram Platform

is shipped with a set of message files. These files may be overridden by placing new message
files in the SERVER DI R/ conponent s/ <cust om> directory, where <cust on®

is any new directory created under components that conforms to the same directory

structure as conmponent s/ cor e. The override process involves merging all message

files of the same name according to a precedence order where the order is based on the

SERVER COMPONENT ORDER environment variable. This variable lists the components in a
delimited list in order of priority from most to least important.

© Merative US L.P. 2012, 2024

1 Curam server developer 27

The msggen build target performs the merge of message files and then translates the resultant
merged message file (which is stored in / bui | d/ svr/ message/ scp directory) into Java
source code and property files so it can be accessed at runtime.

The generated Java code is then compiled and packed into / bui | d/ j ar/ messages. j ar.
ctgen

Curam code table files allow an application to use a level of indirection when storing commonly
used constants on the database. This level of indirection enables efficient database storage.
Codetable files are located in the sour ce/ codet abl e directory of a component. Like message
files, code table files are shipped with the Caram Platform and may be customized through the
merge behavior.

The ct gen build target merges Curam code table (. ct X) files and then translates the resultant
merged code table file (which is stored in / bui | d/ svr/ codet abl e/ scp directory) into Java
source code and SQL files which are used to return codes from the database at runtime.

The pr p. noni nt er nedst r i ngs parameter indicates whether code table artefacts should be
generated with strings that are not interned. The use of interned strings in Java avoids the creation
of duplicate java.lang.String objects. Consequently memory usage may be reduced as there
will be only one String object created for a string value, irrespective of how many references to
that string value exist.

Note: The default value for this property is t r ue. Setting pr p. noni nt er nedstri ngs
to f al se means that strings will be interned. Although this may result in decreased memory
usage by the final application, dependency checking will operate incorrectly when . ct X files
are changed.

The generated Java code is then compiled and packed into / bui | d/ j ar/ codet abl e. j ar.
evgen

Events provide a mechanism for loosely-coupled parts of a Cliram application to communicate
information about state changes in the system. When one module in the application raises an
event, one or more other modules receive notification of that event having occurred provided
they are registered as listeners for that event. Event files are located in the event s directory of a
component.

The evgen build target merges Curam event (. evX) files and then translates the resultant
merged event file (which is stored in/ bui | d/ svr/ event s/ scp directory) into Java source
code which can be subsequently used as constants in the application and also . dnx files which
are used to populate the event class and event type database tables.

The generated Java code is then compiled and packed into / bui | d/ j ar/ events.j ar.
compile.generated

The conpi | e. gener at ed target compiles any generated source code that doesn't depend on
the i mpl directory. This includes the classes with the following patterns from the bui | d/ svr/
gen directory:

[struct//*. java
[intf//* java

© Merative US L.P. 2012, 2024

Curam 8.1.3 28

<Pr oj ect Package>/*.java

This step uses an augmented version of Ant's dependency checker to minimize the build time.

implemented

This target completes the build and wraps the following targets:

compi | e. i npl ement ed - this compiles all hand-crafted source code and any generated
code that wasn't built during the conpi | e. gener at ed step. Again this step uses an
augmented version of Ant 's dependency checker to minimize the build time.

compile.implemented

The conpi | e. i npl enent ed step simply compiles all hand-crafted source code and any
generated code that wasn't built during the conpi | e. gener at ed step. This includes the
classes with the following patterns from the bui | d/ svr/ gen directory:

[base//*.java
[fact//*. java
**/rul es/| oaders/*.java
**[rules/rdo/ *.java
**[renote/ **/*. java

From the conmponent s/ */ sour ce directory -

[inmpl//* java
**/rul es/| oaders/*.java
**[webservicel/ **/*, java

Utility Targets

A number of utility Ant targets are provided which are not necessary to build a server. Useful
targets are as follows:

Database targets

dat abase

Transforms the database independent XML files into DDL files and places the contents of
these DDL files on the database. The dat abase target also provides support for applying
rule sets to the database (more detail on this is provided in Rules Targets on page 34).
prepare. appl i cation. data

Run this target after the database target is run and before starting the application server for the
first time.

Note: Failing to run in this sequence results in transaction timeouts during first login and a
failure to initialize and access the application.

Whenever you rerun the database target is rerun (for example, in a development environment)
you must also rerun pr epar e. appl i cati on. dat a.

extractdata

Extracts the contents of all or some of the tables on the database and transforms them into
database independent XML files. More detail on this target is provided in Data Manager on

page 51.

© Merative US L.P. 2012, 2024

1 Cudram server developer 29

+ rel oadextracteddata
Reloads data that was extracted using the ext r act dat a command back onto the database.
This target depends on the i nsert ext r act eddat a and the ext r act eddat a targets
existing in the dat amanager _confi g. xm file. If these targets do not exist in your
dat amanager _confi g. xm file, the default dat amanager _confi g. xm file should
be used as a reference for adding them.

» checksql
Validates the hand-crafted SQL and test data against the actual database. If you do not run
checksql , syntactical (and semantic) mistakes in hand-crafted SQL are not determined until

run-time because of the dynamic nature of JDBC (Java Database Connectivity) ! This step
operates by producing an SQLJ file and completely relies on the syntax checking provided
by the particular database. The checksql target uses the output that is built during the
dat abase target. So you must run the dat abase target before running checksql . Any
errors that are discovered while running the checksql target are logged to the console and to
a timestamped log file in the buildlogs directory. More detail on this target is provided in SQL
Checker on page 77.

- forei gnkeycheck
Enabling foreign keys on the database could degrade performance. Enabling foreign keys
could also violate referential integrity as a result of program bugs or manual intervention by
a Database Administrator. f or ei gnkeycheck validates that the Referential Integrity has
not been violated by loading the generated foreign key constraints for the application and
verifying that for each child record of each foreign key, the referenced parent key exists. The
key values of any missing parent key records are reported.

Password targets

+ encrypt
Encrypts a plain-text password (e.g. for curam.db.password) so the encrypted password
can be safely stored in a property file. None of the Ctram property files contain plain-
text passwords so the passwords contained within them are automatically decrypted. See
the Curam Security Handbook for more information regarding cryptographic settings for
encrypted passwords. The mandatory argument passwor d that denotes the plain-text
password has to be specified when invoking the target.

For example:
encrypt -Dpassword=passwOrd

in this example, the output of this execution is displaying the encrypted password in the
console.

The encr ypt target can be also used to encrypt a plain-text password for a property in a
properties file using two optional arguments, pr operty and properties.file. path
respectively.

For example:

1 JDBC (Java Database Connectivity) is part of the Java Development Kit which defines an application
programming interface for Java for standard SQL access to databases from Java programs.

© Merative US L.P. 2012, 2024

Curam 8.1.3 30

encrypt -Dpassword=passwOrd -Dproperty=curam.db.password -

Dproperties.file.path=c:\bootstrap.properties

In this example, the output of this execution is the property value is updated with the
encrypted password in the specified properties file. If the property does not exist, then the
specified property will be added to the properties file along with the encrypted password as the

property value.

« digest
Digests a plain-text user password. When you change cryptographic digest settings, for
internal and external Curam users, you may need to update digested password values in DMX
(e.g. USERS. DMX) and SQL files for passwords to be stored on the database. To make these
updates you will need the new digest password values, which you can obtain via this target.
Care should be used in creating these passwords and should only be done for test users. See
the Curam Security Handbook for more information regarding cryptographic settings for
digested passwords.

Test targets

+ test
Executes the tests associated with the application.

If Clover is available a code coverage report can also be generated. More details on the
usage of Clover are available in Clover Targets on page 33.

The JUni t forkmode controls the number of Java Virtual Machines that gets created if
you want to fork some tests; and it can be set dynamically by specifying junit.fork.mode
property, while executing the t est target.

For Example:

build test -Djunit.fork.node=once

Possible values for this property are:

per Test - creates only a single Jav Java VM for all tests.

per Bat ch - creates a Java VM for each nested batch test and one collecting all nested
tests.

once - creates only a single Java VM for all tests.

Default value of per Test is used if junit.fork.mode property is not set.

You can exclude or include sets of tests while running the t est target. To Exclude or
include tests, copy the Excl udeTest s. t xt orl ncl udeTest s. t xt file located in

the Cur anSDEJ\ ut i | \ directory. This new file can then be modified to add the tests that

you want to exclude or include and can be reference using the property override.

For Example:

build test

- Dexcl ude. test.fil e=<PATH_TO THE_FI LE>\ Excl udeTest s. t xt
build test

-Dinclude.test.fil e=<PATH TO THE FI LE>\| ncl udeTest s. t xt

© Merative US L.P. 2012, 2024

1 Curam server developer 31

- configtest
Examines the current environment to ensure that the various environment settings and
property files have been established correctly. This tool attempts to diagnose any problems in
the environment which would be an impact. It checks the validity of:

* versions of third party tools including Java® SE Runtime Environment (JRE), Ant,
application server and database.

* Bootstrap. properti es including properties: curam.db.name or
curam.db.oracle.servicename, curam.environment.bindings.location, curam.db.username,
curam.db.password and curam.db.type

» database connectivity by attempting to connect to the database described by properties in
Boot st rap. properti es and ensures it is a valid database.

+ database configuration; e.g. for DB2: buffer pools, tablespaces, etc.; and for
Oracle: privileges for the Curam user. If DB2 is remote the configuration check
for LOCKSIZETIMEOUT will fail. This check can be bypassed by setting the
db2.i s. r enot e property.

 application server variables: WAS HOME and WLS HOME dependencies are also
checked i.e. if using WebSphere the IBM® JDK and IBM® Java EE must be used.

. WLP_HOME system environment variable with the value set to the WebSphere®
Liberty installation directory.

* Ant variables ANT _HOME and ANT_OPTS

» server and client environment variables

« configreport

Creates aconfi g_report. zi p file, which contains information to assist with

diagnostics gathering, and can be used if remote support is required. The file is created in the

<CURAM DI R>/ EJBSer ver directory, and contains a copy of:

* Environment settings for Ciram specific and system environment variables, and software
versions on the machine.

* The installer logs, which also provide the version of Clram being used.

» Properties files - all properties files that are located in the <CURAM DI R>/ EJBSer ver /
proj ect/ properti es directory.

* A copy of the depl oynent _packagi ng. xm file.

* The output from the conf i gt est build target, as detailed above.

* The log files from the application server being used. Note that these log files will only be
copied if:
» the application server is installed on the same machine as Caram.
* the application is running on a standalone server.
 the default location where the log files are written to has not been changed.

Properties targets

* insertproperties
Merges all the properties (.prx) files defined under the pr oper ti es directory for each of the
application's components, and inserts them into the database. See Application Properties on
page 43 for more details.

© Merative US L.P. 2012, 2024

Curam 8.1.3 32

- extractproperties
Extracts the properties from the database, and stores them into a database independent prx file.
The generated prx file is stored in <SERVER_DI R>/ bui | d/ pr operti esextractor/

e mergeuser preferenceproperties
Merges the user preference properties files.

Javadoc targets

+ javadoc
Generates the Java Documentation (JavaDoc) from the application. To produce useful
JavaDoc, your developers must place comments in the model as well as in the code.

+ apijavadoc
Generates the javadoc for black/grey box components based on the javadoc.properties files.

Other targets

* clean
Deletes all the generated and compiled files to ensure all generated and compiled artifacts are
removed and the next build is fresh and clean. It is useful to periodically perform clean builds
because of limitations in the dependency checker provided by Ant.

e nergeshortnanes
Merges file Shor t Nanes. pr operti es from all components.

« deprecationreport
The command-line Java compiler deprecation warnings are extended to apply to certain
Cuaram builds and validations. This helps to pinpoint where custom dependencies exist on
deprecated out-of-the-box artefacts. This target combines all the Ctiram builds and validations
that support deprecation warnings. As such, the build output from this target provides a
comprehensive overview of all deprecation warnings for all supported builds (server and
client builds, workflow validations, rules validations, etc). Please note that this target starts
with a cl ean (as the Java compiler does not produce warnings for incremental builds). See
Deprecation on page 132 for more information.

+ rel ease
Gathers all the files that are needed to run Ctiram on another machine in the
<SERVER DI R>/ r el ease directory. The release target is used to build the application
for a target platform, for example, to build the application in Windows for deployment on
IBM z/OS®, or to move the application between machines. If you move the r el ease
directory to another machine, you must place the Boot st r ap. properti es file and the
AppServer . properties fileinarel ease/ proj ect/ properti es directory. Also,
before you use any of the scripts, you must set the following environment variables:

* Set SERVER DIR to the release directory.
* Set SERVER_MODEL NAME to the name of the application model.
* Set CURAMSDE] to the location of the SDEJ.

* Set SERVER COMPONENT ORDER in your target environment where you plan to work
with the resulting r el ease directory. The value must be the same as the value that is used
in your source environment.

© Merative US L.P. 2012, 2024

1 Curam server developer 33

The appropriate Set Envi r onnment . bat and Set Envi r onnment . sh files are also
generated into the release deliverable for a specified environment. The files are in the root
directory of the release delivery and contain commands to set the standard environment
variables, including the environment variables for the development environment, the locale
list, and component orders. The files that are copied are:

* Ant build files

* Project JAR files

+ DDL files

+ SQL files

* Code tables files

» Batch launcher

* Data manager

» Application EAR files
o XML server files

Run the following command to generate a compressed zip file for the release:

build release -Dcreate.zip=true

+ nodel
Extracts the model and generate source code and other artefacts from the XML representation
of a Ctram application. The nodel target combines the nodel ext and nodel gen targets.
* runbatch
Runs the Batch Launcher. For more information refer to the Curam Batch Processing Guide.
* runstatistics
Runs statistics for the database. For more information refer to Statistics on page 75.
* suppl enent
Compiles and jars all the Java files contained within any supplementary directory specified by
the - Dsuppl enent =<DlI RECTORY_NAME> parameter. A <Dl RECTORY_NAME>. | ar
file will be created and stored in the <SERVER DI R>/ bui | d/ j ar/ directory.
e« police.access.restrictions
Provides a report of accesses to restricted APIs within the Ctiram application. The APIs that
are restricted are marked by annotations within the Javadoc and indicate areas that should not
be accessed by custom code. This policing tool highlights any code that accesses restricted
APIs and out-of-the-box code containing a restricted annotation. During development these
restrictions are further backed by the non-delivery of sample Java files, Eclipse access
restrictions and that there is no JavaDoc available.

Clover Targets

Clover is a code coverage tool that can easily be integrated into the Ctiram build environment. A
number of Ant targets are provided to aid in the integration of Clover. For these targets to work
correctly the cl over . j ar and cl over. | i cense files must be obtained and installed in the
<ANT_HOVE>/ | i b directory. More information on obtaining and using Clover can be found at
http://www.atlassian.com/software/clover/overview.

+ clover. server - This is the equivalent of the Ser ver target and also includes
instrumenting the compiled . j ava files with the necessary Clover information.

© Merative US L.P. 2012, 2024

http://www.atlassian.com/software/clover/overview

Curam 8.1.3 34

cl over . suppl ement - This is the equivalent of the suppl enent target and also
includes instrumenting the compiled .] ava files with the necessary Clover information.

cl over.report. htm - This target will generate a html report detailing code coverage.
The report is generated into the <SERVER DI R>/ cl over/ cl over _ht m folder.

cl over.report.vi ewer - This target will launch the Clover viewer with details of the
code coverage.

Rules Targets

A rule set is the fundamental structure which describes the rules within a Caram application. It

is the database that is the system of record for rule sets. This allows the rule sets to be changed

at run-time via an administration client. However, support is also provided for representing rule
sets as . X files. These . xm files can be used for source control management. To allow for the
synchronization between these . X files and the database a number of extra targets have been

introduced:

Representing Rulesets as XML Files Support for ruleset import and export is only there
to allow source control management and to exchange rulesets between machines. Direct
editing of the ruleset XML files is not supported in any way.

i strul esets - Produce a listing of the names and identifiers of the rulesets that are
present on the database.

expor trul eset - This target exports a ruleset definition (.xml file) from database to
the file system. This command takes two parameters - rulesetid and component. Exported
ruleset will be saved as [specified rulesetid].xml in <SERVER_DI R>/ conponent s/

[specified conmponent]/rul esets folder.

rul eseti d - Identifier of the ruleset that is to be exported from the database.
conmponent - Name of the component to which the rule set has to be exported (copied).

For example:

buil d exportrul eset

- Drul eseti d=PRODUCT _1

- Dconponent =cust om

Where 'PRODUCT _1' denotes the identifier of the ruleset that is to be exported from the
database and 'core' denotes the name of the component to which the rule set has to be exported
(copied).

i mportrul eset - This target imports a ruleset definition (.xml file) from a file system to
the database. It validates the rule set ID for uniqueness before importing the rule set, it does
this by searching for existing IDs in the SERVER DI R/ conponents/../rul esets
directories. This command takes two parameters- ruleset.file and overwrite.

rul eset. fil e - This parameter denotes the path of the ruleset that is to be placed on the
database.

overwite (Optional) -This is an optional flag with the default value as f al se,
indicating whether the database should be overwritten if the ruleset already exists.

For example:

© Merative US L.P. 2012, 2024

1 Curam server developer 35

bui | d inportrul eset
-Druleset.file=

<SERVER DI R>/ conponent s/ core/ rul eset s/ PRODUCT _1. xmi
-Doverwrite=true

Where <SERVER DI R>/ conponent s/ cor e/ rul eset s/ PRODUCT _1. xnl denotes
the path of the ruleset definition file and true denotes the flag to overwrite the database, if
ruleset already exists.

val i dat eal | rul eset s - Validates all the rule sets in the Ctiram application. This target
has to be invoked from the SERVER DI R directory, where it scans all the components for rule
set files and validates them. For schema validation this target uses the rule set schema located
in CURAMSDEJ/ | i b directory by default, unless another schema is specified by using an
optional property 'schema.file'.

The validator ensures that the rule set ID is unique by searching for existing IDs in the
SERVER DI R/ conmponent s/ . ./ rul eset s directories.

schema. file (Optional) - This optional parameter specifies the rule set schema that
has to be used for validating the rule sets.

For example:

ant validateallrul esets
ant validateal |l rul esets
-Dschema. fil e=C./ Rul es/ rul eset. xsd

val i dat er ul eset s - Validates all the rule sets in the specified directory. The property
'rulesets.dir' has to be specified when invoking the target. For schema validation this target
uses the rule set schema located in CURAMSDEJ/ | i b directory by default, unless another
schema is specified by using an optional property 'schema.file'.

The validator ensures that the rule set ID is unique by searching for existing IDs in the
SERVER DI R/ conmponent s/ ../ rul eset s directories.

schema. file (Optional) - This optional parameter specifies the rule set schema that
has to be used for validating the rule sets.

rul esets. di r - This parameter specifies the directory within which rule sets are to be
validated.

For example:

ant validaterul esets
-Drul esets.dir=
<SERVER DI R>/ conmponent s/ core
ant val i daterul esets
-Drul esets.dir=
<SERVER DI R>/ conmponent s/ core
-Dschenma. fil e=C./ Rul es/rul eset. xsd

val i dat er ul eset - Validates the specified rule set. The property 'ruleset.file' that denotes
the rule set path and file name has to be specified when invoking the target. For schema
validation this target uses the rule set schema located in CURAMSDEJ/ | i b directory by
default, unless another schema is specified by using an optional property 'schema.file'.

The validator ensures that the rule set ID is unique by searching for existing IDs in the
SERVER DI R/ conponent s/ ../ rul eset s directories.

© Merative US L.P. 2012, 2024

Curam 8.1.3 36

schema. file (Optional) - This optional parameter specifies the rule set schema that
has to be used for validating the rule set.

rul eset. fil e - This parameter specifies the rule set path and file name.

For example:

ant val i dat erul eset
-Drul esets.fil e=
<SERVER DI R>/ conponent s/ cor e/ rul eset s/ PRODUCT_1. xm
ant val i daterul eset
-Drul esets.file=
<SERVER_DI R>/ conponent s/ cor e/ rul eset s/
PRODUCT 1. xmi
-Dschena. fil e=C./Rul es/rul eset. xsd

* rul esfuncti onsner ge - Merge rules custom function meta-data from.xml files.

IEG Targets
The val i dat ei eg2scri pt s command validates the intelligent evidence gathering (IEG)
scripts in the specified directory.

Application Configuration Import and Export Targets

The application configuration information for the Ctiram web client is stored as a series of XML
and properties files in the server source directory. It is merged and loaded into the database at
build time from where it is read by the client tier at run time.

The rules for merging are as follows:

* Filesin the cl i ent apps directory take precedence over files in the t ab directory,
regardless of component order. E.g: if a file named CaseHone. nav exists in the
cl i ent apps directory of any component of the application, then any files named
CaseHone. nav which exist in the t ab directory of any component are ignored.

» Filesin the cl i ent apps directory are selected (not merged) based on the component order.
E.g: if a file name CaseHomne. nav exists in the cl i ent apps directory of components
Custom] and Custom?2, and Custom1 is ahead of Custom? in the component order, then the
version of CaseHome. nav from Custom1 is used and the version from Custom? is ignored.

* Files in the t ab directory are merged according to the component order - provided that
a corresponding file in a cl i ent apps directory does not exist. E.g: if a file named
Sear chTab. nav exists in the t ab directory of components CustomA and CustomB, but
not in the cl i ent apps directory of any component, then the contents of the two files are
merged together.

Note: Note that only OOTB Curam components may use the t ab directory to store
application configuration files; this directory may not be used by custom components.
Custom components may use only the cl i ent apps directory for application
configuration files.

One target controls the import and export of application configuration to and from the database:

i nserttabconfiguration

© Merative US L.P. 2012, 2024

1 Cudram server developer 37

Merges application configuration files from disk and inserts the data into the database. The
default action of this target is to insert the application configuration data onto the database but it
can also be used to:

* Merge the application configuration files and write the merged files to a directory on disk.

If property dir.tab.merge is set then it denotes a directory into which the application
configuration files from the various components of your application will be merged. In this
mode, nothing is written to the database. E.g: bui | d i nserttabconfiguration -
Ddir.tab. merge=C./ EJBServer/tabExtract

» Extract the application configuration data from the database and write it to a directory on disk.

If property dir.tab.extract is set then it denotes a directory into which the application
configuration data from the database will be extracted. In this mode the application
configuration data is read from the database and nothing is written to the database. E.g:
build inserttabconfiguration -Ddir.tab.extract=C /EJBServer/
t abExtract

Workflow Targets

The Curam Workflow Reference Guide provides an introduction to the support for workflow in
Curam. A workflow process definition is the fundamental structure which describes the workflow
process within a Ctiram application. Workflow process definitions are stored on the database,

but can also be represented as . Xm files and loaded onto the database as needed. A number of
targets exist to allow for the validation of workflow process definition . xm files:

Prerequisites for validating workflow process definition files Workflow process
definitions can make reference to rule sets and Curam events (See Events and event handlers
on page 163) in the process X files. Therefore, all rule sets and events that are referenced
in workflow process definitions being validated must already be loaded onto the database
before the associated workflow process definition files can be validated using the targets
outlined below.

« val i dat ewor kf | ows - supports validation of the workflow process definition files in the
specified directory. The property 'workflow.dir' has to be specified when invoking the target.

wor kf I ow. di r - This parameter denotes the directory within which workflow process
definition files are to be validated.

val i dat e. schena. onl y - This optional parameter, if set to true, only performs schema
validation on the workflow xm files and bypasses the full semantic validation that would
otherwise be performed.

For example:

ant val i dat ewor kf | ows
- Dwor kf | ow. di r =
<SERVER DI R>/ path to workfl ow directory

+ val i dat eal | wor kf | ows - performs validation of all workflow process definitions files in
the Cliram application.

© Merative US L.P. 2012, 2024

Curam 8.1.3 38

val i dat e. schema. onl y - This optional parameter, if set to true, only performs schema
validation on the workflow xm files and bypasses the full semantic validation that would
otherwise be performed.

For example:

ant val i dat eal | wor kf | ows
val i dat ewor kf | ow- supports validation of the specified workflow process definition file.
The property 'workflow.file' has to be specified when invoking this target.

wor kf | ow. fi | e - This parameter denotes the full path to the workflow process definition
file that is to be validated.

val i dat e. schena. onl y - This optional parameter, if set to true, only performs schema
validation on the workflow X file and bypasses the full semantic validation that would
otherwise be performed.

For example:

ant val i dat ewor kf | ow
-Dwor kfl ow. fil e=
<SERVER DI R>/ path to workflow file to be validated

i mpor t wor kf I ow - Import a workflow process definition (use -Dworkflow.file= -
Doverwrite=).

wor kf I ow. fi | e - This parameter denotes the full path to the workflow process definition
file that is to be imported.

overwite (Optional) -This is an optional flag with the default value as f al se,
indicating whether the database should be overwritten if the workflow process definition
already exists.

i mpor t wor kf I ows - Import the workflow definitions in the specified directory (use -
Dworkflow.dir= -Doverwrite=).

wor kf I ow. di r - This parameter denotes the directory from which the workflow definitions
should be imported.

overwite (Optional) - This is an optional flag with the default value as f al se,
indicating whether the database should be overwritten if the workflow process definitions
already exist.

I i stwor kfl ows - List all process definitions available in the database.

Deployment Targets

There are a number of deployment targets that allow an application to be deployed on an

application server. These commands are fully described in the Ciiram Deployment Guide®, but a
summary is provided here.

2 For your particular application server, IBM® WebSphere® Application Server, Oracle WebLogic Server,
or WebSphere® Application Server Liberty. The deployment guides are named Cuiram Deployment
Guide for WebSphere Application Server, Curam Deployment Guide for WebSphere Application Server
on z/0OS, Curam Deployment Guide for WebLogic Server, and Deploying on WebSphere Application
Server Liberty.

© Merative US L.P. 2012, 2024

1 Curam server developer 39

* Application server configuration targets that apply to all application servers:
conf i gur e Automatically configures the application server.
confi gur ewebser ver pl ugi n Automatically configures the application server with a
web server plug-in.

* EAR file builds for each application server:
webspher eEAR produces an . ear file that can be deployed on WebSphere® Application
Server.
webspher eWebSer vi ces produces an . ear file that can be deployed on WebSphere®
Application Server that to support Web Services invocation.
webl ogi cEAR produces an . ear file that can be deployed on WebLogic Server.
webl ogi cWebSer vi ces produces an . ear file that can be deployed on WebLogic Server
to support Web Services invocation.
| i bert yEAR produces an .ear file that can be deployed on WebSphere® Liberty.
l'i bertyWebSer vi ces produces an .ear file that can be deployed on WebSphere®
Liberty to support Web Services invocation.
preconpi | ej sp precompiles all JSPs in the specified . ear file (applies to WebSphere®
Application Server and WebLogic Server only).

* EAR file install and uninstall (applies to all application servers):
i nst al | app installs and starts a specified EJB application.

Note: The EAR file (Cur am ear) that contains the server module must be deployed
before you install any other (client-only) EAR files.

uni nst al | app stops and uninstalls the specified application.

* Application preparation (applies to all application servers):
prepare. appl i cati on. dat a Run this target after the database target is run and before
starting the application server for the first time.

Note: Failing to run in this sequence results in transaction timeouts during first login and a
failure to initialize and access the application.

Whenever you rerun the database target is rerun (for example, in a development environment)
you must also rerunpr epar e. appl i cati on. dat a.
* Application server control (applies to all application servers):
st art server starts an application server.
restartserver restarts an application server.
st opser ver stops an application server.

Extending the Build

This section describes how Ant can be used to introduce new targets, enhance existing targets or
override OOTB build targets.

This is achieved by creating a script hierarchy using Ant's i npor t task and can be seen in
the OOTB application. Examples include the bui | d. xnl files found in the webcl i ent
and EJBSer ver directories that extend, through an import, the bui | d. xm files from the
Cur anCDEJ and Cur anSDEJ directories respectively.

© Merative US L.P. 2012, 2024

Curam 8.1.3 40

The delivered bui | d. bat or. sh files invoke Ant against the webcl i ent or EJBSer ver
bui | d. xm . This allows for these bui | d. xm files to introduce new targets not available

in the scripts delivered in the CDEJ and SDEJ. It also allows these targets to be enhanced as
required due to the principal of the import task, which isthat "I f a target in the main
file is also present in at |east one of the inported files, the
one fromthe main file takes precedence”.

Introducing a new script

The following section details the steps to create a new top level script which can be used to
introduce new targets, enhance existing targets or override OOTB build targets.

Two Environment variables CDEJ BUILDFILE and SDEJ_ BUILDFILE are used to control the
script that is invoked by the bui | d. bat or. sh files. A new script can be invoked by setting
the appropriate environment variable. For example:

I ntroduci ng a new server script:

SDEJ_ BUI LDFI LE=%SERVER DI R¥% conmponent s/ cust oni scri pt s/
bui | d. xm

This script must then import it's parent in the hierarchy EJBSer ver \ bui | d. xm , for example:

<?xm version="1.0" encodi ng="UTF-8"?>
<pr oj ect name="custom >

<!-- Relative path to EJBServer\build.xm -->
<import file="./../../../../build. xm"/>

</ proj ect >

New targets can then be added to the script as required. These targets can also utilize existing
targets or properties in the inherited script hierarchy.

To enhance or override an existing target the same target name is chosen as that which is being
enhanced or overriden. When enhancing a target, the existing target is then either added as a
dependency of the new target or invoked during a point in the new target. The previous target's
name used is formed from the pr oj ect nane of the script where the target being enhanced
exists. For example:

Enhancing the dat abase target, where the pr oj ect nane of the SDEJ script containing the
dat abase target is app_dat abase.

Before target usage:

<t arget nane="dat abase" >

<l-- Some further processing before the SDEJ dat abase target --
>

'<éht call target="app_dat abase. dat abase"/ >
</target>
After target usage:

<t arget nane="dat abase" depends="app_dat abase. dat abase" >
<l-- Sonme further processing after the SDEJ dat abase target -->

© Merative US L.P. 2012, 2024

1 Curam server developer 41

</target>
Figure 5: Before/After Target usage

Target API Only targets that are documented i.e. those visible through the - pr oj ect hel p
for a script should be enhanced, overriden or invoked. Other targets are considered internal are
subject to change without notice.

Overridden Targets

Some targets in the SDEJ are overridden by application build scripts. Such targets appear in the
report produced by the - pr oj ect hel p command qualified by the SDEJ sub project name such
asapp_auxiliary,serverbui | d, etc. Only the unqualified version of these targets should
be used, otherwise the target may not work correctly. E.g. always use webspher eEAR instead of
server bui | d. webspher eEAR

This applies to the following targets:

+ app_auxiliary.ctgen

e app_auxiliary. nsggen

e app_runtinmewas. configure

* serverbuild.clean

+ serverbuild. generated

* serverbuild.inplenmented

* serverbuil d. node

* serverbuild.rel ease

« serverbuil d. webl ogi cEAR

» serverbuil d. webspher eEAR

o mm==m serverbuild. libertyEAR
o mmmz=Em serverbuild.libertyWbServices

Application Targets

This section lists targets which are available in the OOTB application and which are displayed
when the - pr oj ect hel p command is given.

Bl App

The bi app. confi gure. bi rtvi ewer target configures the Business Intelligence and
Reporting Tools (BIRT) Viewer application for IBM® WebSphere® Application Server after
the BIRT EAR file is installed. Use the following Ant property specifications when you run the
target:

-Dserver.name=server.name - The name of the server to deploy the application into.
-Dapplication.name=application.name - The name of the BIRT Viewer application.

The biapp.configure.birtviewer target does not apply to Kubernetes
deployments. For Kubernetes deployments, BIRT deployment is managed within a Helm chart.
You can find example Helm charts in the following GitHub repo: https://github.com/merative/
spm-kubernetes/tree/main/helm-charts/apps. For more information about preparing Helm charts,
see Preparing Helm charts.

© Merative US L.P. 2012, 2024

https://github.com/merative/spm-kubernetes/tree/main/helm-charts/apps
https://github.com/merative/spm-kubernetes/tree/main/helm-charts/apps
https://merative.github.io/spm-kubernetes/deployment/hc_preparation/

Curam 8.1.3 42

CREOLE

creol e. check.initial.database - Checks the structure of rule set XML data
uploaded from DMX files and runs lax validation.

creol e. conpi |l e. test. cl asses - Compiles the test classes generated from the
CREOLE rule sets.

creol e. consol i dat e. r esour ce - Consolidates together resource bundles for
CREOLE rule sets.

creol e. consol i dat e. rul eset s - Inlines any included CREOLE rule sets and
consolidates the rule sets into one build directory.

creol e. copyresourcet 0. cl s - Copies resource files for CREOLE rule sets into the
build\svr\cls directory.

creol e. gener at e. cat al og - Generates an XML catalog file for CREOLE rule sets.
creol e. gener at e. rul edoc - Generates rule documentation for all CREOLE rule sets.
creol e. gener at e. schema - Generates an XML schema file for CREOLE rule sets.
creol e. generate. test. cl asses - Generates test classes from the CREOLE rule sets.
creol e.report. cover age - Reports CREOLE rule set coverage information gathered
from CREOLE rule executions.

creol e.report.unused. attri but es - Reports CREOLE rule attributes which are
not used directly by any other rule attributes.

creol e. upl oad. rul eset s - Uploads new CREOLE rule sets and/or changes to existing
CREOLE rule sets to the database.

creol e. val i dat e. rul eset s - Performs full validation of all CREOLE rule sets.

Evidence Generation

egt ool s. assi gn. r esour cel D- Allocate resourcelD values for the Create Wizard
AppResource.dmx.

egt ool s. cl ean - Calls on the EG Tool to delete all generated components.

egt ool s. cl i ent. cl ean - Calls on the EG Tool to delete all generated client evidence
screens on the product.

egt ool s. cl i ent. gener at e - Generate target for client evidence generation.

egt ool s. gener at e - Main generate target for evidence generator. Generates all evidence
components.

egt ool s. server. cl ean - Calls on the EG Tool to delete all generated components on
the server.

egt ool s. server. gener at e - Generate target for server evidence generation.

egt ool s. wi zar d. dnx - Generate target for creation of AppResource.dmx for Create
Wizard pages.

post . nodel gen - Calls on the EG Tool to perform any steps required after the modelgen.
add. r oot node. t 0. appr esour ce. dnx - APPRESOURCE.dmx gets appended to by
each product's evidence generation. This adds the root node 'table'.

add. root node. to.initial appresource. dnk - INITTALAPPRESOURCE.dmx
gets appended to by each product's evidence generation. This adds a root node to make a valid
xml file.

© Merative US L.P. 2012, 2024

1 Curam server developer 43

+ add.rootnode.to. products. xm -Product.xml gets appended to by each product's
evidence generation. This adds the root node 'products'.

* build.all.conponent. dirs -Builds all components.

* build.all.evidence. dirs -Builds all evidence directories.

* buil d. evi dencebr oker . r esour ces - Builds the evidencebroker resources for
domains and labels.

» call.egtool s.transforner - Calls on the XSLT transformer.

+ generate. resol ve. scripts - Calls any XSLT transformations that require the cross
products summary defined in Products.xml.

* makedi r - Creates directory structure for an evidenceEntities.xml file in the EJBServer/build
folder if none exists. Should only be necessary if an appbuild clean has been performed.

Caram Configuration Settings

Configure environment variables in your environment to configure support for multiple time
zones, and to configure dates and date/time behavior.

Curam application properties are set in appl i cati on. prx and
boot st rap. properti es. You can configure support for multiple time zones, and configure
dates and date/time behavior.

Application Properties

This section describes the property files associated with developing or running a Ctiram
application.

Application prx
Use this information to understand the properties that are used in the Appl i cati on. prx file
when you run a Caram application.

The Appl i cati on. pr X contains the properties that are used when you run a Curam
application. The properties that are contained in this file are loaded to the database during
the bui | d dat abase target and at run time are cached from the database for use by
the Application. An Appl i cat i on. pr X can be loaded separately by way of the bui | d
i nsertproperti es target.

The properties that are defined in Appl i cat i on. pr X can be “dynamic” or “static”. Dynamic
properties take effect immediately if changed and published by using the administration
interface during run time. Modifying static properties has no effect until a restart of the server is
performed.

<property name="curamtrace" dynam c="true">
<t ype>STRI NG/ t ype>
<val ue>trace_ul tra_verbose</val ue>
<def aul t-val ue>trace ultra_verbose</default-val ue>
<cat egor y>CODETABLE</ cat egor y>
<| ocal es>
<l ocal e | anguage="en" country="US">
<di spl ay- nane>Tr ace Property</di spl ay- nane>
<description>Details of the Trace Property</description>
</l ocal e>

© Merative US L.P. 2012, 2024

Curam 8.1.3 44

</l ocal es>
</ property>

Figure 6: PRX entry

The file is organized as follows:

* Property Element
A property element is used for each property.

* Name Attribute
Attribute specifying the name of the property.
* Dynamic Attribute
Indicator whether a change to the property value requires an Application restart.
* Type Element
Refers to a code entry on the codetable DomainType.
* Value Element
The property value.
* Default-Value Element
The default value of a property that is used when properties are reset.
+ Category Element
Refers to a code entry on the codetable EnvPropertyCategory.
* Locales Element
Contains one or more locale-specific elements for the display name and description.

* Language Attribute
Language Code for this locale-specific entry.
* Country Attribute
(Optional) Country Code for this locale-specific entry.
* Display Name Element
Locale-specific display name for the property.
* Description Element
Locale-specific entry for the property.

How to merge an application pr x file
Use this information to understand how to merge pr X files into your Ctram application.

Pr x files are in the / pr oper ti es directory of a component and the root / pr oj ect /
properti es directory. The Curam Platform includes a set of pr X files. These files might

be overridden by placing new pr X files in the SERVER DI R/ conponent s/ <cust on®/
properti es directory, where <custom> is any new directory that is created under components
that conforms to the same directory structure as conmponent s/ cor e. This mechanism avoids
the necessity to change directly the initial, unmodified application, which would complicate later
upgrades.

This override process involves merging all prx files according to a precedence order. The order is
based on the SERVER COMPONENT ORDER environment variable. This environment variable
contains a comma-separated list of component names: the leftmost has the highest priority, and
the rightmost the lowest.

© Merative US L.P. 2012, 2024

1 Curam server developer 45

SERVER_COVPONENT _ORDER=cust om Appeal , | SPr oduct, sanpl e

Figure 7: SERVER COMPONENT ORDER example

The order shows that the precedence of Appeal is higher than the sample component. The core
component always has the lowest priority and does not need to be specified. Any components
that are not specified are placed alphabetically above core and below those components that are
specified.

Note: After changing the component precedence order in SERVER COMPONENT ORDER,
it is necessary to initiate a reinsert of the merged properties. This action is done by calling
buil d insertproperties.

When you merge pr X files, the components that are listed in the SERVER COMPONENT ORDER
are taken in order of highest to lowest priority. In the preceding example, the

Appl i cati on. prx file from the sample component is merged with the

Appl i cati on. prx in the core component. The Appl i cat i on. pr x from ISProduct
is then merged into the intermediate results and the merge process continues until the

Appl i cati on. prx in the custom component is merged.

Rules of PRX Merges

PRX files are merged based on precedence order. As it is shown in the preceding example, a more
important main/source Appl i cat i on. pr X file exists, and a file that is being merged into it.
The second file is called the merge file in the following sections.

An Appl i cati on. prx file can be customized by:

* Adding a property that provides mandatory property values.

* Overriding an existing properties description.

* Overriding an existing properties display name.

* Override an existing properties value or default value.

* Adding a locale to provide a new display name and description for that locale.
* Removing a property by setting the property tag removed to be true.

An Appl i cati on. prx file cannot be customized by:

* Changing an existing property name.
* Changing an existing properties type.
» Changing an existing properties category.

* Changing the static or dynamic setting of a property.

Duplicate property nodes always are overwritten by the Appl i cat i on. pr x file in the
component with the highest precedence order. The main Appl i cati on. pr x example file and
the merge Appl i cat i on. pr x file that follow illustrate these rules:

<property name="curamtrace" dynam c="true">
<t ype>STRI NG</ t ype>
<val ue>trace_ul tra_verbose</val ue>
<def aul t-val ue>trace ultra_verbose</default-val ue>
<cat egor y>CODETABLE</ cat egor y>

© Merative US L.P. 2012, 2024

Curam 8.1.3 46

<l ocal es>
<l ocal e | anguage="en" country="US">
<di spl ay- name>Tr ace Property</di spl ay- nane>
<description>Details of the Trace Property</description>
</l ocal e>
</l ocal es>
</ property>

Figure 8: Sample main Appl i cati on. prx file

<property nane="curamtrace" dynam c="true">
<t ype>STRI NG/ t ype>
<val ue>trace_of f </ val ue>
<def aul t-val ue>trace_of f </ defaul t - val ue>
<cat egor y>CODETABLE</ cat egor y>
<l ocal es>
<l ocal e | anguage="en" country="GB">
<di spl ay- name>New Tr ace Di spl ay Name</di spl ay- nane>
<descri pti on>New Descri pti on</descri ption>
</l ocal e>
</l ocal es>
</ property>
<property nane="property2" dynam c="true">
<t ype>STRI NG/ t ype>
<val ue>val ue</ val ue>
<def aul t - val ue>def aul t </ def aul t - val ue>
<cat egor y>CODETABLE</ cat egor y>
<l ocal es>
<l ocal e | anguage="en" country="GB">
<di spl ay- name>Di spl ay Nane</ di spl ay- nane>
<descri pti on>Descri pti on</descri pti on>
</l ocal e>
</l ocal es>
</ property>

Figure 9: Sample merge Appl i cati on. pr x file

As a result of the merge process, the new Appl i cat i on. pr x produced would be:

<property nane="curamtrace" dynam c="true">
<t ype>STRI NG/ t ype>
<val ue>trace_of f </ val ue>
<def aul t-val ue>trace_of f </ def aul t - val ue>
<cat egor y>CODETABLE</ cat egor y>
<l ocal es>
<l ocal e | anguage="en" country="US">
<di spl ay- nanme>Tr ace Property</di spl ay- nane>
<description>Details of the Trace Property</description>
</l ocal e>
<l ocal e | anguage="en" country="GB">
<di spl ay- nane>New Trace Di splay Nane</di spl ay- nane>
<descri pti on>New Descri pti on</descri pti on>
</l ocal e>
</l ocal es>
</ property>
<property nane="property2" dynam c="true">
<t ype>STRI N/ t ype>
<val ue>val ue</ val ue>

© Merative US L.P. 2012, 2024

1 Cudram server developer 47

<def aul t - val ue>def aul t </ def aul t - val ue>
<cat egor y>CODETABLE</ cat egor y>
<l ocal es>
<l ocal e | anguage="en" country="GB">
<di spl ay- name>Di spl ay Nane</ di spl ay- nanme>
<descri pti on>Descri pti on</descri pti on>
</l ocal e>
</l ocal es>
</ property>

Figure 10: Resulting Appl i cat i on. prx File

Boot strap. properties
Use this information to learn about the Boot st r ap. properti es file that contains the
minimum set of properties necessary for obtaining a connection to the database.

The Boot st rap. properti es file mainly contains the minimum set of properties necessary
for obtaining a connection to the database. Generally, these properties have no effect if set in the
Appl i cati on. prx file and only are picked up directly from the Boot st r ap. properti es
file.

The Boot st rap. properti es file also might contain properties that can be defined in
Appl i cati on. prx file. If such a property is defined in the Boot st r ap. properties
file and is a dynamic property, it can be overridden by setting it on database by using the
administration interface.

Note: Properties that are defined in the following are cached: Appl i cat i on. pr X,

Boot strap. properti es, and Java System properties at run time. Properties that are
defined in Appl i cat i on. pr x are loaded into the database and can be updated at run time
by using the administration interface. A publish is required to rebuild the property cache and
allow the changes to take effect.

The property cache loads its contents with the following priority:

1. Java System properties,
2. Application. prx,
3. Boot strap. properties;

For example, if a property is set in the Java system properties

(either by using the Application Server or by using

j ava. |l ang. Syst em set Property())and also in Appl i cati on. prx
curamutil.resources. Confi guration. get Property(), the value of the
property that is defined in the Java system properties always is returned when it uses the
Appl i cation. prx and Boot st rap. properti es, the value of the property in
Appl i cati on. pr X is what takes effect.

© Merative US L.P. 2012, 2024

Curam 8.1.3 48

Bootstrap.properties

Tnameserv Port
curam.environment.tnameserv.port=900
curam.environment.bindings.location=C:/Bindings

curam.db.username=db2admin
curam.db.password=wWw5UTMnFOelSeCBEQy/Zg==
curam.db.type=DB2

curam.db.name=CURAM
curam.db.serverport=50000
curam.db.servername=localhost

property to specify Oracle service name.
curam.db.oracle.servicename=orcl.<host name>

Properties specific to H2

Mode remote|embedded

curam.db.h2.mode=embedded

For remote mode also specify:

curam.db.serverport=9092

curam.db.servername=localhost

Lock Time Out in ms. Default is 1000, i.e. 1 second. (Optional)
curam.db.h2.locktimeout=20000

Property to specify NON KEYWORDS, comma delimited list of words which H2 will ignore
as key words during a database build. The default value for this property is
CURRENT DATE,CURRENT TIMESTAMP,KEY,MONTH, OFFSET,VALUE, YEAR
curam.db.h2.non.keywords=<place keywords here>

An automatically generated version of Boot st r ap. propert i es is packed in the Enterprise
Archive (EAR) when the EAR file is built. This file chooses its properties from the default
Boot strap. properti es and is extended with extra properties that are related to the
Application Server being used.

curam db. t ype=DB2
curam envi ronnent . as. vendor =| BM

Figure 11: Boot st rap. properti es in an EAR file

Note: The EAR file cannot be built for H2 database.’

Support for multiple time zones
Use this information to understand how to enable multiple time zone support in your Ctiram
application.

To enable multiple time zone support, the time zone ID must be specified for each user in the user
preferences.

Only Date/Times are processed and displayed in the user's preferred time zone. Date only and
Time only fields are not affected and for these fields it is the responsibility of the business logic
to ensure that the time zone is not relevant. If the time zone is relevant, then a Date/Time field is
to be used. An example of a date where the time zone is not relevant is someone's date of birth.
It does not vary regardless of the time zone that person was born. An example of a date where
the time zone is relevant is the current date. This DAT is different for two users who are working
either side of the International Date Line, in this case a Date/Time must be used.

3 For more information on the H2 database, see the Curam Development Environment Installation
Guide.

© Merative US L.P. 2012, 2024

1 Curam server developer 49

The server's time zone is basically the underlying operating system's configured time zone.
However, the server stores date/times in a time-zone independent manner; that is, the number

of milliseconds since 1/1/1970 00:00 GMT (also known as the epoch). It is the responsibility of
the web tier to convert all Date/Times passed to it from the server into the user's preferred time
zone and also to convert all Date/Times to be passed back to the server into milliseconds since the
epoch.

The preferred time zone for each user is configured based on the time zone ID specified in the
user preferences for the particular user. The time zone ID must conform to one of the time zones
returned from the Java method java.util.TimeZone.getAvailableIDs ().

Some of the Java supported time zones that are returned by
java.util.TimeZone.getAvailablelIDs () method are in the following list:

* GMT+x, where x can take value from 1 to 12.
* GMT-x, where x can take value from I to 12.
* America/Chicago

* America/Mexico_City
» America/Indiana/Indianapolis
* America/New York

* America/Los_Angeles
* Australia/Canberra

* Australia/North

* Australia/South

* Australia/West

* Australia/Adelaide

* Australia/Melbourne

* Australia/Brisbane

* Africa/Casablanca

* Africa/Johannesburg

* Brazil/West

* Canada/Pacific

* Canada/Saskatchewan
* Canada/Eastern

* Canada/Atlantic

* Canada/Central

* Canada/Eastern

* Furope/London

» FEurope/Dublin

» Europe/London

» Europe/Paris

» FEurope/Vatican

* Europe/Moscow

» FEurope/Amsterdam

* Indian/Chagos

© Merative US L.P. 2012, 2024

Curam 8.1.3 50

* Indian/Cocos
« NZ
* Pacific/Auckland

For more information on server time zone configuration, see the Time Zone Configuration
chapter in the Curam Deployment Guide for the appropriate application server.

Dates and date/times in Clram
Use this information to understand the behavior of dates and time/dates in your Curam
application.

How the Ctiram application describes the behavior of dates and date/times is covered here.
Look at these examples:

* The server is in the Greenwich mean time (GMT)time zone. A user is in time zone GMT -01.
At 15:00 GMT the user registers a new person, and the server-side processing time stamps a
resulting database record with the time 15:00. Twenty seconds later the user initiates a query
and sees the time stamp displayed in the client user interface as 14:00. The user's clock is
showing 14:00:20 - the new record's time stamp is twenty seconds in the past - just what the
user expected.

* The user registers a new case at 23:30 local time on 01-Jul-2003. The server's local time is
00:30 on 02-Jul-2003, so it creates the case with a case start date of 02-Jul-2003. The user
immediately performs a query on all cases registered on 01-Jul-2003. The newly registered
case is not found.

In the second example, the server processing that records the current date as the case start date
must convert from the current date (which is time zone dependent) to some fixed value that
afterward is taken as the case start date. On the grounds of both simplicity and higher likelihood
of meeting requirements, the server's local date is recorded.

The basis for how dates and date/times are handled is as follows:

» Dates are processed and displayed in a time zone-independent manner.
» Date/times are processed and displayed in the user's preferred time zone.

« The time zone of the server is used when the information is converted from a date/time to a
date (or vice versa).

The second issue was mentioned with an earlier example: - the fact that the user, on performing a
search for today's cases, fails to find a record that is just registered. What caused this situation is
as follows:

* The user carried out a transaction just before midnight, local time, on day 1. The server
recorded a start date of day 2, based on converting its current local date/time to a date.

» The user requested a list of transactions with a start date of day 1. Because this information
is a date, not a date/time, the server treats it in a time zone independent manner. The newly
registered record does not match the search criteria.

Searches on date/time ranges (such as the start/end of the user's local day) are only feasible if
the column that is being searched on is itself date/time. Users need to be aware that the current
business day might not be the same date as the date in their local time zone. Fortunately, such
situations likely are to be rare.

© Merative US L.P. 2012, 2024

1 Curam server developer 51

Data Manager
Use the Data Manager tool to create a database that contains a set of initial data, test data or both.

The Data Manager is based around database independent . xm files. Any setup that is done by a
developer can be applied to any of the supported databases.

Intended Data Manager process

The Data Manager helps the overall process for initial database creation. At a high level, that
process includes the following three main steps:

1. Create the database, tablespaces, and so on.
2. Use the Data Manager to create tables and complete initial data loading.

3. Data Base Administration (DBA) tasks to complete database creation, such as handcrafting
scripts to tune the tables (ALTER) and set constraints.

The aim of the Data Manager is to help establish a skeletal database. Subsequently, a DBA can
then write handcrafted scripts to complete the database by modifying tables and settings, such as
LOCKSIZE or BUFFERPOOL.

Note: The SQL generated by the Data Manager is not intended to replace the role of a DBA.
It is expected that there would be site-specific tweaking that is required to achieve production
readiness.

A DBA would not be expected to manipulate the Curam model to define extra entity options,
such as LOCKSIZE, BUFFERPOOL, and similar commands, in order for the wanted SQL to be
generated. This behavior is due to a number of factors. The modeling tools are unaware of
the final deployment environment, and DBAs would not be expected to have the skill-sets for
using the modeling environment.

The Data Manager is not intended to be used to upgrade an existing database. It exists only to
reset the database to a known state.

Planning for MBCS data

The use of multi-byte character set (MBCS) data with Oracle, DB2, or IBM® DB2® for z/
OS® has specific database considerations, which are covered in the Ciiram Third-Party Tools
Installation Guide for Windows and Curam Third-Party Tools Installation Guide for UNIX.
Specific Cliram configuration is required when using MBCS data with DB2 or DB2 for z/OS
so that the Data Manager functions compatibly. This configuration is enabled for Curam as it is
configured initially.

Curam support for MBCS data with DB2 and DB2 for z/OS is enabled in its initial configuration
to ensure error-free operation for users with languages that require MBCS data and for users
who find they require MBCS data when copying or pasting data from other applications. This
support entails expanding the size of string columns in the database because DB2 column sizes
are based on bytes, which is not necessarily the length that is required when MBCS data is used.
This procedure is explained in more detail in the Curam Third-Party Tools Installation Guide
for Windows and Curam Third-Party Tools Installation Guide for UNIX. However, these default
expansion settings might not be appropriate in the following circumstances:

© Merative US L.P. 2012, 2024

Curam 8.1.3 52

+ Ifyour data requirements do not necessitate the maximum expansion (as explained as follows)
you can reduce the amount of expansion.

» Ifyou are using only single-byte data (a Western language, such as English) and not using
any other MBCS data (for example, by a browser copy or paste), disable multi-byte expansion
support. However, this procedure is not recommended due to the likelihood of MBCS data
that is introduced from external sources (for example, browser copy or paste) and later causing
errors.

Whether database expansion is applied by the Data Manager is controlled by the

curam db. rmul ti byt e. expansi on property in Boot st r ap. properti es.

The amount of expansion (a factor of 1.0 to 4.0) is set with the

curam db. mul ti byte. defaul t. factor property in Boot st rap. properti es.
These properties are described in 1.5 Ciram configuration parameters on page 176.

To be certain of not receiving any processing errors when processing MBCS data, the default
expansion factor is set to the maximum. However, for many languages and data profiles it is
unlikely that every database column character would require MBCS data or that all characters
would require the maximum size of 4 bytes. A cost is associated with using the maximum
expansion factor in terms of disk space used, network processor usage, memory usage, buffer
pool performance, CPU usage, and so on. Therefore, it is best to use an expansion factor that
balances resource usage and performance while avoiding or minimizing the possibility of
application errors caused by data overruns. There are no strict rules for achieving this balance
between resource usage and the possibility of application errors, but considerations, such as those
that follow, can help you choose a reasonable expansion factor and your testing should confirm
your choice.

Depending on your language, locale, and encoding, the number of required MBCS characters
vary. For instance, if you are using English with only a few special characters (for example,
smart quotation marks), you require little expansion. Or, if you are using a language that shares
the Latin alphabet with some additional characters (for example, German), then you need more
space for MBCS data. A language (for example, Chinese) that uses characters at the higher

end of the Unicode range requires more space per character, which needs to be tempered by

the number of characters that are required per word; that is, the language might convey more
information in each character than a typical Latin alphabetic character. In other words, consider
the average bytes required per character, word, and so on. Typically this average is only a rough
estimate because, as studies show, character usage can vary depending on a number of factors;
for example, data context, data that is more numeric (phone numbers), versus more textual data
(names) and even free-form comments. So, some additional safety factor needs to be considered
in choosing your expansion factor.

You also are able to control the expansion factor at a more fine-grained level in the modeling
environment by specifying theMultibyte Expansion_Factor option for a string domain, an

entity string attribute, or both, which might be appropriate for your customizations. For more
information, see the Curam Modeling Reference Guide for setting these options. You might need
to set these fine-grained expansions at this level due to various limits within DB2 and DB2 for
z/OS regarding the size of rows, indexes, and so on, that can be exceeded by large expansion
factors.

For more information on these limits, refer to the relevant DB2 or DB2 for z/OS SQL reference.

© Merative US L.P. 2012, 2024

1 Curam server developer 53

Invocation

The Data Manager is started by running a build command of bui | d dat abase.

DB2 development database optimization tip During iterative development with DB2
on distributed operating systems, the dropping and creation of tables that are performed during
the bui | d dat abase target can be optimized to run quicker by running the following script
once per database:

ant -f Y%CURAVMSDEJ% uti |\ db2_opti m zedbrecreation. xni
Internally this command runs:

ALTER TABLESPACE USERSPACEl1 DROPPED TABLE RECOVERY OFF;
ALTER TABLESPACE CURAM L DROPPED TABLE RECOVERY CFF;

This step is not to be not be taken on a production database.

Database artifacts
Use this information to understand how the Data Manager works and how to use it and
handcrafted artifacts to set up the database.

The Data Manager uses generated and handcrafted artifacts to set up the database. Those
handcrafted artifacts are explained in the pages of the following sections.

» Data Definition XML files - The . xm files describe the database tables and the constraints
that are placed on them.

» Data Contents Data Mining Extensions (DMX) files - In addition to creating the tables on the
database, the Data Manager allows the developer to specify sample and test data that is to be
placed on the database. The format of the . DMX file is introduced in Data contents DMX files
on page 56. The developer typically edits this file by using a standard XML editor.

* The Table element

+ How to customize a DMX file

» Retrieving values from DMX files
* Validation of DMX files

* Tracing information for the DMX merging process

© Merative US L.P. 2012, 2024

Curam 8.1.3 54

Data definition XML files
The . xml files describe the database tables and the constraints that are placed on them. For an

introduction to these files, see the related information.

The code example that follows shows a sample table definition. An entity can have any number of
attribute elements. Not all elements have all the attributes (the size attribute is only present
for strings and Large Objects).

<entities>
<entity tablename="Fully qualified tablename"
<attribute ddltype="DD Type from the UML Model"
notnull="Indicator whether Nulls are allowed"
size="Size qualifier for the DDL Type"
/>
</entity>
</entities>

Figure 12: Table definitions

The code example that follows shows a sample foreign key constraint. Any number of key,
association, and foreignkeypair elements are possible.

Note: If foreign keys are applied to a DB2 for z/OS database by the Data Manager, manual
intervention is required to move the tables from the check pending state. Consult with your
local Database Administrator (DBA) to resolve this issue.

<foreignkeys>
<key>
<association tablename="Local Table name"
othertablename="Remote table name"
>
<foreignkeypair localfield="Local field name"
remotefield="Remote field name"/>
</association>
</key>
</foreignkeys>

Figure 13: Foreign key constraints

The code example that follows shows a sample primary key constraint. Any number of key and
attribute elements can be included.

<primarykeys>
<key tablename="Fully qualified tablename">
<attribute keyname="Field name"/>
</key>
</primarykeys>

Figure 14: Primary key constraints

© Merative US L.P. 2012, 2024

1 Curam server developer 55

The code example that follows shows a sample index constraint. Any number of index and
indexattribute elements can be included.

<indices>
<index>
<indexdetails tablename="Fully qualified tablename
indexname="Name for the Index" >
<indexattribute attribute="Field name"/>
</indexdetails>
</index>
</indices>

Figure 15: Index constraints

The code example that follows shows a sample Unique Constraint. Any number of constraint,
association, and attribute elements can be included as necessary.

<uniqueconstraints>
<constraint>
<association tablename="fully qualified tablename">
<attribute field="field name on table for constraint">
</association>
</constraint>
</uniqueconstraints>

Figure 16: Unique constraints

The code example that follows shows a sample of the metadata that is generated to support the
batch processes that were modeled by the developer. Any number of batch processes that have
any number of parameters can be included.

<batches>
<batch process="Process Name"
operation="Operation Name"
application="Application Name"
>
<parameter name="Parameter name"
type="Domain Type"/>
</batch>
</batches>

Figure 17: Batch metadata

The code example that follows shows a sample of the metadata that is generated to support the
security that was modeled by the developer. Any number of function identifiers (FIDs) can be

included.

<fids>
<fid

name="Function identifier name"
operation="Operation to allow access to"
fidenabled="Indicate whether enabled by default or not"
iswebservice="Indicate whether this is a web service"
/>

</fids>

Figure 18: Security metadata

© Merative US L.P. 2012, 2024

Curam 8.1.3 56

The code example that follows shows a sample of the metadata that is generated to support the
field level security that was modeled by the developer. Any number of fields that are returned can
be included.

<fieldsreturned>
<fieldreturned
operationname="Function identifier name"
fieldname="Field name"
sidname="Associated SID"
/>
</fieldsreturned>

Figure 19: Field level security metadata

Related concepts
Under the Hood on page 77

Data contents DMX files
In addition to creating the tables on the database, the Data Manager allows the developer to
specify sample and test data to be placed on the database.

In addition to creating the tables on the database, the Data Manager allows the developer to
specify sample and test data to be placed on the database. The developer typically edits this file
by using a standard XML editor.

<table name = fully qualified tablename>

<column name = column name
type = One of:
number
text
bool
id
blob
clob
date
timestamp
>
</column>
<row>
<attribute name = field name>
<value>Field value</value>
</attribute>
</row>
</table>

Figure 20: Data contents file

The data contents Data Mining Extensions (DMX) file is made up of a number of elements that
are described in the following sections, some of these elements and attributes are necessary to
enable customization of DMX files, described in further detail in How to customize a DMX file

on page 59.
The table element

Use this information to understand the table element, along with a description of its attributes
and default settings.

The <table> element has the following components:

© Merative US L.P. 2012, 2024

1 Cudram server developer 57

Table 8: Components of the table element

Attribute name Required Default Description
name Yes None Specifies the name of the database table.
override No false Used to customize or completely override existing

DMX files from within a component lower down in
the SERVER_COMPONENT ORDER.

The <column> element

The <column> element has the following attributes:

Table 9: Attributes of the column element

Attribute name Required Default Description
name Yes None Specifies the name of the column.
type Yes None Specifies the data type of a column. Table 13:

Attribute values on page 58 describes the type
that a column can be set to.

encoding No UTF-8 Specifies the CLOB data file encoding type. Check
LOB Manager on page 75.

The <row> element

The <row> element has the following attributes:

Table 10: Attributes of the row element

Attribute Name Required Default Description

remove No false Enables the removal of a row from a DMX file
from within a component lower down in the
SERVER COMPONENT ORDER.

locales No None If omitted, the row is applicable to all locales.

If present, this attribute must be set to a comma-
separated list of locales, ensuring that there are

no spaces between each locale. The following
example indicates the <row> is applicable for the en
and en_Us locales: <row locales="en,en US">.

The row element also encapsulates a collection of attribute elements.
The <attribute> element

The <attribute> element has the following attribute:

Table 11: Attributes of the attribute element

Attribute Name Required Default Description

name Yes None Specifies the name of the column.

encoding No UTF-8 Specifies the CLOB data file encoding type. Check
LOB Manager on page 75.

© Merative US L.P. 2012, 2024

Curam 8.1.3 58

Note: If the number of attributes that are defined for a row does not match the number of
columns defined the Data Mining Extensions (DMX) processing fails.

Note: Therefore, also, when processing DMX files, the name of each attribute is not taken into
account. The order is taken from the column definition at the start of the file. The ordering of
the attributes should match the ordering of the columns.

The attribute element has a required subelement: value.

The <value> Element

The <value> element is the value to be inserted into the column for this row. For a Binary Large
Object Block (BLOB), the value is a pointer to a file. To be meaningful, the name attribute of the
attribute element takes its value from one of the column elements' name attributes within the
same DMX file. Ordering also is important as when the database is being built. Database columns
are updated with content defined by the row elements in the order the column elements are listed
within the DMX file.

The <column> elements' fype attribute determines the valid attribute values. Table 13:
Attribute values on page 58, describes the relation between the column #ype and attribute
value.

The <value> element has the following attributes:

Table 12: Attributes of the value element

Attribute Name Required Default Description

language No None The language attribute, along with the
country attribute, make up the locale for
an <attribute> element.

country No, but if the language None The country attribute, along with the
attribute is specified this language attribute, make up the locale
attribute must also be for an <attribute> element.
specified.

Important: The primary key or the composite key for a record never must be localized within
the DMX file for that record. For example, if Address1D is the primary key for the Address
table, the AddressID value element within the Addr ess. DMX file must not be localized.

Table 13: Attribute values

Column Type Attribute Value
number Value must be numeric.
text Value must be text or multi-line text.

© Merative US L.P. 2012, 2024

1 Cudram server developer 59

Column Type Attribute Value

bool Value must be TRUE or FALSE.

id Value must be numeric.

blob Value must be a relative path from the DMX file to the BLOB
file.

clob Value must be a relative path from the DMX file to the CLOB
file.

date Value must be a valid date or system date. For system date,
value must be represented as SYSDATE.

timestamp Value must be a valid time or system time. For system time,
value must be represented as sYSTIME.

How to customize a DMX file

Use this information to understand how to customize DMX files. You also can use this
information to learn how to modify the elements of a DMX file and add DMX files to new
components of your Ciram application.

The Data Manager processing allows for the customization of Data Mining Extensions (DMX)
files for thei ni ti al ,deno, and t est targets. Supported customizations include the ability
to add a row, update a row, remove a row, localize at a row or attribute level, and completely
override a DMX file. This process allows for DMX files that are included with the Curam
application to be customized easily by adding new DMX files to new components in the relevant
directory.

The DMX files to be customized must be in the following directory structure:

+ <SERVER DI R>/ conponent s/ <cust on®/data/initi al
+ <SERVER DI R>/ conponent s/ <cust on®/ dat a/ deno
+ <SERVER DI R>/ conmponent s/ <cust on»/ dat a/ t est

To customize DMX files that are delivered without customization, new DMX files must
be created and added to new components in the relevant directory within SERVER DI R/
conponent s/ <custonp/data/initial (or /denp or /test).

This mechanism avoids the need to change directly the uncustomized application, which would
complicate later upgrades.

The customization process involves the merging of DMX files of the same name within

the specified directory structure according to a precedence order. The order is based on the
SERVER _COMPONENT_ORDER environment variable that contains a comma-separated list of
component names, the leftmost having the highest priority.

© Merative US L.P. 2012, 2024

Curam 8.1.3 60

Note: It is possible that more than one DMX file contains data for a particular database table.
As the merging of DMX files is based on file names, it might be necessary to customize
multiple DMX files to achieve a wanted data customization for an individual entity.

Only DMX files that are placed within the structure as shown in the previous example

are included in the merging process for DMX files. If subdirectories are used within the
initial,denpandtest directories, then these directories are not included in the merging
process.

The merged DMX file is output to the “SERVER_DI R% bui | d/ dat amanager / dat a/
initial (or /demp or /test) directory.

Rules of merging DMX files

DMX files are merged based on precedence order. A more important main or source DMX file
always exists, and other files are merged into it. The second file is called the merge file in the
following sections.

The merging rules that are described in the list that follows are applied to decide whether the
rows, attributes, or DMX files need to be merged into the new DMX file.

* A DMX file is considered for merging if the new DMX file does not have the override
attribute on the <table> element set to true.

* A <row> is inserted into the new DMX file if it is determined, by using the primary key
information for the record, that the <row> is not present already in the new file.

e Ifa<row> exists in the new DMX file and the remove attribute is set to true, then no
merging occurs. If the remove attribute is set to false or is not present, then the attribute
values for that row are considered for merging.

e Ifthe <value> element does not exist in the new DMX file, then the <value> element is
copied.

» Ifthe <value> contains a different locale, then this <value> entry is copied into the new
file. The locale is specified by the 1anguage and country attributes on the <value>
element.

All examples that follow assume that custom is before core in the SERVER COMPONENT ORDER.

Example 1 that follows illustrates how merging works when the process uses the <table> level
override attribute. To use the override attribute, copy the contents of the existing DMX
file; that is, the core DMX file and place it in a DMX file of the same name in a <cust on®
component. Then, add the following to the table element:

<table override="true">

© Merative US L.P. 2012, 2024

1 Curam server developer 61

This element indicates that only DMX files in this <custom™> component or in a component
higher up in the SERVER COMPONENT ORDER is included in the merged DMX file output

produced from the Data Manager processing.

<?xml version="1.0" encoding="UTF-8"?>
<table name="CONCERN">
<column name="CONCERNID" type="id"/>
<column name="NAME" type="text"/>
<column name="COMMENTS" type="text"/>
<row>
<attribute name="CONCERNID">
<value>22</value>
</attribute>
<attribute name="NAME">
<value/>
</attribute>
<attribute name="COMMENTS">
<value>Concern 1 record</value>
</attribute>
</row>
<row>
<attribute name="CONCERNID">
<value>23</value>
</attribute>
<attribute name="NAME">
<value/>
</attribute>
<attribute name="COMMENTS">
<value>Concern 2 record</value>
</attribute>
</row>
</table>

Figure 21: Example 1 - Core DMX file

<?xml version="1.0" encoding="UTF-8"?>
<table name="CONCERN" override="true">
<column name="CONCERNID" type="id"/>
<column name="NAME" type="text"/>
<column name="COMMENTS" type="text"/>
<row>
<attribute name="CONCERNID">
<value>55</value>
</attribute>
<attribute name="NAME">
<value/>
</attribute>
<attribute name="COMMENTS">
<value>My custom comment</value>
</attribute>
</row>
</table>

Figure 22: Example 1 - Custom DMX file

<?xml version="1.0" encoding="UTF-8"?>
<table name="CONCERN" override="true">
<column name="CONCERNID" type="id"/>
<column name="NAME" type="text"/>
<column name="COMMENTS" type="text"/>
<row>
<attribute name="CONCERNID">
<value>55</value>
</attribute>
<attribute name="NAME">
<value/>
</attribute>
<attribute name="COMMENTS">
<value>My custom comment</value>
</attribute>
</row>
</table>

Figure 23: Example 1 - Resulting Merge DMX file

© Merative US L.P. 2012, 2024

Curam 8.1.3 62

In the resulting merge file, no rows are taken from the core DMX file as the custom DMX
file is overriding completely the core DMX file through the following variable: <table

—

override="true">, resulting in all entries in the core file to be excluded.

Example 2 that follows illustrates how the merging process works when the <row> level remove
attribute is set. To remove a row, copy the row from the existing DMX file and place it in a DMX

© Merative US L.P. 2012, 2024

1 Curam server developer 63

file of the same name in a <Cust o> component. Then, set the remove attribute on that row to

true.

<?xml version="1.0" encoding="UTF-8"?>
<table name="CONCERN">
<column name="CONCERNID" type="id"/>
<column name="NAME" type="text"/>
<column name="COMMENTS" type="text"/>
<row>
<attribute name="CONCERNID">
<value>1</value>
</attribute>
<attribute name="NAME">
<value/>
</attribute>
<attribute name="COMMENTS">
<value>Concern 1 core</value>
</attribute>
</row>
<row>
<attribute name="CONCERNID">
<value>2</value>
</attribute>
<attribute name="NAME">
<value/>
</attribute>
<attribute name="COMMENTS">
<value>Concern 2 core</value>
</attribute>
</row>
</table>

Figure 24: Example 2 - Core DMX file

<?xml version="1.0" encoding="UTF-8"?>
<table name="CONCERN">
<column name="CONCERNID" type="id"/>
<column name="NAME" type="text"/>
<column name="COMMENTS" type="text"/>
<row>
<attribute name="CONCERNID">
<value>1</value>
</attribute>
<attribute name="NAME">
<value/>
</attribute>
<attribute name="COMMENTS">
<value>Concern 1 custom</value>
</attribute>
</row>
<row remove="true">
<attribute name="CONCERNID">

<value>2</value>
</attribute>
<attribute name="NAME">
<value/>
</attribute>

<attribute name="COMMENTS">
<value language="en">Concern 2 en custom</value>
</attribute>
</row>
<row>
<attribute name="CONCERNID">
<value>5</value>
</attribute>
<attribute name="NAME">
<value/>
</attribute>
<attribute name="COMMENTS">
<value>Concern 5 custom</value>
</attribute>
</row>
</table>

Figure 25: Example 2 - Custom DMX file

<?xml version="1.0" encoding="UTF-8"?>
<table name="CONCERN">
<column name="CONCERNID" type="id"/>
<column name="NAME" type="text"/>
<column name="COMMENTS" type="text"/>

© Merative US L.P. 2012, 2024

Curam 8.1.3 64

For Example 2, the <row> where the CONCERNID is set to 2, does not merge the <row> from
the core DMX file. When the application is processing the merged DMX file in Example 2,
the <row> where the CONCERNID is set to 2 are not included when it creates the SQL insert
statements, thus ensuring no entry exists on the database for this <row>.

Example 3 that follows illustrates the setting and merging of the 1anguage and country
attributes on the <value> element.

In this example, the COMMENTS attribute for the CONCERNID=2 has a value for the fr and the
en GB locales.

<?xml version="1.0" encoding="UTF-8"?>
<table name="CONCERN">
<column name="CONCERNID" type="id"/>
<column name="NAME" type="text"/>
<column name="COMMENTS" type="text"/>
<row>
<attribute name="CONCERNID">
<value>1</value>
</attribute>
<attribute name="NAME">
<value/>
</attribute>
<attribute name="COMMENTS">
<value>Concern 1 core</value>
</attribute>
</row>
<row>
<attribute name="CONCERNID">
<value>2</value>
</attribute>
<attribute name="NAME">
<value/>
</attribute>
<attribute name="COMMENTS">
<value language="fr">Concern 2 French core</value>
<value language="en"
country="GB">Concern 2 en GB core</value>
</attribute>
</row>
</table>

Figure 27: Example 3 - Core DMX file

© Merative US L.P. 2012, 2024

1 Curam server developer 65

In this example, the COMMENTS attribute for the CONCERNID=2 has a value for the en locale
only. The COMMENTS attribute for the CONCERNID=5 has a value for the en US locale only.

<?xml version="1.0" encoding="UTF-8"?>
<table name="CONCERN">
<column name="CONCERNID" type="id"/>
<column name="NAME" type="text"/>
<column name="COMMENTS" type="text"/>
<row>
<attribute name="CONCERNID">
<value>1</value>
</attribute>
<attribute name="NAME">
<value/>
</attribute>
<attribute name="COMMENTS">
<value>Concern 1 custom</value>
</attribute>
</row>
<row remove="true">
<attribute name="CONCERNID">

<value>2</value>
</attribute>
<attribute name="NAME">
<value/>
</attribute>

<attribute name="COMMENTS">
<value language="en">Concern 2 en custom</value>
</attribute>
</row>
<row>
<attribute name="CONCERNID">
<value>5</value>
</attribute>
<attribute name="NAME">
<value/>
</attribute>
<attribute name="COMMENTS">
<value language="en"
country="US">Concern 5 en US custom</value>
</attribute>
</row>
</table>

Figure 28: Example 3 - Custom DMX file

<?xml version="1.0" encoding="UTF-8"?>
<table name="CONCERN">
<column name="CONCERNID" type="id"/>
<column name="NAME" type="text"/>
<column name="COMMENTS" type="text"/>
<row>
<attribute name="CONCERNID">
<value>1</value>
</attribute>
<attribute name="NAME">
<value/>
</attribute>
<attribute name="COMMENTS">
<value>Concern 1 custom</value>
</attribute>
</row>
<row remove="true'">
<attribute name="CONCERNID">

<value>2</value>
</attribute>
<attribute name="NAME">
<value/>
</attribute>

<attribute name="COMMENTS">
<value language="en">Concern 2 en custom</value>
<value language="fr">Concern 2 French core</value>
<value language="en"
country="GB">Concern 2 en GB core</value>
</attribute>
</row>
<row>
<attribute name="CONCERNID">
<value>5</value>
</attribute> © Merative US L.P. 201
<attribute name="NAME">
<value/>

</attribute>

2,2024

Curam 8.1.3 66

In Example 3 shown previously, for the <row> where the CONCERNID is set to 2, the resulting
merge file has values for the en, fr, and the en GB locales; that is, a merge of both core and
custom <value> elements.

© Merative US L.P. 2012, 2024

Example 4 that follows illustrates the <row> level locales attribute.

1 Curam server developer 67

<?xml version="1.0" encoding="UTF-8"7?>
<table name="CONCERN">
<column name="CONCERNID" type="id"/>
<column name="NAME" type="text"/>
<column name="COMMENTS" type="text"/>
<row>
<attribute name="CONCERNID">
<value>1</value>
</attribute>
<attribute name="NAME">
<value/>
</attribute>
<attribute name="COMMENTS">
<value>Concern 1 core</value>
</attribute>
</row>
<row locales="en GB">
<attribute name="CONCERNID">

<value>2</value>
</attribute>
<attribute name="NAME">
<value/>
</attribute>

<attribute name="COMMENTS">
<value language="fr">Concern 2 French core</value>
<value language="en"
country="GB">Concern 2 en GB core</value>
</attribute>
</row>
</table>

Figure 30: Example 4 - Core DMX file

<?xml version="1.0" encoding="UTF-8"?>
<table name="CONCERN">
<column name="CONCERNID" type="id"/>
<column name="NAME" type="text"/>
<column name="COMMENTS" type="text"/>
<row>
<attribute name="CONCERNID">
<value>1</value>
</attribute>
<attribute name="NAME">
<value/>
</attribute>
<attribute name="COMMENTS">
<value>Concern 1 custom</value>
</attribute>
</row>
<row locales="en,en US">
<attribute name="CONCERNID">

<value>2</value>
</attribute>
<attribute name="NAME">
<value/>
</attribute>

<attribute name="COMMENTS">
<value language="en">Concern 2 en custom</value>
</attribute>
</row>
</table>

Figure 31: Example 4 - Custom DMX file

<?xml version="1.0" encoding="UTF-8"?>
<table name="CONCERN">
<column name="CONCERNID" type="id"/>
<column name="NAME" type="text"/>
<column name="COMMENTS" type="text"/>
<row>
<attribute name="CONCERNID">
<value>1</value>
</attribute>
<attribute name="NAME">
<value/>
</attribute>
<attribute name="COMMENTS">
<value>Concern 1 custom</value>

</attribute>
/AT

© Merative US L.P. 2012, 2024

Curam 8.1.3 68

In Example 4 shown previously, the value for the 1ocales attribute is taken from the row in the
component that is higher up in the SERVER COMPONENT ORDER; that is, the custom component.

The primary key or composite key for a record is used to determine the overriding or merging
process for DMX files. DMX files are merged based on the definition of the primary key

for the table or entity the DMX file represents. For all modeled entities, the primary key
information is stored in the generated <SERVER_MODEL_NAME> Pri mar yKeys. xni

file in the build directory; that is, “’SERVER _DI R% bui | d/ svr/ gen/ ddl . For all non-
modeled components, the primary key information for entities must be stored in a file called
<SomeNane>_Pri mar yKeys. xm within the “SERVER_DI R% conponent s/

<cust on/ dat a/ ddl directory. If this file is named correctly in the specified location, the
DMX processing contains the relevant primary key information for the non-modeled component.

Retrieving values from DMX files for database insertion

The Data Manager uses the <row> level remove attribute to determine whether an entry is
inserted onto the database for that row. If the remove attribute is set to true, then the Data
Manager does not insert an entry for that row. The row is ignored.

Data Mining Extensions (DMX) files store the locale information for the attributes for

the database table. As the database must be built for only one locale, the Data Manager

uses the curam.dmx. locale property to determine the locale that must be used when

data that is specified in DMX files is inserted onto the database. This property can be set

in either the Boot st r ap. properti es file or as a system variable. If set in both the

Boot strap. properti es file and as a system variable, the system variable overrides the
setting in the Boot st r ap. pr operti es file. This property must be set to a valid locale; that
is, in the format 1anguage Country, where language is mandatory and country is optional. For
example,

curam.dmx.locale=en US

If this property is not set, the infrastructure will fallback on the en locale.

As mentioned, the Data Manager processing uses the curam.dmx. locale file to determine

the value to insert for an attribute in a DMX file. The locale can be specified at a <row> or
<attribute> level. If specified at a row level, then this value takes precedence over the attribute
level.

© Merative US L.P. 2012, 2024

1 Cudram server developer 69

For example:

<?xml version="1.0" encoding="UTF-8"?>
<table name="CONCERN">
<column name="CONCERNID" type="id"/>
<column name="NAME" type="text"/>
<column name="COMMENTS" type="text"/>
<row>
<attribute name="CONCERNID">
<value>1</value>
</attribute>
<attribute name="NAME">
<value/>
</attribute>
<attribute name="COMMENTS">
<value>Concern 1 core</value>
</attribute>
</row>
<row locales="en GB">
<attribute name="CONCERNID">

<value>2</value>
</attribute>
<attribute name="NAME">
<value/>
</attribute>

<attribute name="COMMENTS">
<value language="fr">Concern 2 French core</value>
<value language="en"
country="GB">Concern 2 en GB core</value>
</attribute>
</row>
</table>

In this example, if the curam.dmx . locale environment variable is set to the fr locale, then
entry is inserted for the record where CONCERNID is set to 2, as the 1ocales attribute for the
<row> is only applicable for the en GB locale, even though the attribute for COMMENTS has an
entry for the fr locale.

The Data Manager attempts to match the locale that is specified by the curam.dmx.locale
environment variable with the 1ocales attribute for the <row> element within a DMX file.

If this attribute is not set, then the Data Manager attempts to match on the <value> for an
<attribute>; that is, it tries to match on the 1anguage and country attributes of the <value>
element.

Since DMX files are not guaranteed to contain an entry for every locale, a fall back mechanism is
in place. This fallback mechanism is applicable only to the attribute <value> element; that is, it
is not applicable to the <row> locales attribute. After a <value> is found and no direct match
is found with the locale specified by curam.dmx.locale, the rules for fall back are as follows:

* Ifthe curam.dmx.locale is set to include a language and country part, the processing looks
for an attribute where the language and country attributes are set on the <value> element.
If this element is not found, then the countryattribute is removed and the search looks for a
<value> where the language attribute matches, if this attribute is not found, then the search
looks for a <value> that does not have the language and country attributes set; that is, a

© Merative US L.P. 2012, 2024

Curam 8.1.3 70

default match. If this attribute is not found, then no entry is inserted onto the database for this
<value>.

<row>

<attribute name="ADDRESSELEMENTID">
<value>3227</value>

</attribute>

<attribute name="ELEMENTTYPE">
<value language="en">EN TYPE</value>
<value country="US" language="en">EN US TYPE</value>

</attribute>

<attribute name="ELEMENTVALUE">
<value language="fr">French Value</value>

</attribute>

</row>

Figure 33: Locale Fallback Example

In Retrieving values from DMX files for database insertion on page 68, assume the
curam.dmx.locale is set to en. The following variables are set for each attribute:

* ELEMENTTYPE - EN_TYPE is the value that is inserted onto the database for this attribute, as
this element is the value set for the en locale.

 ELEMENTVALUE - null is inserted onto the database for this attribute. This attribute has the
language attribute set to fr. The locale that is being searched for is en. A value for en is not
found, so a <value> that contains no language or country attributes is searched for; that is,
the default value, as this variable does not exist, null is inserted for this attribute.

Validation of DMX files

All Data Mining Extensions (DMX) files in “SERVER_DI R% conponent s/

conponent Namne/ dat a directories are validated against a DMX schema file when the bui | d
dat abase target is run. This schema file is in “CURAMSDEJ % | i b/ DMX. xsd. For any
DMX file that is not in the correct format, a warning is displayed. The validation of DMX files is
controlled by the curam.dmx.disable.validation system variable. Validation is enabled by
default, to disable the validation, this system variable is passed into the database build setting it to
true, as follows:

bui | d dat abase - Dcuram dnx. di sabl e. val i dati on="tr ue"

The ability to treat these warnings as errors is available by setting the prp.warningstoerrors
property. If this variable is set to true, the warnings are treated as errors and the build database
fails.

Tracing Information for the DMX Merging Process

It is possible to turn on tracing for the Data Mining Extensions (DMX) merging process. This
action can assist in debugging any issues that might occur as a result of merging DMX data. The
system property curam.dmx.tracing, if set to true, produces tracing information to the console
for the DMX file being processed. This property is false by default.

The tracing output includes:

* The name of the file being processed.
* The key value for a row that is being merged (only where duplicate rows exist).
* Information indicating the merging process has finished for a DMX file.

© Merative US L.P. 2012, 2024

1 Cudram server developer 71

The following is an example of setting this property:

bui | d dat abase -Dcuram dnx. traci ng=true

Figure 34: Set tracing for DMX files.

Therefore, when set to true, this property outputs a large amount of data to the console to be used
for debugging.

Database Object Naming

Typically the names of the objects on the database are visible clearly from the Data Manager
XML files (for example, table names and column names). The Data Manager provides support for
the naming of objects that are not visible directly in these files.

= (deprecated) Short Name Substitution

The Short Name Substitution feature will be removed in a future version of Ctiram. The third-
party databases now supported no longer have the SQL identifier limitations that necessitated

the feature originally. Consequently, it no longer is necessary to use this feature and it has been
removed from the product documentation. If you still require this feature, contact Ciram Support
for the information that was previously available in this document.

Primary key indices
By default the primary key index has the same name as its corresponding table.

If required, a prefix can be specified for the primary key index name by using the

generator command line option - pri mar ykeyi ndexpr ef i x. For example, by setting

the property extra.generator.options=-primarykeyindexprefix PI in

Boot st rap. properti es results in the primary key index for a table named Person being
named PI_Person. If the index name length is greater than the SQL identifier limit supported by
your database, you encounter an error during SQL processing.

Primary key constraints
Use this information to understand the constraints for assigning options to primary keys.

By default, the generated Data Definition Language (DDL) for adding a primary key to a table
takes the form:al ter table TTTT add primary key (AAAA), where:

» TTTT is the table name.
* AAAA is a comma-delimited list of the primary key attributes.

By specifying the command line option - usenamnedpr i mar ykeyconst r ai nt through the
extra. generat or. opti ons, this DDL can be made to take the form:

alter table TTT add constraint CCCC primary key
(AAAR)

where CCCC is the name of the primary key constraint.

In this case, the name of the primary key constraint defaults to the same as the name of its
corresponding table. Also, like primary key index names, a prefix can be applied to this name by
using the - pri mar ykeyconst r ai nt pr ef i x command line option. If the constraint name
length is greater than the SQL identifier limit supported by your database, you encounter an error
during SQL processing.

© Merative US L.P. 2012, 2024

Curam 8.1.3 72

Automatic index generation
An automatic index creation feature supplements the manual addition of indexes to the model.
The automatic index creation feature is enabled by default.

The automatic index creation feature discovers non-indexed fields that are included in the
following operation types:

* Readmulti

* NsModify

* NsRead

* NsReadmulti

* NsRemove

If the non-indexed field is based on one of the domain types in the following list, excluding
codetable domains and strings that are longer than 255 characters, an index is generated by the
model generation process for the non-indexed field:

* SVR_INT64

* SVR_DATE

* SVR_DATETIME
* SVR_STRING

To facilitate repeatable naming, the generated index is named IND Hashcode of Table +
FieldName.
Disabling the automatic index creation feature

To disable the automatic index creation feature, specify the following command line parameter in
the server build:

-Dgenerator.options=-disableautoindexgeneration

Tablespaces
Use this information to understand the exceptions when table spaces are not created automatically
during table creation.

Note: The following instructions are specific to DB2 for z/OS.

By default the behavior is for tablespaces to be created implicitly during table creation. The
exceptions to this behavior are:

* The tablespace that is named by the curam.db.zos.32ktablespace property is created
explicitly by the datamanager and tables that exceed the 4K row limit are placed in this
tablespace.

* Tablespaces inthe Tabl espace. properti es file are created explicitly by the
datamanager. If the table specified for the tablespace exceeds the 4K row limit, the
tablespace is defined in the 32K BUFFERPOOL. Otherwise, it takes the default setting.

When the operation uses the Tabl espace. properti es file, the format of the entries is:

tablename=tablespacename

© Merative US L.P. 2012, 2024

1 Curam server developer 73

Comments are specified by the # character in column one.

Note: Ifthe tablespaceTabl espace. properti es, then this tablespace is used over
the one defined in the property curam.db.zos.32ktablespace.

Note: When you are using DB2 for z/OS version 8, the use of the default 32K tablespace
(curam.db.zos.32ktablespace) can result in SQLCODE -913 errors during login, but
might also occur in other contexts. To avoid these errors, you take one of the following actions:

» Ensure that your Ctram default 32K tablespace is segmented (SEGSI ZE. For more
information, see DB2 Universal Database for z/OS SOL Reference Version 8.

» Explicitly define tablespaces for each Curam table that defaults to the 32K
tablespace (for example, SELECT * FROM SYSIBM.SYSTABLESPACE WHERE NAME
= <curam.db.zos.32ktablespace value>) and assign each table to a specific
tablespace by using the Tabl espaces. properti es file. (This complication is not
an issue when you use DB2 for z/OS version 9 because tablespaces are segmented by
default.)

Note: In DB2 for z/OS version 9, the behavior of the ALTER TABLE DROP PRIMARY

KEY SQL statement is changed as follows: “If the table space was implicitly created, the
corresponding enforcing index is dropped if the primary key is dropped.” Most production
users would typically explicitly create their tablespaces and would not be impacted by this
change, but in test environments this condition might not be the case. The symptom of this
issue is an SQLCODE -551 error on a DROP INDEX statement that follows the ALTER TABLE
DROP PRIMARY KEY statement. To avoid this error, you can either:

* Manually remove the generated DROP | NDEX SQL statement from the Data Manager -
generated SQL to take into account the new behavior; or

» Explicitly define the tablespace and specify it in the Tabl espace. properti es file.
For example, for the USERS table, your Tabl espace. properti es file would contain:

USERS=USERSTS

Data Manager configuration
Use this information to understand how to use the Data Manager to properly set up database
configuration.

Typically the Data Manager sets up the database from a number of different components:

* Server Development Environment (SDEJ) Tables
» Application Tables

* Initial Data

* Demo Data

* Test Data

The selection of which set of data to apply effectively depends on the task the developer wants to
complete.

© Merative US L.P. 2012, 2024

Curam 8.1.3 74

The Data Manager is configured by using the dat amanager _confi g. xm configuration
file. The file is at:

SERVER DIR\project\config\datamanager config.xml

The structure of dat amanager _conf i g. xm is shown in the following example:

<datamanager>
<compositetarget name="target name">
<subtarget name="subtarget name"/>
</compositetarget>
<target name="subtarget name">
<entry name="relative filename or relative directory"
type="sqgl, DMX or xml"
base="sdejscripts or basedir"/>
</target>
</datamanager>

Figure 35: Data Manager configuration

The file is organized as follows:

* Target Tag
This tag has a name attribute that specifies the name of the target and a set of associated entry
tags.

* Entry Tag
This tag has three attributes that are associated with it.

* Name Attribute
This specifies the file or directory associated with this attribute and its offset from the base
attribute.

* Type Attribute
This attribute specifies whether the file is an SQL script, a . DMX file, or an . xm file.

* Base Attribute
This attribute specifies the system-dependent offset of the file on the local computer. It can
be specified as one of basedi r (the directory above the Data Manager) or sdescri pt s
(the location of the SDEJ installation).

Any of the targets that are listed in this configuration file can be passed to the bui | d
dat abase target.

The dat amanager _confi g. xm file is used when the application is running the bui | d

dat abase target. When this target is run, composite targets that are specified within the

dat amanager _confi g. xm can be called. By default, the al | composite target is called
within the dat amanager _confi g. xm file. To call a different composite target, the
prm.target can be passed tothe bui | d dat abase target that specifies the composite target
to be called. For example, to call the initial composite target, the following command might be
run:

build database -Dprm.target=initial

© Merative US L.P. 2012, 2024

1 Cudram server developer 75

New composite targets can be added to the dat amanager _confi g. xm file. The composite
target can contain any number of subtargets. The following block of code is an example of
specifying a new composite target mycompositetarget that calls mynewtarget.

<target name="mynewtarget">
<entry base="basedir"
name="components/core/data/initial/
handcraftedscripts/NewScript.sql"
type:"sql"
/>
</target>
<compositetarget name="mycompositetarget">
<subtarget name="mynewtarget"/>
</compositetarget>

Database Synchronization

Typically the Data Contents XML files are hand-crafted by a developer. However, the
infrastructure provides Ant targets to create a Data Contents XML file from the database. The
Data Extractor is invoked by running a build command of bui | d ext r act dat a. By default
the full database is extracted and DMX files are created for any tables that contain data. An
optional parameter of tablename can be passed to specify that only one or more tables are to

be extracted; for example, bui | d extract data - Dt abl enane=User s. If you want to
extract multiple tables during the one run, pass a comma-separated list of tables to the tablename
parameter.

The generated . DMKX files are placed in a “SERVER DI R% bui | d/ dat aextract or
folder. Under this folder the contents of any Character Long Object (CLOB) or Binary Large
Object Block (BLOB) also are extracted and stored in a file that is based on the naming format:
<t abl enane><r ownunber >.

Statistics

Databases use an optimizer to determine the most efficient access path to data on the database.
The optimizer uses statistics about the physical characteristics of a table and the associated
indexes to determine this information. These characteristics include number of records, number of
pages, and average record length. If no statistics are available on the database, then the optimizer
makes a guess as to the best access path to use. This guess often can lead to performance issues,
including unnecessary deadlock and timeout exceptions. The r unst ati sti cs target is
available to gather these necessary statistics on the database and is run against all Caram database
tables.

Note: Therunst ati sti cs target is not supported by DB2 for z/OS due to the architectural
differences of this application. Consult with your local database administrator in regard to
engaging the equivalent DB2 for z/OS functions.

LOB Manager

The Large Object Block (LOB) Manager is part of the Data Manager that enables Character Long
Object (CLOB) and Binary Large Object Block (BLOB) to be loaded onto the database.

© Merative US L.P. 2012, 2024

Curam 8.1.3 76

In the data contents, file BLOB and CLOB fields are handled differently to a degree from other
fields, in that the value element does not contain the literal data, but instead contains a reference
to a file that contains the data.

The LOB Manager on page 75, illustrates how a table with a numeric and BLOB column can
be populated with one record that uses a binary file from disk.

<tabl e name = "Bl obEntity">
<col um nane = "inmagel D' type = "nunber"/>
<colum nanme = "imgeData" type = "bl ob"/>
<r ow>
<attribute nane
<val ue>1</val ue>
</attribute>
</ row>
<r ow>
<attribute name = "binaryData">
<val ue>. /i nmages/ 1. j pg</val ue>
</attribute>
</ r ow>
</t abl e>

"i magel D' >

Figure 36: BLOB Data Contents File

To load BLOBS, the LOB Manager can be used only on tables for which the primary key fields
are known. This restriction is because inserting a LOB involves an SQL insert followed by an
SQL update, and the SQL update must be capable of addressing a single record by using its
primary key.

The LOB Manager on page 75, illustrates how a table with a numeric and CLOB column can
be populated with one record by using a character data file from disk. Here, the CLOB data file
is encoded with UTF-16 format, and this information is specified in the attribute element with
encoding as UTF-16 for that row, so the CLOB content gets encoded before it gets inserted.

<table name = "Entity">

<col um nane
<col um nane
<r ow>

<attribute nane

<val ue>1</ val ue>

</attri bute>

</row>
<r ow>

<attribute name = "content" encoding = "UTF-16">

<val ue>./cl obcontentdir/ 1.t xt</val ue>

</attri bute>

</row>
</t abl e>

"ID'" type = "nunber"/>
"content" type = "clob"/>

"1D>

Figure 37: CLOB Data Contents File

The LOB Manager on page 75, illustrates how a table with a numeric and CLOB column can
be populated with two records by using the character data files from disk. Here, if all the CLOB
data files are encoded in UTF-16 format, then this information can be specified at the column
level, by using encoding attribute, so all the rows for CLOB type use the same encoding type

© Merative US L.P. 2012, 2024

1 Cudram server developer 77

of that column. To override action this for a single row, the encoding type can be specified as in
previous example at the attribute element level of that row element.

<table name = "Entity">
<columm nane = "ID' type = "nunber"/>
<col um nane = "Data" type = "cl ob"
encodi ng = "UTF- 16"/ >
<r ow>
<attribute nane = "ID'>

<val ue>1</ val ue>
</ attribute>
</row>
<r ow>
<attribute nane = "Data">
<val ue>./cl obcontentdir/4.txt</val ue>
</attribute>
</row>
<r ow>
<attribute nane = "I D'>
<val ue>2</ val ue>
</attribute>
</ r ow>
<r ow>
<attribute nane = "Data">
<val ue>. /cl obcontentdi r/ 2. t xt </ val ue>
</attribute>
</ row>
</t abl e>

Figure 38: CLOB Data Contents File in encoded format

The LOB manager identifies primary keys by using the dat amanager _confi g. xm file, so
this file must contain a reference to the generated _Pri mar yKeys. xm relating to the table
that contains the LOB.

SQL Checker

Use this information to understand how the SQL Checker can validate Java Data Base
Connectivity (JDBC) SQL statements.

The CuramServer Development Environment (SDEJ) produces a database access layer which is
based around JDBC. JDBC is dynamic SQL from the viewpoint of database and as such there is
no ability to check the syntax and semantics of the statements prior to their first execution. The
SQL checker provides a method of validating the syntax and semantics of these SQL statements
before they are first exercised.

Under the Hood

The SQL checker is invoked by an Ant target and generates a simple Java program that uses SQL
For Java (SQLJ) rather than Java Data Base Connectivity (JDBC). This program is generated
into / bui | d/ sql check/ SQLJTenp. sql . This Java program contains all the elements that
should be checked, namely the handcrafted SQL in the model and the Data Manager. Because
SQLJ is static SQL the program can be compiled in advance of deployment, provided the
database is already created and populated.

© Merative US L.P. 2012, 2024

Curam 8.1.3 78

The SQL checker also can check the contents of the model for database portability. This is useful
in situations where primary development is against one type of database (for example DB2) but
final deployment is against another database (for example DB2 for z/OS). The elements checked
for include:

* Comparison of Host Variables to NULL

This check is performed because handcrafted SQL can use the SQL i s Nul | keyword on a
host variable. If this is done, the Caram Generator automatically produces a cast to the correct
fundamental SQL datatype for the database that is being built against. However, this means that
the resultant . ear file cannot be deployed against a database of a different type unless it is
completely re-built.

Limitations

The SQL Checker reduces the number of syntax and portability errors that remain until
deployment as this reduces the effort expended in testing for and removing these errors. However,
it is not a replacement for a comprehensive test suite as it does not catch all the possible errors.
There are a number of reasons for this:

* Reliance on the SQLJ Check
The SQL Checker is only as good as the SQL For Java (SQLJ) compiler that it invokes. Any
syntactical or semantic errors that are not reported by the compiler will not be reported by the
SQL Checker.

* Portability Warnings
The SQL Checker is designed to capture and report only the most common portability errors.
It is not a replacement for early and comprehensive testing on the final target database.

* Limitation with H2
H2 does not provide an implementation of an SQLJ checker; therefore, it only performs a
portion of the perceived checks that the SQL Checker does.

1.2 SDEJ development and application programming interfaces

Use this information to develop compliantly with Application Programming Interfaces (APIs) in
the Server Development Environment (SDEJ). Learn about how to use Eclipse, how logging and
tracing works, and what "deprecation" means in the context of Curam development.

Eclipse

Use this information to understand how to use the Eclipse Integrated Development Environment
(IDE) with the Ctiram Server Development Environment (SDEJ). Read about some relevant
aspects of Eclipse and some tips for Eclipse usage.

Eclipse is the underlying technology for these applications:

* IBM® Rational® Application Developer for IBM® WebSphere® Application Server
* IBM® Rational® Software Architect Designer
* IBM® Rational® Software Architect Designer for WebSphere® Application Server

© Merative US L.P. 2012, 2024

1 Cudram server developer 79

The term Eclipse, which is used throughout this information, applies to all supported tooling
based on Eclipse, such as Rational® Application Developer.

For more information about general features or usage of Eclipse, see http://www.eclipse.org/.

Curam projects to import into Eclipse
Use this information to learn about the four Ciram projects that need to be imported into Eclipse.

Four projects are provided that need to be imported into Eclipse:

Table 14: Transaction settings

Project Name File System Contents
directory
Cur anSDEJ Cur anSDEJ The Server Development libraries.
Cur anCDEJ Cur anCDEJ The Client Development libraries, depends on

the Cur anSDEJ project.

EJBSer ver EJBSer ver The Curam Server application, depends on the
Cur anSDEJ project.

Cur am webcl i ent The Curam Client application, depends on the
Cur anCDEJ project.

Dependencies allow for exposed compressed libraries in referenced projects to be used in code
developed in the dependent project.

The Cur anCDEJ and Cur anSDEJ are non-development projects that are only containers for
libraries. All development needs to be done within the EJBSer ver and Cur amprojects.

Eclipse configuration files
Use this information to learn about Eclipse configuration files.

Each Eclipse project is configured through two XML files -a. pr oj ect anda. cl asspat h
file. Also, a number of preferences and settings can be configured at a project level rather than
workspace level. The effect of setting these preferences and settings at a project level is that
this configuration, which forms files and entries in a.Settings folder under the project, can be
distributed with the project in a team environment.

The configuration is maintained by right-clicking on a project within the Project Explorer view in
Eclipse and selecting Properties.

. proj ect file
Use this information to understand the . pr oj ect file.

The . pr oj ect file holds the project nature and builders and for a typical Java project holds a
single nature and builder corresponding a Java project. Additionally, in the Curam project, there
is an Apache Tomcat nature to signify the project can be configured for and deployed on Tomcat.
The project's dependencies are also maintained in the . pr oj ect file.

© Merative US L.P. 2012, 2024

http://www.eclipse.org/

Curam 8.1.3 80

The . cl asspat h file
Use this information to understand how the . cl asspat h file maintains the project's source and
target references for Java compilation and compressed file or project dependencies

The . cl asspat h maintains the project's source and target references for Java compilation and
compressed file or project dependencies.

This configuration is maintained through the Java Build Path page in the project's properties.
Source entries can be added, ordered, or new JAR file dependencies can all be managed through
the Java Build Path page.

Optionally, Access Rules and JavaDoc references can be configured on JAR files. Access Rules
are discussed further in Access Rules option on page 81.

Eclipse .classpath generation
Use this information to understand about Eclipse . ¢l asspat h file generation.

The Eclipse . ¢l asspat h files for the EJBSer ver and webcl i ent projects can be generated
from a build target - bui | d cr eat eCl asspat hs that can be run from the EJBSer ver
directory. This action allows for the class paths to tailor to the contents in your environment and
avoids the need for manual maintenance of this file.

It is advised that you add the invocation of this target to your default build invocation wrapper
to ensure that it gets run with each build. Example in the EJBSer ver\ . bui | d. bat file. The
class path is not regenerated unless changes are made in your environment.

The class paths are formed from:

* sour ce directories under the EJBSer ver \ conponent s directories

» tests directories under the EJBSer ver \ conponent s directories

+ JAR filesin thel i b directories under the EJBSer ver \ conponent s directories
* j avasour ce directories under the webcl i ent \ conponent s directories

+ JAR files under the webcl i ent \ conponent s directories

» Standard build output directories

* JAR files on the PRE CLASSPATH, POST CLASSPATH, and J2EE JAR environment
variables

* Cur antCDEJ and Cur anmCDEJ project references.

.settings directory
Use this information to understand the . settings directory folder.

The . set ti ngs folder contains a number of the other preferences that can be maintained at the
project level; for example, compiler warning/error levels or code style settings. The preference
pages that offer this ability to maintain at a project level can be seen to have an Enable project
specific settings at the top of the page.

This directory can be added to SCM control and settings distributed to team members as required.

© Merative US L.P. 2012, 2024

1 Curam server developer 81

Access Rules option
Use this information to understand the Access Rules option and how it works with compressed
files in an Eclipse project.

The Access Rules option allows compressed files within an Eclipse project . cl asspat h
to define an access level for packages and classes. Three different levels of access exist: non-
accessible, discouraged, and accessible. When the compiler within Eclipse detects access to a
type that should not be accessed, it creates a problem marker rather than a compile failure:

* Non-accessible rules define types that must not be referenced. The compiler typically creates
an error marker for accesses to these types.

* Discouraged rules define types that should not be referenced. The compiler typically creates a
warning marker for accesses to these types.

» Accessible rules define types that can be referenced.

Access rules are applied and provided rules for a number of the compressed files in the

. cl asspat h files of the Eclipse projects. These access rules complement each compressed
file's application programming interfaces (APIs) and through the accessible rule indicate access
that is compliant according to the Ciiram Development Compliancy Guide. Access Rules can be
applied only to compressed files, so don't treat them as a complete solution to police compliancy.
Classes that are defined as non-accessible or discouragedare not supported, are subject to change
without notice, and might not respect their API. Hence, they can affect the ability to easily
integrate Clram upgrades.

Note: Discouraged accesses in the unmodified Ctiram Platform might be copied into your
codebase as part of subclassing or extension work. These accesses can be removed in future
releases and appropriate alternative APIs provided if necessary. To reduce future impact to
your codebase in regard to access to discouraged code, you must treat these accesses as non-
accessible and work to seek a different API.

Working Sets

A common issue in Eclipse is that as the content in your workspace grows it can be
overwhelming to navigate through all the directories and difficult to focus on the areas of interest
to you. Eclipse solves this through Working Sets, a method to specify, in a global location, which
working set you are interacting with currently. The following views and dialogs in Eclipse
support the concept of working sets:

* The Navigator;

» The Package Explorer;
* The Projects View;

* The Packages View;

* The Types View;

* The Problems View;

* The Open Type Dialog.

For example, working sets can be useful especially on the Problems View, in terms of viewing
which issues relate to your owned code. The following steps detail how to set a working set on
the Problems View to display issues only related to thecustom component:

© Merative US L.P. 2012, 2024

Curam 8.1.3 82

1. From the Problem View menu, select Configure Contents.

2. In the Configure Contents dialog you must first add a filter from the Configurations panel.
Click the New... button and name this filter (for example, Cust om) and click OK. This will
create the filter checking it in the Configurations: list. Under Scope:, select the On Working
Set: Window Working Set radio button and click the Select... button to add a new working
set.

3. In the Select Working Set dialog box, select the Selected Working Sets radio button and
click the New... button.

4. The New Working Set wizard then can be used to add types to the working sets. In this
instance we want to add a Java type and select the custom source directory.

5. In the Select a working set type panel, select Java from the Working set type: and click
the Next > button. In the Java Working Set panel, select items in the Workspace content:
list and add them to the Working set content: list using the Add --> button. Use the other
buttons in the list to manage the Workspace content: list. Specify a name in the Working set
name: text box. Click the Finish button. You can invoke the New Working Set wizard again
to create more working sets. Before clicking the OK button to exit the Wizard, ensure your
Selected Working Sets are checked.

6. On clicking OK to exit the Configure Contents dialog box, your Problems View will be
updated to display only errors, warnings, or informationals relating to the newly created
Custom filter.

Logging that uses Apache log4j 2 API

Use this information to understand logging in Ciram. Logging in the application is provided by
the curam.util.resources.Trace class that provides a convenient wrapper onto the Apache
log4j 2 APL.

log4j 2 is a logging framework that is provided by the Apache Jakarta project. For more
information, see Apache Log4j 2.

Logging allows developers to log any information whether the program is being run in online or
batch mode. The final destination of the trace information is configurable. It can be a log file that
is associated with the application server, a stand-alone log file, a console, or even a database.

Logging usage
Use logging information in the tracing application API.

The interface into the tracing application programming interface (API) is through an
instance of the org.apache.logging.log4.Logger class. The infrastructure

provides a number of named instances that match the categories that are described

in Logging hierarchy on page 83. The top-level category is accessed through
curam.util.resources.Trace.kTopLevelLogger as shown in the following example:

curam.util.type.DateTime timeNow;
timeNow = curam.util.type.DateTime.getCurrentDateTime () ;
curam.util.resources.Trace.kTopLevellLogger.info (

"This function was called at ");
curam.util.resources.Trace.kTopLevelLogger.info (timeNow) ;

Figure 39: Usage of the loggers

© Merative US L.P. 2012, 2024

http://logging.apache.org/log4j

1 Curam server developer 83

Note: The code example in figure 1 produces two trace records. These records are not visible
easily if Apache Log4j 2 is configured to use a flat file or the console. However, if a Apache
Log4j 2 viewer is used, then the two trace records result in a needless entry that complicates
the view without any added benefit. As such, it is recommended that trace statements that
contain logically dependent data be recorded in a single call.

A formatted textual representation of a Cliram struct class object can be obtained through a call
to the class curam.util.resources.Trace.objectAsTraceString call, for example see
figure 2.

curam.util.struct.ProcessNameKey someKey =
new curam.util.struct.ProcessNameKey;
someKey.processName="someValue";

curam.util.resources.Trace.kTopLevelLogger.info ("DEBUG\n") ;
curam.util.resources.Trace.kTopLevelLogger.info (
curam.util.resources.Trace.objectAsTraceString (someKey)) ;

Figure 40: Tracing a struct

Logging hierarchy
Understand the logging hierarchy for trace records and learn about the categories and levels of the
records.

The Curam infrastructure produces trace records in specific categories with specific levels. This
recording allows the records to be filtered easily in a Apache Log4j 2 viewer. The categories and
levels that are supported are described in table 1 where <BPO>, <Entity>, and <Facade> are the
names of the relevant Caram classes. The <CodePackage> field is left empty if the class is not in
a code package.

Table 15: Logging hierarchy

Category Level Meaning

Trace Error Loggable exceptions that were
detected in the code.

Tr ace. Bat chLauncher e Progress of batch launcher

Trace. Bat chLauncher Error Errors in batch launcher

Trace. CodeTabl e Debug Tracing information about code table
lookups

Tr ace. Dat aAccess. <Entity> Info SQL statements run by entity objects.

Tr ace. Dat aAccess. <Entity> Debug Results of SQL select statements.

Trace. Met hods. <CodePackage>.<BPO> Info Business object method invocation

Tr ace. Met hods. <CodePackage>.<BPO> Debug Arguments and types of arguments
for Business Object method
invocation

© Merative US L.P. 2012, 2024

Curam 8.1.3 84

Category Level Meaning

Trace. Rul es Info Progress of rules engine.

Trace. Server Cal | s. <CodePackage>.<Facade> Info Server method invocations by remote
clients

Trace. Server Cal | s. <CodePackage>.<Facade> bebug Arguments and types of arguments

for server method invocation.

Trace. Tool s Info Progress of build time tools; for
example, confi gt est

Trace. Tool s Warning Warnings from build time tools.

Trace. Tool s Error Errors from build time tools.

Logging trace levels
Learn about trace levels when you are logging information to the Ctiram server and learn how to
use trace options.

When you are logging to the server, trace level needs to be considered. These settings can be used
to guard the calls that are made into Apache Log4j 2 to improve the performance in environments

where tracing is not required4.

To check the current trace level setting, call the
curam.util.resources.Trace.atLeast (Trace t) method, where the parameter to the
method can be one of the following options:

e curam.util.resources.Trace.kTraceOff
* curam.util.resources.Trace.kTraceOn
* curam.util.resources.Trace.kTraceVerbose

* curam.util.resources.Trace.kTraceUltraVerbose

To specify the trace level for the application, set the curam. trace property, as defined in Cliram
Configuration Settings on page 43 to one of the following values:

* trace_on (corresponds to O in Table 16: Diagnostic tracing options on page 85)

» trace verbose (corresponds to V in Table 16: Diagnostic tracing options on page 85)

» trace ultra verbose (corresponds to U in Table 16: Diagnostic tracing options on page 85)

The following code sample demonstrates how the amount of logging information that is output by
your application code depends on the current trace level that is configured in the application:

if (curam.util.resources.Trace.atLeast (
curam.util.resources.Trace.kTraceOn)) {
curam.util.resources.Trace.kTopLevelLogger.info (
"hello world.");

Figure 41: Logging example in application code

4 While Apache Log4j 2 imposes a minimal memory allocation, it cannot avoid the cost of the parameter
construction inside the method invocation. Application developers must take this operation into
consideration.

© Merative US L.P. 2012, 2024

1 Curam server developer 85

The Caram infrastructure supports a number of standard trace options that provide a convenient
view in addition to the trace levels. All of the options write information to the log and therefore
reduce the performance of the application. You can set the following properties as described

in Curam configuration settings, and the level at which they are set at default (O is On, V is
Verbose, U is Ultra).

Table 16: Diagnostic tracing options

Trace property name Description Enabled

curam.trace.servercalls Trace server method invocations by remote clients. (0]
This information includes the name of the user who is
requesting the invocation.

curam.trace.methods Trace all business object method invocation. \%

curam.trace.method args Memory dump arguments, including their types, to U
business object method invocations.

curam.trace.sql Trace SQL statements run by entity objects. \%
curam.trace.sql args Memory dump results of SQL select statements. U
curam.trace.rules For more information, see the Runtime Rules Logging U

in the Clram Rules Codification Guide. Enables
logging of rules

curam.trace.smtp Trace the messages that are sent to the mail server.

Configuring the Apache Log4j 2 logging utility
Understand how to use the Apache Log4j 2 logging utility.

The Apache Log4j 2 logging utility provides extensive support for configuring the destination

of the trace information. The documentation that follows does not duplicate the Apache Log4j 2
documentation but places this information in the context of Ciram. The configuration information
needs to be placed in a file pointed at by the curam.trace.configfile.location property.

If the curam. trace.configfile.location property is not set, the default Apache Log4j 2
setting is taken from | 0g4j 2. xml isinl 0og4j 2- confi g. j ar inthe CURAMSDEJ/ | i b
directory. This default log4;j setting is to use a Console Appender. The Console Appender outputs
everything at the default (or higher) Apache Log4;j 2 level to System Out. The default Apache

Log4j 2 level for the top-level logger (and all inherited loggers) is set to DEBUG.”

Configuration results in trace information to be written to a rolling file appender. This operation
means that the output is placed in a file until it reaches a specified size. After it reaches this size it
is “rolled-over”, and it is renamed by appending a . 1 to the file name. If a . 1 file exists, it first is
renamed to . 2.

5 The set of possible levels (in order of priority) defined byApache Log4j 2 is ALL, DEBUG, INFO,
WARN, ERROR, FATAL, and OFF. Only those items that are logged at the specified level or higher
levels are included in the log.

© Merative US L.P. 2012, 2024

Curam 8.1.3 86

This procedure is suitable for development environments where a historical trace can be useful.

<?xml version="1.0" encoding="UTF-8"?>

Ll==

| For more configuration information and examples

| see the Apache Log4j website:

| https://logging. in the CURAMSDEJ/lib directory apache.org/log4j/2.x/manual/
configuration.html

-—>

<Configuration status="INFO">

<!-- —-——>
<!-- Append messages to a File -->
Ll== —-—>
<Appenders>

<RollingFile name="OutputToFile" fileName="CuramProps/CuramAppLog.log"
filePattern="CuramProps/CuramApplLog.log.gz">

<PatternlLayout
pattern="[%-5p] [%d{dd MMM yyyy HH:mm:ss}] [%c] - %m%n"/>
<Policies>
<SizeBasedTriggeringPolicy size="500" />
</Policies>
<DefaultRolloverStrategy max="3" />
</RollingFile>
</Appenders>
K== -—>
<!-- Setup the Root Logger -->
<!-- -=>
<Loggers>

<Root level="INFO">
<AppenderRef ref="OutputToFile"/>
</Root>
</Loggers>
</Configuration>

Figure 42: Configuring Apache Log4j 2
A number of customizable values exist in this file:

» The name of the log file is set to be d: / Cur anPr ops/ Cur amAppLog. | og.

* The maximum number of previously rolled back files that are preserved is set to 3.
* The maximum file size is not explicitly set so the default of 500 Kb is used.

* The conversion pattern has several parameters that results in the following output:

* %-5p - The level of the trace message after it is left padded to be a five character string.
* %c - The category of the trace message.
* %m - The trace message itself.
* %n- A platform-specific line separator.
» The Apache Log4j 2 level is set to INFO, which means that all items that are logged at the

DEBUG level are ignored. This operation overwrites the default level of DEBUG set by the
infrastructure.

Two application properties examined when the process populates the {user} and {alternateuserid}
parameters:

Table 17: Application properties examined when the {user} and {alternateuserid} parameters are populated

Property Name Explanation

curam.security.altlogin.enabled A Boolean flag to indicate that users can log in to
the application by using their alternative login ID.

© Merative US L.P. 2012, 2024

1 Cudram server developer 87

Property Name

Explanation

curam.trace.deferred.user.name

A Boolean flag for deferred processing transactions
that, when set to true, indicates that the name of the
user who initiates the deferred process transaction
is made available for logging purposes.

The tables that follow represent use cases that can be achieved with the new feature. The feature
contains two aspects - online transactions and deferred process transactions.

Depending on the values that are specified for the two properties that were described, the
following data is made available for logging in the {user} and {alternateuserid} parameters:

Table 18: Use case scenarios for online transactions

Property name: Username

curam security. ¢

Alternate Login ID Login Used

Available Values

TRUE casewor ker casewor keral t casewor ker user=caseworker
alternateuserid=cas¢wor ker al t
TRUE casewor ker casewor keral t casewor keral t user=casewor ker
alternateuserid=caseworkeralt
TRUE casewor ker - casewor ker user=casewor ker
alternateuserid=casé¢wor ker
TRUE casewor ker - casewor keral t ERROR
FALSE casewor ker casewor keral t casewor ker user=casewor ker
alternateuserid=""
FALSE caseworker casewor keral t casewor keral t ERROR
FALSE casewor ker - casewor ker user=casewor ker
alternateuserid=""
Table 19: Use case scenarios for deferred process transactions
Property curam sect Username Alternate peferred Deferred Login Available
name: Login ID username username Used Values
curam trac Alternate
Login ID
TRUE TRUE SYSTEM - beant est er beant est er hetint est er user=beantepter
alternateusefid=beantester
TRUE FALSE SYSTEM - beant est er beant est er hetint est er user=beantepter
alternateusefid=""
FALSE TRUE SYSTEM - beantester beantesteralt beantester user=SYSTHM
alternateusefid=""

© Merative US L.P. 2012, 2024

Curam 8.1.3 88

Property curam sect Username Alte.rnate Deferred Deferred Login Available
name: Login ID username username Used Values
curam trac Alternate
Login ID
FALSE FALSE SYSTEM - beant est er beant est er hkaint est er user=SYSTH
alternateuse

However, direct access to a file might not be an ideal mechanism if the trace output needs to be
monitored. Configuration results in trace information to be written to a socket. A listener (such as
Apache Chainsaw that is delivered with Apache Log4j 2) can then be used to display the resultant
information.

<?xml version="1.0" encoding="UTF-8"?>

Kl==

| For more configuration information and examples

| see the Apache Log4j website:

| https://logging.apache.org/logd4j/2.x/manual/configuration.html
-—>

<Configuration status="INFO">

<!-- -—>

<!-- Append messages to a Socket -->

K== —-——>
<Appenders>
<Socket

name="OutputToSocket"
host="localhost"
port="4445">

<PatternlLayout
pattern="[%-5p] [%d{dd MMM yyyy HH:mm:ss}] [%c] - %m%n" />
</Socket>

</Appenders>
<!-- —-——>
<!-- Setup the Root Logger -->
<!-- —-—>

<Loggers>

<Root level="INFO">
<AppenderRef ref="OutputToSocket"/>
</Root>
</Loggers>

</Configuration>

M;
id:"H

Figure 43: Configuring Apache Log4j 2 to log to a socket

The conversion pattern that is used in this file is the same, but some extra customizable values
have been introduced:

» The host name and port of the remote server are set to 1ocalhost for the hostname and 4445
for the port of the remote server.

Numerous other possibilities exist for this configuration and the explanation that is presented
here does not attempt to duplicate the existing Apache Log4j 2 documentation. However, Nested
Diagnostic Contexts are not supported.

Related concepts

© Merative US L.P. 2012, 2024

1 Curam server developer 89

Logging statistics
Collect and use performance information about client visible Curam server functions.

Tracing facilities allow server-related information and diagnostics to be output to a central
location. It is possible to use this information to collect performance information about client
visible Ctram server functions; that is, any operations started by the Ciram web client. However,
writing trace informational impacts performance because the Apache Log4j 2 appender always
needs to maintain the contents after a server crash (for example, do not use buffered file access).
For performance benchmarking, the benchmarking process must not cause a performance
processor issue on the application that is being measured. For this reason, a way to collect server
function performance statistics is provided that imposes less processor usage than server tracing.
The process also produces output in a format that is suitable for automated processing as part of
benchmark analysis.

To avoid performance processor usage issues on the server, output is written to separate log files,
one per session bean (Curam Facade) in the application. Each log file has an associated 4 Kb
memory buffer, so a memory usage limit imposed by the collection of server benchmarks. It is
assumed that a realistic benchmark configuration involves application servers with a significant
amount of physical memory.

The statistics files are created in the directory that is specified by

the curam.test.trace.statistics.location property if the
curam.test.trace.statistics property is set. They are named
<MachineName>_<SessionBeanName>_(.<TimeStamp>. Each (tab-delimited) entry in the file
contains the format in table 1:

Table 20: Statistics file elements

Summary Meaning

Timestamp This timestamp is in a sortable format (ISO 8601 complete)
and indicates the time at which the method was started. The
International Standard for the representation of dates and times is
ISO 8601. It displays the timestamp with the accuracy to seconds.
The format of the timestamp is YYYYMMDDTHHMMSS.

Note: The “T” appears literally in the string to indicate the
beginning of the time element, as specified in ISO 8601.

Machine name The name of the application server on which this function ran.
Session bean name The name of the statistics class, Statistics, is always printed.
Process ID Currently hardcoded to zero.

Server function signature The function signature that includes class and method name, and

method argument types.

Success indicator A flag that indicates whether the server function succeeded with
no errors that are returned to the client. A value of 1 indicates
success. A value of 0 indicatesO failure. The specific error
message is not recorded.

© Merative US L.P. 2012, 2024

Curam 8.1.3 90

Summary Meaning

Elapsed time in milliseconds This number is the time (in milliseconds) that is spent running
this function that excludes time that is spent by the middleware
software in dispatching the function call and marshalling
arguments.

Localization of log messages
Use this information to understand how to create and when to use localized log messages.

In cases where log messages need to be localizable, class LocalisableString can be used.

For more information, see Localized output on page 98. However, it is important to note

that logged messages typically are targeted at a system administrator who might have a different
locale to the current user. For example, if the user uses English and the administrator uses French,
then the Caram default locale is French and the log message is written in French. In the following
example, the default server locale explicitly is passed into getMessage, otherwise getMessage
returns a string corresponding to the users locale rather than the Ctiram server locale.

import curam.util.resources.ProgramLocale;

// Create a localizable message
curam.util.exception.LocalisableString e =

new LocalisableString (EXAMPLE.ID EXAMPLE MESSAGE) ;
e.arg(someldentifier);

// WRONG! This logs the message in the current users locale,
// not that of the Curam server.
curam.util.resources.Trace.kTopLevellLogger.info (e.getMessage()) ;

// RIGHT: The message is logged using the Curam server locale.
curam.util.resources.Trace.kTopLevellLogger.info (
e.getMessage (ProgramLocale.getDefaultServerLocale())) ;

Figure 44: Localizable logging example in application code

Note: To display the localized content (in languages other than English) correctly on a
command line, you need to change the system locale. (Change the language setting in Control
Panel > Region and Language Administrative > Formats > Format and Control Panel >
Region and Language Administrative > Language for non-Unicode programs > Change
system locale)

How to enable dynamic UIM tracing
Use this information to understand how to enable dynamic UIM tracing, which is unavailable by

default, and how to set properties to enable logging.

Logging of a missing Dynamic User Interface Metadata (UIM) resource is unavailable by default.
To enable this logging, the Tracing Level property must be set to trace on or higher and the
Enable tracing of Dynamic UT property must be set to true.

Both of these properties can be set by using the System Administration application. From the
Shortcuts Panel of the System Configuration section, select Application Data > Property
Administration.

© Merative US L.P. 2012, 2024

1 Curam server developer 91

How to use exceptions

Exceptions are the recommended mechanism for handling errors in a Ctiram application.
Exceptions save the developer from having to check the status of each attempted operation. A
single try. .catch construct can enclose many statements, each of which can raise an exception.

In a Ctram application, exceptions can originate from various parts of generated code. For
example, the Database Access Layer (DAL) throws exceptions when a database error occurs,
application developers can throw pre-defined exceptions or customized exceptions. Two basic
forms of exceptions are used - checked and unchecked.

Checked exceptions are subclasses of curam.util.exception.AppException and
curam.util.exception.InformationalException. These exceptions must be explicitly
caught or listed in the throws clause of the method.

Unchecked exceptions are subclasses of curam.util.exception.AppRuntimeException.
These exceptions do not have to be explicitly handled as they inherit from the Java

Exception and RuntimeException classes. Typically, database problems (such as a
RecordLockedException) are thrown as unchecked exceptions. This action means that no need
exists for code to tediously check for a RecordLockedException each time the database is
accessed.

In a Caram application, checked exceptions can arrive at the Remote Interface Layer (RIL),
despite being checked, a throws clause can unwind all the way to the RIL. After exceptions reach
the RIL, they are converted to a different form of exception that is thrown to the client, and might
write information from the exception to the log file. To avoid this problem, a developer can write
code to catch exceptions and handle them, rethrow them before the exception reaches the RIL, or
both.

The following actions occur when the RIL catches a checked exception:

* The text for the exception is loaded from a message catalog file.

» Ifthe exception is loggable, then the text is formatted, with arguments inserted and written to
the log file in the default server language.

+ If'the exception is loggable and includes a stack trace, this information is written to the log
file.

* An exception is created and thrown to the client. This exception contains the name of the
message catalog, the ID of the message, and the exception arguments if any.

* The client receives the exception and uses the catalog name and message ID to look up a
localized version of the message. It then inserts and formats the arguments into a message and
displays the message.

The RIL also catches unchecked exceptions to run default actions.

» The text for the exception is loaded from a message catalog file.

* The text is formatted with arguments inserted and written to the log file in the default server
language.

* A stack trace is written to the log file.

* A new exception is created and thrown to the client. This exception states that the original
exception was “Unhandled.” The original exception is mapped because the descriptive text is
at too low a level to make sense to a user.

© Merative US L.P. 2012, 2024

Curam 8.1.3 92

The newly created exception contains a nested exception that has the details of the original
exception. Specifically, the exception includes the name of the message catalog, the ID of the
message, and the exception arguments if any.

This mapping happens for all but four unchecked exceptions. These exceptions are left
untouched because the descriptive text produced is readable to a user. These exceptions are
RecordChangedException. RecordDeletedException, RecordLockedException,
and ReadmultiMaxException.

* When the client receives the exception and uses the catalog name and message ID to look up
a localized version of the message. It then inserts and formats the arguments into the message
and displays the message.

Constructing an exception
Use this information to understand how to construct an exception.

Exceptions6are created typically with a catalog name and message identifier. If these are not
specified default values are used. The server infrastructure will take care of delivering the
message text to the client or log file or both. For example:

i f (DatabaseFieldlsNull()) {
curamutil.exception. AppException e = new
AppExcepti on(MAI NTENANCE. | D_NULL_| NDI CATOR) ;
throw e;

}

[/ This can also be witten as foll ows
i f (DatabaseFieldlsNull()) {
throw new curamutil . excepti on. AppExcepti on
(1 NFRASTRUCTURE. | D_NULL_I NDI CATOR) ;

}

Figure 45: Constructing an AppException

The purpose of exceptions is to communicate that an error has occurred and to communicate
information about that error. Often it is necessary to include additional information in addition to
the error code. This can be done using arguments.

Arguments are attached to an exception before it is thrown and are intended ultimately to be
included in the error message displayed at the client or the server log file or both.

To attach an argument to an exception, the arg method (.arg ()) is used. Constructing an
exception on page 92 shows a code example of how to use the arg method to attach an

argument to an exception.

/] set a status code for the error which occurred
| ong | ngError Code = -1;

/'l create the exception.
curamutil.exception. AppException e = new

6 The following sections focus on use of AppException rather than AppRuntimeException as this is
typical of production code. However, AppRuntimeException can be created and manipulated in the
same way.

© Merative US L.P. 2012, 2024

1 Curam server developer 93

AppExcept i on(MAI NTENANCE. | D_SYSTEM ERROR) ;

/1 Include this status code with the exception.
e. arg(! ngError Code);

/1 now throw t he exception
t hrow e;

Figure 46: Using the arg method with a primitive type

The arg method supports the addition of many different types of arguments to an exception.
Such primitive types include long, boolean or double while complex types; for instance, Date,
DateTime, Money, and CodeTableItemIdentifier objects can also be added. For more
information, see the JavaDoc for curam.util.exception.AppException.

/Il Create a codetable identifier to describe domain type.
curamutil.type. CodeTabl eltem dentifier aCodeldentifier =
new CodeTabl el teml dentifier
(DOVAI NTYPE. TABLENAME, DOVAI NTYPE. | NT32) ;

/] create the exception to flag an invalid data type
curamutil.exception. AppException e = new
AppExcept i on(WORKFLOW ERR_ANSWER NOT_VALI D_DATATYPE) ;

/1 Include the domain type code with the exception.
e. arg(aCodel dentifier);

/1 now throw t he exception
t hrow e;

Figure 47: Using the arg method with a complex type

Creating messages with argument placeholders
Argument place holders are tokens that are included in error message source text and replaced by
an argument at run time.

Place holders are of the form %nc, where n is the argument number (of 1 or more), and ¢ is a
single character that denotes the argument type as follows:

* s-string

* n-numeric

+ d-date

* t-time

* z-date/time

* - code table item

This source message is displayed with the actual values. For example:

The first nane is %s and the surname is %2s.

The first nane is John and the surname is Smth.
Place holders are numbered and they can appear in the message in any order. For example:
The second nane is %s and the first nane is %s.
The second nane is Smth and the first nanme is John.

© Merative US L.P. 2012, 2024

Curam 8.1.3 94

The exception is constructed and thrown as shown in this example of an exception message with
argument placeholders.

curam.util.exception.AppException e = new
AppExeption (EXAMPLE.ID EXAMPLE MESSAGE) ;

e.arg (Person.FirstName) ;

e.arg (Person.Surname) ;

throw e;

Handling exceptions
Use this information to understand how exceptions are handled, particularly in try..catch
constructs.

When an exception is thrown in an application, it might be caught within a try. .catch
construct or it can be allowed to filter up to the Radio Interface Layer (RIL).

The try. .catch construct typically handles the exception in one of the following ways:
» Ignore it and carry on with the next processing step.

An example of this operation is where the program must check for the existence of a record on
the database. If the Data Access Layer (DAL) throws a RecordNotFoundException, then
this action indicates that the record does not exist. This exception is not allowed to reach the
client, instead it controls how processing is done.

bPer sonExi sts = true;

try {
dtls = nyPerson. read(key);

}

cat ch(Recor dNot FoundExcepti on rnfe) {
bPer sonExi sts = fal se;

}

* Pass it upwards to a higher try. . catch construct by rethrowing the actual exception.

An example of this action is a try. . catch construct that is interested in only a specific
exception. If any other exception is caught, then it can be passed on upwards for some other
handler to deal with.

try {
nmyPer son. checkConpl et eness(dtls);

catch(curamutil.exception. AppException e) {
i f(e.equal s(APP. | D_I NCOVPLETE _DATA)) {
/[l set this flag and conti nue
bl nconpl eteData = true;
} else {
/1 do not know how to handl e this exception
/] pass it straight through
t hrow e;
}
}

* Create an exception and throw the new exception.

An example of this situation is where the handler would replace a generated DAL exception
with an application exception that contains an application-specific error message.

© Merative US L.P. 2012, 2024

1 Curam server developer 95

cat ch(Recor dNot FoundExcepti on rnfe)
{

curamutil.exception. AppException e = new
AppExcept i on(APP. NO_SUCH_PERSCN) ;

/1 substitute the nessage for the exception.

/1 (The new nessage includes the |ID nunber of

/1l the record we searched for.)

e.arg(dtls. personl DNunber) ;

t hrow e;

}

» Create an exception, attach the original exception to this new exception, and raise the new
exception.

An exception can be constructed with a pointer to another exception as follows:

catch(curamutil.excepti on. AppExcepti on
ori gexception) {
curamutil.exception. AppExcepti on newExcepti on = new
AppExcepti on(MYAPP. | D MYMESG, ori gException);
t hr ow newExcepti on;

}

This action has the effect of creating a linked list of exceptions with the most recent exception
at the head of the list and allows a detailed history of an exception to be built up for auditing
or debugging purposes.

Logging exceptions
Use this information to understand how to use loggable exceptions that use the setLoggable
method.

Exceptions optionally can be logged to the application log file by setting its loggable flag to use
the setLoggable method.

Loggable exceptions are written to the application log file by the Radio Interface Layer (RIL).
The exception message is read from the error message catalog file. If any exception arguments
exist, they are inserted into the text and this parsed text is written to the log file.

An exception is treated as loggable if its loggable flag is set or if the loggable flag is set on any
attached exceptions.

If the exception that is being logged includes any other attached exceptions, then these exceptions
also are logged.

General exception guidelines
Use this information to understand general exception guidelines.

* Follow the processing specification for the method, this should describe the error situations
that can be encountered. When actually writing and testing the code, look out for sources of
errors that might have been overlooked.

* Do not try to add a “catch-all” for unanticipated errors. The server infrastructure can handle
these better than you can. Do not wrap entire operations with error handlers.

* Do handle exceptions where you are in a position to add more specific information about what
has happened, such as converting “record not found” into* bank account not found.”

© Merative US L.P. 2012, 2024

Curam 8.1.3 96

* Do gain an understanding of the standard exceptions defined in the core infrastructure. Be
aware of the types of exceptions that can be thrown by generated database manipulation
operations of entity objects:

RecordNotFoundException can be thrown by singleton reads, updates and removes of
the database (entity read, nsread, nodi fy,nsnodi fy,renove, and nsrenove
operations). A non-standard operation (for example, nsnodi f y and nsr enove) will
throw this exception irrespective of the uniqueness of the key that is passed into it.
RecordNotFoundException can be thrown by non-keyed updates and removes of the
database (entity nkr enove and nknodi f y).

RecordDeletedException is always thrown in precedence to a
RecordNotFoundException.

RecordDeletedException can be thrown when an optimistic update fails because the
target record has been deleted. With optimistic locking enabled the record is re-read to
obtain the version number. If the record is no longer present this exception is thrown.
DuplicateRecordException can be thrown by insert and update operations (entity

i nsert,nsinsert,nodi fy,nsnodi fy, and nknodi fy operations).
RecordChangedException and RecordDeletedException can be thrown by update
operations with optimistic locking. RecordDeletedException is thrown by entities
which have optimistic locking enabled in preference to RecordLockedException.
MultipleRecordException can be thrown by singleton reads of the database (entity

r ead, nsr ead, and nkr ead operations) if multiple records are found which meet the
specified selection criteria.

ReadmultiMaxException can be thrown by multiple reads of the database (entity
readnul ti,nsmul ti,and nkreadmrul ti operations) if more record are retrieved
than the maximum specified in the application model.

RecordLockedException can be thrown by any of the entity operations if a deadlock or
lock timeout occurs.

OtherDatabaseException can be thrown by any of the entity operations if the database
reports an error which does not map to one of the previously outlined exceptions.

Coding Conventions for Exceptions

» Under normal circumstances don't create your own subclasses of AppExcept i on or
AppRunt i meExcepti on.

» Use exception chaining and exception logging when handling serious errors (the definition of
“serious” is application-specific).

* When writing the text of errors in a message file, be aware of localization issues. Do not
write code which simply replaces placeholders with hard-coded literals as shown in Coding
Conventions for Exceptions on page 96.

/1 Check that BankAccount entity exists:
bankAccount Key. account Nunber = ar gl n. account Nunber ;
try {
bankAccount Dt | s = bankAccount . r ead(bankAccount Key) ;
} catch (RecordNot FoundException rnf) {
/1 This is a SERIOQUS error
curam util.exception. AppException e = new AppExcepti on(

COOKBOOK. | D_NO_SUCH_ACCOUNT, rnf);

© Merative US L.P. 2012, 2024

1 Cudram server developer 97

e. set Loggabl e(true); /[l make sure it gets | ogged
e.arg("not found"); // NOT LOCALI ZABLE!!!
t hrow e;

}

Figure 48: Incorrect usage of hard-coded literals

How to use the Record Not Found indicator
Use this information to understand how to use the Record Not Found indicator variable.

Each of the singleton reads of the database (enti ty read, nsr ead, and nkr ead operations)
that potentially can throw a RecordNotFoundException has overloads added to take a Record
Not Found Indicator variable.

The reasons for providing a Record Not Found Indicator are as follows:

» To save the processor usage of creating and throwing an exception whenever a record cannot
be found, as this process is expensive in some Java virtual machines (JVMs).

» To make it easier to write code that checks for the existence of a record.

This indicator (curam.util.type.NotFoundIndicator) wraps a Boolean value that indicates
whether the required record might not be found. When this indicator is passed into one of the
previously outlined read operations, the operation never throws a RecordNotFoundException
if the record does not exist but instead sets the Boolean flag inside Not FoundIndicator to true,
and return a value of null. If the record is found, the Boolean flag inside NotFoundIndicator is
set to false, and the record is returned.

Whenever a developer wants to pass a NotFoundIndicator into a singleton read operation, it is
always passed in as the first argument. This operation is shown in the following examples:

try {
bankAccount Dt | s = bankAccount . read(bankAccount Key) ;

} catch (RecordNot FoundException rnf) {
/1 record was not found...
}

Figure 49: A typical read operation that might throw a RecordNotFoundException

final Not Foundl ndi cat or not Foundl nd =
new curam util.type. Not Foundl ndi cat or () ;
bankAccount Dt | s = bankAccount . r ead(not Foundl nd, bankAccount Key) ;
i f (not Foundl nd. i sNot Found()) {
/1 record was not found...
} else {
/1 record was found...
}

Figure 50: The overloaded version of the one previous, using the NotFoundIndicator

try {
bankAccount Dt | s = bankAccount . read(bankAccount Key, true);

} catch (RecordNot FoundException rnf) {
/1 record was not found...
}

Figure 51: A typical read operation for update that might throw a RecordNotFoundException

© Merative US L.P. 2012, 2024

Curam 8.1.3 98

bankAccountDtls =
bankAccount . r ead(not Foundl nd, bankAccount Key, true);
i f (not Foundl nd. i sNot Found()) {
[/ record was not found..
} else {
[/ record was found..
}

Figure 52: The overloaded version of the one previous, using the NotFoundIndicator

Localized output

Use this information to understand when it is necessary to use the
curam.util.exception.LocalisableString class to present data to the client for
localization.

In Ctram, the client is responsible for converting the text of an exception into the language that a
user chooses. However, certain situations exist where the server must present data to the client for
localization. To facilitate these situations, the curam.util.exception.LocalisableString
class was created. This class is used in a similar manner to AppException, as shown in the
following example:

curamutil.type. CodeTabl eltem dentifier soneldentifier =
new CodeTabl eltem dentifier("soneTabl e", "someCode");
curamutil.exception.LocalisableString e =
new Local i sabl eStri ng(EXAMPLE. | D_EXAMPLE_MESSAGE) ;
e.arg(soneldentifier);
return e.toC ientFormattedText();

Figure 53: Use of LocalisableString

This string can be passed back to the client as an output parameter to be localized by the client.

Use of the Informational Manager
Use this information to understand how and when to use the Informational Manager function.

The standard exception handling and string presentation features described in the “Using
exceptions” chapter do not address one scenario. In a number of situations, it is useful to present
multiple informational messages at one time. For example, during validation a number of
warnings, or errors, can occur independently as they are based on different elements of the user
input. These errors need to be reported together to simplify the corrective actions that a user
must take. The InformationalManager class allows for exceptions and informationals to be
grouped in this manner. Use of the Informational Manager on page 98 shows the use of this
class to group informational messages for presentation:

i mport curamutil.exception.|nformational El ement;

import curamutil.exception.|nformational Excepti on;

i mport curamutil.exception.|nformtional Manager;

i mport curamutil.exception.LocalisableString;

import curamutil.internal.security.struct.Logi nMessage;
import curamutil.internal.security.struct.Logi nMessageli st;
i nport curamutil.nmessage. | NFRASTRUCTURE

i mport curamutil.resources. General Const ants;

cl ass | nformati onal Manager Deno {

© Merative US L.P. 2012, 2024

1 Curam server developer 99

public Logi nMessagelLi st checkLogi nSt at us()
throws I nfornational Exception {

Create an informati onal nmanager to store the

results of the validation checks. A transaction w de
version can be obtained via

Transact i onl nf 0. get | nf or mat i onal Manager () .

i nal Infornational Manager i nformati onal Manager =

new | nf or mat i onal Manager () ;

~ S~~~

/
/
/
/
f

/1 Informational #1

I/l Create an informational string for presentation to

/Il the client: this specifies the password will expire

[l in 6 days

Local i sabl eString i nfoMessagel = new Local i sabl eStri ng(
| NFRASTRUCTURE. | NFO_| D_PASSWORD _EXPI Rl NG) ;

i nfoMessagel. arg(6);

/1 Add this informational string to the informational

/| manager

i nf or mat i onal Manager . addl nf or mati onal Msg(i nf oMessagel
Gener al Const ant s. kEnpt y,
| nf ormat i onal El enent . | nf or mat i onal Type. kWar ni ng) ;

/1 Informational #2
/'l Create an informational string for presentation to
/[l the client: this specifies the user will be | ocked
/1 out if they do not change their password in the next
/1 10 | ogins.
Local i sabl eString i nfoMessage2 = new Local i sabl eStri ng(
| NFRASTRUCTURE. | NFO_| D_LOG ATTEMPTS_EXPI RI NG) ;
i nf oMessagel. arg(10);
/1 Add this informational string to the informational
/'l manager
i nf or mat i onal Manager . addl nf or mat i onal Msg(i nf oMessage2,
Gener al Const ant s. kEnpt y,
| nf or mat i onal El enent . | nf or mat i onal Type. kWar ni ng) ;

/1 The informationals nust now be converted to a format

/] suitable for return to the client.

final String[] informational Array = informational Manager
.obt ai nl nformati onal AsString();

The array of informational strings nust be

transferred to an array of structs because we

cannot return an array of strings directly. Each

string goes into one struct (Logi nMessage) and

this is aggregated into a |ist by struct

Logi nMessagelLi st .

Logi nMessage : A struct containing one string

naned ' nmessage' .

Logi nMessageLi st : A struct which aggregates

Logi nMessage as nenber 'dtls'.

final Logi nMessageli st result = new Logi nMessagelLi st ();

e e e T
e e]

for (int i =0; i !'=informational Array.length; i++) {
Logi nMessage warni ng = new Logi nMessage() ;
war ni ng. message = informational Array[i];

resul t.dtls. addRef (war ni ng) ;

}

return result;

© Merative US L.P. 2012, 2024

Curam 8.1.3 100

}

Figure 54: Use of the Informational Manager

A number of points are worth emphasizing in this code fragment:

» This sample is based around the presentation of informationals to the client. It does not
throw an exception, it is a successful invocation of the method. This action means that
the transaction is be committed and any database updates is made permanent. It is the
responsibility of the client screen for this sample to handle the return value of the operation as
a collection of informationals.

* InformationalManager. failOperation () can be used to fail the invocation that
depends on whether the informational manager contains any warnings or errors. If the
informational manager contains an error or warning, then this method throws an exception
that means the transaction is rolled back. Otherwise, this method does nothing and the
transaction is allowed to continue. The full details of this operation are described in the API
documentation (JavaDoc) included with Curam.

* The second parameter to InformationalManager.addInformationalMsg currently
populated with GeneralConstants.kEmpty (as in Use of the Informational Manager on
page 98) is intended to name a field. However, this feature is not supported in the current
release

The Curam Web Client Reference Manual needs to be consulted to determine the client-side
configuration that is necessary to use the InformationalManager. At its simplest, the field in
the struct that contains the informationals must be named in the UIM.

The InformationalManager logs informationals to the Curam log. Please see Logging on page
151 for details on Logging.The informationals are logged in the following way:

* Logging of the informationals is only performed at the time when they are added
to the InformationalManager (i.e. when calling InformationalManager.
addInformationalMsg()).

» Fatal errors and errors are logged at the top level logger using the error level.

* Warnings are logged at the top level logger using the info level.

Message files

Message catalogs allow an application to be globalized without manipulating hand-crafted
code. Review the message fundamentals and understand how you can augment them to produce
customized messages in a Ctiram application.

Traditionally message files or catalogs are binary files that hold text messages that are associated
with an application. Each message catalog had a one-to-one association with a symbol definition
file. The symbol definition file was examined at compile time and the message catalog at run
time. Using this form of indirection allows an application to be globalized without needing to
recompile.

In keeping with this approach, Cliram message catalogs are generated from message . x i
files by a command-line build utility called msggen (bui | d nsggen).Generating from a

© Merative US L.P. 2012, 2024

1 Curam server developer 101

message . XM file produces two outputs: a message catalog file (one Java . properti es file
is generated for each locale specified) and a symbol definition file (a standard Java class file).
The symbol definition file is a Java file that contains constants for message identifiers that are
enumerated in the message . XM file, and the name of the message file itself. In Java terms,

a constant is a static final. This file should be imported into any Java source files that use that
catalog. The message catalog is a properties file that is opened by the Curam application at run
time.

The msggen build target merges message files and then converts the resultant message file
(which are stored in / bui | d/ svr/ nmessage/ scp) into symbol definition (Java code) and
message catalog (property) files.

The msggen build target is automatically started by the provided build scripts, and runs against
any message files that are placed in the suggested source locations, that is, the / message
directory of a component.

The Format of Message Files

The message . X file is an XML document which is made up of a number of distinct elements
combined with the core message elements; see The Format of Message Files on page 101.

As a standard XML document, the encodi ng attributed indicates that the file is encoded in

UTF-8. It should be noted that this encoding will be respected and maintained by an XML aware
editor. However, other editors (such as TextPad) do not maintain this encoding by default. A file
which contains UTF-8 characters may have to be specifically saved as UTF-8 with these editors.

<?xm version="1.0" encodi ng="UTF-8"?>
<l-- A sanple nessage file. -->
<nessages package="curam nessage" >
<nmessage nane="ERR XRV_EXI STI NG_OVERLAP" >
<l ocal e country="US" | anguage="en">
More than 1 overl appi ng Assessnent has been found.
</l ocal e>
</ nessage>
<nmessage nane="ERR CREATI ON_DATE EMPTY" >
<l ocal e country="US" | anguage="en">
You nust enter a creation date
</l ocal e>
</ message>
</ messages>

Figure 55: Example of Message text file
The following sections detail the message. xmni file elements and attributes.
The <nessages> Element

The <messages> element is the root element of a message file, and it groups all other elements
together. The messages element has the following attribute:

© Merative US L.P. 2012, 2024

Curam 8.1.3 102

Table 21: Attributes of the messages Element

Attribute Name Required Default Description
package Yes None The Java package name to use for the generated
Java file.

The <message> Element

The <message> element groups a number of <| ocal e> elements together. The message
element has the following attributes:

Table 22: Attributes of the message Element

Attribute Name Required Default Description

name Yes None Uniquely identifies the message.

r emoved No false Set to t r ue to indicate if the message is to be
removed and hence not included in the generated
artefacts.

The <| ocal e> Element

The <| ocal e> element details the text of the message for one of the supported locales. Since
the message files are XML, it is not necessary to use Java escape characters. Special characters
can be inserted by using the XML entity references in the message files. These will be converted
to the actual characters in the properties file. For example ¢ and $ will result in the
cent and dollar symbols, respectively, being put in the properties file. Care must be taken to only
specify characters that can be supported by the target properties file on your platform and for your
operating system locale.

The | ocal e element has the following attributes:

Table 23: Attributes of the locale Element

Attribute Name Required Default Description

| anguage Yes None To be included during generation of the message
artefacts each <l ocal e> element must specify
a language (and optional country) attribute
that corresponds to a supported locale. The
SERVER_LOCALE_LIST environment variable is
a comma separated list defining the set of locales
that are supported, where the locale is either simply
| anguage or | anguage_count ry. For example:
SERVER_LOCALE_LIST=en, en_US, en_GB.

country No None Set to the country relevant to the locale | anguage
attribute.

© Merative US L.P. 2012, 2024

1 Curam server developer 103

Customizing a Message File

Message text files are located in the / message directory of a component. Ctiram Platform
includes a set of message files. You can override these messages by placing new message files in
the SERVER DI R/ conponent s/ <cust on®/ message directory, where <cust on is any
new directory that is created under components that conform to the same directory structure as
conmponent s/ cor e. This mechanism avoids the need to make changes directly to the out-of-
the-box application, which would complicate later upgrades.

Note: If the package attribute in the overridden message file is modified, then the
customization will not work.

This override process involves merging all message files of the same name according to a
precedence order. The order is based on the SERVER COMPONENT ORDER environment variable.
This environment variable contains a comma separated list of component names: the left most has
the highest priority, and the right most the lowest.

SERVER_COVPONENT _ORDER=cust om Appeal , | SPr oduct, sanpl e
Figure 56: SERVER COMPONENT ORDER example

The order in SERVER COMPONENT ORDER shows that the precedence of Appeal is higher than
that of the sample component. The cor € component always has the lowest priority and as such
does not need to be specified. Any components that are not specified are placed alphabetically
above core and below those that are specified.

Note: After changing the component precedence order in SERVER COMPONENT ORDER
it is necessary to perform a clean build to ensure that you are using the appropriate files. This is
done by invoking bui | d cl ean server.

When merging message files, the components listed in the SERVER COMPONENT ORDER are
taken in order of highest to lowest priority. In the example SERVER COMPONENT ORDER,
message files from the sample component are merged with the message files located in the core
component. The message files from ISProduct are then merged into the intermediate results and
the merge process continues until the messages in the custom component are merged.

Rules of Message Merges

Message files are merged based on precedence order. As described above there is always a more
important main/source message file, and a file which is being merged into it. The second file is
called the merge file in the following sections.

The merging rules described below are applied to decide if the <nmessage> and <I ocal e>
elements should be merged into the new message file.

+ A <nessage> will be merged into a new message file if the <message> is not already
present in the new file.

» A<l ocal e> will be merged into a named <nessage> element in the new message file if
the <l ocal e> is not already present in the <message> of the new message file.

© Merative US L.P. 2012, 2024

Curam 8.1.3 104

Duplicate messages will always be overwritten by the message file in the component with the
highest precedence order. The main message file of Rules of Message Merges on page 103,
and the merge file of Rules of Message Merges on page 103, illustrate these rules:

<nmessages package="curam nessage" >
<nmessage name="ERR_SAMPLE_VALI DATI ON_MSG' >
<l ocal e country="US" | anguage="en">
The specified color is not valid.
</l ocal e>
</ message>
<nmessage nanme="ERR _SAMPLE_ ERROR_MSG'>

<l ocal e country="US" | anguage="en">
An external resource is not avail abl e.
</| ocal e>

</ message>
</ messages>

Figure 57: Sample main message file

<nmessages package="curam nessage" >
<nessage nane="ERR_SAVPLE_ VALI DATI ON_MsG' >
<l ocal e country="GB" | anguage="en">
The specified colour is not valid.
</l ocal e>
</ message>
<message nanme="ERR_SAMPLE_ NEW MSG' >
<l ocal e country="@B" | anguage="en">
An exanpl e of |ocalisation.
</l ocal e>
</ message>
<nessage nanme="ERR_SAMPLE_REMOVED MSG' renoved="true">
<l ocal e | anguage="en">
This nessage will be renpved.
</l ocal e>
</ message>
</ messages>

Figure 58: Sample merge message file

As a result of the merge process the new message file produced would be:

<nessages package="curam nessage" >
<nessage nane="ERR _SAVPLE VALI DATI ON_MsG' >
<l ocal e country="GB" | anguage="en">
The specified colour is not valid.

</l ocal e>

<l ocal e country="US" | anguage="en">
The specified color is not valid.

</l ocal e>

</ message>
<nmessage nane="ERR _SAMPLE ERROR_MSG'>
<l ocal e country="US" | anguage="en">
An external resource is not avail able.
</I| ocal e>
</ message>
<nmessage nane="ERR_SAVPLE_NEW MSG'>
<l ocal e country="GB" | anguage="en">
An exanpl e of |ocalisation.</|ocal e>
</l ocal e>

© Merative US L.P. 2012, 2024

1 Curam server developer 105

</ message>
<nessage nane="ERR SAMPLE REMOVED MSG' renoved="true">
<l ocal e | anguage="en">
This nessage will be renoved.
</l ocal e>
</ message>
</ messages>

Figure 59: Resulting Message File

Artefacts Produced by msggen Build Target

The Java artefacts (symbol definition and message catalog files) produced from a merged
message file, are placed in the / bui | d/ svr/ message/ gen/ <package> directory,

where <package> is the package attribute specified in the message file. For example,
package="curam.message" would result in the Java artefacts being placed in the / bui | d/ svr/
nessage/ gen/ cur am nessage directory.

The directory contains the Java files (which are locale independent) and the property files
(which are locale dependent) which are named <Message Fil e nane>_<specific
| anguage> <specific country>. properties.

Note: If message files of the same name exist in different components with a different
package attribute value, then the generated artefacts (symbol definition and message catalog
files) produced are placed in the package specified by the message file of the component with
the highest precedence order (as listed in the SERVER COMPONENT ORDER environment
variable).

These artefacts are best illustrated by example:

package curam nessage;

i mport curamutil.nmessage. Cat Entry;
import curamutil. nmessage. MessageCat al og
public final class Sanpl eMessages {

private static final MessageCatal og kCat =
new MessageCat al og(" curam nmessage. Sanpl eMessages”) ;

/**

* BpoActi vity: ERR_SAVPLE_VALI DATI ON_MSG

* en_UK = The specified colour is not valid.
* en_US = The specified color is not valid.
*/

public static final CatEntry ERR SAMPLE_VALI DATI ON_MSG

= kCat . entry(" ERR_SAVPLE_VALI DATI ON_MSG') ;

/**
* BpoActivity: ERR_ SAMPLE_ERROR_MSG
* en_US = An external resource is not avail able.
*/
public static final CatEntry ERR SAMPLE ERROR MSG
= kCat.entry("ERR_SAVPLE_ERROR _M5G');

/**

© Merative US L.P. 2012, 2024

Curam 8.1.3 106

* BpoActivity: ERR_ SAMPLE_NEW MSG
* en_@B = An exanple of |ocalisation.
*/
public static final CatEntry ERR _SAMPLE NEW M5G
= kCat.entry("ERR_SAVPLE_NEW MSG') ;

}

Figure 60: Java file produced from merged message file

ERR_SAMPLE VALI DATI ON_MSG=The specified colour is not valid.
ERR SAMPLE NEW MSG=An exanpl e of | ocalisation.

Figure 61: Sample (UK) Properties produced from message file

At the end of the msggen step these property files are placed into a . j ar file which is used by
the client to localize the messages that are returned to it.

Retrieving Messages from Message Files

A message file can contain any number of locales for a named message, and as a result a
mechanism needs to be in place to return the correctly localized message for a running instance of
Curam. Messages are retrieved from a message file based on the locale property which includes

a language and, optionally, a country. The message file look up returns a matching localized
message for a named message identifier. For example, if the runtime locale is set to en_US
where “en” is the language and “US” is the country, a message look up for the message named
A_MESSAGE with the example below will return the text “The message”. If however the
runtime locale was set to “fr” the text “Le message” would be returned.

<nessages package="curam nessage" >

<nmessage nanme="A MESSAGE">
<l ocal e country="US" | anguage="en">The nessage</| ocal e>
<l ocal e | anguage="fr">Le message</| ocal e>
<l ocal e | anguage="en">The en nessage</| ocal e>

</ message></ nessages>

Figure 62: Message File Search

Since message files are not guaranteed to contain an entry for each message that matches the
runtime locale, a fall back mechanism is in place to guarantee that if possible a localized message
is returned when a look up is performed. Once a message of a given name has been found, and
there is no direct match with the specified locale, the rules for fall back are as follows:

+ If'the runtime locale is set to include a language and country, the country is removed and the
search looks for a matching language only. Looking up the message named A MESSAGE in
the example above with runtime locale en_US will return the message text “The message”.

* If nothing is found for the runtime locale, then a lookup will be performed using the fall
back locale of en. Looking up the message named A MESSAGE in the example above with
runtime locale es will return the message text “The en message”, i.e. the lookup will revert to
the fall back locale of en as nothing can be found for es.

If nothing can be found for either the runtime locale or the fall back locale, then the search will
be determined based on the underlying message lookup mechanism provided by the JDK class
java.util.ResourceBundle. Please refer to the relevant JDK JavaDoc for details of this
classes functionality and further details of the fall back mechanism provided.

© Merative US L.P. 2012, 2024

1 Curam server developer 107

If the runtime locale does not find a match in the message file and no match can be found using
the fall back locale of en, and no match can be found after applying the fall back rules described
by java.util.ResourceBundle, a MissingResourceException is returned and server logs
are updated if appropriate.

Writing Messages To Server Logs

Messages from message catalogs are used in many instances in Ciram and localized at runtime
as described in Retrieving Messages from Message Files on page 106. Localization of server

log messages is different in that it is performed by the server infrastructure based on the default
server locale. In this case, the locale used when writing to Caram server logs is set by configuring
the curam.environment.default.locale property in Appl i cat i on. pr Xx.

Localizing SDEJ Message Files

It is possible to localize or modify the message files shipped with the Caram SDEJ. These
message files are located in the message directory of the SDEJ and are in the same format as
Curam application message files but with the extension . i m .

To localize these files copy the particular . i M1 message file to be modified from the SDEJ to
the message directory of a component in your Curam application, for example, SERVER_DI R/
conponent s/ cust om nmessage. The . i M message file can then be modified in the same
way as any message file, overriding a message or adding a new locale for all the messages.

Note: If the package attribute in the message file is modified the localization will not work.

The msggen target, when run, will merge the localized . i M message file with the original one
located in the SDEJ. The localized message file will have the higher precedence order. It will
then generate the properties files only and include them in the messages. j ar file created.
The messages. j ar file will always be on the classpath before the default SDEJ messages in a
runtime application.

Code table files

Code table files allow a Caram application to use a level of indirection when it stores commonly
used constants on the database. Review the code table fundamentals and understand how you can
augment them to produce customized code tables in a Cliram application.

Code table files are included and can be customized by adding new code table files to new
components in the SERVER _DI R/ conponent s/ <cust o>/ codet abl e directory. Where
<cust on® is any new directory that is created under conponent s that conforms to the same
directory structure as conponent s/ cor e. Code table files can contain one code table or a
number of code tables that are linked as a hierarchy.

Generating code tables produces two outputs: a code table SQL file to place the codes on the
database, and a symbol definition file (a standard Java class file). The symbol definition file is
a Java file that contains constants for code table identifiers that are used in the code table XML
file. The generation of code table hierarchies also produces . pr opert i es files as described
in Artifacts produced by the ct gen build target on page 118. Generating code tables is
supported by the ct gen build target.

© Merative US L.P. 2012, 2024

Curam 8.1.3 108

For more information about code tables, see the Domain Definitions chapter in the Curam
Modeling Reference Guide and the Curam Web Client Reference Manual.

The code table file format
The code table file is an XML document that consists of a number of distinct elements and
attributes. For a sample code table, see Rules of code table merges on page 114.

As a standard XML document, the encoding attribute indicates that the file is encoded in
UTF-8. While this encoding is respected and maintained by an XML aware editor, some other
editors do not maintain this encoding by default. You might have to specifically save a file that
contains UTF-8 characters as UTF-8 with these editors.

The <codetables> element

The <codetables> element is the root element of a code table file and it groups all other
elements together. The codetables element has the following attributes:

Table 24: Attributes of the codetables element

Attribute Name Required Default Description

package Yes None Specifies the package the generated symbol
definition Java file is part of.

hierarchy name No None Identifies the code table file as containing a
hierarchy of code tables.

The <description> element for the <codetables> element

The <description> element is an optional subelement in the <codetables> root element. It is
used to define a description for the code tables. It must be listed first, before the other subelement,
<codetable> and must be listed only once. The <description> element has no attributes.

The <codetable> element for the <codetables> element

The <codetable> element is a subelement in the <codetables> root element. The
<codetable> element must follow the <description> element where specified. For an
ordinary code table file definition, only a single <codetable> element can be defined. If a
hierarchy name attribute is specified in the <codetables> element, multiple <codetable>
elements are allowed when they are linked correctly in a hierarchy.

The codetable element groups a number of <code> elements together and an optional
<codetabledata> element.

The <codetable> element has the following attributes:

© Merative US L.P. 2012, 2024

1 Curam server developer 109

Table 25: Attributes of the codetable element

Attribute Name Required Default Description

name Yes None A unique identifier for the code table.
The name attribute is trimmed of
leading and trailing spaces on code
table generation. Some restrictions
apply to the name attribute when the
<displaynames> element is specified.
For more information, see Artifacts
produced by the ct gen build target on

page 118.

java_identifier Yes None The name of the generated symbol
definition Java file. This identifier cannot
be duplicated for code tables with
different names.

parent codetable No None Used to define the name of the parent
code table in the hierarchy, where
the code table file was defined as a
hierarchy of code tables.

The <codetabledata> element

The <codetabledata> element is an optional subelement of <codetable> that groups the
locale-specific comments for a code table. Each <codetable> element can have one optional
<codetabledata> element. The <codetabledata> element can contain multiple optional
<locale> elements.

Note: The <codetabledata> element and its child elements are optional elements.

The <codetabledata> element has the following attributes:

Table 26: Attributes of the codetabledata element

Attribute Name Required Default Description

language Yes None Specifies the language portion of the locale for the
codetabledata element.

country No None Specifies the country portion of the locale for the
codetabledata element.

The <locale> element for the <codetabledata> element

The optional <locale> element can occur multiple times for the <codetabledata> element.
Each <locale> element can contain one optional <comments> element.

The 1ocale element has the following attributes:

© Merative US L.P. 2012, 2024

Curam 8.1.3 110

Table 27: Attributes of the locale element

Attribute Name Required Default Description

language Yes None Specify a language that corresponds to a supported
locale.

country No None Specify a country that corresponds to a supported
locale and language.

The <comments> element for the <codetabledata> element
The optional <comments> element is used to store the locale-specific comments for a code table.

The comments element has no attributes.

The <displaynames> element

The <displaynames> element groups a number of code table hierarchy <name> elements
together, and it also groups a number of code table name <locale> elements together. It is an
optional element. However, if present it can contain any one <name> element or <locale>,
having a <locale> element helps the client to display the code table name in the locale set for
the current user. The displaynames element has no attributes.

The <name> element

The <name> element is optional when the <displaynames> element is present. The name that
contains the locale for the current user is displayed when displaying the <name> values on the
client. However, if the current user's locale does not match any of the locales that are specified
within the <name> element, then the <codetable> name attribute is displayed.

The name element has the following attributes:

Table 28: Attributes of the name element

Attribute Name Required Default Description

language Yes None Specifies the language portion of the locale for the
name element.

country No None Specifies the country portion of the local for the
name element.

The <locale> element

The <locale> element is optional and is used to add localizable display names to represent the
code table name when the <displaynames> element is present. The name that contains the
locale for the current user is displayed when displaying the <codetable> name attribute on the
client. However, if the current user's locale does not match any of the locales that are specified
within the <locale> element, then the <codetable> name attribute is displayed.

The 1ocale element has the following attributes:

© Merative US L.P. 2012, 2024

1 Curam server developer 111

Table 29: Attributes of the locale element

Attribute Name Required Default Description

language Yes None Specifies the language portion of the locale for the
name element.

country No None Specifies the country portion of the local for the
name element.

The <code> element

The <code> element is a subelement of <codetable> and groups a number of <locale>
elements together. The code element has the following attributes:

Table 30: Attributes of the code element

Attribute Name Required Default Description
value Yes None A unique identifier for the code in the code table.
status Yes None Indicates whether the code table is enabled and

selectable in the list of codes as displayed on the
client. It can be set to either ENABLED Or DISABLED
and if set to anything else it is considered to be
DISABLED.

default No None Indicates whether this code is the default code for
the code table. You must specify only one default
code. The default code is used to define the initially
selected value in an editable code table list in the
client. For more information, see .

java identifier No None Used as part of the generated symbol definition
Java file

removed No false Set to true to indicate whether the code is to be
removed and hence not included in the generated
artifacts.

parent code No None Used to define the name of the code in the

specified parent code table in the hierarchy that
this code is linked to. For more information about
defining a code table hierarchy, see Code table
hierarchy on page 122.

The <locale> element for the <code> element

The <locale> element contains two mandatory subelements (<description> and
<annotation>) and one optional subelement <comments>, which are used to describe the code.

To be included during generation of the code table artifacts, each <1ocale> element must
specify a language (and optional country) attribute that corresponds to a supported locale. The
SERVER LOCALE LIST environment variable is a comma-separated list of locales that are

© Merative US L.P. 2012, 2024

Curam 8.1.3 112

supported, where the locale is either of the form language or language country as shown in
this example:

SERVER LOCALE LI ST=en, en_US, en_CB
The 1ocale element has the following attributes:

Table 31: Attributes of the locale element

Attribute Name Required Default Description

language Yes None Specifies a language that corresponds to a
supported locale.

country No None Specifies a country that corresponds to a supported
locale and language.

sort order No None Specifies the order in which the codes in a code
table are displayed in the drop-down list on an edit
page in the client.

The <description> element for the <locale> element

The <description> element is used to provide a description for the <code> element. The
description element has no attributes.

The <annotation> element for the <locale> element

The <annotation> element is used to provide an annotation to the <code> element. The
annotation element has no attributes.

The <comments> element for the <locale> element

The optional <comments> element is used to store the locale-specific comments for a code table
item. This element can be used to provide localized information to aid in understanding the usage
for a code table item, and any implication of change to it.

The comments element has no attributes.

The <views> element

The <views> element is an optional subelement of the <codetable> element that groups one or
more views of the code table. Each child view corresponds to a specific application context. For
more information, see .

The <views> element has no attributes.

The <view> element

The <view> element is a subelement of the <views> element. Each view corresponds to a
specific application context. The <view> element groups a number of view <code> elements
together. The <code> elements in the <view> element are structurally different from the
elements that are defined in the <code table> element. The view <code> element contains

© Merative US L.P. 2012, 2024

1 Curam server developer 113

the code of a code table item that is displayed when the application is running in a context that is
defined by the parent <view> element.

The <view> element has the following attributes.

Table 32: Attributes of the views element

Attribute Name Required Default Description

context Yes None The application context code table code value that
is taken from the ApplicationContext code table.
For more information, see .

default code No None A code table code value that is defined in the <code
table> element and must be one of the codes
that are defined by the child code elements of
the current view element. This code table item of
this code is displayed as the default code table
in the user interface when this code table view is
accessed.

overwrite No False Boolean value that indicates whether this view
overwrites a view that is located in another code
table in a different component when the code tables
are merged. When two code tables are merged,
the views that have the same application context
are merged. For more information about merging
code table views, see Rules of code table merges

on page 114.

The <code> element for the <view> element

The <code> element is a subelement of <view> element. The <view> element groups one or
more <code> elements together. Each <code> element holds the code of a code table item that

is displayed when the application is running in a context that is defined by the parent <view>
element. This <code> element in the <view> element is structurally different from the one that is
defined for the <codetable> element.

The <code> element has the following attributes:

Table 33: Attributes of the <code> element

Attribute Name Required Default Description

value Yes None A code table code value that is defined in the
<codetable> element.

Customizing a code table file

You can customize code table files without making changes directly to the included code table
files, which would complicate later upgrades. Typically code table files are customized to add
new entries, localize descriptions or to add new locales.

Code table files are located in the / codet abl e directory of a component. Ctiram Platform
includes a set of code table files. You can override these code tables by placing new code
table files in the SERVER DI R/ conponent s/ <cust on®/ codet abl e directory, where

© Merative US L.P. 2012, 2024

Curam 8.1.3 114

<custom> is any new directory created under conponent s that conforms to the same directory
structure as conponent s/ cor e.

This override process involves merging all code table files of the same name according to
a precedence order. The order is based on the SERVER COMPONENT ORDER environment
variable which contains a comma-separated list of component names: the first component
has the highest priority, and the last component the lowest. For more information about
SERVER COMPONENT ORDER, see Customizing a Message File on page 103.

Rules of code table merges

Code table files are merged based on the order of precedence, there is always a more important
main or source code table file, and a file that is being merged into it. The second file is called the
merge file.

The merging rules are applied to decide whether the <code>, <locale>, <displaynames>,
<name>, <views>, and <view> elements are merged into the new code table file.

A <code> is merged into a new code table file if its associated <codetable> is present in the
new file and its value attribute is not already present in the new file.

The <codetabledata> element is merged into the <codetabledata> element in the new
code table file if the <locale> element is not already present in the <codetabledata>
element of the new code table. The <codetabledata> element is added into the new code
table file even if the <codetabledata> is not already present in the new code table file.

A <locale> is merged into a named <code> element in the new code table file if the
<locale> is not already present in the <code> of the new code table.

A <displaynames> element is merged into a new code table file if its associated
<codetable> is present in the new file and it is not already present in the new file.

If the <displaynames> element is already present in the new file, then the <name> elements
need to be merged. If the <name> element with its 1anguage and country attributes is not
already present in the new file, then it is merged into the new file.

A <views> element is merged into a new code table file if its associated <views> element is
present in the new file and the child <view> element is not already present in the new file.

A <view> element is merged into a new code table file if its associated <view> with the same
application context is present in the new file with a set of different child <code> elements.

If the overwrite attribute of the <view> is set to true, the view overwrites the contents of the
associated view in the new code table file.

If a <view> element has the default code attribute set, the deafult code of the associated
<view> in the new file is overwritten if it exists.

A <code> element is merged into a <view> element that has the same application context in
the new code table file if the <code> is not already present in that <view> of the new code
table.

© Merative US L.P. 2012, 2024

1 Curam server developer 115

Merging sample main code table file 1 and sample merge code table file 1 illustrates the rules of
merging <code>, <codetabledata> and <locale> elements, as shown in the resulting code
table file 1.

<?xml version="1.0" encoding="UTF-8"?>
<codetables package="curam.codetable">
<codetable java identifier="ACCEPTANCESTATUS"
name="AcceptanceStatus">
<code default="true" java identifier="ACCEPTED"
status="ENABLED" value="ACS1">
<locale language="en" country="US" sort order="0">
<description>Accepted</description>
<annotation></annotation>
</locale>
</code>
<code default="false" java_ identifier="PROVISIONAL"
status="ENABLED" value="ACS2">
<locale language="en" country="US" sort order="0">
<description>Provisional</description>
<comments>Comments for PROVISIONAL in EN_US</comments>
<annotation></annotation>
</locale>
</code>
<code default="false" java identifier="REJECTED"
status="ENABLED" value="ACS3">
<locale language="en" country="US" sort order="0">
<description>Rejected</description>
<comments>Comments for Rejected in EN US</comments>
<annotation></annotation>
</locale>
</code>
<code default="false" java identifier="REMOVED" removed="true"
status="ENABLED" value="ACS3">
<locale language="en" country="US" sort order="0">
<description>Removed</description>
<annotation>This message will be removed</annotation>
</locale>
</code>
<codetabledata>
<locale language="en">
<comments>Code table comments for
Country in EN.</comments>
</locale>
<locale> language="en" country="US">
<comments>Code table comments for
Country in US.</comments>
</locale>
</codetabledata>

<views>

<view context="CTX1" default code="ACS1">
<code value="ACS1"/>
<code value="ACS2"/>
<code value="ACS3"/>

</view>

<view context="CTX2">
<code value="ACS1"/>
<code value="ACS3"/>

</view>

<view context="CTX4" overwrite="true">
<code value="ACS2"/>
<code value="ACS3"/>
</view>
</views>

</codetable>
</codetables>

Figure 63: Sample Main Code Table File 1

Figure 64: Sample Merge Code Table File 1

© Merative US L.P. 2012, 2024

Curam 8.1.3 116

© Merative US L.P. 2

As a result of the merge process the resulting code table file would be:

<?xml version="1.0" encoding="UTF-8"?>
<codetables package="curam.codetable">
<codetable java_identifier="ACCEPTANCESTATUS"
name="AcceptanceStatus">
<code default="true" java_ identifier="ACCEPTED"
status="ENABLED" value="ACS1">
<locale language="en" country="GB" sort order="0">
<description>Passed</description>
<annotation></annotation>
</locale>
</code>
<code default="false" java identifier="PROVISIONAL"
status="ENABLED" value="ACS2">
<locale language="en" country="GB" sort order="0">
<description>Pending</description>
<comments>Comments for PROVISIONAL in EN_GB</comments>
<annotation></annotation>
</locale>
</code>
<code default="false" java identifier="REJECTED"
status="ENABLED" value="ACS3">
<locale language="en" country="GB" sort order="0">
<description>Failed</description>
<comments>Comments for REJECTED in EN_GB</comments>
<annotation></annotation>
</locale>
</code>
<code default="false" java identifier="UNKNOWN"
status="ENABLED" value="ACS4">
<locale language="en" sort order="0">
<description>Unknown</description>
<annotation></annotation>
</locale>
</code>
<codetabledata>
<locale language="en">
<comments>Code table comments for
Country in EN.</comments>
</locale>
<locale language="en" country="GB">
<comments>Code table comments for
Country in GB.</comments>
</locale>
</codetabledata>
<views>
<view context="CTX1" default code="ACS4">
<code value="ACS1"/>
<code value="ACS2"/>
<code value="ACS4"/>
</view>
<view context="CTX2">
<code value="ACS3"/>
</view>
<view context="CTX3">
<code value="ACS3"/>
<code value="ACS4"/>
</view>
<view context="CTX4">
<code value="ACS4"/>
<code value="ACS3"/>
</view>
</views>

</codetable>
</codetables>

<codetables package="curam.codetable">
<codetable java_identifier="ACCEPTANCESTATUS"
name="AcceptanceStatus">
<code default="true" java_ identifier="ACCEPTED"
status="ENABLED" value="ACS1">
<locale language="en" country="US" sort order="0">
<description>Accepted</description>
<annotation></annotation>
</locale>
<locale language="en" country="GB" sort order="0">
<description>Passed</description>
<annotation></annotation>
</locale>
12, 202% code>

<code default="false" java identifier="PROVISIONAL"

status="ENABLED" value="ACS2">

1 Curam server developer 117

Merging sample main code table file 2 and sample merge code table file 2 illustrates the rules of
merging <displaynames> and <name> elements, as shown in the resulting code table file 2.

<codetables
hierarchy name="CarHierarchy"
package="curam.codetable">
<codetable java identifier="CarMake" name="CarMake">
<displaynames>
<name country="GB" language="en">Car Make CustomGB</name>
<name language="1lt">Masinos Gamintojas</name>
<name language="en">Car Make Custom</name>
</displaynames>
<code default="false" java identifier="MITS"
status="ENABLED" value="CMK1">
<locale language="en" sort order="0">
<description>Mitsubishi</description>
<annotation/>
</locale>
</code>
<code default="false" java identifier="AUDI"
status="ENABLED" value="CMK2">
<locale language="en" sort order="0">
<description>Audi</description>
<annotation/>
</locale>
</code>
</codetable>
<codetable java identifier="CarModel" name="CarModel"
parent codetable="CarMake">
<code default="false" java identifier="COLT"
parent code="CMK1" status="ENABLED" value="CML1">
<locale language="en" sort order="0">
<description>Colt</description>
<annotation/>
</locale>
</code>
<code default="false" java identifier="LANCER"
parent code="CMK1" status="ENABLED" value="CML2">
<locale language="en" sort order="0">
<description>Lancer</description>
<annotation/>
</locale>
</code>
</codetable>
</codetables>

Figure 66: Sample Main Code Table File 2

<codetables
hierarchy name="CarHierarchy"
package="curam.codetable"
>
<codetable java_identifier="CarMake" name="CarMake">
<displaynames>
<name country="US" language="en">Car Make US</name>
<name language="fr">Marque</name>
<name language="en">Car Make Core</name>
<name language="en" country="GB">Car Make CoreGB</name>
</displaynames>
<code default="false" java identifier="MITS"
status="ENABLED" value="CMK1">
<locale language="en" sort order="0">
<description>Mitsubishi</description>
<annotation/>
</locale>
</code>
<code default="false" java identifier="AUDI"
status="ENABLED" value="CMK2">
<locale language="en" sort order="0">
<description>Audi</description>
<annotation/>
</locale>
</code>
</codetable>
<codetable java_ identifier="CarModel" name="CarModel"
parent codetable="CarMake">

<displaynames>
<name language="en">Car Model</name>
</displaynames>
<code default="false" java identifier="COLT" © Merative US L.P. 2012, 2024

parent code="CMK1" status="ENABLED" value="CML1">
<locale language="en" sort order="0">
<description>Colt</description>

Curam 8.1.3 118

As a result of the merge process, the resulting code table file would be:

<codetables
hierarchy name="CarHierarchy"
package="curam.codetable">
<codetable java identifier="CarMake" name="CarMake">
<displaynames>
<name country="GB" language="en">Car Make CustomGB</name>
<name language="lt">Masinos Gamintojas</name>
<name language="en">Car Make Custom</name>
<name country="US" language="en">Car Make US</name>
<name language="fr">Marque</name>
</displaynames>
<code default="false" java identifier="MITS"
status="ENABLED" value="CMK1">
<locale language="en" sort order="0">
<description>Mitsubishi</description>
<annotation/>
</locale>
</code>
<code default="false" java identifier="AUDI"
status="ENABLED" value="CMK2">
<locale language="en" sort order="0">
<description>Audi</description>
<annotation/>
</locale>
</code>
</codetable>
<codetable java identifier="CarModel" name="CarModel"
parent codetable="CarMake">
<displaynames>
<name language="en">Car Model</name>
</displaynames>
<code default="false" java identifier="COLT"
parent code="CMK1" status="ENABLED" value="CML1">
<locale language="en" sort order="0">
<description>Colt</description>
<annotation/>
</locale>
</code>
<code default="false" java identifier="LANCER"
parent code="CMK1" status="ENABLED" value="CML2">
<locale language="en" sort order="0">
<description>Lancer</description>
<annotation/>
</locale>
</code>
</codetable>
</codetables>

Figure 68: Resulting Code Table File 2

Artifacts produced by the ct gen build target
The artifacts that are produced from code table files are a symbol definition file (Java class) and
an SQL file.

The symbol definition file is a Java file that contains constants for code table identifiers that
are used in the code table XML file. This file can be used with the curam.util.CodeTable
interface to access code table information programmatically.

The Java file is generated to / bui | d/ svr/ codet abl e/ gen/ <package> directory,
where <package> is the package attribute that is specified in the code table file. For example,
package="curam.codetable"” places Java artifacts in the / bui | d/ svr/ codet abl e/ gen/
cur am codet abl e directory.

The code table SQL file contains inserts for the CodeTableHeader, CodeTableItem,
CodeTableView and CodeTableViewCode database tables. All SQL file artifacts are placed in
a common directory: / bui | d/ svr/ codet abl e/ sql /.

© Merative US L.P. 2012, 2024

1 Curam server developer 119

variable.

Note: If code table files of the same name exist in different components with different
package attribute values, then the symbol definition file (Java class) artifacts are placed in the
package that is specified by the code table file of the component with the highest precedence
order. The precedence is listed in the SERVER COMPONENT ORDER environment

A sample Java file from a code table file.

package curam.codetable;

/**
* Generated AcceptanceStatus codetable file.
*
*/

public final class ACCEPTANCESTATUS {

/**

* TABLENAME=AcceptanceStatus.

=/
public static final String TABLENAME
new String("AcceptanceStatus");

/‘k*

* DEFAULTCODE=ACS1.

=/
public static final String DEFAULTCODE
new String ("ACS1");

*

Retrieves the defaultCode from the cache.
@returns the default code value

@throws curam.util.exception.AppException
Generic Exception Signature.

@throws curam.util.exception.InformationalException
Generic Exception Signature.

* ok ok ok ok kX

*

=/
public static String getDefaultCode ()
throws curam.util.exception.AppException,
curam.util.exception.InformationalException {

return curam.util.type.CodeTable.getDefaultItem (TABLENAME) ;

}

/‘k‘k

* ACSl=Accepted.

=
public static final String ACCEPTED

= new String("ACS1");

/‘k‘k

* ACS2=Provisional.

=/
public static final String PROVISIONAL
new String("ACS2");

/** a
* ACS3=Rejected.
=/
public static final String REJECTED
= new String("ACS3");
/‘k‘k
* ACS4=Unknown.
=/
public static final String UNKNOWN
= new String("ACS4");

This pattern of generation means that the Strings are not interned by the Java compiler. This
allows the dependency checking in the build scripts to operate correctly. If an empty string is

© Merative US L.P. 2012, 2024

Curam 8.1.3 120

provided for a Java Identifier the code is only mapped into persistent data (SQL file) and is not
reflected in the Java artifacts.

The persistent data that is associated with code tables is generated into the common / bui | d/
svr/ codet abl e/ sql / directory.

A sample SQL file from a code table file.

—— Curam Code Table SQL Data File

—— CODETABLE AcceptanceStatus
INSERT INTO CodeTablelItem (TABLENAME, CODE, DESCRIPTION, ANNOTATION, ISENABLED,
SORTORDER, LOCALEIDENTIFIER,
LASTWRITTEN)
VALUES ('AcceptanceStatus', 'ACS1', 'Accepted', '', 'l', 0, 'en US',
CURRENT TIMESTAMP (''"));
INSERT INTO CodeTableItem (TABLENAME, CODE, DESCRIPTION, ANNOTATION, ISENABLED,
SORTORDER, LOCALEIDENTIFIER,
LASTWRITTEN)
VALUES ('AcceptanceStatus', 'ACS2', 'Provisional', '', '1', 0, 'en US',
CURRENTiTIMESTAMP("));
INSERT INTO CodeTableItem (TABLENAME, CODE, DESCRIPTION, ANNOTATION, ISENABLED,
SORTORDER, LOCALEIDENTIFIER,
LASTWRITTEN)
VALUES ('AcceptanceStatus', 'ACS3', 'Rejected', '', '1l', 0, 'en US',
CURRENT_TIMESTAMP(''));
INSERT INTO CodeTablelItem (TABLENAME, CODE, DESCRIPTION, ANNOTATION, ISENABLED,
SORTORDER, LOCALEIDENTIFIER,
LASTWRITTEN)
VALUES ('AcceptanceStatus', 'ACS1', 'Passed', '', 'l', 0, 'en GB',
CURRENT TIMESTAMP (''));
INSERT INTO CodeTableItem (TABLENAME, CODE, DESCRIPTION, ANNOTATION, ISENABLED,
SORTORDER, LOCALEIDENTIFIER,
LASTWRITTEN)
VALUES ('AcceptanceStatus', 'ACS2', 'Pending', '', 'l1', 0, 'en GB',
CURRENTiTIMESTAMP("));
INSERT INTO CodeTableItem (TABLENAME, CODE, DESCRIPTION, ANNOTATION, ISENABLED,
SORTORDER, LOCALEIDENTIFIER,
LASTWRITTEN)
VALUES ('AcceptanceStatus', 'ACS3', 'Failed', '', 'l', 0, 'en GB',
CURRENT_TIMESTAMP(''));
INSERT INTO CodeTablelItem (TABLENAME, CODE, DESCRIPTION, ANNOTATION, ISENABLED,
SORTORDER, LOCALEIDENTIFIER,
LASTWRITTEN)
VALUES ('AcceptanceStatus', 'ACS4', 'Unknown', '', 'l', 0, 'en',
CURRENT TIMESTAMP (''));
INSERT INTO CodeTableHeader (TableName, TimeEntered, DefaultCode, LASTWRITTEN)
VALUES ('AcceptanceStatus', CURRENTiTIMESTAMP("), '"ACS1', CURRENTiTIMESTAMP("));
INSERT INTO CodeTableView (TABLENAME, CONTEXT, DEFAULTCODE, LASTWRITTEN)
VALUES (‘AcceptanceStatus’, ‘CTX1’, ‘ACS1l’, CURRENT TIMESTAMP) ;
INSERT INTO CodeTableViewCode (TABLENAME, CONTEXT, CODE, LASTWRITTEN)
VALUES (‘AcceptanceStatus’, ‘CTX1’, ‘ACS1l’, CURRENT TIMESTAMP) ;
INSERT INTO CodeTableViewCode (TABLENAME, CONTEXT, CODE, LASTWRITTEN)
VALUES (‘AcceptanceStatus’, ‘CTX1’, ‘ACS2’, CURRENT TIMESTAMP) ;
INSERT INTO CodeTableView (TABLENAME, CONTEXT, DEFAULTCODE, LASTWRITTEN)
VALUES (‘AcceptanceStatus’, ‘CTX2, ‘ACS3’, CURRENT TIMESTAMP) ;
INSERT INTO CodeTableViewCode (TABLENAME, CONTEXT, CODE, LASTWRITTEN)
VALUES (‘AcceptanceStatus’, ‘CTX2, ‘ACS3, CURRENT TIMESTAMP) ;
INSERT INTO CodeTableViewCode (TABLENAME, CONTEXT, CODE, LASTWRITTEN)
VALUES (‘AcceptanceStatus’, ‘CTX2, ‘ACS4’, CURRENT TIMESTAMP) ;

© Merative US L.P. 2012, 2024

1 Curam server developer 121

Note: Ifany <locale> entries specify a language, and optional country, that are not in the
SERVER LOCALE LIST environment variable, they are ignored during generation and a
warning is produced.

Also, while generating the code table SQL artifacts containing the contents for the
CodeTableltem and CodeTableHeader database tables, the LASTWRITTEN field with an
initial value is populated. The initial value is a time stamp that is set to the time when the data
is inserted into the database.

The same artifacts are produced for the code table file of Rules of code table merges on page
114, also, because the file contains a <displaynames> element, additional artifacts are
created. That is, a properties file is generated for each <name> element it contains.

The ct gen build target produces one properties file for each locale (composite of 1anguage and
country attributes) and <name> element within the <displaynames> element of a code table
definition. Locale is defined by the 1anguage and country attributes of the <name> element.
These properties files define the display names that are associated with each code table in a code
table hierarchy:.

The properties files are generated into / bui | d/ svr/ codet abl e/ gen/ . If no
<displaynames> element is specified for a code table hierarchy, no properties file is generated,
and a warning is displayed. The name of the generated properties file consists of the code table
name along with the locale. Since a code table name with spaces renders a properties file invalid
and unlocalizable, any spaces that are specified in the code table name will be replaced with the
underscore character.

The warning, i.e. warning where a <displaynames> element is not specified, is only treated as a
warning and never an error, regardless of the setting of the prp.warningstoerrors property.

If the locale specified for the <name> element is not supported, then the ct gen build target
displays a warning and no properties file for that locale is generated.

The following is an example of properties files that are produced by the ct gen build target on
the Rules of code table merges on page 114. Each properties file is generated to / bui | d/
svr/ codet abl e/ gen/

Car Make_en_US. properties

CarMake=Car Make US

Car Make_fr. properties

CarMake=Marque

Car Make_en_GB. properties

CarMake=Car Make CustomGB

Car Make_|t. properties

Car Make=Masi nos Gami nt o] as

© Merative US L.P. 2012, 2024

Curam 8.1.3 122

Car Make_en. properties

CarMake=Car Make Custom

Car Mbdel _en. properties

CarModel=Car Model

Code table hierarchy

Code table files can define a single code table or a hierarchy of code tables. A hierarchy is where
multiple code tables are linked into a number of levels. Selecting a code at a particular level will

reduce the number of selections available at the next level. Any number of levels in a code table

hierarchy is supported.

For example, selecting Ireland as the country in the sample address hierarchy returns a sub-list
of Meath and Wexford and selecting Meath as the county returns a sub-list of Trim and Navan.
Alternatively, selecting England returns a sub-list of Stafford and London.

Table 34: Sample Address Hierarchy

Level 1 Level 2 Level 3
Country County Town
Ireland Meath Navan
Trim
Wexford Gorey

Enniscorthy

England Stafford Bednall
Stone
London Earlsfield
Eltham

To define a code table hierarchy a code table (CTX) file should be created with a code table
defined for each level in the hierarchy. To indicate that the code table file contains a hierarchy, the
hi er ar chy_nane attribute should be defined on the <codet abl es> element.

<codet abl es package="cur ant
hi erar chy_name="Addr essH erarchy">
<descri ption>
A description of the hierarchy.
</ descri ption>

Figure 69: Usage of hierarchy_name attribute

Each <codet abl e> defined must then be linked using the par ent _codet abl e attribute

of the <codet abl e> element. The par ent _codet abl e value should be set to the nane

of an existing <codet abl e> in the file, where the specified code table is the parent in the
hierarchy. All code tables defined in the file, excluding the top level code table, must have a valid
par ent _codet abl e attribute defined for them. A <codet abl e> can be linked to only one
parent <codet abl e> and cannot be used in more than one code table hierarchy.

<codet abl e java_identifier="COUNTY"

© Merative US L.P. 2012, 2024

1 Curam server developer 123

name="County" parent_codet abl e="Country">

Figure 70: Usage of parent_codetable attribute

Each <code> entry in a code table is finally linked to a <code> entry in the parent code table,
using the par ent _code attribute. The par ent _code value must be the value of a <code>
existing in the specified parent code table. A child <code> cannot be linked to more than one
parent <codet abl e>.

<code java_identifier="MATH"
val ue="MEATH' parent code="| RELAND"' st at us="ENABLED">

Figure 71: Usage of parent_code attribute

The hierarchy defined in Code table hierarchy on page 122 can be represented as follows in a
code table file.

<?xm version="1.0" encodi ng="UTF-8" 7>
<codet abl es package="curant hierarchy_nane="AddressHi erarchy">
<descri pti on>
A description of the hierarchy.
</ descri pti on>

<codet abl e java_identifier="COUNTRY" nanme="Country">
<di spl aynanes>
<nanme | anguage="en">Country</ nane>
<di spl aynanes>
<code java_identifier="IRL" value="IRLND' defaul t="true"
st at us=" ENABLED" >
<l ocal e | anguage="en" sort_order="1">
<descri ption>lrel and</ descri pti on>
</l ocal e>
</ code>
<code java_identifier="GB" val ue="ENG.ND"' st at us="ENABLED">
<l ocal e | anguage="en" sort_order="2">
<descri pti on>Engl and</ descri pti on>
</l ocal e>
</ code>
</ codet abl e>

<codet abl e java_identifier="COUNTY" nanme="County"
par ent _codet abl e="Country" >
<di spl aynanes>
<nane | anguage="en">Count y</ name>
</ di spl aynanes>
<code java_identifier="MATH' val ue="MIH"
parent code="| RLND" st at us="ENABLED">
<l ocal e | anguage="en" sort_order="1">
<descri pti on>Meat h</ descri pti on>
</l ocal e>
</ code>
<code java_identifier="WEXFORD' val ue="WKFD"
parent _code="1RLND' st atus="ENABLED'>
<l ocal e | anguage="en" sort_order="1">
<descri pti on>Wexf ord</ descri pti on>
</l ocal e>
</ code>
<code java_identifier="STAFFORD"' val ue="STFFRD"
parent _code="ENGLND"' st at us="ENABLED">

© Merative US L.P. 2012, 2024

Curam 8.1.3 124

<l ocal e | anguage="en" sort_order="1">
<descri pti on>St af f or d</ descri pti on>
</l ocal e>
</ code>
<code java_identifier="LONDON' val ue="LNDN"
parent _code="ENG.ND"' st at us="ENABLED">
<l ocal e | anguage="en" sort_order="2">
<descri pti on>London</ descri pti on>
</l ocal e>
</ code>
</ codet abl e>

<codet abl e java_identifier="TOMN' nane="Town"
par ent _codet abl e=" Count y" >
<code java_identifier="NAVAN' val ue="NVN'
par ent _code="MIH"' st at us="ENABLED'>
<l ocal e | anguage="en" sort_order="2">
<descri pti on>Navan</ descri pti on>
</l ocal e>
</ code>
<code java_identifier="TRIM val ue="TRM
parent _code="MIH"' st at us="ENABLED'>
<l ocal e | anguage="en" sort_order="2">
<descri pti on>Tri nx/ descri pti on>
</l ocal e>
</ code>
<code java_identifier="GOREY" val ue="GRY"
par ent _code="WKFD' st at us="ENABLED" >
<l ocal e | anguage="en" sort_order="2">
<descri pti on>Cor ey</ descri pti on>
</l ocal e>
</ code>
<code java_identifier="ENN SCORTHY" val ue="ENC"
parent code="WKFD' st at us="ENABLED">
<l ocal e | anguage="en" sort_order="2">
<descri pti on>Enni scort hy</ descri pti on>
</l ocal e>
</ code>
<code java_identifier="ELTHAM' val ue="ELTM
parent _code="LNDN' st at us="ENABLED">
<l ocal e | anguage="en" sort_order="2">
<descri pti on>El t hanx/ descri pti on>
</l ocal e>
</ code>
<code java_identifier="EARLSFI ELD" val ue="ELFD"
parent _code="LNDN' st at us="ENABLED"'>
<l ocal e | anguage="en" sort_order="2">
<descri ption>Ear| sfi el d</ descri pti on>
</l ocal e>
</ code>
<code java_identifier="BEDNALL" val ue="BDNL"
par ent _code="STFFRD"' st at us="ENABLED" >
<l ocal e | anguage="en" sort_order="4">
<descri pti on>Bednal | </ descri pti on>
</l ocal e>
</ code>
<code java_identifier="STONE" val ue="STN"
par ent _code="STFFRD"' st at us="ENABLED">

© Merative US L.P. 2012, 2024

1 Curam server developer 125

<l ocal e | anguage="en" sort_order="4">
<descri pti on>St one</ descri pti on>
</l ocal e>
</ code>
</ codet abl e>
</ codet abl es>

Figure 72: Code Table Hierarchy Example

The artefacts listed in Artifacts produced by the ct gen build target on page 118 are also
generated for code table files that define a hierarchy.

Properties files are generated for <di spl aynanmes> elements. A symbol definition

Java file is generated for each code table in the hierarchy. A single SQL file is generated,
containing the relevant inserts to the CodeTabl eHeader and CodeTabl el t emdatabase
tables for all defined code tables. These insert statements will include the population of the

par ent Code field in the CodeTabl el t emtable and the par ent _codet abl e field in the
CodeTabl eHeader table. An insert entry is also generated for the CodeTabl eHi er ar chy
database table. This table is used for administration purposes only.

Note: The code table hierarchies can only be created through code table (CTX) files and not
through the admin screens. The admin screens can only be used to maintain the code table
hierarchies.

Note: Code table views are not supported by code table hierarchies. Code tables that are used
in code table hierarchies must not contain views.

Retrieving locale codes from code table files

Since a code table file can contain any number of locales for a named code, a mechanism needs
to be in place to return the correctly localized code for a running instance of Curam. Codes are
retrieved from a code table file based on the locale property which includes a language and,
optionally, a country.

The code table file look up returns a matching localized code for a named value. For example,
if the runtime locale is set to en_US where “en” is the language and “US” is the country, a code
look up for the code named ACODE in the example below, will return the text “The code”. If,
however, the runtime locale was set to “fr”, the text “Le code” would be returned.

<codet abl es package="curam codet abl e" >
<codetabl e java_identifier="AN_|ID" nanme="ANANME">
<code default="true" java_identifier="ACODE"
st at us="ENABLED" val ue="ACCDE" >

<l ocal e | anguage="en" country="US" sort_order="0">
<descri pti on>The code</ descri ption>
<annot at i on></ annot at i on>

</l ocal e>

<l ocal e | anguage="en">
<descri pti on>The en code</descri ption>
<annot at i on></ annot at i on>

</l ocal e>

<l ocal e | anguage="fr">
<descri pti on>Le code</descripti on>

© Merative US L.P. 2012, 2024

Curam 8.1.3 126

<annot at i on></ annot ati on>
</l ocal e>
</ code>
</ codet abl e
</ codet abl es>

Figure 73: Code File Search

Since code table files are not guaranteed to contain an entry for every country, a fall back
mechanism is in place. Once a code of a given name has been found and there is no direct match
with the specified locale, the rules for fall back are as follows:

+ If'the runtime locale is set to include a language and country, the country is removed and
the search looks for a matching language only. Looking up the code named ACODE in the
example above, with runtime locale f r _CNwould return the text “Le code”.

* Ifnothing is found for the runtime locale for either language and country or language only,
then a search using the fall back locale of en will be used. Looking up the code named
ACODE in the example above, with runtime locale €s would return the text “The en code”.

For example, if the runtime locale is set to f r _CA, then the following will be the search path:

* Search on fr CA,
e Search on fr
e Search on en

If nothing is found for either the runtime locale or the fallback locale of en, then an empty string
is returned.

Localizing SDEJ code table files

You can localize or modify the code table files shipped with the SDEJ. These code table files
are located in the codet abl e directory of the SDEJ and are in the same format as Ctiram
application codetable files but with the extension . i t X.

To localize these files copy the particular . i t X code table file to be modified from the SDEJ to
the code table directory of a component in your Ctram application, for example, SERVER_DI R/
conponent s/ cust om codet abl e. The . i t X code table file can then be modified in the
same way as any code table file; overriding a code or adding a new locale for all the codes.

Note: If the package attribute in the codetable file is modified the localization will not
work.

The ct gen target, when run, will merge the localized . i t X code table file with the original one
located in the SDEJ. The localized code table file will have the higher precedence order. It will
then generate the sql files only. No Java artefacts will be generated for code table files with the
extension . i t X.

The dat amanager _confi g. xm file, located in the pr oj ect / conf i g directory specifies
the location of the common directory for generated SQL artefacts. There is no requirement to
update this entry for localized code tables as all . sql files are generated to the same location.

< entry
nane="bui | d/ svr/ codet abl e/ sql /"

© Merative US L.P. 2012, 2024

1 Curam server developer 127

type="sql "
base="basedir"/ >

Figure 74: Datamanager entry for the code table SQL artefacts location

Note: The <description> sub-element is an optional element for the <codetables> element in
the code table (CTX) files. The <description> element is mainly used to define a description
for the code tables for developers information. The description is not saved into any database
tables for normal code tables. However, for Code Table Hierarchies, if the description is
defined in the CTX file, then the <description> value is saved to the description attribute in the
CODETABLEHI ERARCHY table. This value will be displayed on the Code Table Hierarchy
page of the Curam Administration screens.

Specialized readmulti operations

Use generated readmulti operations to run SQL SELECT statements and return the resulting
record sets as an ArrayList. Readmulti operations consist of a Data Access Layer function and
a Business Object Layer function.

Readmulti operations are implemented as two distinct pieces:

» A Data Access Layer function that establishes the result set, through building up the statement,
running an executeQuery on it, then a series of getResultObject statements, and

* A Business Object Layer function that assembles the results into the required in-memory
vector of structures.

The Business Object Layer function is a specialization of a general class of

functions called readmulti operations, which can perform arbitrary processing on the

contents of SQL cursors. You can view the definitions of these function classes in
curam.util.dataaccess.ReadMultiOperation. This ReadMultiOperation is the
parent abstract class, while curam.util.dataaccess.StandardReadMultiOperationisa
concrete subclass that provides an implementation of “normal” readmulti functions.

“Specialized readmulti operations” are handcrafted functions “plugged into” the Data Access
Layer that uses generated helper classes. The pattern in use here is similar to the “Visitor” design
pattern described in Design Patterns. Readmulti operations are “plugged into” the appropriate
Data Access Layer functions by generated readmulti helper classes, which insulate the operation
from knowledge about the specific Data Access Layer functions used.

When to Use Readmulti Operations

“Normal” readmulti operations return a set of database records as an ArrayList. There are
several situations in which you might want to replace this type of standard “normal” readmulti
operation with your own specialized processing.

An example is in batch processing where you want to iterate across a large number of records
on a database table, and process each record in turn. It is not feasible to use a standard readmulti
operation to assemble an in-memory vector of all of the records read before processing. Another
common example is where you want to lock or delete records from the result set as they are
processed. In each of these examples you can write your own readmulti operations to process

© Merative US L.P. 2012, 2024

Curam 8.1.3 128

records individually as they are retrieved from the database rather than relying on the standard
processing supplied by standardReadMultiOperation.

How to define your own readmulti operations

The steps that you follow to define your own specialized readmulti operations are as follows:

1. Add the readmulti operation to your Unified Modeling Language (UML) application
model. For this example, assume that you add a standard readmulti operation that is
called readmulti to an entity called E. The standard readmulti operation whose “details”
structure is called EDt1s. However, this example applies equally to readmulti, nsreadmulti,
multithread, and nsmulti operations in the UML application model, where the “details”
structure might not be a generated entity details structure.

2. Write the specialized readmulti operation class, as follows:

static class MyReadmul ti Operati on extends
curamutil . dataaccess. Readnul ti Operation {

publ i c bool ean operati on(Object objDtls) throws
AppException, |nformational Exception {

/1 No inplementation for the noment

return true;

}

Note: If the readmulti operation specifies a 'Post Data Access' or 'On-

fail' operation, then your readmulti operation must be a subclass of
curam.util.dataaccess.StandardReadMultiOperation. This specification is
because this class builds up an in-memory list of the that isst ructs read by the readmulti
operation to make it available to thePost Data Access andOn-fail operations.

If your readmulti operation processes large numbers of records, then this operation might
cause an excessive memory usage. Cution is advised if you are using specialized readmulti
operations withPost Data Access orOn-fail operations.

3. Implement MyReadMultiOperation. operation to initiate your specific processing. This
method is called automatically for each record retrieved from the database.

In general, always return true from readmulti operations. In unusual cases, where you
want to stop processing before you reach the end of the record set, return false. This
instruction means that the operation method is not be called again.

4. Write the code that starts the readmulti operation. This code appears in a Business Process
Object (BPO) implementation and looks like the following:

/1 instance of specialized operation class
MyReadMul ti Operati on op = new MyReadMul ti Operati on();

[l instance of readmulti key structure
EReadmul ti Key key;

© Merative US L.P. 2012, 2024

1 Curam server developer 129

[/l set key fields for search
key.id = 99;

[/ construct hel per and call operation
E. newl nst ance() . readnul ti Hel per (key, op);

Each generated readmulti function is associated with a generated “helper” class that exists solely
for use in code such as displayed previously. The helper class is scoped inside the entity class and
has a run method that begins a readmulti.

Extra features of readmulti operations

* The READMULTI_MAX option in the model limits the number of records processed by
a standard “normal” readmulti operation. However, it has no effect when you hand-craft
your own operations. As a result none of the overrides for this option (defined in Ctiram
Configuration Settings on page 43) has any effect. To limit the number of records that are
returned within your readmulti subclass, you must override the following method:

public int getMaximum() ;

* You can filter out records from the database result set by overriding the following method of
your readmulti subclass:

public boolean filter (Object dtls) throws AppException,

InformationalException;

Each record is passed to £i1lter before it is passed to your operation method. Any record
that results in £ilter returning f al se is not passed to operation. The default filter
always returns t r ue.

+ Ifyou want to write code that is called before the first row is passed to operation, you can
override:

public void pre () throws AppException, InformationalException;

If you want to write code that is called with the first row read from the database, you can
override:

public void first (Object dtls) throws AppException,

InformationalException;

The same record is also passed to the operation method.

Note: The first is called if there is at least one row in the result set, regardless of whether
filter returnst r ue for this row.

+ Ifyou want to write code that is called after the last call to operation, you can override:
public void post () throws AppException, InformationalException;

Be aware. This function is called always once, regardless of the value returned by the
operation method.

* An optional third parameter to the execute method of readmulti helper classes is a boolean
that specifies whether records that are read from the database are updated later in the
transaction. This parameter can be used as in:

© Merative US L.P. 2012, 2024

Curam 8.1.3 130

E. newl nst ance() . readmul ti Hel per (key, op, true);

This process means that each record that is read from the database is locked for write access as
it is read.

You can use a combination of the previously shown methods, with your own data members, to
achieve many common styles of readmulti operation. For instance, Extra features of readmulti
operations on page 129 shows a readmulti operation that produces a report grouped by
department:

static class MyReadnul ti Operati on
extends curam util . dataaccess. Readnul ti Operati on
{

/'l Remenber | ast dept, for grouping
private String | astDepartment;

/| Departnment sal ary accunul at or
private curamutil.type. Money sal ar yDept Tot al

[l Total Salary Accunul at or
private curamutil.type. Money sal aryG andTot al ;

public void pre()
throws AppException, |nformational Exception {
/1 initialization
| ast Departnment = "";
sal aryGrandTotal = 0.0;

}

public void first (Object dtls)

throws AppException, |nformational Exception {
[l per-departnment group initialization
sal aryDept Total = 0.0;

/1 remenber |ast departnment for grouping.
| ast Department = dtls. departnent;

}

public bool ean operati on(Cbject dtls)
throws AppException, |nfornmational Exception {

/| Change of departnment group
if (!(lastDepartnent.equal s(dtls.department))) {
print G oupTotal s();

/'l redo per-dept initialization
first(dtls);

/] detail report line
curamutil.resources. Trace. kTopLevel Logger.info("Emp ");
curamutil.resources. Trace. kTopLevel Logger . i nf o(
dtls. enpl oyeel d) ;
curamutil.resources. Trace. kTopLevel Logger. i nf o(
" salary: ");
curamutil.resources. Trace. kTopLevel Logger . i nf o(

© Merative US L.P. 2012, 2024

}

dtls.salary);

/1 accunul ate dept sal ary

sal aryDept Total += dtls.sal ary;

/1 accunul ate total salary
sal aryG andTotal += dtls.s

return true;

public void post ()
throws AppException, |nformational Exception {
/[l only if there was at | east one depart nent

}

if (!(lastDepartnent.enpty
print G oupTot al s();
/1 final group
/'l Grand total report Ii

al ary;

0)) A

ne:

1 Curam server developer 131

curamutil.resources. Trace. kTopLevel Logger . i nf o(
"Grand total salary: ");
curamutil.resources. Trace. kTopLevel Logger . i nf o(

sal aryGrandTot al) ;
}

public int getMaxinmun() {

}

/1l Explicitly enforce that

[/ the nunber of records.
return O;

all matching records are
/'l considered. Any nunber other than zero would limt

private void printGoupTotal s() {

}
}

/1 group report line

curamutil.resources. Trace
"Departnent ");

curamutil.resources. Trace
| ast Depart nent) ;

curamutil.resources. Trace
" total salary: ");

curamutil.resources. Trace
sal aryDept Tot al) ;

Figure 75: Specialized readmulti example

An alternative

. kTopLevel Logger .
. kTopLevel Logger.
. kTopLevel Logger .

. kTopLevel Logger.

i nfo(
i nfo(
i nfo(

i nfo(

Specialized Readmulti operations and non-standard operations allow the developer a greater level
of freedom when handcrafting database access code. However in certain situations this may prove
to be too limiting. For example where the SQL string will be derived from the input parameters

to a method; parts of the 'where' clause will be optional or expressed differently depending on

the input. In these situations the developer can obtain the Connection being used for database
communication through the TransactionInfo. getInfoConnection interface. Once this
connection has been obtained it is possible to execute any form of handcrafted JDBC in the
context of the Cliram transaction.

© Merative US L.P. 2012, 2024

Curam 8.1.3 132

To enable this style of database access to be visible in the model it should be placed in an entity
which has theNO_SQL option enabled. This is detailed in the Curam Modeling Reference Guide.

Summary
The order your readmulti operation methods are called is as follows:

pre - always called once before anything else.

first - called once with the first record, provided at least one record exists.
filter - called for each record (including the first).

operation - called for each record for which filter returns t r ue;

post - always called once after everything else.

SANE LIl o

getMaximum - specifies the maximum number of records that are matched.

If you are designing processing that maintains locks, remember performance implications when
you do so.

Deprecation

Use this information to understand how deprecation is used to reduce the impact of change on
custom applications.

This chapter describes deprecation in Curam: what it is, how it can affect custom code, and
what it means for support and the build infrastructure that helps to pinpoint custom artifact
dependencies on deprecated Curam artifacts.

Overview

When Cuaram is enhanced, sometimes a feature or API is deprecated. It might be necessary

to replace the feature or API with an updated version, or to remove the feature where a better
alternative is available, or where features are unused or no longer consistent with the strategic
direction of the product.

When a feature or API is deprecated, Merative ' continues to support the feature or API.
However, Merative ™ no longer plans to enhance the feature or API, and might remove the
capability in a subsequent release of the product. Deprecation can happen in code, in product
documentation, or in both, where all methods are valid and equivalent.

» At atechnical level, deprecation means that an artifact will no longer be enhanced and
might be removed in a future release. In Java™ terms, deprecation frequently means that an
API is replaced by an alternative. In such cases, all calls to the deprecated API in a default
installation are replaced by calls to the replacement API. Deprecation can also mean notice
to remove without replacement. In all circumstances, a deprecation comment reflects the
intended action.

* Deprecation in product documentation means that references to the
deprecated feature are indicated as deprecated in all information that
mentions the feature. A prefix, "(deprecated)" and the deprecated icon

La
are added to the names of deprecated sections, and also to any sections that refer to the
deprecated feature.

© Merative US L.P. 2012, 2024

1 Curam server developer 133

Features can be deprecated in any Version Release Modification (V.R.M.) release, and can then
be removed in a V.R.M release that follows the release in which the features are deprecated.
The period between the two releases is to be no less than 12 months. For example, if a feature
was deprecated in Version 8, which was released in July 2021, then Merative ™ can remove
the deprecated feature in a V.R.M. release in or after July 2022. Features are not deprecated in
maintenance releases.

No further notice will be given after deprecation before the feature is removed, though in some
cases a feature might not be removed for a number of releases.

If customers have concerns about the removal of a feature because they need more time to either
find an alternative solution, or to break their dependency on the deprecated feature because of
their project timelines, they can raise this concern through the usual support channels.

Other Sources of Information

Information about specific deprecated artifacts can be found in the artifact itself and also in the
'Notes on Deprecation' section of the Curam release notes.

In the artifact itself, the deprecated element will be marked as described in Artifact Types That
Can Be Deprecated. This marker includes space for a short 'deprecation comment' about the
replacement functionality for the deprecated item and a reference to any associated release note
containing more context. To make your analysis easier, Curam validation and compilation steps
will include this comment in the build warning, to save you from looking up the deprecated
artifact. However, this enhanced build warning is only available from Ctiram compilers and
validations, the command-line Java compiler does not have equivalent functionality. It is
recommended you view Java warnings in your Integrated Development Environment (IDE) for
fast navigation between artifacts.

If the information in the artifact's deprecation comment does not provide enough context,
additional information can be found in the Ctiram Release Notes. You can search these by the
name of the deprecated artifact or by the release note ID referenced in its deprecation comment.

Effect of Deprecation on a Custom Application

In Curam, a deprecated artifact means an artifact that will be removed in a later version of the
product. Artifacts can be deprecated if there is a new better alternative, however, they can also be
deprecated if they form part of a feature that Merative ™ intends to remove from Caram for which
there is no replacement. In both scenarios, the deprecated artifacts will no longer form part of the
default flow within Curam. Deprecated artifacts remain present in the application codebase, but
they are not referenced by the out-of-the-box runtime application.

To quickly pinpoint where custom dependencies exist on deprecated Curam artifacts, the
command-line Java™ compiler has been extended to provide deprecation warnings to Cliram
builds and validations.

Customizations and References

Custom artifacts can depend on deprecated Curam artifacts either by referencing them, or
by customizing (overriding) them. Reference and customization dependencies have different
characteristics and it is important to understand the difference. To illustrate:

» Examples of References

© Merative US L.P. 2012, 2024

Curam 8.1.3 134

* A custom method can call a deprecated Ctiram server interface method
* A custom workflow can reference a deprecated Cliram method as an automatic activity
* A custom User Interface Metadata (UIM) client page can link to a deprecated Ciram UIM
page
* Examples of Customizations

* A custom class can subclass a Caram class and replace (override) deprecated Curam
methods

* A custom UIM client page can customize (override) a deprecated Caram UIM client page

The impact of deprecation on custom code depends on whether that code is referencing or
customizing a deprecated artifact.

Where code references a deprecated Clram artifact (for example, calls a deprecated method), the
deprecated artifact still exists and functions in a backwardly-compatible way. This is the same as
for regular Java deprecation where the immediate impact is minimal or nil.

Where code customizes (overrides) a deprecated Curam artifact, the base Caram application

no longer invokes that artifact - it is no longer part of the default flow of the base application.

It is reasonably likely that it has been removed from the default flow of custom applications.

In short, customizations of deprecated artifacts do not function as before and there is a strong
likelihood that some corrective action will be needed. That action could include dropping the
customization (for example, if equivalent functionality has since been implemented), re-applying
the customization to the artifact that replaces the deprecated one, and so on.

The deprecation build infrastructure provided uses special tags in deprecation warnings to
help distinguish between references-to and customizations-of deprecated artifacts. This will be
described in more detail later in this chapter.

Support for Deprecated artifacts

Deprecation of an artifact is an indication of the intent to remove it in a future version.
Deprecated artifacts will be supported as long as they exist in the product. If customers have
concerns about the removal of an artifact, because they need more time to break the dependency
on that artifact, for example, they should raise this concern as soon as possible through the usual
support channels.

You are advised to address any dependencies from custom code on deprecated Ctiram artifacts at
the earliest opportunity. When deprecated artifacts are removed in a future release, it can cause
compilation failures and this seriously can hamper effective planning of upgrade tasks.

Effect of Deprecation on the User Interface

When client pages are deprecated, this changes the default flow of the client application to
include the replacement functionality. The default flow is also affected when client pages are
deprecated and not replaced. This has two results that do not occur when other artifacts are
deprecated:

Consistency of the User Interface: If existing client pages have been customized or new pages
added that are used in conjunction with deprecated pages, then the resultant user experience
may be changed with the replacement pages. If this is the case, it will be necessary to consider

© Merative US L.P. 2012, 2024

1 Curam server developer 135

updating the customizations to be consistent with the replacement pages, or reverting the default
flow to use the deprecated pages.

If out-of-the-box client pages have been deprecated and are not being replaced, that is, they form
part of a feature that will be removed in the future, the links to those pages are removed from the
user interface and not replaced.

Documentation/Training Materials: If descriptions or screen shots, or both, of the deprecated
pages have been included in custom documentation or training materials, these may need to

be updated to describe or show the replacement pages. If links to deprecated pages have been
removed from the user interface, new screen shots may be required to reflect that fact.

Reinstating Deprecated Functionality

For features that have been deprecated without replacement, links to deprecated pages within
those features will have been removed from the user interface.

Customers wanting to reinstate these links can do so by overriding the necessary application
configuration files and re-adding the necessary links. For customers who already had the feature
in an earlier release, the use of a diff utility will help expedite this process.

Scope

Artifact types that can be deprecated
Use this information to understand the types of artifacts that can be deprecated.

The following artifact types can be deprecated:

Table 35: Artifact types that can be deprecated

Area Artifact Type

Modeled Artifacts Process Class, Struct Class, Process Method, Entity Method

Java Code Identical to Java deprecation (Class, Interface, Method, Attribute, and
so forth)

Javascript The javascript class or operation can be tagged as deprecated.

Client Artifacts UIM Page, VIM file, Page Property (.property that is associated with a
UIM or VIM file)

Application Configuration files Tab, Menu, Nav, Section and Shortcut files can be deprecated if they

relate to features that are intended to be removed in the future. The
same goes for their associated properties, or for properties that relate
to entries that have been removed from an application configuration

file.

Messages Message Catalog Entry

DMX DMX files or entries that relate to features that will be removed in the
future.

Rules Rule-sets, and their associated properties

© Merative US L.P. 2012, 2024

Curam 8.1.3 136

Area Artifact Type

Properties Environment Variables - for these a comment is added to the
description and the display name is updated to make it obvious that
this property relates to deprecated functionality, for example, <Existing
display name> - Deprecated.

For entries inside adapter.properties and ShortNames.properties, a
comment highlighting the fact that this property relates to a deprecated
entity is added. At the point that the entity is removed from the
application, the property will also be removed.

Events Event Handlers, .evx entries relating to features that will be removed
in the future.

Workflow Process definitions

All of these artifact types support explanatory comments attached to the deprecation tag. These
artifacts can be found easily by searching for the string “deprecated” within the artifact in
question. For . | ava files (and model artifacts), the @lepr ecat ed JavaDoc tag is used in the
normal way. For XML files such as User Interface Metadata UIM/VIM files and message catalog
entries, the <?cur am depr ecat ed XML processing instruction is used. Finally, in property
files, the string . depr ecat ed is appended to the name of a property to denote that the property
is deprecated.

Entity Classes Entities are not listed above as modeled artifacts that can be deprecated. The
rationale for this has to do with the fact that the DDL is not generated for entities which have
been tagged as deprecated in the model. This can result in unwanted impact. For example,
existing unit tests that write to those entities will fail to execute if the tables do not exist on the
system. Even though the entities are not physically tagged as deprecated in the model, they
will be listed as deprecated in the external release notes if the intention is to remove the entity
in the future. Deprecation of an entity relates to the entity itself, which includes its generated
entity and key structs as well as its entity operations. It does not refer to data associated with
the entity. As with all other deprecated artifacts, customers should remove dependencies on
deprecated entities at their earliest convenience.

Limitations of the deprecation infrastructure
Use this information to understand the limitations of the deprecation infrastructure.

Users need to be aware of certain limitations of the deprecation infrastructure, which are:

* No build warnings are produced for non-typed references to deprecated artifacts. For example,
if the User Interface Metadata (UIM) page Par ti ci pant _vi ewAddr ess. ui mwas
deprecated and a Java method contained a Par t i ci pant _vi ewAddr ess string literal -
this string would not be picked up by the build warnings because the reference is not typed -
the compiler cannot know that the String refers to a UIM page.

* The deprecation infrastructure is composed of a deprecation tagging capability and build/
validation warning capability (reporting dependencies on tagged artifacts). The build/
validation warning capability is intended for customer use. Therefore, the deprecation tagging
capability is not intended for customer use and is not supported. For example, the <?cur am
depr ecat ed processing instruction in custom XML files is not supported.

© Merative US L.P. 2012, 2024

1 Curam server developer 137

Running a Deprecation Report

Cuaram has developed infrastructure that extends Java's command-line compiler deprecation
warnings to certain Ctiram builds. This helps pinpoint dependencies in custom applications on
deprecated Ctram artifacts. It also helps distinguish between references-to and customizations-of
deprecated artifacts in custom code.

Configuring the Deprecation Report
Deprecation reporting in Ciram is controlled by two properties:

* Ensure the pr p. war ni ngst oer r or s build property, is set to false or the build may be
unable to complete (false is the default for this property, so if you do not override the property
then the default is fine).

» The curam depr ecati on. r eporti ng property in the boot st rap. properti es file
controls the reporting of deprecation warnings. Warnings are not displayed if this property is
set to false. The property defaults to true so if it is not specified deprecation warnings will be
displayed.

+ It is recommended you remove "Sample" components (Sample, CPMSample, etc) from the
CLIENT_COMPONENT_ ORDER environment variable before running the commands
below. These components may generate spurious warnings that are not relevant to identifying
your exposure to deprecated Curam artefacts.

Prerequisites for running the Deprecation Report

The depr ecat i onr eport build target calls a sequence of Ctiram build targets in order

to provide build output containing a complete set of deprecation warnings. As there are
dependencies between some of the build steps, the following builds should complete successfully
before running the depr ecat i onr eport target.

* build clean server
e build clean client
e build database

Generating the Deprecation build output

Execute the build target that follows to capture the build output to a “SERVER_DI R
\ bui | dl ogs\ %epr ecati on<ti mest anp>. | og file for further analysis.

+ cd ¥SERVER Dl R%
* build deprecationreport

Identifying deprecation warnings in the build output

Since the build output has all been directed into the Depr ecat i on<t i nest anp>. | og
file, check that file to ensure that the overall build succeeded. Ant prints either a BUI LD
SUCCESSFUL marker in the last few lines of that file if all parts of the build completed (or
BU LD FAI LEDif any failed).

Since you already have confirmed that the server, client, and database builds completed
successfully, the only issues that are expected to cause this target to fail are validation issues.
Since the validation of one file has no bearing on the next, these targets do not stop on a failed
validation. They aim to provide as complete a picture as possible by validating all files and only

© Merative US L.P. 2012, 2024

Curam 8.1.3 138

reporting success or failure at the end of the build, so the deprecation information still will be
produced for all files that pass validation.

Finally, to get a summary report of all exposure to deprecated artifacts, filter the
deprecati on. | og for the [deprecation] tag. You can use gr ep or the Windows f i nd utility
for this, or your preferred text editor.

For example:

grep "\[deprecation\]" Deprecation<tinestanp>.| og
1> deprecation_sunmary. | og 2>&1

or

find "[deprecation]" Deprecation<tinestanp>.I|og
1> deprecation_sunmary. | og 2>&1

Figure 76: Getting a Summary Report

Tip: The resulting depr ecat i on_sunmary. | og file will contain only the deprecation
warnings produced by the build.Since some warnings can be broken over more than one line, it
also is useful to hold on to the original depr ecat i on. | og.

Notes on running the Deprecation Report

* This build can take some time to run, as it has to do a clean build followed by server and client
builds, in order to identify all dependencies. The target also does the validations for several
artifact types.

» Although the depr ecat i onr eport target generates the depr ecati on build | og,
it is not always necessary to rerun the entire build in case it fails. If the build fails due any
validation, the validation target can be run in isolation. After fixing all the validation issues,
the depr ecat i onr eport target should be executed to ensure the deprecation build log is
complete.

+ Thedeprecationreport callstheval i dati on target. For example, the
deprecati onreport will fail if the val i dat eal | wor kf | ows target reports an error,
as the build output from other builds is not available.

[deprecation] The client has not been built and therefore it
cannot be determined if U M pages referenced are
depr ecat ed.

* By default the Java compiler limits the number of compiler warnings displayed. The
Curam build specifies this limit as 10,000, which means that the compiler will display
10,000 warnings followed by a message that there were further warnings. This value can be
overridden by passing - Dcnp. maxwar ni ngs to the build.

+ Intelligent Evidence Gathering (IEG) scripts also can contain dependencies on server or
client artifacts or both that have become deprecated. However, this scenario is not covered
by val i dat i on targets at this time. If you have IEG scripts, you will need to inspect
manually the User Interface Metadata (UIM) page and server interface references to identify
any dependencies on deprecation pages or interfaces.

© Merative US L.P. 2012, 2024

1 Curam server developer 139

Note: Since some warnings can be broken over more than one line, it also is useful to hold on
to the original depr ecat i on. | og.

Analyzing Deprecation Warnings

Once you have produced a summary deprecation build log, you need to identify the deprecation
warnings contained in it. This section describes how to identify and categorize the deprecation
warnings.

Identifying overrides of deprecated artifacts

As described in Customizations and References on page 133, there are significant differences
between the effects of deprecation on references and on customizations. Identifying overrides

of deprecated artifacts relatively is simple. The deprecation summary report you produced in
Running a Deprecation Report on page 137 pinpoints all dependencies on deprecated artifacts
using the standard Java [deprecation] tag in the build log. Curam code generators and command-
line validations also check for dependencies on deprecated artifacts and produce the same build
warning as Java (using the same [deprecation] tag).

In addition to this, Ctiram code generators augment the [deprecation] tag with an additional
[customization] tag where your custom artifact is overriding a Cliram artifact, rather than
referencing it.

Any lines in your deprecation summary report tagged with [deprecation] [customization] indicate
places where you are overriding an artifact that Ctiram has since deprecated (that is, removed
from the default flow of the base application). Since Ctram has removed this artifact from the
default flow of the out-of-the-box application, it reasonably is likely that it also has been removed
from the flow of your custom application. Where this happens, it will be necessary to address the
override.

The example that follows shows a custom VIM file that is overriding an out-of-the-box Cliram
VIM file. The Cram VIM file has become deprecated, so the client build is producing this
warning. The warning follows the Java deprecation message format: the first part is the path of
the file that references the deprecated artifact, followed by the [deprecation] tag and, in this case,
a [customization] tag also. This is followed by the name of the artifact that has been deprecated.
Finally (and this differs from the Java format) where possible, any comments attached to the
deprecated artifact are also printed. This saves you having to locate the file and look up the
associated comments.

[processU nm

C. /webcl i ent/ component s/ cust oml Case_| i st Vi ew. vi m war ni ng:
[deprecation] [customni zation]

C. /webcl i ent/ component s/ core/ Case_Il i stView vimhas been
deprecated. [deprecation coment] Since Cdram 6.0,
replaced with Case_listAnotherView vim See rel ease note:
CR12345

Figure 77: Example: override of a deprecated artifact

In the preceding example, the VIM file no longer is used in the default flow of the out-of-the-box
Curam application. If your application relies on the out-of-the-box flow, your customization of
this file no longer will appear in that flow.

© Merative US L.P. 2012, 2024

Curam 8.1.3 140

Addressing overrides of deprecated artifacts

There is no single approach to addressing overrides of deprecated artifacts. You must analyze

the modifications you made to the original (now-deprecated) artifact and determine a suitable
course of action for your customization. Some options are to drop the customization (for example,
if Ctram has since implemented equivalent functionality), to re-apply the customization to the
artifact that replaces the deprecated one, and so on. There are sources of information that can help
when deciding the appropriate course for your customization.

For more information, see, Other Sources of Information on page 133

Identifying references to deprecated artifacts

References (for example, calls to) to deprecated artifacts also can be easily identified in your
deprecation log - they are lines tagged with a [deprecation] marker, but no [customization]
marker.

[processU n] C:.\Curam webclient\conponents\custom

Cust om Benefi t\ Deducti on\li st ThirdPartyDeduction.ui m

war ni ng: [deprecation] U M ProductDelivery cancel Deducti on

has been deprecated. [deprecation conment]

Since Ciram 6.0, replaced with ProductDelivery_cancel Deducti onl

Figure 78: Example: reference to a deprecated artifact

In the previous example, the UIM page is no longer used in the default flow of the out-of-the-box
Curam application and is deprecated.

Notes on analyzing deprecation warnings

* You should not see any deprecation warnings from out-of-the-box Curam files. However, there
are instances where a deprecation issue in your custom file can appear, as if it came from an
out-of-the-box Curam file. If you overrode a.VIM client file that is being used by an out-of-
the-box.UIM page, any warnings from your VIM file will appear as if they came from the out-
of-the-box UIM page. This is because the client build imports.VIM content into UIM pages
before validating it. If you see deprecation warnings from out-of-the-box UIM pages, please
be aware that they may be referring to issues in a custom VIM file.

* If you have included sample components in your build (such as Sample, CPMSample, etc),
you may also see deprecation warnings from these components. Curam does not recommend
including sample components in your builds.

* You will find [deprecation comment] marker, if the tag @depreceted in documentation
field has a comment. This save you having to look up the file and then look up the file it's
referencing and then get the comment.

* Please be aware that any deprecation warnings marked [bopigen] in the build log are
duplicates of warnings produced earlier in the log and marked as [servercodegenerator]. You
can safely ignore deprecation warnings marked as [bopigen].

* Warnings coming from generated java classes (those in build/svr/gen) are by-products of the
[customization] warnings produced by the generator and can generally be ignored. Resolving
the "[deprecation] [customization]" issues should also resolve these generated file warnings.

Note: It is easier to work with java deprecation warnings in Eclipse, than it is to use the
command-line deprecation build logs.

© Merative US L.P. 2012, 2024

1 Curam server developer 141

User Preferences

To specify settings that can be customized for a particular user, configure user preferences. A set
of Def aul t Pr ef er ences is assigned to each user of the Ciram application.

A user preferences editor is available in the web client. This editor allows each user to update
values for the preferences. Examples of user preference usage include setting the time zone, or
providing a flag to turn a custom option on or off.

A set of user preferences are defined out-of-the-box in Ctram:

Table 36: Out-of-the-box user preferences

Name Description Default Value

Time Zone The user's time zone. Europe/Dublin

User Preferences Definition

Data definition XML file

It is possible to create new user preferences, or override existing user preferences, by creating a
custom Def aul t Pref erences. xn file.

A custom Def aul t Pref erences. xmi file should be placed in the EJBSer ver
\ conponent s\ <conponent _namne>\ user pr ef er ences directory, where
<conponent _name> is the name of a component within the component directory.

The following sample Def aul t Pr ef er ences. xmi file illustrates how a user preference is
defined:

<Pr ef erences>
<PreferenceSet id="default"
description="The default preferences">
<Pr ef erence nane="sanpl e. pref" category="Defaul t Preferences">
<t ype>SVR_BOOLEAN</t ype>
<val ue>f al se</val ue>
<r eadonl y>f al se</readonl y>
<vi si bl e>true</ vi si bl e>
<ext er nal Vi si bl e>f al se</ ext er nal Vi si bl e>
</ Pr ef erence>
</ Pr ef er enceSet >
</ Pr ef erences>

Figure 79: Example of user preference definition

In the user preferences definition example above the preference "sample.pref” is defined in an
XML document with a root Pr ef er ences node.

The Pr ef er ences document may contain only one <Pr ef er enceSet > element,
with the i d attribute set to “default”. The <Pr ef er enceSet > contains any number of
<Pr ef er ence> elements, each defining a new preference or overriding an existing one.

The nane attribute of <Pr ef er ence> defines the internal name of the user preference. This
attribute forms a unique name for the preference stored in the database. In the example above the
name is “sample.pref”.

© Merative US L.P. 2012, 2024

Curam 8.1.3 142

A <Pr ef er ence> element contains a number of child elements, listed in the table below.

Table 37: User Preference options

Element Description Mandatory Default
Value
type Indicates the preference type, which should be a yes N/A
valid Domai n Defini ti on type.
value The initial default value of the user preference. yes N/A
readonly A boolean value (true or false) that indicates no false

whether the preference should be editable in the
user preference editor in the web client.

visible A boolean value (true or false) that indicates no true
whether the preference should be displayed in
the user preference editor in the web client for an
internal user, i.e. a user on the Users table.

externalVisible A boolean value (true or false) that indicates no false
whether the preference should be displayed in
the user preference editor in the web client for an
external user.

If multiple Def aul t Pref er ences. xm files exist (in different components), the contents

of these files are merged together during a server build. The files are merged according to the
SERVER_COVPONENT_ORDER. Duplicated preferences in a component with higher precedence
in the SERVER _COVPONENT _ ORDER will take priority over those duplicates in components
with lower precedence.

The results of the merged user preferences are added to the database by the dat abase build
target for usage at runtime.

Note: Only the default value of the out of the box user preferences in Ciram should be
overridden.

Although the ability to override all elements of a user preference exists it is strongly
recommended that only the actual value, as defined by the <val ue> some value </ val ue>
element, should be updated.

Properties files

When defining a user preference in the Def aul t Pr ef er ences. xm

file a corresponding entry should also be made in an accompanying

Def aul t Pref erences_<l ocal e>. properti es file. where, <l ocal e> represents
the intended locale of the properties. This file specifies the display name that will be displayed
when accessing the user preferences in the web client user preferences editor. The ability

to localize the display name for each of the user preferences is possible by creating a
DefaultPreferences <locale>.properties file for each supported user | ocal e. See Localizing
display names on page 143 for more details on localizing user preferences display names.

A Def aul t Pref erences_<I| ocal e>. properti es file should be created if it does not
already exist. The Def aul t Pr ef er ences_<I| ocal e>. properti es should be placed in
the EJBSer ver \ conponent s\ <conponent _nane>\ user pr ef er ences directory with

© Merative US L.P. 2012, 2024

1 Curam server developer 143

the corresponding Def aul t Pr ef er ences. xnl .An entry for the user preference defined in
the previous example would be:

sanpl e. pref =Sanpl e Preference Di splay Nane:

Def aul t Pref erences_<l| ocal e>. properti es files in multiple components
will be merged using the same SERVER_COVPONENT _ ORDER merge rules that apply to
Def aul t Pref erences. xmi files.

Development support

User Preferences can be accessed at development time by using the getvalue () and
setValue () methods in the curam.util.userpreference.impl.UserPreference class.

A user preference must have been created previously prior to starting the setvalue () method.
For more details on creating user preferences, see User Preferences Definition on page 141 .

External users

To make user preferences available to an external user, you need to make both client and server
changes. These changes are described as follows.

For the client, you need to set the USER PREFS_PAGE attribute to t rue within a </ink> element.
For more information about setting this element, refer to the .

The ExternalAccessSecurity interface is used to retrieve information for an external

user. This class contains two new methods, get User Pr ef er enceSet | D() that reads user
preferences for an external user and nodi f yUser Pr ef er enceSet | D() that updates user
preferences for an external user. These methods must be implemented to retrieve user preferences
for an external user. For more information on the ExternalAccessSecurity interface, see the
Customizing External User Applications chapter in the Curam Security Handbook.

After the client and server changes are implemented, you must ensure that the relevant

user preferences are visible to the external user. The <externalVisible> element within the

Def aul t Pref er ences. xm allows you to manage the visibility of each user preference to an
external user. This element is described in User Preferences Definition on page 141.

If you want to make user preferences available for external users and <externalVisible> is set

to false or is not defined for all user preferences, then user preferences are not displayed for an
external user. If you do not want to display any user preferences for external users, it is suggested
that the User Preferences link not be available within the external user application.

Localizing display names

Localized display names can be added by creating new

Def aul t Pref erences_<I ocal e>. properti es files for each

Def aul t Pref erences. xm file created under directory EJBSer ver \ conponent s

\ <conponent _nane>\ user pr ef er ences. The <locale> component represents the
intended locale of the properties file and <component_name> is the name of a component within
the component directory.

For example, to support the en US locale, create the following default preference properties file

© Merative US L.P. 2012, 2024

Curam 8.1.3 144

Def aul t Pref erences_en_US. properties

As there can exist multiple Def aul t Pr ef er ences_<I| ocal e>. properti es files
in different components, the contents of these default preference properties are merged
to a Mer gedDef aul t Pref erences_<I ocal e>. properti es file according

to the SERVER_COMPONENT_ORDER7. This merging happens when running either the
mer geuser pr ef erenceproperties,orserver targets.

Before merging the . properti es files, the following validations cause an error during a build
where:

The specified <locale> is not present in the SERVER LOCALE LIST'.
* More than one display name is specified for the same locale.

For example, two display names are specified for locale en US.

Def aul t Pref erences_en_US. properti es:
Ti mezone=Ti neZone:
Ti mezone=Ti neZone US

* The <locale> in the property file name includes a country part with more than 2 characters.

For example:

Def aul t Pref erences_en_USA. properties
* The <locale> in the property file name includes a language part with more than 2 characters.

For example:

Def aul t Pref erences_eng_US. properties
* The. properti es file is empty.
» The. properti es file contains invalid properties.

For example:

Def aul t Pref erences_en_US. properti es:
Ti mezone
The infrastructure attempts to display the correct localized name by matching the country part and
language part of the user's locale. If the country component of the user's locale does not exist, the
infrastructure attempts to match the language part only. If this data does not exist, it falls back to a
default language. The localization of display names is illustrated in the example that follows.

If the user is associated with the locale £r Ca, then the application searches the
Mer gedDef aul t Pref erences_<I ocal e>. properti es files for the display names in
the following order:

1. MergedDef aul t Preferences_fr_CA. properties
2. MergedDef aul t Preferences _fr.properties
3. MergedDef aul t Pref erences_en. properties

7 See Customizing a Message File on page 103, for further explanation of
SERVER COMPONENT_ ORDER.
8 See The Format of Message Files on page 101, for further explanation of SERVER LOCALE_LIST.

© Merative US L.P. 2012, 2024

1 Curam server developer 145

4. MergedDef aul t Pref erences. properties

The system first attempts to locate the correct display name for the £r Ca locale in a

Mer gedDef aul t Pref erences_fr_CA. properti es file. If this file does not exist, or
if the display name for the user preference does not exist within this file, then the system looks
for Mer gedDef aul t Pref erences_fr. properti es. If this file does not exist, then the
system searches for a Mer gedDef aul t Pr ef er ences_en. properti es file where locale
is set to the default system locale. If the display name is not present, the system falls back to the
Mer gedDef aul t Pr ef er ences. properti es file.

In the case where the display name is not found in any of the properties files (or the properties
files do not exist), the value that is defined for the name attribute for a user preference in the
Def aul t Pref erences. xnl file is used as the display name. For more information on the
name attribute, see User Preferences Definition on page 141 .

Similarly, if the user is associated with the locale en US, then the application searches for the
display names in Mer gedDef aul t Pr ef er ences_<I ocal e>. properti es files with the
following priority:

1. MergedDef aul t Preferences_en_US. properties
2. MergedDef aul t Pref erences_en. properties
3. MergedDef aul t Pref erences. properties

Localizing infrastructure preferences display names

The application uses a number of Infrastructure Preferences and their display names can be
localized in a manner similar to User Preference's display names. Localized display names can
be added by creating new | nf r ast ruct ur ePr ef erences_<I| ocal e>. properties
files under the directory EJBSer ver \ conponent s\ <conponent _nane>

\ user pr ef er ences. Where </ocale> represents the intended locale of the properties file and
<component_name> is the name of a component within the component directory.

A sample file, containing all the properties available for localization, can be found in SDEJ\ | i b
\'I nfrastructurePreferences. properties.

mem].3 Application Resources

Application resources are artifacts such as dynamic UIMs, properties files, images, XML files,
etc., used on the server side. They are stored as blobs in the AppResource entity and used for
various server-side functionality, such as Display Rules and IEG (Intelligent Evidence Gathering).

Application Resources may belong to different categories such as Image, CSS, Property, XML,
etc. These categories of resources are derived from the codetable ResourceStoreCategory and
stored in the 'category' column of AppResource entity. Application resources are typically utilized
within Java code on the server-side to render their intended content accordingly.

Locale of Application Resource

Locale refers to a set of parameters that define the user's regional preferences and cultural
conventions like language, country, and formatting preferences.

© Merative US L.P. 2012, 2024

Curam 8.1.3 146

A locale, typically represented as a string, contains the language code, country code, and
optionally other components. For example, en US represents English as spoken in the
United States, and £r FR represents French as spoken in France. Locales are used for
internationalization (i18n) and localization (110n).

The AppResource entity may contain multiple application resources corresponding to different
locales. The 'localeldentifier' column of the AppResource entity stores the locale of the
application resource. This helps in differentiating resources corresponding to different locales.

For example, if resources representing the organization logo image are uploaded from the files
images/en US/logo.png and images/fr CA/logo.png, then the resource name logo can
be used for both resources and the locale field can indicate which image is appropriate for the
corresponding locale.

Fallback for properties files

The fallback for properties files works through an internal API that returns a list of fallback
locales. This is called when retrieving a single resource from the resource store.

If the specified locale is en_Us, the locales en US, en and null will be searched in that order
until a resource is found. Our default AppResources have a nu11 locale, which means even
logging in as an Italian user, English translations will be found under the nul1l fallback locale.

If a customer has resources stored in an 'en' locale but a French user logs into the application,
nothing will be displayed to the user. If customers want to guarantee that something is always
presented to the user, they should store resources with a nul1 locale.

1.4 Cdram runtime behavior

Use the information as a starting point for learning about how the Caram application behaves
at runtime, including what you need to know about transaction control, how a cache stores the
results of an SQL query, and how deferred processing works in Ciram.

* + Transaction control on page 147 details the aspects of Transaction Control within a
Curam application that must be understood by a developer.
» Use of the transaction SQL query cache on page 149 outlines the details of a cache
that can store the results of any SQL queries that do a SELECT on a database table for the
duration of the transaction in which the operation was invoked.

» Deferred processing on page 152 describes how to achieve deferred processing in a
Curam application

e Cuaram timers on page 158 describes the functions that allows timers to be defined to
start client-visible methods at a specified time.

» Events and event handlers on page 163 describes Events, a mechanism for loosely
coupled parts of the Curam application to communicate information about state changes in
the system.

* Unique IDs on page 171 details the infrastructure support for Unique Identifier numbers
generated by the Curam infrastructure for use as unique database keys.

© Merative US L.P. 2012, 2024

1 Curam server developer 147

Transaction control

Use this information to understand how the Ctiram Server Development Environment (SDEJ)
abstracts transaction management from the developer.

This section provides a brief overview for the developer and then details what is happening
“under the hood”. This task is difficult task because of multiple database support, which provides
different ways of supporting the ACID nature of a transaction. A transaction might be Atomic. Its

result seen to be’ be Consistentlo, Isolated“, and Durable!?,

Transactions and method invocations
Use this information to understand how Curam maps Facade method invocations to transactions.

Typically in Cram a Facade method invocation maps to a single transaction. The exception to
this action is where the method starts a deferred process or workflow. See the Curam Workflow
Management System Developers Guide for more details. The single transaction starts at the
beginning of the Facade method invocation and finishes at the end.

The transaction demarcation in Ciram is bean-managed rather than container-managed and as
such the developer must use the APIs in the infrastructure to checkpoint transactions.

One exception to this general rule is the Key Server. When a Unique ID block is obtained from
the Key Server a separate transaction is started to govern this database access. This check ensures
that long running transactions do not place locks on the Key Server tables as this condition would
provide an unacceptable bottleneck.

Optimistic locking and the forUpdate flag
When a developer creates operations on an entity they first must determine whether that entity
supports optimistic locking.

Optimistic locking is described in and provides a suitable method of ensuring that transactions
satisfy the characteristics of Atomicity, Consistency, Isolation, and Durability (ACID). However,
situations occur when the use of optimistic locking can impact unnecessarily on the performance
of a transaction. If a record is read and then modified later in the transaction, it is unlikely (though
not impossible) that the record changed underneath the developer. Rather than using the version
number, it often is more suitable to lock the record when it is read. This precaution means that it

9 Atomicity requires that all of the operations of a transaction are carried out successfully for the
transaction to be considered complete. If all of a transaction's operations cannot be completed, then
none of them can be carried out.

10 Consistency refers to data consistency. A transaction must move the data from one consistent state to
another. The transaction must preserve the data's semantic and physical integrity.

11 Isolation requires that each transaction seem to be the only transaction currently manipulating the data.
Other transactions might run concurrently. However, a transaction should not see the intermediate
data manipulations of other transactions until and unless they successfully complete and commit their
work. Because of interdependencies among updates, a transaction might get an inconsistent view of
the database were it to see just a subset of another transaction's updates. Isolation protects a transaction
from this sort of data inconsistency.

12 Durability means that updates that are made by committed transactions persist in the database regardless
of failures that occur after the commit operation and it also ensures that databases can be recovered after
a system or media failure.

© Merative US L.P. 2012, 2024

Curam 8.1.3 148

is impossible for another transaction to change the record, so the modified record does not need to
be guarded with a version number. However, it also means that the possibility increases for locks
and deadlocks.

This form of locking is supported in Cliram by way of an extra parameter that can be passed to
any of the standard read operations. This parameter (forUpdate), when set to #rue, results in an
update lock to be taken on the records that are being accessed as part of this query. These locks
are not released until the end of a transaction.

General guidelines

The golden rule of locking and performance in database transactions is that any records that you
lock need to remain locked for the minimum possible time to reduce database contention that is
caused by other users who are seeking the same records.

This rule means that operations that take out locks might be called as late as possible in your
transactions. For example, if you read several records to validate a transaction, followed by
updates to several more records, always validation the transactions first followed by the updates.
Try to defer update operations (or reads with locks) until as late as possible. Do not scan a
million-record table after you take out a record lock that ought to be short-lived.

Underlying design

The information in this explanation describes the underlying design of transaction management.

Transaction management happens on the server, rather than the client side. Client-initiated
transactions would involve complicated and largely unnecessary communication processor load.
However, this condition imposes a requirement on the application to ensure that the database data
remains consistent across a series of client/server calls. In practice, this condition usually involves
deferring the database updates done by a business function until the last client/server interaction
in a series.

Transactions typically must encompass interactions with more than one resource manager even
if older systems are not used. The server database is one resource manager and the queues that
are used for deferred processing and workflow are another. To ensure atomicity of a transaction
that is distributed across multiple resource managers, a two-phase-commit protocol is required to
coordinate the distributed transaction.

DB2

At the beginning of a transaction, Ctiram obtains a single connection to the database. This
connection runs at a specific isolation level:

* Repeatable Read - This connection ensures that dirty data is not read and that a second read
returns the same data as a first.

Specific categories of statements that run at a lower isolation level:

» Cursor Stability - Cursor stability is the DB2 implementation of the SQL standard Read
Committed isolation level. This statement ensures that a transaction cannot read a row with
uncommitted changes in it. It does not ensure that a second read returns the same data as a
first.

This connection is not a separate connection to the database, rather the DB2 keyword WITH CS
is appended automatically to the SELECT statement.

© Merative US L.P. 2012, 2024

1 Curam server developer 149

All queries that do not have the forUpdate flag set run at the Cursor Stability isolation level.
All modifies and queries with the forUpdate flag set run at the Repeatable Read isolation level.
This check means that they place a lock on the row or rows that were read so that they cannot be
updated by anyone else. In the case of nodi f y operations be read by anyone else. This lock is
not released until the transaction commits.

Oracle

Oracle does not really support the Java Data Base Connectivity (JDBC) Isolation levels (mainly
because its underlying support does not truly map to these levels). For this reason, Oracle 's
default isolation level is used for all statements. In Oracle, a dirty read occurring is not possible.

Use of the transaction SQL query cache

Use this information to understand the transaction SQL query cache in the Caram Server
Development Environment (SDEJ).

Benchmarking shows that the same database query often is run numerous times during a
single transaction in the Ctiram application. This behavior is costly in performance terms. The
transaction SQL query cache in the SDEJ counteracts this .

The transaction SQL query cache, when enabled, operates at the data access layer and endures

for the lifetime of any one transaction. The cache stores the results of any SELECT SQL queries
during the transaction in which the operation was started. Subsequent calls in the same transaction
retrieve the required results from the SQL query cache and does not read the results from the
database.

How results get stored in the query cache
Use this information to understand how SQL query results get stored in the query cache.

The SQL query cache stores the results in memory of any SQL query that runs a SELECT
statement on a database table. Invocation of the following entity operation stereotypes results in
the responses to that query that is stored in the cache:

 read
e nsread
 nkread

 readnul ti

* nsreadnul ti

* nkreadnul ti

* nsmul ti

* ns with handcrafted SQL containing a SELECT statement

Two exceptions to this rule are:

* SQL queries that have the FOR UPDATE flag set to true do not have their results cached.
These queries always result in direct database access. This action is because this data is being
read for modification and the subsequent update operation results in that cache entry to be
invalidated.

* The results of specialized readmulti operations, where the operation is not an instance of
StandardReadMultiOperation class, are not cached. This action is because a customized

© Merative US L.P. 2012, 2024

Curam 8.1.3 150

ReadMultiOperation can modify the result set for an SQL query that is run. Since these
results are not yet present in the cache, the cache cannot be invalidated which results in invalid
data in the cache (that is, the data that is cached for the SQL query does not reflect the data for
that SQL query on the database).

How the cache gets invalidated
Use this information to understand when an SQL query cache that is associated with a transaction
is invalidated

The SQL query cache is associated with a transaction and is not global. When any specified
transaction is committed or rolled back, the SQL query cache that is associated with that
transaction is invalidated.

Any time an update (that is, an i nsert, nmodi f y, or r enove operation) is made to a table
associated with a transaction SQL query cache entry, that entry is invalidated from the cache.
For most update operations (that is, nodi f y, nsnodi fy, r enove, and similar commands),
the invalidation of cache entries is partially intelligent. The table that is affected by the update

is determined from the SQL statement that is run and used to directly invalidate only the cache
entries that are related to the table. However, for ns operations that are run and contain anything
other than a SELECT SQL statement, the complete SQL query cache that is associated with that
transaction is invalidated.

Therefore, the following entity operations cause the cache entries that contain the table that is
affected by that operation to be invalidated:

* insert
* nsinsert
e nodify
* nsnodify
* nknodify
* renove

* Nnsrenove

* nkrenove

* ns operation with handcrafted SQL that does not contain a SELECT statement
* batchinsert

* batchnodify

As detailed previously, the transaction SQL query cache endures for the lifetime of a transaction
only. Database updates result in the invalidation of associated entries in the local transaction
cache only. As a result, any subsequent reads within a different transaction returns data from the
cache and not as updated on the database.

How to set the property for the transaction SQL cache
Use this information to understand how to set the property for the transaction SQL cache.

The transaction SQL cache is enabled by default, meaning that the results of SQL queries are
cached. To disable it, the curam.transaction.sglquerycache.disabled property must be
set to true in the Appl i cati on. pr x file.

© Merative US L.P. 2012, 2024

1 Curam server developer 151

Storing the results of SQL queries that return large result sets can lead to memory problems

in transactions that endure for a long period. The most likely queries that might lead to such
problems are those queries that return data of type Character Long Object (CLOB) and Binary
Large Object Block (BLOB). To cater for SQL queries that return large result sets, a property

is available to control the size of fields of type CLOB or BLOB that might be stored in the
transaction SQL query cache. This property is called curam. sqlquerycache.lob.max.size
and its default size is set to S00KB.

Further details that concern these properties can be found in 1.5 Caram configuration parameters
on page 176.

SQLQueryCacheAdmin API

A public API is available for the transaction SQL query cache. The class,
curam.util.transaction.SQLQueryCacheAdmin, provides functions that allow developers
to manipulate the transaction SQL query cache at runtime. These methods include the following:

* enableSQOLQueryCache(): this function enables the SQL query cache for the current
transaction.

o disableSQLQueryCache(): this function disables the SQL query cache for the current
transaction.

» clearSQLQueryCacheForTable(String tableName): this function flushes all entries from the
transaction SQL cache that contain the specified table name for the current transaction.

* clearSQLQueryCache(): this function flushes all of the entries from the transaction SQL cache
for the current transaction.

SQLQueryCacheUtil API

A public API is available which contains utility methods for the transaction SQL query cache.
The class, curam.util.transaction.SQLQueryCacheUtil, provides utility methods for the
transaction SQL query cache. These methods include the following:

* isSQLQueryCacheEnabled(): This function returns a flag to indicate if the transaction SQL
query cache has been enabled or not.

o runWithSQLQueryCacheDisabled(Runnable run): This function runs the runnable bypassing
the SQL query cache. SQLQueryCache may be needed to be disabled when there is a need to
read the same row multiple times in a transaction to see if it has changed. For example, in the
batch infrastructure it is required to read the same row multiple times in a transaction to see if
it has changed.

Logging
Use this information to understand how lifecycle events that concern the transaction SQL query
cache are logged under certain tracing levels for the Ciram application.

When the tracing level for the Cliram application is set to
curam.util.resources.Trace.kTraceUltraVerbose (see Logging trace levels on page
84 for more details on logging), various lifecycle events that concern the transaction SQL

query cache are logged. These entries might be diagnosed in the logs by the following starting
statement: Tr ansacti on SQL Query Cache: . The following events are logged during the
lifecycle of the SQL query cache:

© Merative US L.P. 2012, 2024

Curam 8.1.3 152

* When an entry is added to the transaction SQL query cache.
* When an entry is invalidated from the transaction SQL query cache.

* When the complete SQL query cache is invalidated as a result of a transaction that is either
committed or rolled back.

Deferred processing

Use this information to learn how to implement deferred processing for appointed Business
Process Objects (BPOs) in your Curam application.

Before reading the following chapter, you need to be familiar with the Ciram Modeling
Reference Guide and the Server Development Environment (SDEJ).

In Caram, describing a business process method as a “deferred process” means that this method
is started asynchronously. A BPO within your Ctram application that calls a method of another
BPO, configured for deferred processing, does not wait for it to return. Deferred processing is
accomplished, in part, by configuring queues in the middleware. Any request over the queued
enactment interface is deferred.

Model your deferred processes

A deferred process is identified in your application model by selecting the
<<wmrdpact i vi t y>> stereotype on a method of a <<pr ocess>> class. Each deferred
processing method must be defined to take the following input parameters:

Note: The application does not start a deferred process method by using these parameters.
These parameters are passed to the method by the deferred processing server after the process
is enacted.

» The ticket ID of the DPTi cket record generated by the deferred processing engine (long
datatype).

* The instance data ID (type of long) of the WM nst anceDat a record associated with the
deferred process method at the time of enactment. This parameter gives the deferred process
method access to any information it requires to initiate the required processing (long datatype).

* A boolean flag. This parameter is internal to the deferred processing infrastructure. It needs
to be ignored, but must be part of the signature of the method (boolean datatype).

public void sanpl eDef erredMet hod(1l ong ticketlD,
| ong i nst Dat al D,
bool ean fl ag)

/1 Method | ogic goes here
}

Figure 80: wmdpactivity stereotype method

The previous example shows the code that is generated for a method that is stereotyped as
<<wrdpact i vi t y>>. The required parameters must be specified in the model by the
developer. You are not concerned with how these parameters are provided to the deferred process

© Merative US L.P. 2012, 2024

1 Curam server developer 153

(that is taken care internally by the deferred processing engine after the enactment request). Still,
you must code the logic of your deferred process into this method.

Note: Your deferred process should not attempt to initiate any begin, commits, or
rollbacks by using the Tr ansact i onl nf o class or attempt any other forms of Java
EE Transactional Control. This restriction also applies to any methods that are started by
workflows or deferred processes, regardless of how deep in the call stack. In addition to
deferred processes, examples of the methods include implementations of workflow or
deferred processing interfaces (such as Not i fi cati onDel i very, Wor kResol ver,
curam util . deferredprocessing.inpl.DPCal | back, and similar) and any
methods called by either of the previously referenced commands.

Deferred process enactment
Deferred processes are enacted by way of the Deferred Processing Enactment Service.

Consider the situation where a Business Process Object (BPO) within your Clram application
needs to call a deferred process in order for it to do some other processing. The call must be made
as shown in Deferred process enactment on page 153. Within the calling BPO, populate a
WMInstanceData record (see WMInstanceData on page 154 for how to define this entity)

with the information that you want to be accessible to the deferred process.

The class DeferredProcessing is available to you from the Server Development Environment
(SDEJ).

i mport curamutil. AppExcepti on;

i nport curam core. fact. WM nst anceDat aFact ory;

i mport curam core.intf.\WM nstanceDat a;

i mport curam core.struct. UsersDtl s;

i mport curam core. struct.\WJ nst anceDat aDt| s;
import curamutil.fact. DeferredProcessi ngFactory;
import curamutil.intf.DeferredProcessing;

i mport curamutil.resources. Ceneral Constants;
import curamutil.resources. KeySet;

i mport curamutil.type. Uni quel D

public class MyBPO ext ends curam core. base. MyBPO {

public void doOnlineQperation(int caselD,
UsersDtls usersDtls)
t hrows AppException {

Def er r edPr ocessi ng def erredPr ocessi nglbj

= Def erredProcessi ngFact ory. new nst ance() ;
WM nst anceDat a wirl nst anceDat aCbj =

WM nst anceDat aFact ory. newl nst ance() ;

VWM nst anceDat aDt| s wm nst anceDat abt | s
= new WM nst anceDat abDt | s() ;

// Create a new i nstance data record
wm nst anceDat aDt | s. wrl nst Dat al D

= Uni quel D. next Uni quel D(KeySet . kKeySet Def aul t) ;
wl nst anceDat aDt | s. casel D = casel D;

© Merative US L.P. 2012, 2024

Curam 8.1.3 154

wil nst anceDat aDt | s. ent eredByl D = usersDt| s. user Nang;
wm nst anceDat aDt | s. ent eredByNane = usersDtl s.firstNane
+ Cener al Const ant s. kSpace
+ usersDt|s. surnane;
wnl nst anceDat aQbj . i nsert (wn nst anceDat aDt | s) ;
def erredProcessi nglbj . start Process(
" DO_DEFERRED_OPERATI ON',
wm nst anceDat aDt | s. wirl nst Dat al D) ;

}

Figure 81: Using DeferredProcessing startProcess

Deferred process enactment on page 153 shows a Ctram application BPO that calls a deferred
process method. The key points to note are that the WMInstanceData record is set up as part of
the calling BPO implementation. The Def er r edPr ocessi ng. start Process() command
then is used to request the enactment of the deferred process method. The parameters of this
method are as follows:

1. The name of the deferred process method that is being requested. This string value is
configured by you in the DPProcess table. The exact configuration of the DPProcess table
for deferred processing is dealt with in Configuration of Deferred Processing Table on page
155.

2. The instance data ID of the WM nst anceDat a record that is populated with information
that you deem necessary to be used by the deferred process.

3. If an error occurs, the error handler that implements the
curam.util.deferredprocessing.impl.DPCallback interface must be started.

If the parameter is not provided, the global error handler that is configured through the
curam.custom.deferredprocessing.dpcallback property is started.

WMInstanceData

VWM nst anceDat a allows the definition of application data that is particular to each deferred
process, so that values can be supplied for that data for each instance of the deferred process.

Consider the situation where you want to develop a deferred method for processing a Case.

The deferred processing engine has no knowledge of any cases (or even what a case is), so

it cannot supply the ID of the case to your deferred method. It does, however, know about

VWM nst anceDat a and supplies the ID of a WM nst anceDat a record to every deferred
method it invokes. This record should be created and populated by you before enacting the
deferred process and the ID of the populated record should then be supplied to the enactment
API. When the deferred processing engine invokes your deferred method, it will pass in that ID as
a parameter.

WMInstanceData on page 154 shows the WM nst anceDat a entity class and its properties.

As you can see, apart from the unique identifier attribute of this class, all other information must
be defined by you. This is done using the modeling environment. The WM nst anceDat a entity
should be created in your model, in a package of your choice. WM nst anceDat a facilitates in
the definition of your application specific information.

© Merative US L.P. 2012, 2024

1 Curam server developer 155

Table 38: WMInstanceData Properties

Property Description Type Requirement

wminstDatalD The unique identifier of the WM_INST_DATA_ID M
instance data.

mylnstanceDatal Property to be included as Your application domain (0]

instance data definition for the property.
mylnstanceData2 Property to be included as Your application domain (0]
etc instance data definition for the property.

Offline Unit-Testing of Deferred Processes

If the application is deployed in an Application Server, the deferred methods will be
invoked asynchronously. However, if the Application is not executing in an Application
Server container (for example, for off-line unit-testing), you may wish to invoke the
deferred method synchronously (i.e. not deferred). This can be done by setting the property
curam.test.stubdeferredprocessing to t r ue.

Note: The invocation of the deferred method is dependent on a successful commit of the the
caller's transaction context. If the calling method's transaction rolls back, the deferred process
will not be invoked.

Setting curam.test.stubdeferredprocessinsametransaction property to t r ue ensures that the
deferred processes gets invoked in the same transaction. If this property is not set, the deferred
processes will still be invoked, but in a different transaction.

Configuration of Deferred Processing Table

When using deferred processing functionality in your Curam application, you need to configure
the DPPr ocess table prior to runtime in order for it to work correctly.

The DPPr ocess table, provided as part of the SDEJ, must contain names for the methods
within your application that have been modeled and defined as being deferred using the
<<wmrdpact i vi t y>> stereotype. For each deferred method, you must define a name that
describes it, for the pr ocessNane field. This string value is what must be used when requesting
for a deferred process method to be enacted. The primary key of this table is a processName field.

Configuration of Deferred Processing Table on page 155 details the properties of the
DPPr ocess table.

Table 39: DPProcess Properties

Property Description Type Requirement

processName Name that describes your deferred String M
processing method.

© Merative US L.P. 2012, 2024

Curam 8.1.3 156

Property Description Type Requirement

interfaceName Fully-qualified interface name of a String M
BPO with a <<wmdpacti vi t y>>
method corresponding to the deferred
process.

methodName The name of the String M
<<wmrdpact i vi t y>> method
corresponding to the deferred
process.

ticketType Code table value describing the String (0]
type of deferred process. The
meaning of this is Application-
defined, for example, see the Clram
Ti cket Type code table.

subject Short description of what the deferred String (0]
process method does.

Configuration of Deferred Processing Table on page 155 shows an example of how a
DPPr ocess table might be populated.

Table 40: Example DPProcess Table

processName interfaceName methodName ticketType Subject
DO DEFERRED server. curam doSomething CLAIM This method
OPERATI ON_ processi ng- does
OPERATI ON i nstruction. something.

bi zi nt erf ace.
SonmePr ocese
bi zi nterface.
SomePr ocess

DO_ANOTHER _ server.curam doSonething CASEREVIEW This method

DEFERRED _ bi zinterface. Else does

OPERATI ON SomeQ her something
Process else.

Error Handling

The Deferred Processing Engine provides an error handling callback mechanism when

deferred processes fail, that is, the deferred method you defined throws an exception. The
curamutil . deferredprocessing.inpl.DPCal | back interface is provided with the
infrastructure. It has a single method definition: dpHandl| eEr r or .

Note: Thecuram util . def erredprocessi ng. i npl . DPCal | back interface
should not be confused with the cur am cor e. i npl . DPCal | back interface.

dpHandl eError () gives application developers control over error handling when the
invocation of a deferred process fails. This callback is invoked once the deferred processing

© Merative US L.P. 2012, 2024

1 Curam server developer 157

message has been moved to the DPEr r or queue (usually after the failing process has been
retried several times).

There are two ways an error handler can be configure:

1. Define a single (global) error handler callback for deferred processing by
setting the cur am cust om def er r edpr ocessi ng. dpcal | back
property to the fully- qualified name of a class that implements the
curamutil . deferredprocessing.inpl.DPCal | back interface. The
dpHandl eEr r or () method on that class is invoked when any deferred method fails.

2. Supply the fully-qualified name of any class that implements the
curamutil . deferredprocessing.inpl.DPCal | back interface when enacting
a deferred process. This allows you to specify a specific error handler for a single deferred
process, or even a subset of the instances a deferred process.

Figure 1 shows an implementation example:

voi d dpHandl eError (String processNane, |ong instDatal D)
throws AppException {
/1 Method | ogic goes here

}

Figure 82: DPCallback.dpHandleError implementation example

This callback operation could be used to:

* Notify the client that a deferred process failed.

» Take some remedial action.

Security

Deferred processes run under the user name sYSTEM, so the effective locale for deferred
processes is the default locale for this user as specified in defaultLocale field on the Users
table.

In the case of offline unit-testing of deferred processes, the user name is blank and the effective
locale is the default locale for the Clram server.

Deferred Processing summary
* The incorporation of Deferred Processing into your application is achieved largely by:

* Modeling appointed Business Process Object (BPO) methods with <<wndpact i vi t y>>
stereotype.
* Configuring the DPProcess table in your database.
* Using the DeferredProcessing to request deferred process methods.
» The appropriate deferred processing queues must be set up before run time by following the
steps given in the Curam Installation Guide".

» Application-specific error handling can be achieved by using the
DPCal | back. dpHandl eEr r or () method. An error handler then can be

13 Refer to the installation guide for your particular operating system,; that is, Windows or UNIX.

© Merative US L.P. 2012, 2024

Curam 8.1.3 158

targeted in the code by passing the error handler class name when you start the
Def er redPr ocessi ng. start Process() method.

Cdram timers

You can use the Ctiiram timer bean to start timers that start client-visible methods at a specified
point in the future.

For deployed applications, Ctiram timers use the Java Platform, Enterprise Edition timer service
that is provided by the EJB container. When you run applications that are outside an application
server environment, the timer functionality is provided by the java.util.Timer JDK class
instead of the EJB timer implementation of the application server. For more information about the
java.util.Timer class, see the JDK documentation.

Java™ Platform, Enterprise Edition bean definition

The EJB container provides the timer service, which is the infrastructure for the registration and
callbacks of timers and, hence, provides the methods for creating and canceling them. You can
use the timer service of the enterprise bean container to schedule timed notifications for all types
of enterprise beans except for stateful session beans. You can schedule a timed notification to
occur at a specific time, after duration of time, or at timed intervals. For example, you might set
timers to go off at 10:30 AM on 23 May, in 30 days, or every 12 hours.

The EJB container provides different types of timers. The timer can be a single-event timer,
which can occur at a specific time or after a specific elapsed duration, or an interval timer, which
can occur on a regular schedule. Essentially, three types of timers are possible, as outlined in the
following table:

Table 41: Types of timers

Type of timers Description

Single-event timer. A single-action timer that expires after a specified duration.

Single event with expiration date. A single-action timer that expires at a specific point in time.

Interval timer with initial expiration An interval timer where the first expiration occurs after a specified

duration. duration, and where the subsequent expirations occur after a
specified interval.

Interval timer with initial expiration An interval timer where the first expiration occurs at a specific

date. point in time and subsequent expirations occur after a specified
interval.

Development support

The Caram infrastructure provides the following classes and interface to develop Timer Bean
functionality.

* curam.util.transaction.TimerInfo
* curam.util.timer.TimerTask

* curam.util.timer.TimerCallback

© Merative US L.P. 2012, 2024

TimerInfo Class

1 Curam server developer 159

The class curam.util.transaction.TimerInfo contains methods for starting and stopping
timers. This class also contains a number of internal methods and methods reserved for future
use. The following table describes the API's that are currently supported by the infrastructure:

Table 42: List of API's in TimerInfo Class

Method Name

Description

startTask (long, TimerTask)

startTask (long, long,

TimerTask)

startTask (DateTime, TimerTask)

startTask (DateTime, long,

TimerTask)

cancel ()

getID()

isTimerTransaction ()

Create a single-action timer that expires after a specified duration.

Create an interval timer whose first expiration occurs after a
specified duration, and whose subsequent expirations occur after
a specified interval.

Create a single-action timer that expires at a given point in time.

Create an interval timer whose first expiration occurs at a given
point in time and whose subsequent expirations occur after a
specified interval.

Cancels the timer which invoked the current method. Should only
be called by methods which were invoked by a timer, calling this
method from a non-timed method will have no effect.

Gets the identifier for the timer which is running the current thread.

Indicates whether the current transaction is being run by a timer.

TimerTask Class

The class curam.util.timer.TimerTask contains information about the timed operation,
such as which server operation to invoke, parameters to pass into it, whether a callback is
required, etc. The following table describes the parameters that are available in this class.

Table 43: List of parameters from TimerTask Class

Name

Description

met hodNanme
ar gunent

ti mer Name

er r or Handl er Nane

user| D

taskl D

creationTi me

initial Del ay

initial EventTi nme

| nt erval

Mandatory. The name of the method to invoke when timer expires.
Optional. A struct parameter for the method being invoked.

Optional. A name for this timer. This can be used as an identifier
to query or cancel a timer.

Optional. The name of a class, which implements interface
TimerCallback which will get called if the timed method fails.

Read-only. The ID of the user who started off the task. This gets
automatically populated when the timer is started.

Read-only. A unique identifier for each task. This is automatically
populated when the timer is requested.

Read-only. The time at which this timer was requested. This is
automatically populated when the timer is requested.

Read-only. The initial delay time in milliseconds which was
specified when this timer was created.

Read-only. The absolute time of the first event for this timer, or
null if none was specified when this timer was created.

Read-only. The repeat interval which was specified when this
timer was created, or zero if it is a one event timer.

© Merative US L.P. 2012, 2024

Curam 8.1.3 160

T

T

imerCallback interface

imerCallback is an interface for which developers can provide an

implementation and the interface is started if a timed operation fails. The interface
curam.util.timer.TimerCallback has only one method handleError (Exception,

T

imerTask) defined and users can provide an implementation of this method.

Code sample:

/

/| Create the task, specifying the nane of the server
/! operation to invoke:
final TimerTask task = new Ti mer Task();
t ask. net hodNane =
"“curam core. facade.intf.ProductDelivery.cl ose";

/1 This operation takes one struct paraneter,

// so instantiate the struct and add it to the task:

final curamcore.facade. struct. C oseCaseDetails caseDetails
= new curam core. facade. struct. d oseCaseDet ai | s();

caseDetai | s. casel D = 12345;

task. argunent = caseDetails;

/1l Start off the timer, specifying that it invokes the
/1 method in 10 seconds tinmne:
final long timerlD = Tinmerlnfo.startTask(10000, task);

/1 Every timer is assigned a unique |ID which can be used
/1 to manipulate it and also to help track the tiner

/1 in any diagnostic | ogs.

Systemout.println("Created a tiner with ID" + tinerlD);

Rules for using Curam timers

There are some considerations and limitations to Generic Timer Bean provided as part of Caram
infrastructure and they are listed below.

1.

© Merative US L.P. 201

Curam timers can invoke any client visible operation in the application meta-model,
provided that:

1. The operation has zero or one parameter.

2. The operation has its Transactional option set to No.

3. The user has access rights to that operation.

Cuaram timers do not have any facility to return a value from an operation.

When deployed in an application server, timer creation and cancellation are transactional.
For example, if you create a timer, it only becomes active after the transaction gets
committed. Similarly if you cancel a timer, it only gets cancelled when that transaction gets
committed.

Transactions invoked by timers execute using the same Curam user ID as the user who
created that timer.

The transaction type of a timer transaction is reported by
TransactionInfo.getTransactionType () as being 'online'. (i.e. not deferred/batch/
etc)

Timers should only be started by online transactions or other timer transactions. i.e. deferred
processes, workflows or batch programs cannot start timers.

2,2024

1 Curam server developer 161

7. When deployed in an application server, timers are persistent and remain active until they
are canceled by the user, even if the application server is stopped and restarted.

8. Ifthe application server is stopped for a time and then restarted later, all timers which were
active before the shutdown will resume following the restart but the timer will not try to
'catch up' with any missed ticks. Instead it will tick at the next scheduled time.

9. Ifatimed operation throws an exception, the transaction will be rolled back. If the developer
has specified a callback handler for the exception, the callback handler will get called if it
has been configured, but it cannot be used to prevent the transaction from being rolled back.

10. Ifa timed operation throws an exception, the timer does not get cancelled and will continue
to tick as before until it is cancelled from within a transaction which gets committed.

Therefore it is important for developers to ensure that timed operations cannot repeatedly
throw exceptions, as otherwise they could continue to be attempted indefinitely.

11. Timers should not be used to drive batch style processing. A timer driven transaction will
have the same timeout as a deferred processing transaction (30 seconds by default) and
should therefore be used only for reasonably short running pieces of processing.

12. To enable developers to use and test timer related functionality, when the application is
deployed timers in the SDEJ are provided by the J2EE javax.ejb.TimerService class.
Similarly, when the application runs in the development environment, timers in the SDEJ
are provided by the JDK java.util.Timer class for testing purposes only. However, the
java.util.Timer class has the following limitations:

e The java.util.Timer class is not transactional. For example, if you start a timer and
then roll back the transaction, the timer stays active instead of being rolled back.

e The java.util.Timer class is not persistent. For example, the java.util.Timer
class does not resume if you stop and restart the JVM.

Timer behavior

Timer can behave differently depending on the scenario at with they are started. Some of the
scenarios and Timer behavior is as described below.

» For a repeating timer, if a timed transaction continues past the point at which the next tick is
due, then that tick is discarded and the next due tick will be used.

For example:

A timer is configured to tick every 20 seconds. So this means that the timer will normally tick
at the following times:

20, 40, 60, 80, 100, etc

Now let's say that on the second tick, the timed transaction took 25 seconds to complete. This
means that the transaction which started at the 40 second mark completed at the 65 second
mark, and is therefore deemed to have 'missed' the 60 second mark. So the next time the timer
will tick will be at the 80 second mark. So the actual times the timer will have ticked are:

20, 40, 80, 100
* When a timer is specified with an initial duration, that duration is relative to the time at which
the timer was created. It is not relative to the time at which the transaction was committed

© Merative US L.P. 2012, 2024

Curam 8.1.3 162

- even though the timer cannot actually begin ticking until the transaction in which it was
created has been committed.

For example, the user invokes a rather long online transaction which does the following:

* Creates Timer A with an initial duration of 60 seconds.
* Does some processing which takes 20 seconds.
» Creates timer B with an initial duration of 60 seconds.

* Commits the transaction.
Next the following will happen:

» 60 seconds after it was created, Timer A will start ticking.
* 20 seconds later, Timer B will start ticking.

i.e. even though these timers were committed at the same time, each retains its own individual
start time.

FAQ
* How do I see which timers are active?

Different Java EE application servers implement their timer mechanism in different ways and
there is no standard way to administer timers using their admin consoles. The TimerInfo API
provides a number of functions to find and query active timers.

* How do I stop a timer?

A single-event timer will stop automatically after one successful execution. (i.e. if it executes a
transaction which committed successfully.) For repeating timers, the TimerInfo class contains
a number of methods for stopping these timers. Note that stopping a timer will only take effect
when the transaction which requested the stop is committed.

* Can I ensure that my operation will be invoked only by a timer?

Curam timer beans can only invoke methods which are in the model and are client visible,
therefore it is possible for the HTML client to also access these methods, which may not be
desirable.

If you want to ensure that only a timer transaction executes your method, you can use the
TimerInfo API to check for this at run time as illustrated by the following sample code extract:

/1 Ensure that this transaction is a tinmer:
if (!TimerInfo.isTimerTransaction()) {
/1 throw an exception to report that an
/[l invalid attenpt was made to execute
/1 this operation outside of a tinmer.
t hrow new AppException(....);

}

* How many timers can be active at a time?

The Curam timer bean API is a wrapper for the Java EE Timer API and it is worth noting that
the Java EE Timer API uses arrays of timers and as such is not designed for dealing with very
large volumes of timers.

As an extreme example: if an application contained several million customer records on the
database, it would be unadvisable to use timers as the mechanism for controlling when an

© Merative US L.P. 2012, 2024

1 Curam server developer 163

invoice is issued to each customer, because this would result in having several million timer
objects active in memory.

In general it is recommended that timers be kept as few and as short lived as possible.
* How accurate is a timer?

The parameters used when creating a timer allow a developer to specify a granularity of
milliseconds with regard to when and how often the timer will fire. However the application
server cannot guarantee to fire the timer at exactly the expected time because there may be
conditions which prevent this from being achieved. For example the server may be down at
the scheduled time, it may be delayed by other transactions, a large number of timers may be
scheduled to fire at exactly the same moment, etc. The rule of thumb is that the application
server will fire the timer event as close to the designated time as possible, so the developer
should not assume that the timer will fire at an exact time.

* Can I use timers in the development environment?

Yes. However, when you use timers inside the development environment, the timer is provided
by the JDK java.util.Timer class that has the following differences to the Java Platform,
Enterprise Edition timer:

e The java.util.Timer class is not transactional.
* The java.util.Timer class is not persistent.
* How can I debug timers?

To isolate the Caram task trace output by the task identifier, set the Curam trace level to
trace verbose (curam.trace=trace verbose) and configure a log4j appender for the
category Trace.TimerInfo.

* Can a timer be configured to start automatically?

No. The life cycle of a timer is controlled by the developer. i.e. the developer is responsible for
starting each timer and for ensuring that it stops.

Events and event handlers

Use this information to understand events and event handlers. Events provide a mechanism for
loosely coupled parts of the Ctiram application to communicate information about state changes
in the system. When one module in the application raises an event, one or more other modules
receive notification of that event that occurred, provided they are registered as listeners for that
event.

To use this function, some events need to be defined, some application code must raise these
events, and some event handlers need to be defined and registered as listeners to such events.
Developers must write and register event handlers (classes that initiate an action when an event
is raised) and optionally event filters (logic that determines whether to start the handler for a

specified event). Event handlers and filters are classes that implement callback interfaces in much

the same way as in the classic observer patternm.

14 The observer pattern is one of the design patterns made popular by the landmark book Design Patterns:
Elements of Reusable Object-Oriented Software. It describes a generic listener framework.

© Merative US L.P. 2012, 2024

Curam 8.1.3 164

The Format of Event Files

Event definition
Events are defined in Curam in XML files that specify both the event classes and the event types.
Use this information to understand how to events are used.

Events are defined in Curam in XML files that specify both the event classes and the event
types. These files are created with a . evX extension and are placed in the event s of a Ciram
component from where they are picked up and processed by the build scripts. The format of an
event file is shown in the example that follows:

<events package="curamutil.events">

<event-class identifier="EVENT _CLASS ONE" val ue="CLASS1" >
<annot ati on>Sone event cl ass. </ annot ati on>
<event-type identifier="EVENT_TYPE_ONE" val ue="EVENT1"/>
<event-type identifier="EVENT _TYPE TWO' val ue="EVENT2"/>

</ event - cl ass>

<event-class identifier="EVENT _CLASS TWO' val ue=" CLASS2" >
<event-type identifier="EVENT_TYPE_ONE" val ue="EVENT1">

<annot ati on>Sone event type.</annotation>

</ event -t ype>
<event-type identifier="EVENT_TYPE TWO' val ue="EVENT2"/>
<event-type identifier="EVENT _TYPE THREE" val ue="EVENT3"/>

</ event - cl ass>

</ event s>

Figure 83: Event definition file

* events
This element is the root tag of an event definition file under which all the event classes and
types are defined.

* package
This element specifies the Java code package into which the Java constants for event
classes and their types are generated.
* annotation
This element is optional and is specified for both event classes and types intended for
descriptive text for the element. The text that is specified in an annotation is generated into the
Java constant files as] avadoc comments.
* event-class
Defines an event class, which qualifies all the event types associated with that class.

* identifier
This element is the identifier of the event class for code generation and is the class name
for the constant class that contains all the event types in the class. Since this element is a
Java class name, it must be a valid Java identifier.

* value
This element represents how an event class is referenced at run time and it is this value that
event handlers are registered against. This value needs to be unique in the system and is a
100-character string.

© Merative US L.P. 2012, 2024

1 Curam server developer 165

* event-type
Defines an event type within a specified class. Since an event is identified by its own name
and that of its parent class, an event type needs to be unique only within a specified class.

* identifier
This element is the identifier of the event type for code generation and is the field name for
the constant containing the value of the event type. Since this element is a Java field name,
it needs to be a valid Java identifier.

* value
This element is how an event type is referenced at run time and the value needs to be
unique within a specified event class and is a 100-character string.

Event handler registration
Use this information to understand event handlers and how to register them against a particular
event class.

Event handlers and their associated (optional) filters need to be registered against a particular
event class to be started when an event of the specified class is raised. This operation is done in
file named handl er _confi g. xm placed in the event s folder of a Cliram component.

<regi strations>
<event-regi stration handl er="curam i npl . SonmeEvent Handl er " >
<event - cl asses>
<event-class identifier="CLASS1"/>
</ event - cl asses>
</ event-registration>
<event-regi strati on handl er ="curam i npl . Anot her Event Handl er "
filter="curaminpl. Anot herEventFilter">
<event - cl asses>
<event-class identifier="CLASS2"/>
</ event - cl asses>
</ event-regi stration>
<event-regi stration handl er="curam i npl . RenovedEvent Handl er"
renoved="true" >
<event - cl asses>
<event-class identifier="CLASS2"/>
</ event - cl asses>
</ event-registration>
</registrations>

Figure 84: Event handler registration file

* registrations
This element is the root tag of an event handler registration file under which individual
registrations are defined.

* event-registration
Specifies an event handler registration.

* handler
The fully qualified name of an event handler class (see: Event handlers on page 170).
+ filter
The fully qualified name of an optional event filter class (see: Event filters on page 170).

© Merative US L.P. 2012, 2024

Curam 8.1.3 166

* removed
An optional attribute that is used by components of a higher precedence to disable
previously registered event handlers, (see: Rules of event handler merges on page 167).
* event-classes
This element is a list of all the event classes against which the handler is registered.
* event-class
A specific event class against which the specified handler is registered. When any event with
the specified class is raised the event handler (providing the event filter approves) is started.

* identifier
This element identifies the event that the handler is registered against. This value
corresponds to the value attribute of an event-class element in the event definition files.

How to merge event files
Use this information to understand how to merge event files with files included with your Ctiram
application.

Both event definition and handler registration files are in the / event s directory of a component.
The Curam reference application includes a set of event files. These files can be augmented by
placing new event files in the SERVER_DI R/ conponent s/ <cust on®/ event s directory,
where <cust on® is any new directory that is created under components that conforms to the
same directory structure as conponent s/ cor e. This mechanism avoids the need to modify
directly to the unmodified application, which would complicate later upgrades.

The override process involves merging all event files of the same name according to a precedence
order. The order is based on the SERVER _ COMPONENT_ ORDER environment variable. This
environment variable contains a comma-separated list of component names: the leftmost has the
highest priority, and the rightmost the lowest.

After changes are made to the component precedence order in
SERVER COMPONENT ORDER, it is necessary to run a clean build to ensure that you are
using the appropriate files. This procedure is done by starting bui | d cl ean server.

Rules of event definition merges

For event definitions to be merged, the files that are provided to customize the events need to
be named the same as the existing files that contain the event classes to customize. Use this
information to understand how to merge event definitions.

For event definitions to be merged, the files that are provided to customize the events need to be
named the same as the existing files that contain the event classes to customize. Placing event
classes with the same name in files with different names results in errors that occur when the
application loads the event definitions onto the database.

The customizing behavior for events is simple - events cannot be removed as existing functions
might be using an event that other components then decide to remove. As a result, such code
would fail to compile. This being the case the only change that can be made to existing event
definitions is that event types can be added to an event class by other components.

© Merative US L.P. 2012, 2024

1 Curam server developer 167

Rules of event handler merges

The event handler (and filter) configurations that are used at run time are from the component
with the highest precedence that specifies the event handler in question. Use this information to
understand the rules for event handler merges.

The event handler (and filter) configurations that are used at run time are from the component
with the highest precedence that specifies the event handler in question (for merging the event
handler is the identifier). Event classes that are to be processed by each handler as specified in
the handler configuration in all the components are amalgamated into a merged configuration. It
is also possible for higher precedence components to disable handler that is specified by lower
precedence components by setting the removed attribute of the event-registration element
to true.

Artifacts produced by generate events
Use this information to understand two types of output generated by the evgen command.

Two types of output are generated by the evgen command: . j ava files (for code constants that
use events less error prone) and . dnx files (database scripts for loading event definitions onto the
database).

The Java artifacts that are produced from merged event files are placed in the / bui | d/ svr/
event s/ gen/ [package] directory. Where [package] is the package attribute specified
in the event definition file. For example, package="curam.events” would result in the Java
artifacts to be placed in the / bui | d/ svr/ event s/ gen/ cur ani event s directory.

The database scripts that are produced from a merged event file are placed in the / bui | d/ svr/
event s/ gen/ dnx directory.

Database Scripts

Events are primarily a development time concept they are defined in XML files, raised in
application code and handled by application defined call-backs. However some administration
utilities in the application need access to the list of events defined and available in a running
system; thus they are also loaded onto the data base.

Below are examples of the DMX files generated from the event definitions for the two entities
used to store the event definitions.

<?xm version="1.0" encodi ng="UTF-8"?>
<t abl e nane=" EVENTCLASS" >
<col um nane="EVENTCLASS" type="text"/>
<r ow>
<attri bute nane="EVENTCLASS">
<val ue>CLASS1</ val ue>
</attribute>
</ row>
<r ow>
<attribute nane="EVENTCLASS">
<val ue>CLASS2</ val ue>
</attribute>
</ row>
</t abl e>

Figure 85: Generated event class database script

<?xm version="1.0" encodi ng="UTF-8"?>

© Merative US L.P. 2012, 2024

Curam 8.1.3 168

<t abl e nane="EVENTTYPE" >
<col um name="EVENTCLASS" type="text"/>
<col um nane="EVENTTYPE" type="text"/>
<r ow>
<attribute nane="EVENTCLASS">
<val ue>CLASS1</ val ue>
</attribute>
<attri bute nane="EVENTTYPE">
<val ue>EVENT1</ val ue>
</attribute>
</row>
<r ow>
<attri bute nane="EVENTCLASS">
<val ue>CLASS2</ val ue>
</attribute>
<attri bute nane="EVENTTYPE">
<val ue>EVENT2</ val ue>
</attribute>
</ row>
</t abl e>

Figure 86: Generated event type database script

Java event code example
Use this information to learn about how to generate a Java code generated constants file for an

event class.

Events are identified in the system by their names as specified by the value attribute of the
event-class and event-type elements. However, just using text in application code to
reference events might be error prone. In particular, an event is fully identified by its type in
addition to its class. Thus, using string literals to refer to an event might be ambiguous, as an
event type is unique only when qualified by its associated event class.

The following code is an example of the generated constants file for an event class. The class
name is the same as the event class. The attributes are the event types. This procedure prevents
the use of incompatible values.

package curamutil.testnodel . events;
/**
* Generated EVENT _CLASS ONE events file.
* Sone event cl ass.
*
*/
public final class EVENT_CLASS ONE {

/** Some event type. */
public static final
curamutil.events. struct. Event Key EVENT _TYPE ONE
= new curamutil.events. struct. Event Key();

static {
EVENT_TYPE_ONE. event O ass = "CLASS1";
EVENT_TYPE_ONE. event Type = "EVENT1";

}

/** Anot her event type. */
public static final

© Merative US L.P. 2012, 2024

1 Curam server developer 169

curamutil.events. struct. Event Key EVENT_TYPE _TWO
= new curamutil.events.struct. Event Key();

static {
EVENT _TYPE TWO event O ass = "CLASS1";
EVENT_TYPE _TWO event Type = "EVENT2",

}
}

Figure 87: Generated event Java constants

How to raise an event
Raising an event is a matter of creating an event struct, populating it with data, then calling the
event service API to raise the event. Use this information to learn how to raise an event

Raising an event is a matter of creating an event struct, populating it with data, then calling

the event service application programming interfaces (API) to raise the event. The event
infrastructure notifies any registered handlers that the event is being raised. How to raise an event
is shown in the example that follows.

import curamutil.events.struct. Event;
i mport curamutil.events.inpl.EventService;
curamutil.events. EVENT CLASS ONE;

Event event = new Event();

event .. event Key = EVENT_CLASS ONE. EVENT TYPE TWO,
event. pri maryEvent Data = 12300838;

event . secondaryEvent Data = 23413081;

Event Servi ce. rai seEvent (event);

Figure 88: Raising an event

* eventKey
This element is the unique identifier of the event within the system. It is made up of two
constituent parts: the event class and the event type. As mentioned earlier and as shown in the
example, though the event key is two parts, it is best to specify it using one generated constant
to avoid mismatching event classed and types.

» eventClass
The class of the event that is being raised: this element is the value on which handlers are
registered.
* eventType
The type of the event that is being raised: this element identifies the specific type of the
event in the specific class.
* primaryEventData
This element is the primary payload of the event and is a 64-bit integer. Typically this element
is (though not necessarily) the identifier of an entity in Clram, the entity in question that is
being identified by the class of the event. The event type commonly is used to indicate the
action that takes place on the entity.

© Merative US L.P. 2012, 2024

Curam 8.1.3 170

* secondaryEventData
This element is any additional data that might be associated with an event when it is raised.
Unlike the primary event data, the secondary event data is optional.

Event handlers
Use this information to understand how to create an event handler.

How to register handlers was described previously. To create an event handler one needs to
implement the interface: curam.util.events.impl.EventHandler, which is shown in the
example that follows.

The action that is taken by an event handler when the event is raised is up to the developer. Event
handlers are started synchronously when the event is raised (and hence run within the same
transaction context as the code that raises the event). This action has two implications:

* Throwing exceptions from an even handler results in the transaction from which the event was
raised being rolled back.

* Long running actions need to be avoided in event handlers as they affect the running time of
the code that raises the event.

package curamutil.events.inpl;

import curamutil.events.struct. Event;
import curamutil.exception. AppExcepti on;
i mport curamutil.exception.|nformtional Excepti on;

public interface Event Handl er {
voi d event Rai sed(Event event)
t hrows AppException, |nformational Excepti on;
}

Figure 89: Event handler interface

Event filters
The purpose of a filter is to decide whether the handler needs to be notified about the event that is
being raised. Use this information to understand how to create an event filter.

As mentioned, an event handler can be configured to have a filter. The purpose of

a filter is to decide whether the handler needs to be notified about the event that is

being raised. To create an event filter, the user needs to implement the interface:
curam.util.events.impl.EventFilter, which is shown in the example that follows.

If the accept method returns frue the event is passed on to the event handler (that is the
eventRaised method of the associated event handler is started), otherwise the event is ignored.

package curamutil.events.inpl;

i mport curamutil.events.struct. Event;
i mport curamutil.exception. AppExcepti on;
i mport curamutil.exception.|nformational Excepti on;

public interface EventFilter {

bool ean accept (Event event)
throws AppException, |nfornmational Exception;

© Merative US L.P. 2012, 2024

1 Curam server developer 171

}

Figure 90: Event filter interface

Unique IDs

Use this information to understand what Unique IDs are in the context of Ctiram and how to use
them in your application.

Unique IDs are numbers that are generated by the Ctram infrastructure for use as unique database
keys. They come in two types:

* Human-readable Unique IDs are ascending sequences of numbers, usually starting at 1, and
are used as database keys where the key value might need to be presented in a User Interface
to a human user.

* Non-human-readable Unique IDs are typically large positive or negative values in the
approximate range 1E-19 to 1E+19. The sequence of non-human-readable Unique IDs
does not repeat (for 2764 key values), but is random in a way that can improve database
performance in some circumstances.

A Unique ID key set is a named non-repeating set of 2764 Unique ID key values. Key sets can
be configured by developers and used to generate Unique IDs for a particular purpose. Each key
set can be configured to be human-readable or non-human-readable. The infrastructure uses a
number of predefined key sets that must be configured as part of a Caram installation.

What Unique IDs are used for
Use this information to understand the purpose of Unique IDs and how to use them.

Cuaram-generated Unique IDs address a perennial problem in application design - how to co-
ordinate multiple processes each of which needs to allocate a number that is ensured to be unique
throughout the application. One classic approach that is involved locking and updating a key
control database table each time a key needs to be allocated. Unfortunately, this approach can
lock the control table during long-lived transactions, preventing other processes from accessing
it. This technique is almost always the source of serious database contention problems in an
application (see “Allocating Sequence Numbers” from Chapter 12 of High Performance Client/
Server, Loosley and Douglas).

Unique IDs are served out in blocks of 256 keys that use a unique ID generator, also known

as the Key Server'”. A process requests a block of Unique IDs by calling the key server.

This action updates a database control table each time it returns a block of Unique IDs to a
requesting process. After a block is allocated, the requesting process can allocate keys from this
block locally; that is, without calling the server again until the Unique ID block is exhausted.
Furthermore, the key server operates in its own transaction so it never locks the key control table
for longer than it takes to allocate and update a next Unique ID block value.

However, it needs to be noted that a process that requests a Unique ID block might or might
not use the keys from that block. If it does not, then the unused keys represent holes in the key
sequence. For instance, processes that use one key value before they shut down leave large holes

15 The design is loosely based on the Sequence Block pattern described by Floyd Marinescu in EJB
Design Patterns (ISBN: 0471208310).

© Merative US L.P. 2012, 2024

Curam 8.1.3 172

in the key sequence. Note also that no time limit exists on how long a process can wait between
allocating a Unique ID block by using the key values in it. Thus, even for human-readable keys
that are in an ascending sequence that starts at 1, the sort order of keys on the database has no
direct bearing on the chronological order in which they were inserted. Obviously, programs are
better to not assume that this condition is the case.

The limit of allocating Unique IDs
Use this information to learn about the allocation of Unique IDs.

A process that used only one key out of each Unique ID block, and allocated 1000 of these IDs
per second non-stop, would take more than 2 million years to exhaust one Unique ID key set. For
all practical purposes, the set of Unique IDs in a key set can be considered to be inexhaustible.

When Unique IDs need to be used
Use this information to understand when Unique IDs need to be used in your design.

Use Unique IDs in your design when each of the following criteria is met:

* You need a unique key for a database entity.
* The database key has no “business meaning”.
* Instances of the entity might be created by multiple contending online or batch functions.

» Holes in the key sequence are acceptable (which always need to be true if the key has no
business meaning).

When not to use Unique IDs
Use this information to understand Unique IDs are not to be used.

Do not use Unique IDs in your design when:

* You need a unique key for a database entity, but have a business requirement for an ascending
sequence without holes (Curam-generated Unique IDs are not guaranteed to be contiguous).

* Your key requires a specification other than a simple numeric format.

» Contending processes do not create instances of the entity (in which case no need exists for
key control at all).

Do keys need to be human-readable?
Use this information toil your keys need to be human-readable.

This decision is up to you. The general rule is that Unique ID values that are displayed to a
user need to be human-readable. Otherwise, you can choose to use non-human readable Unique
IDs. The advantage of these is that their values are spread across a large range, so that database
indexes are not always being extended at the end, as for ascending sequences.

When contiguous human-readable Unique IDs are required
Use this information to understand when contiguous human-readable Unique IDs are required.

Human-readable IDs allocated by the key server are sequential, but can have gaps for two
reasons:

* The IDs are allocated in blocks of 256 keys. When the server is restarted, the remaining values
in any block for any key set that is loaded are discarded.

© Merative US L.P. 2012, 2024

1 Curam server developer 173

+ If a transaction that requests a human-readable ID from the key server is rolled back, the ID
that was served up is discarded (as the key server runs in a separate transaction, its transaction
commits irrespective of what happens to the application transaction - this action is important
for performance reasons).

In instances where a requirement exists to generate human-readable IDs, where the numbers must
be both sequential and have no gaps, Cliram uses an application-defined key table for each set

of IDs (for example, InternalPersonID or InternalEmployerID). An example of such a
business requirement is the issuing of Social Security numbers. These tables are read and updated
in the context of the application transaction, meaning the ID is allocated only if the record bearing
that ID is committed to the database. Otherwise, the whole business transaction, including the ID
allocation, is rolled back. It is worth noting that this process causes performance high processor
usage, as the single row ID table is a database hot spot that must be updated every time the record
bearing that ID is committed to the database.

Thus it is recommended that:

* This method of ID generation is used only when necessary and

* Your design needs to strive to ensure that transactions the use this mechanism are kept as short
as possible to minimize contention on the key table.

The way to design Unique IDs
Use this information to understand the method for designing Unique IDs.

Designing Unique IDs into your Caram application is straightforward. In your Unified
Modeling Language (UML) application model, set the appropriate domain definitions to

be of the data type SVR INT64. The developer's view of this data type is as a Java Long
primitive. To allocate a new Unique ID call Uni quel D. next Uni quel X)), passing

a key set name as a string. This call transparently allocates a new Unique ID block if
necessary. If no key set name is passed to the next Uni quel D() method the default key set,
curam.util.resources.KeySet.kKeySetDefault, is used. This key set allocates non-
human-readable Unique IDs.

Key sets are defined by configuring entries in the KeyServer database table. This configuration
can be done by creating a Data Mining Extensions (DMX) file that defines all key entries. The
way to design Unique IDs on page 173 details the fields of the KeyServer database table.

Table 44: KeyServer Database Table

Field Description
keySetCode An identifier for the key set; for example, MYKEYSET.
nextUniqueIdBlock The next Unique ID block t0 be allocated. For human-readable IDs, this

field can be used to skip preallocated Unique IDs.

humanReadable True if the Unique IDs are to be human-readable.
lastUpdated The time stamp for when the entry was last updated.
strategy Represents the strategy that is used to generate next Unique ID block for

a particular key set.

© Merative US L.P. 2012, 2024

Curam 8.1.3 174

Field Description

Annotation A description of the key set.

If you are using human-readable Unique IDs, and non-Curam-generated keys already have been
allocated, then you can ensure that these values are never reallocated by Curam (that is, Unique
IDs never “clash). This condition is achieved by setting the nextUniqueIdBlock field on the
KeyServer database table to be Ceiling (N/256), where “N” is the number of Unique IDs that
were allocated previously.

The strategy field is used to specify whether the standard Key Server or the Range Aware
Key Server is used for the key set. If the field is set to null, the standard Key Server is used.
If the field is set to a specific value KB1002, then the Range Aware Key Server is used to
generate next Unique ID block for the key set. The Range Aware Key Server is explained in
more detail in Overview of the Range Aware Key Server on page 174.

Warning Care needs to be taken when custom key sets are defined and used. The same key set
always is used when Unique IDs are used as the primary key for a particular database table.

If two key sets are used to generate Unique IDs for the same database table, duplicate record
problems might occur. Unique IDs are only unique within a particular key set.

Note: The conversion routine for hexadecimal numbers that are used as Unique IDs
on a DB2 for z/OS database only can support numbers between Long.MAX VALUE and
Long.MIN VALUE + 1.

Overview of the Range Aware Key Server
Use this information to understand how to use the Range Aware Key Server.

The Range Aware Key Server is a new Key Server implementation introduced to support
Configuration Transport Manager (CTM). CTM is used to transport administrative configuration
data (Business Objects) between systems. Each Business Object is composed of a number of
entities. Each of these entities has a primary key. The standard Key Server implementation
ensures uniqueness of a primary key within a single system installation. This action means that
when a Business Object is transported from a Source System and applied on a Target System, a
strong possibility exists for key clashes between the transported entities and the existing entities
on the system.

The Range Aware Key Server implementation is responsible for creating primary keys to meet the
following requirements:

* Prevent clashes in primary keys between new entities transported to a system and existing
entities on that system.

+ Identify where there is an existing version of a transported entity on a system that the existing
entity is updated with the transported entity data.

© Merative US L.P. 2012, 2024

1 Curam server developer 175

Overview of the Range Aware Key Server
Use this information to understand how to use the Range Aware Key Server.

The Range Aware Key Server is a new Key Server implementation introduced to support
Configuration Transport Manager (CTM). CTM is used to transport administrative configuration
data (Business Objects) between systems. Each Business Object is composed of a number of
entities. Each of these entities has a primary key. The standard Key Server implementation
ensures uniqueness of a primary key within a single system installation. This action means that
when a Business Object is transported from a Source System and applied on a Target System, a
strong possibility exists for key clashes between the transported entities and the existing entities
on the system.

The Range Aware Key Server implementation is responsible for creating primary keys to meet the
following requirements:

* Prevent clashes in primary keys between new entities transported to a system and existing
entities on that system.

 Identify where there is an existing version of a transported entity on a system that the existing
entity is updated with the transported entity data.

How the Range Aware Key Server generates primary keys
Use this information to understand how the Range Aware Key Server generates primary keys by
using key block ranges, and how key block ranges are configured.

The approach that is used by the Range Aware Key Server to generate primary keys hinges on
ensuring that non-overlapping key block ranges are allocated to every system. The Range Aware
Key Server then ensures that all of the primary keys on a particular system are generated from the
range or ranges assigned to that system. Therefore, the primary keys that are generated by each
system are unique.

Key block ranges

At system installation or upgrade time, a system administrator allocates a unique primary
keyrange from which all of the primary keys provided by the Range Aware Key Server
implementation are generated. The system administrator specifies the key block range by using
two components: a group number and a range number.

In general, key block ranges must be configured on systems before they are first started. An
exception is where the default key block range is used for a system. If no key block range is
configured, a default key block range of group 3, range 2 is used.

After a system is started for the first time, entities that are drawn from the key block range might
be created. Therefore, to avoid issues, the key block range that is allocated to the system cannot
be removed.

Multiple key block ranges

Key block ranges are unlikely to be exhausted in normal usage. Each group, range pair contains
over 4 billion range block. In normal usage, 256 keys are allocated from each key block, therefore
the number of keys that are available from each range allocation is large. In addition, each
business object generally uses a separate key set, or collection of key sets, and effectively has a

© Merative US L.P. 2012, 2024

Curam 8.1.3 176

separate key counter for use by its entities. This means that keys are used up at an even slower
rate that usual.

To cater key block range exhaustion, a system administrator can configure a system with multiple
key block ranges. If necessary, these additional key block ranges can be added later, for example,
after the system is first started. If a system is configured with multiple key block ranges, it starts
using key blocks in the additional ranges only when all of the key blocks in the original range are
used up.

After a system is configured with a particular key block range, it is not possible to remove that
key block range from the system.

Group number and range number

The key block range group number is a number between 3 and 32,767 inclusive. Group numbers
1 and 2 are reserved for existing data and for application usage, so customer configurations must
start with group 3. The range number is a number between 1 and 512 inclusive. Each system is
configured with a unique group range pair.

Related information

Where to use the Range Aware Key Server
Use this information to understand where it is needed to use Range Aware Key Server.

The Range Aware Key Server is used only for Key Sets that are created specifically for the
entities that form part of transportable Business Objects. Existing Key Sets continue to use
the current Caram Server Development Environment (SDEJ) Key Server implementation,
unchanged.

Note: it is important that existing Key Sets are not changed to use the Range Aware Key
Server - the Range Aware Key Server should be used only with new Key Sets.

The Range Aware Key Server supports both non-human readable and human-readable generated
keys, so the value of the humanReadable attribute in the KeyServer table is set to either “0” or
“1” depending on the entity's requirements.

1.5 Curam configuration parameters

You can set configuration parameters for Ciiram applications that control characteristics of
how the application is run. Generally, and unless otherwise noted, these parameters are set in
. property and. pr X files that are associated with your application.

The configuration parameter descriptions are organized according to the file in which they are

set and in functionally related groups. Some parameters are of a "BOOLEAN" type, where

noted. BOOLEAN means that the value "true" or "yes" in uppercase, lowercase, or mixed case,
equates to a "true" value; all other values (or none) equate to "false." The configuration parameter
descriptions are grouped into functionally related groups.

© Merative US L.P. 2012, 2024

mzmmBootstrap.properties

1 Curam server developer 177

The following properties relate to the Boot st r ap. pr operti es file.

Select a properties category.

e Database

e Environment

» Test
e Custom
Database

These settings configure Curam for database communication.

Table 45: Database settings

connecti oncache.
nanme

Property Name Type Meaning

curam db. t ype STRING The property that specifies the database type. Valid
values are: DB2, ORA, or ZOS

cur am db. passwor d STRING The encrypted password that corresponds to the user
name specified above. The database password is never
stored in plaintext in the various Curam property files.

cur am db. user nane STRING A valid database username.

curam db. or acl e. INT32 The size of the prepared statement cache used by

cachesi ze batch programs when run against Oracle (the prepared
statement cache is based around implicit caching).

curam db. or acl e. BOOLEAN Turn on connection caching for Oracle outside of an

connecti oncache. Application Server.

enabl ed

curam db. or acl e. INT32 Set Min Limit for the Cache. This sets the minimum

connecti oncache. number of PooledConnections that the cache maintains.

mnlimt This guarantees that the cache will not shrink below this
minimum limit.

curam db. or acl e. INT32 Set Max Limit for the Cache. This sets the maximum

connecti oncache. number of PooledConnections the cache can hold. There

max!| i mt is no default MaxLimit assumed meaning connections in
the cache could reach as many as the database allows.

curam db. or acl e. INT32 Set the Initial Limit. This sets the size of the connection

connecti oncache. cache when the cache is initially created or reinitialized.

initiallimt When this property is set to a value greater than 0, then
that number of connections are pre-created and are
ready for use.

cur am db. or acl e. STRING The name used to identify the cache uniquely.

© Merative US L.P. 2012, 2024

Culram 8.1.3 178

Property Name Type Meaning

curam db. zos. STRING Property that specifies the name of the table space used

32kt abl espace for 32k storage on DB2 z/OS.

curam db. zos. BOOLEAN Controls whether foreign keys are generated for a z/

enabl ef or ei gnkeys OS database when running the Data Manager. Note
on usage - If Foreign Keys are used against a z/OS
database, the tables are put in a CHECK_PENDING
state, causing failures when the tables are accessed.
The state can only be changed through direct DBA
intervention on the target platform (hence it cannot be
scripted into the Data Manager which can run on remote
clients). In normal usage the Data Manager invokes
LOB Manager after applying the foreign keys. This
means the LOB Manager should be re-run after the this
CHECK_PENDING state has been resolved.

curam db. di sabl e BOOLEAN Controls whether foreign keys are generated in SQL

f orei gnkeys statements. By default this property is false, which
means foreign key generation is enabled. However, for z/
OS foreign keys will not be generated if

curam.db.zos.enableforeignkey

s is set to false.

cur am db. di sabl e BOOLEAN This property controls the reporting of invalid LOB file

| nval i dLobFi | eErr or paths in DMX files. The default value is FALSE. By
default a build exception will be thrown, when set to
TRUE a warning will be reported.

cur am db. zos. STRING Property which specifies whether the database being

encodi ng used on z/OS requires processing for EBCDIC, ASCII,
or UNICODE encoding. This should be set to EBCDIC,
ASCII, or UNICODE depending on the appropriate
database encoding in use. EBCDIC is the default value.

curam db. zos. STRING The name of the database on z/OS.

dbname

cur am dat abase. BOOLEAN It is recommended strongly that this property be set to

short nanes false. The functionality for this property is planned for
removal in a future version of Curam. If you have utilized
this property in previous versions of Curam, contact
Curam Support for more information.

curam db. or acl e. STRING The Oracle database service name. Setting this will

servi cenane create database connection using Oracle service name.

curam db. nane STRING The database name. This setting will be overridden if

property

curam.db.oracle.servicename

is set for Oracle database.

© Merative US L.P. 2012, 2024

1 Curam server developer 179

Property Name Type Meaning
curam db. STRING The database server name.
server nane
cur am db. INT32 Suggested: 1521 (Oracle)/ 50000 (IBM® Db2®). The
server port database server TCP/IP port.
cur am db. enabl e. BOOLEAN Suggested: false. Causes a bindings file to be generated
bi ndi ngs. gener ati on for the Java Database Connectivity (JDBC) data source
when a database connection is made outside of the
application server, e.g. by the Batch Launcher. Has no
effect if property
curam.db.disable.bindings.generation
is set. It is intended to be used to produce a starter
bindings file which can then be customized.
cur am db. di sabl e. BOOLEAN Suggested: false. Prevents re-generation of the JDBC
bi ndi ngs. generati on data source bindings file and instead causes the data
source to be looked up from a customized bindings file
when a database connection is made outside of the
application server, for instance by the Batch Launcher.
curam dnx. | ocal e STRING Default: en. Property that specifies the locale that will be
used when inserting DMX data onto the database. The
locale should be specified in the format:
language country
, for example
en US
curam db. nul ti byt e. BOOLEAN Enables the multi-byte expansion feature for Db2® and
expansi on Db2® for IBM® z/OS®. Default value is true.
curam db. mul ti byt e. FLOAT Specifies the default expansion factor for multi-byte
def aul t. f act or string fields if the multi-byte expansion feature is
enabled. The value must be a float between the values of
1 and 4. Default value is 4.
curam db2. ssl BOOLEAN Default: false. Indicates that Secure Sockets Layer (SSL)
is to be used for Db2® database communications.
curam db2. ssl STRING Default: none. Specifies the SSL trust store location to be
trust st oré | oéat i on used for secure Db2® database communications.
STRING Default: none. Specifies the SSL trust store password to

curam db2. ssl .
trust store. password

be used for secure Db2® database communications.

© Merative US L.P. 2012, 2024

Curam 8.1.3 180

Property Name Type Meaning
curam db2. BOOLEAN Default: false. Indicates that the Db2® pureScale
pur escal e property,

enableSysplexWLB

, is set for the Db2® DataSource and IBM® WebSphere®
Application Server configuration.

Back to properties category list

Environment

These settings configure the environment for your Ctiram application.

Table 46: Environment settings

properties

Property Name Type Meaning

cur am envi r onnent . STRING Suggested: Should be set to BEA or IBM to reflect

as. vendor the Application Server being used. If running
outside an application server, this should be empty.
This defines the Application Server in which Curam
will be deployed. This is setup automatically when
the EAR file is built using the build targets.

curam envi r onment . INT32 Suggested: 1221. Port on which the tnameserv is

t nanmeser v. port running.

curam envi r onment . STRING Suggested: C:/Temp. Name of the file system

bi ndi ngs. | ocati on location containing data sources.

curam envi ronnment . STRING Default: yyyy MM dd. The date format. Can be set

def aul t . dat ef or mat to one of: "d M Ayyubid,” "M d Ayyubid," "yyyy M
d," "dd MM Ayyubid," "MM dd Ayyubid," "yyyy MM
dd," "d MMM Ayyubid," "MMM d Ayyubid," "yyyy
MMM d," "d MMM Ayyubid," "MMMM d Ayyubid,"
"yyyy MMMM d," "dd MMM Ayyubid," "MMM dd
Ayyubid," or "yyyy MMM dd."

curam envi r onnent . STRING The date separator. Can be set to one of: ".", ",",

def aul t . dat esepar at or It

cur am envi r onment STRING Valid time formats are hh mm ss a, hh mm a, HH

defaul t.timefor ITHt mm, and HH mm ss. Default is HH mm ss

cur am envi r onnment STRING Valid time separator formats are : and .. Default is

defaul t.ti nmeseparat or :

curam di sabl e. dynani c. BOOLEAN This indicates if dynamic properties should be

enabled or disabled. This is used by command line
tools that require access to properties but cannot
access the database.

© Merative US L.P. 2012, 2024

1 Curam server developer 181

Property Name Type Meaning
curam depr ecati on. BOOLEAN This indicates if deprecation reporting should be
reporting enabled or disabled. This is used by all tools (both

online and offline) that report deprecation warnings
to the user (for example, rules and workflow

validation).
curamentity.struct. BOOLEAN Indicates if generated entity standard structs
deprecati on should be deprecated if an entity is deprecated.

This is used by generators which generate
standard entity structs.

curam envi ronnent . STRING Indicates if when rounding money types in Curam,

r oundi ngpr eci si on. enabl e the HALF_UP algorithm will be used. This means
that all Money will be rounded up. If set to true,
the HALF_UP algorithm will be used. If not set, a
default of true is used.

Back to properties category list

Test

These settings configure elements of Ctiram that are useful for unit testing.

Important: Do not use these settings in a deployed application as they can degrade
performance or cause failures.

© Merative US L.P. 2012, 2024

Curam 8.1.3 182

Table 47: Test settings

Property Name

Type

Meaning

curam.test.override.date

curam.test.treatreadmultimaxaserror

STRING

BOOLEAN

This property allows the date and
time to be set to a known value for
testing. In order to override the date
and time the property should be in
the format YYYYMMDDThhmmss.
The 'T' character is the separator
between the date and the time. It
is valid only to specify the date. If
the time portion of the property is
not set explicitly the time will be
default automatically to midnight
(00:00:00). For example, the
string value '20070101T175930'
represents 17:59:30 on Jan. 1,
2007. The string value 20070101
represents 00:00:00 on Jan. 1,
2007.

Default: false. Specifies that a

run time error should be thrown in
addition to a log message when the
result size of Readmulti operation
exceeds the maximum. This does
not apply when the Treat readmulti-
max as InformationalException
option is enabled

Back to properties category list

Custom

These settings allow a developer to replace elements of the Caram infrastructure with their own

customized handlers.

Table 48: Custom settings

Property Name

Type

Meaning

curam.custom.workflow.webservicebpo

STRING

The name of the application
Business process Objecs (BPO)
that workflow process enactment
web services go through.

Back to properties category list

© Merative US L.P. 2012, 2024

1 Curam server developer 183

mmmDynamic properties in Application.prx

The following properties relate to the available dynamic properties in the Appl i cat i on. pr x
file.

Environment

These settings configure the environment for your Ctiram application.

Table 49: Environment settings

Property Name Type Meaning

curam envi r onnent . STRING Default: en. The default value of the

defaul t.| ocal e language code for the server.

curam envi r onnent . BOOLEAN Specifies whether a

recor dl ocked. RecordLockedException iS setto a

syst enexcepti on System exception. The default is false
here, that it is an Application exception.

curam envi r onnent . BOOLEAN Specifies whether a configparam is set to

readnul ti max. a System exception. The default is false

syst enexcepti on here, that it is an Application exception.

curam transacti on. BOOLEAN Specifies whether any SQL queries

sql quer ycache. di sabl ed that do a SELECT on a database table

have their results that are cached for the
duration of the transaction in which the
operation was invoked. Subsequent calls
that use the same SQL query retrieve the
results from this thread local transaction
SQL query cache and not read the results
from the database. The default setting for
disabling this cache is false so that the
results of SQL queries are cached.

curam sql querycache INT64 Specifies the maximum size of a field of

.l ob. max. si ze type Character Long Object (CLOB) or
type Binary Large Object Block BLOB) in
a result set that is allowed to be cached in
the transaction SQL query cache.

cur am enabl e. | oggi ng. BOOLEAN Default: false. When set to true, all client
client. aut hcheck authorization checks will be logged to the
AuthorisationLog

database table.

© Merative US L.P. 2012, 2024

Curam 8.1.3 184

Property Name

Type

Meaning

curamaudit.audittrail.
dat aconpr essi ont hr eshol d

INT32

Specifies the size of the audit data

stored in the detailinfo column of the
audittrail database table that causes
data compression to be invoked. Default:
-1 (off). This value is checked per audit
operation. To turn compression on for

all audittrail detailinfo data set

this value to 0. When turned on rows

that contain compressed data have the
boolean attribute ISCOMPRESSED set to
true. Note that short audit data is not likely
to see performance gains, but will for large
data rows. The performance of Curam
auditing Out Of The Box (OOTB) should
not require compression, but if you add
additional auditing you should evaluate
your auditing selections for performance
to determine the best setting for this
value. Compression is done by way of the
curam.util.resources.

ByteArrayUtil.byteArrayToBase64Enc

method and decompression can be
done by way of the corresponding

ByteArrayUtil.base64EncodedStringToH
method.

dedString

yteArray

JMX

These settings configure the Java Management Extensions (JMX) infrastructure for your Cliram

application.

Table 50: IMX settings

tracing_url _filter

Property Name Type Meaning

curam j nx. noni tori ng_ BOOLEAN Whether JMX monitoring is enabled or not in

enabl ed the application.

curam j nx.transaction_ BOOLEAN Whether transaction tracing is enabled or not

traci ng_enabl ed in the application. When this is enabled, in-
flight data collection is enabled also.

cur am J nx.transacti on_ STRING Regular expression to identify URLs for

which transaction tracing data is collected.

© Merative US L.P. 2012, 2024

1 Curam server developer 185

dorded threac

Property Name Type Meaning

curam j nx.transaction_ INT32 The maximum number of threads for which

traci ng_max_ transaction tracing data is collected. Note

recorded_t hr eads that at any one moment there could be
more than this number of threads in the
transaction tracing data but a significant
amount of entries will be preserved only for
this number of threads.

curam j nx.transaction_ INT32 The period of time, in seconds, between

traci ng_purge_peri od checks to ensure that only the number of
threads specified in

curam.jmx.transaction tracing max re

are preserved in the transaction tracing data.

curam j nx.transaction_ INT32 The maximum amount of time, in seconds,

traci ng_max_ a thread is allowed to be idle before its

thread idle tine transaction tracing data can be cleared.

curam j nx. confi gured_ STRING The list of MBeans configured in the EJB

nbeans_ej b container.

curam j nx. confi gured_ STRING The list of MBeans configured in the WEB

nmbeans_web container.

curam j nx. per _user STRING Regular expression to identify users for

_statistics filter which individual statistics are collected.

curam jnx.in_flight BOOLEAN Whether or not statistics about in-flight

_statistics_enabl ed transactions are collected.

curam j nx. sql _st at enment BOOLEAN Whether or not SQL statement statistics

_statistics_enabl ed collection is enabled.

curam j nx. downl oad__ BOOLEAN Whether or not the download of JIMX

statistics_all owed statistics is allowed.

curam j nx. downl oad__ STRING The username of the user who is allowed to

statistics_usernane download the JMX statistics.

curam j nx. end_user _ BOOLEAN Whether or not end user statistics collection

statistics_enabl ed is enabled.

curam j nx. end_user _ STRING Regular expression that selects users for

statistics user filter which end user statistics are collected.

curam j nx. end_user _ BOOLEAN Whether or not the end user statistics

statistics_
di spl ay_enabl ed

are displayed in the browser. If true, the
statistics for the current page are displayed
in the top left corner of the page.

© Merative US L.P. 2012, 2024

Curam 8.1.3 186

Property Name

Type

Meaning

curam j nx. end_user _
statistics_upl oad_del ay

INT32

The delay in seconds between the page
reporting being loaded and the moment the
statistics are uploaded.

Test

These settings configure elements of Curam that are useful for unit testing.

performance or cause failures.

Important: Do not use these settings in a deployed application as they can degrade

Table 51: Test settings

processi nsanetransacti on

deferred process calls should be run in
the current transaction using the current
database connection. If true, a new
transaction will not be started for each
stubbed deferred process call.

Property Name Type Meaning

curamtest. store. BOOLEAN Default: false. Specifies that the values

entitykeys written to the database should be stored in
memory for retrieval by tests. They can be
accessed through

curam.util.DataAccess.KeyRepository

curamtest.trace. BOOLEAN Default: false. Place a compact trace of

statistics BO method invocations in a buffered log.
This representation is suitable for obtaining
performance measurements.

curamtest.trace. STRING The name of the file that has the statistics

statistics.|location information generated into it.

curamtest. singl euser BOOLEAN Indicates whether only a single user will
be active. This is the only mode supported
if an IDE is used to execute Curam as a
standalone Java program.

curam test.stub BOOLEAN Default: false. Specifies that it needs

def err edpr ocessi ng to use deferred processing without en-
queuing in App Server.

curamt est. st ubdeferred BOOLEAN Default: false. Specifies that stubbed

Rules

These settings configure the rules infrastructure of Curam.

© Merative US L.P. 2012, 2024

1 Curam server developer 187

Table 52: Rules settings

Property Name Type Meaning
curamrules.file. STRING The directory where the XML representation
access. | ocation of rule sets will be created. <Cannot be

used for Clram express rules (CER) rules>

curamrules.file. BOOLEAN Specifies that rule set files exist in multiple
access. mul til ocati on locations. <Cannot be used for CER rules>
curam rul es. nodel . BOOLEAN Specifies that Remote Data Objects
file.rdo.access (RDOs)should be retrieved from a Curam

model file. <Cannot be used for CER rules>

curamrul es. def aul t . STRING Default:
| ocal e

en US

. Default locale used when creating the XML
representation of rule sets. <Cannot be
used for CER rules>

curam rul es. gI obal s. STRING The display/user friendly name associated
description with the pre-defined Globals Rules
Data Object. The default value is the
localized message text associated with the
infrastructure catalog entry:

RULES:ID GROUP DISPLAY NAME GLOBALS

<Cannot be used for CER rules>

curam rul es. enabl e. BOOLEAN Specifies the rules optimization. <Cannot be

optim zation used for CER rules>

curam rul es. enabl e. BOOLEAN Specifies the rules engine construction of

fulltext full result text. <Cannot be used for CER
rules>

curam debug. rul es BOOLEAN Default: false. Specify whether the rules

debugging should be enabled. <Cannot be
used for CER rules>

curam di sabl e. enpty. BOOLEAN Default: true. Specify whether the rules

obj ecti vel i st groups decision should include empty Objective list
groups.

curam rul es. dat e. r ange. BOOLEAN Specifies the new objective calculation.

i ncl udes. cal cul ation. date <Cannot be used for CER rules>

IEG

These settings configure the properties for the Intelligent Evidence Gathering (IEG) environment.

© Merative US L.P. 2012, 2024

Curam 8.1.3 188

Table 53: IEG settings

must mat ch.
current pagequesti ons.
di sabl ed

Property Name Type Meaning

curam i egedi t or. STRING Specifies the IEG Editor Application

cal | back. cl ass Callbacks class.

curam i egrunti ne. BOOLEAN Specifies whether to use separate question
guest i onpage. pages when "for" looping.
separ at equesti ons

forl oopstyl e

curam i eg. answers. BOOLEAN Specifies whether to disable the default

behavior for testing purposes.

By default, when the IEG REST API for
submitting answers is called, it compares
any submitted question-answer pair against
the questions that are defined on the current
question page. Answers from questions
that are not on the current question page
are not processed. A new server logging
message displays when curam. trace is set
to trace on and logs when an answer is
submitted by a user to a question that is not
available from the current question page.

When set to t rue, this behavior is disabled.

Custom

Developers can use these settings to replace elements of the Caram infrastructure with their own

customized handlers.

Table 54: Custom settings

notifications.
notificationdelivery

Property Name Type Meaning

curam cust om STRING The name of the application class that

def err edpr ocessi ng. implements the DPTicketCallback interface.
dpcal | bac

k

curam cust om STRING The name of the application class that

wor kf | ow. wor kr esol ver implements the WorkResolver interface.
curam cust om wor kf | ow. INT32 Default: 250. Specifies the maximum size of
processcachesi ze the process definition cache.

curam audi t . BOOLEAN If set to true this property will disable the
audi ttrail.noxnl audi t existing audit writer.

curam cust om STRING Specifies the name of the application class

that implements the NotificationDelivery
interface.

© Merative US L.P. 2012, 2024

1 Curam server developer 189

Property Name Type Meaning

curam cust om dat aaccess. STRING The name of the application class that

dat abasewri t ecal | back implements the DatabaseWriteCallback
interface.

curam cust om dat aaccess. STRING The name of the application class that

transacti oncal | back implements the TransactionCallback
interface.

curam cust om di sabl e. BOOLEAN If set to true this property will disable the

dat abase. cal | back

database callback.

Trace

These control which extra diagnostic information, in addition to errors that are always logged,
is written to the application server's diagnostics file. You can set the "curam.trace.*" settings
independently of the "curam.trace" settings, resulting in the union of these settings.

© Merative US L.P. 2012, 2024

Curam 8.1.3 190

Table 55: Trace settings

Property Name

Type

Meaning

curamtrace

curam trace.
servercal | s

STRING

BOOLEAN

Default:

trace_ off

. Tracing is off by default. Turn tracing on by
setting the property to

trace_on

trace_verbose

or

trace ultra_verbose

. The value

trace_on

is equivalent to setting

curam.trace.servercalls

to true. The value

trace_verbose

is equivalent to setting

curam.trace.servercalls

curam. trace.methods

and

curam. trace.sql

to true, while the highest trace level "

trace ultra_verbose

" is equivalent to setting

curam. trace.*

to true

Default: false. Trace server method invocations
by remote clients.

© Merative US L.P. 2012, 2024

1 Curam server developer 191

Property Name Type Meaning

curamtrace. BOOLEAN Default: false. Trace all business object (BO)
nmet hods method invocations.

curamtrace. BOOLEAN Default: false. Dump arguments to BO method
nmet hod_ar gs invocations, including the argument type. This

option is only valid if

curam. trace.methods

is set to true or

curam.trace

is set to at least

trace verbose

curamtrace. sql BOOLEAN Default: false. Trace SQL statements executed
by entity objects.

curamtrace. BOOLEAN Default: false. Dump results of SQL select

sql _args statements.

curamtrace. rul es BOOLEAN Default: false. Trace Curam rules execution.

<For classic rules only>

curamtrace.sntp BOOLEAN Default: false. Trace the calls to the SMTP
server.

curamtrace. configfile STRING The location of the ".xml" configuration file that

.location controls the output of logging within Curam.

curam trace. oracl e BOOLEAN Default: false. An indicator as to whether the

.cachehits cache hits and misses of the Oracle prepared

statement cache should be output.

curamtrace. ej b. STRING Comma separated list of invocation differentiator
i nvocati on_ implementations.
differentiators

curamtrace. suppress_ BOOLEAN Default: false. Suppress SQL detail from being
optimstic_ dumped when optimistic locking exceptions

| ocki ng_det ai | occur.

curamtrace. suppress_ BOOLEAN Default: false. Suppress SQL detail from being
dat abase_ dumped when database exceptions occur.

excepti on_det ai |

© Merative US L.P. 2012, 2024

Culram 8.1.3 192

Property Name Type Meaning
curamtrace. deferred BOOLEAN A Boolean flag that indicates which user
. user. nanme name will be available for logging purposes

for transactions of type Deferred. Either the
Deferred User Name (the user that initiates the
deferred process) or the name of the currently
logged in user for that transaction is made
available depending for logging on the value of
this property.

true When set to true, then the name of the
user who initiated the deferred process will be
available to be added to the logs.

false When set to false, then the user
associated with the current transaction will be
available to be added into the logs.

By default, the property is set to true.

Security

These settings configure the Ctiram authentication behavior.

Table 56: Security settings

Property Name Type Meaning
curam security. INT32 Default: 3. The number of consecutive
br eakl nThr eshol d break-in attempts that are allowed before an

account is locked out.

curam security. INT32 The number of days, in advance, that a

passwor dexpiry. user should be warned (on login) that their

war ni ngper i od password is about to expire.

curam security. INT32 Default: 1. The number of logins, in advance,

| ogi nattenpts. that a user should be warned (on login) that

war ni ngperi od they have a limited number of logins in which
they must change their password.

curam security. STRING Specifies the security cache failure callback

cache. class.

failure. cal |l back

curam securit y. BOOLEAN If set to true this property will disable the
di sabl e. cache. security cache failure callback.

failure. call back

curam security. INT32 Specifies the security Identifier Minimum
i dentifier.mnsearch Search String Length.
.stringlength

© Merative US L.P. 2012, 2024

SMTP

1 Curam server developer 193

These settings configure the environment for the Simple Mail Transport Protocol (SMTP) client

element of Ciram.

Table 57: SMTP settings

snt p. ti meout

Property Name Type Meaning

curam nai | . sm p. STRING The default mail server that is used by Curam.
server host

curam mai |l . snt p. INT32 The port on which the default mail server is
server port addressed.

curam mai | . snt p. INT32 The socket connection timeout value (in seconds) of
connecti onti neout the mail server.

curam nuil . INT32 The socket I/O timeout value (in seconds) of the mail

server.

XML Server

These settings configure the environment for the XML Server.

Table 58: XML Server settings

serialize
| ocal eneutr al

Property Name Type Meaning

curam xm server. STRING The host on which the XML Print Server resides.

host The property also may be specified as a slash (/)
separated list of host names in order to use multiple
XML Servers. For further information, refer to the
Curam XML Infrastructure Guide.

curam xnl server . STRING The port on which the XML Print Server is listening.

port The property may also be specified as a slash (/)
separated list of ports in order to use multiple XML
Servers. For further information, refer to the Curam
XML Infrastructure Guide.

curam xm server. STRING The printer name that will be provided to the XML

printer Server.

curam xm server. STRING The printer tray that will be provided to the XML Server.

tray

curam xm server. STRING The encoding that should be used for the encoding of

fil eencodi ng files provided to the XML Server.

curam xnl server. BOOLEAN Specify that XML Server data will be serialized in a

locale-neutral way instead of being based on the locale
properties on the server.

© Merative US L.P. 2012, 2024

Curam 8.1.3 194

Database

These settings configure Ctiram for database communication.

Table 59: Database settings

Meaning

Property Name Type
curam.db.readmultimax INTS2
curam.db.locktimeout It sz
curam.db.batch.limit INT32

Default: 100. This allows the developer

to override the default maximum number

of records returned by the readmulti
(readmulti, nsreadmulti, multithread, and
nsmulti) operations in an application. This
default value is only used if an explicit

value is not set in the model. Unless the
Readmul ti _I nf or nati onal option is setin
the model there is no enforcement of this limit.

Default: 30. This allows the developer to set
the lock timeout in seconds on an Oracle
database when performing a singleton select
FOR UPDATE. The syntax here is to append a
WAIT XX clause to the statement. This default
value only is used if an explicit value is not set.

Default: 10. Globally defines the number of
updates that can be grouped together as part
of a batch update.

KeyServer

These settings are for customers to configure the behavior of the KeyServer.

Table 60: KeyServer settings

Property Name Type

Meaning

curam keyserver. STRING
def aul t. uni que. set

curam keyserver. INT32
retry

curam keyserver. BOOLEAN
support

The name of the default key set used by the
application.

Default: 5. The number of retries that will be
performed if there is a problem communicating with
the key server before that problem is reported to the
user.

Default: false. The range aware key server algorithm
allows usage of group from 3 to 32,768. But as
group 2 is to allocated for Ciram support. This
property can be set to true to state keys generated
are for Cram support purpose.

© Merative US L.P. 2012, 2024

1 Curam server developer 195

Property Name Type Meaning

curam keyserver. INT64 Default: 100000000. The range aware key server
r emai ni ng. algorithm supply a notification to administrators
keybl ock. when a particular key set is nearing the end of the
notification systems allocated range. This notification would

be sent repeatedly at defined magnitude intervals
before exhaustion, for instance, the first message
sent when there are X key blocks remaining for the
key set, the next when there are X/10 key blocks
remaining etc. Range Aware Key Server send these
notifications only in case if there are no further
ranges allocated to the system.

BatchLauncher

These settings configure the behavior for when problems occur calling batch programs.

Table 61: BatchLauncher settings

Property Name Type Meaning

cur am bat chl auncher. STRING The email address of the recipient of error emails
erroremai | from Curam.

. recipi ent

cur am bat chl auncher. BOOLEAN Default: false. Suppress the stack trace in the error
errorenai | emails.

. host acktrace

cur am bat chl auncher. INT32 Default: 1. The default error code returned by a
def aul t batch program.
.error.code

cur am bat chl auncher. BOOLEAN Default: false. Specifies whether deferred
dbt oj ns processing and workflow functionality for batch
. enabl ed programs should be enabled. When set to true, the

curam.batchlauncher.dbtojms.notification.hpst

and

curam.batchlauncher.dbtojms.notification.pprt

properties also must be set.

© Merative US L.P. 2012, 2024

Curam 8.1.3 196

Property Name Type Meaning
curam bat chl auncher. String Default:
dbt oj ns.

localhost

notification. host

cur am bat chl auncher. STRING

dbt oj ns.
cont ext r oot

cur am bat chl auncher . INT32
dbt oj .
notification. port

cur am bat chl auncher. BOOLEAN

dbt oj ns.
notification. ssl

cur am bat chl auncher. String
dbt oj ns. noti ficati on.
ssl . protoco

cur am bat chl auncher. String
dbt oj ns.
notifi cation. encodi ng

cur am bat chl auncher . String
dbt oj ns. noti fication.
bat chl auncher node

cur am bat chl auncher. BOOLEAN

dbt oj ms. noti fi cati on.
di sabl ed.
i n. st andal one

. Specifies whether the host on which the
database-to-JMS listener is available. This property
must be set when the

curam.batchlauncher.dbtojms.enabled

property is set to true.

The context root used by the Curam web client.
Default value = '‘Curam'.

Default: 9044. Specifies whether the port on
which the database-to-JMS noatification listener is
available. This property must be set when the

curam.batchlauncher.dbtojms.enabled

property is set to true.

Default: true. Specifies that the database-to-JMS
notification listener on the application server is
using SSL.

Default: SSL. The protocol name appropriate and
valid for your environment, which is dependent on
your JDK and application server; e.g.: SSL, TLS,
etc. For this property to be used

curam.batchlauncher.dbtojms.notification.

must be set affirmatively.

Specifies the encoding of the database-to-JMS
listener.

Specifies the db-to-jms mode for the batch
launcher. 0=none, 1=once per batch launcher
session, 2=once per batch job.

Specifies that the batch launcher should not
perform a db-to-jms notification when run in
standalone mode.

© Merative US L.P. 2012, 2024

1 Curam server developer 197

Property Name Type

Meaning

cur am bat chl auncher. BOOLEAN
dbt oj ns. noti fication.
test.stubtrigger

curam bat chl auncher. INT32
dbt oj ns.

nessages

pertransaction

Default: false. For debugging batch jobs which use
DBtoJMS: stubs out

DBtoJMS.beginTransfer ()

to prevent it from creating deferred processes.

JMSLiteEngine

must be started to process the messages.

Default: 512. The number of messages per
transaction processed by the database-to-JMS
conversion.

Workflow

These settings configure the properties which relate to the Workflow Environment.

Table 62: Workflow settings

Property Name Type

Meaning

audi t . wdoval ueshi story.
before. activity

audi t . wdoval ueshi story.
after.activity

audi t . wdoval ueshi story.
transition. eval uati on

cur am wor kf | ow. di sabl e. BOOLEAN

curam wor kf | ow. di sabl e. BOOLEAN

cur am wor kf | ow. di sabl e. BOOLEAN

When specified to true, this flag will ensure
that no WDO values history audit information
will be written before an activity is executed.

When specified to true, this flag will ensure
that no WDO values history audit information
will be written after an activity is executed.

When specified to true, this flag will ensure
that no WDO values history audit information
will be written before the transitions from an
activity are evaluated.

CT™M

These settings configure the properties that relate to the Configuration Transport Manager

(CTM).

© Merative US L.P. 2012, 2024

Curam 8.1.3 198

Table 63: CTM settings

Property Name Type Meaning
curam ctm STRING Default:
| andscape. nane

nolandscape

. The landscape name for CTM to transport change
set from source to target systems with in the
configured landscape.

Static properties in Application.prx

The following properties relate to the available static properties in the Appl i cat i on. pr X file.

Custom

These settings allow a developer to replace elements of the Curam infrastructure with their own

customized handlers.

Table 64: Custom settings

Property Name

Type

Meaning

curam custom
audit.witer

curam custom
pr edat aaccess. hook

STRING

STRING

Default:

curam.util.internal.misc.StandardDatabase?

\ldit

. The name of the class which will handle the
generated audit information. This class must
extend

curam.util.audit.AuditLogInterface

curam.util.audit.DisabledAudit

may be used to globally disable auditing.

The name of the class that implements the
interface

curam.util.audit.DataAccessHook

© Merative US L.P. 2012, 2024

1 Curam server developer 199

Property Name Type Meaning

cur am cust om STRING Specifies the fully qualified class name of the
ext ernal . customized external operation Hook which
oper ati on. hook implements

curam.util.audit.ExternalOperationHook

. An external operation is an operation callable as a
remote, batch, webservice or deferred process call.

Security

These settings configure the authentication behavior of Curam.

Table 65: Security settings

Property Name Type Meaning

curam security. STRING Default: false. Suppress the authorization checks
di sabl e. aut hori sati on normally performed by Curam.

curam security. BOOLEAN Authentication and authorization of user names
casesensitive is case sensitive by default. When this property is

set to false the authentication and authorization
mechanisms will ignore the case of the user.

If duplicate case insensitive user names exist
(for instance, caseworker, CaseWorker),
authentication will fail due to an ambiguous user
name. Such duplicate names also will cause the
security cache to fail to initialize.

curam custom STRING The fully qualified name of the class implementing
ext ernal access. the
i npl emrent ation

curam.util.security.ExternalAccessSecuritly

interface. This class implements the custom
authentication mechanism for External Users.

curam custom STRING The fully qualified name of the class implementing
aut henti cation. the
i npl emrent ation

curam.util.security.CustomAuthenticator

interface. This class implements custom
authentication verifications that will be invoked
during the authentication process.

© Merative US L.P. 2012, 2024

Curam 8.1.3 200

i npl ement ati on

Property Name Type Meaning
curam cust om STRING The fully qualified name of the class implementing
user scope. the

curam.util.security.UserScope

interface. This class determines the type of
User logging into the application, for example,
INTERNAL or EXTERNAL.

Trace

These control what diagnostic information (in addition to errors which are always logged) is

written to the application server's diagnostics file.

Table 66: Trace settings

Property Name Type

Meaning

curamtrace. STRING
met hod_handl er

curamtrace. STRING
dat aaccess.
maxst ringl ength

Default:

curam.util.resources.Trace.CuramMethod]

. Name of a class implementing

curam.util.resources.Trace.CuramMethod]

to perform custom method tracing.

Default: 1000. Maximum length of a String or
CLOB logged by the Data Access Layer when
SQL tracing is enabled.

Environment

These settings configure the environment for your Ctiram application.

Table 67: Environment settings

Property Name Type

Meaning

STRING

curam.project.name

BOOLEAN

curam.disable.tab.cache

This parameter is required by the Rules and
Workflow engines to dynamically invoke
methods in the application.

Default: false. This indicates if tab caching
should be disabled. Note: this only applies to
caching on the server side.

© Merative US L.P. 2012, 2024

nvocationHal

nvocationHar

1 Curam server developer 201

=K ey Server

Set the property curam. keyserver. keyset.cachesize to control the number of unique ID
key sets that are consumed and cached per KeyServer transaction to optimize your batch program
execution.

The KeyServer is a mechanism that generates unique IDs for the curam.util.type.UniquelD.
Use the KeyServer to consume key sets in batch rather than individually. A key set contains

256 IDs. By default, for every 256 unique IDs generated the KeyServer consumes another key

set from the database. The process involves the KeyServer reading and updating a record in the
KeyServer table. When a larger volume of unique IDs must be processed, it is more efficient to
consume more than one key set per update to the KeyServer table.

When you set the property curam. keyserver. keyset.cachesize to a value in the range
1 - 64 in either the Bootstrap.properties or from the batch launcher command line, you
can control the number of unique ID key sets that are consumed and cached per KeyServer
transaction.

Table 68: KeyServer settings

Property name Type Meaning

curam keyserver. INT32 Default: 1: Specifies the number of unique

keyset . cachesi ze ID key sets to be consumed and cached per
KeyServer transaction.

Example 1: To specify a key server cache size of 20 for all batch programs

To specify a key server cache size of 20 for all batch programs, add the entry

curam. keyserver.keyset.cachesize=20 to Bootstrap.properties.
Example 2: To specify a key server cache size of 20 for a single run of the batch
launcher

To specify a key server cache size of 20 for a single run of the batch launcher, use the command
line:

build runbatch -Djava.extra.jvmargs="-Dcuram.keyserver.keyset.cachesize=20"

Example 3: To specify a key server cache size of 20 for a single
run of the batch launcher for a single batch program named
CloseCasesPendingClosure.closeCasesPendingClosure

To specify a key server cache size of 20 for a single run of the batch launcher for a single batch
program named CloseCasesPendingClosure.closeCasesPendingClosure, use the
command line:

build runbatch -
Dbatch.program=curam.core.intf.CloseCasesPendingClosure.closeCasesPendingClosure -
Djava.extra.jvmargs="-Dcuram.keyserver.keyset.cachesize=20"

© Merative US L.P. 2012, 2024

Curam 8.1.3 202

Note: The following property affects batch programs only:

build runbatch -
Dbatch.program=curam.core.intf.CloseCasesPendingClosure.closeCasesPendingClosure -
Djava.extra.jvmargs="-Dcuram.keyserver.keyset.cachesize=20"

The property does not affect online, workflow, or deferred processing transactions. Likewise,
the property does not affect range aware key sets.

The property can be specified in Bootstrap.properties only or on the command line.

If the property is specified in the properties table, the property has no effect.

For more information about unique IDs and the KeyServer, see the Unique IDs related link.

Related concepts

Unique IDs on page 171

Use this information to understand what Unique IDs are in the context of Ciram and how to use
them in your application.

m=mm\/ariable property settings

The following properties whose name is defined variably.

Transaction

Use this information to understand the properties connected with the runtime setting of
transactional options.

This table contains properties connected with the runtime setting of transactional options.

Table 69: Transaction settings

Property Name Type Meaning

<fully qualified code INT32 Used to control the transaction timeout
package> .intf.<class name>. for a single operation. The value
<method name>. transaction.timeout is the number of seconds before

the transaction times out. Format:
PROJECTNAME . CODEPACKAGE . intf.CLASSNAME . DPERATIONNAM
for example,
curam.core.facade.intf.Person.createAddfess.transac

LoginBeanTransaction.transaction.timedi{T32 Used to control the transaction timeout for the
user login operation. The value is the number
of seconds before the user login transaction
times out.

If this property is not specified, the login
transaction timeout defaults to the JTA timeout
value that is for the application server.

© Merative US L.P. 2012, 2024

Audit

1 Curam server developer 203

Use this information to understand properties that are connected with the editing options with

runtime setting.

Contains properties connected with the runtime setting of auditing options.

Table 70: Audit settings

Property Name Type

Meaning

curam.audit.opaudittrail BOOLEAN

curam.audit.audittrail BOOLEAN

curam.custom.external.operation B0BANG

curam.custom.predataaccess.ho&KTRING

STRING

curam.custom.audit.writer

curam.audit.audittrail.noxmlaudit BOOLEAN

Specify whether operation level auditing for
the operation 0PERATIONNAME, Within the client
visible class cr.assname' of the code package
CODEPACKAGE is enabled or disabled. Format:
curam.audit.opaudittrail.PROJECTNAME .CODEPACH
Default: determined by the option set in the model.

Specify whether table level auditing for

the operation OPERATIONNAME Of entity
cLAassNAME' within the code package
CODEPACKAGE' is enabled or disabled. Format:
curam.audit.audittrail.PROJECTNAME .CODEPACKA(
Default: determined by the option set in the model.

Specify the name of a class that implements
curam.util.audit.DataAccessHook and thatis
used to audit client-visible operation calls.

Specify the name of the class that implements
curam.util.audi.DataAccessHook and is used to audit
data access calls.

Specify the name of a class that implements
curam.util.audit.AuditLogInterface and is
used to capture and write audit information.

Specify whether the XML audit writer is disabled for
data access operations. This property saves XML
from being generated for each invocation of the
operation done so far. Default: false.

1.6 Infrastructure auditing settings

Use this information to understand the database operations that are available in Curam and the

default value of their table-level auditing flag.

AGE .CLASSNAL]

E.CLASSNAME

© Merative US L.P. 2012, 2024

Curam 8.1.3 204

Default table-level audit setting

Information that is listed in the tables on this page show the operations names and their default
audit settings for database operations in the Ctiram application. Use this information to learn the
operation names and understand the default settings for each operation.

The tables that follow list the database operations in the Curam infrastructure and the default
value of their table-level auditing flag. This value might be overridden by setting application
properties. For more information, see the Curam Modeling Reference Guide. Certain database
operations do not support auditing; for example, operations with stereotype ns with handcrafted

SQL. These settings are listed with a default value of n/a

Table 71: Audit settings 1

Operation Name Default
Auditing
Setting

Activitylnstance. get ActivityVersionDetail sByTaskl D N/A
Activityl nstance. get Taskl D False
Activitylnstance.insert False
Activitylnstance. nodify False
Activitylnstance. read False
Activitylnstance. readActivityl nstanceByTaskl D False
Activitylnstance. readByActi vityl nst anceConpoundKey N/A
Activitylnstance. readByTaskl D False
Activitylnstance.readlterationl D False
Activitylnstance. renove False
Activitylnstance. searchByProcessl nstancel D False
Activitylnstance. sear chByProcessl nst ancel DAndSt at us False
Activitylnstance. set ActivitylnstanceSt at usAndEndDat e False
Activityl nstance. set Taskl D False
ActivityQccurrence.insert False
ActivityQccurrence. read False
ActivityQccurrence. renove False
AppResour ce. i nsert False
AppResour ce. nodi fy False
AppResour ce. read False

© Merative US L.P. 2012, 2024

1 Curam server developer 205

Operation Name Default
Auditing
Setting

AppResour ce. readAl | Resour ces False
AppResour ce. r eadByCat egory False
AppResour ce. r eadByEnpt yCat egor y N/A
AppResour ce. readByl EGScri pt DefinitionlD N/A
AppResour ce. r eadByLi keNane N/A
AppResour ce. r eadByNane False
AppResour ce. r eadByNaneAndLocal e N/A
AppResour ce. r eadResour ceNaneBy| D False
AppResour ce. renove False
AppResour ce. renoveByl EGScri pt Definitionl D N/A
AppResour ce. r enoveByName False
AppResour ce. r enoveByNaneAndLocal e N/A
Audit Trail .insert False
Audit Trail .readAll False
Aut henti cati onLog. count Entri es N/A
Aut henti cati onLog. i nsert False
Aut henti cati onLog. nodi fy True
Aut henti cati onLog. read False
Aut henti cati onLog. readnul ti False
Aut henti cati onLog. renove True
Aut hori sati onLog. countEntries N/A
AuthorisationLog.insert False
Aut hori sationLog. readnul ti False
BPOMet hodLi brary. i nsert False
BPOWet hodLi brary. nodi fy False
BPOWet hodLi brary. read False
BPOWet hodLi brary. renove False
BPOWet hodLi br ary. sear chBPOVet hodRef er ences N/A

© Merative US L.P. 2012, 2024

Curam 8.1.3 206

Operation Name Default
Auditing
Setting

BPOWet hodLi brary. sear chBy ConpoundKey False
Bat chEr r or Codes. get Al | Err or Codes N/A
Bat chError Codes. i nsert False
Bat chErr or Codes. nodi fy False
Bat chEr r or Codes. r ead False
Bat chErr or Codes. renove False
Bat chGroupDesc. i nsert True
Bat chGr oupDesc. r ead False
Bat chGr oupDesc. readnul ti False
Bat chG oupDesc. r enpve True
Bat chGr pGr pAssoc. i nsert False
Bat chG pGr pAssoc. readnul ti False
Bat chGr pG pAssoc. readnul tichildid False
Bat chG pGr pAssoc. renove False
Bat chPar anDef . r ead False
Bat chPar anDef . readnul t i False
Bat chPar anDesc. i nsert True
Bat chPar amDesc. nodi fy True
Bat chPar anDesc. r ead False
Bat chPar anDesc. r eadnul ti False
Bat chPar anDesc. r enove True
Bat chPar anVal ue. i nsert False
Bat chPar anval ue. r ead False
Bat chPar anval ue. r eadnul t i False
Bat chPar anVal ue. r enove False
Bat chPr ocDef . read False
Bat chProcDef . readAl | Processes False
Bat chProcDesc. i nsert True

© Merative US L.P. 2012, 2024

1 Curam server developer 207

Operation Name Default
Auditing
Setting

Bat chProcDesc. nodi fy True
Bat chProcDesc. r ead False
Bat chProcDesc. r eadAl | False
Bat chProcDesc. renpve True
Bat chProcG pAssoc. i nsert True
Bat chProcG pAssoc. readmul ti False
Bat chProcGr pAssoc. readnul ti onpr ocessnane False
Bat chPr ocGr pAssoc. renove True
Bat chPr ocRequest . i nsert False
Bat chPr ocRequest . r ead False
Bat chPr ocRequest . readal | requests False
Bat chPr ocRequest . readnul ti False
Bat chPr ocRequest . readnul tiuserid False
Bat chPr ocRequest . r enove False
Bi zObj Associ ati on. count OpenTasksByBi zObj ect TypeAndl D N/A
Bi zObj Associ ation.insert False
Bi zObj Associ ati on. nodi fy False
Bi zObj Associ ati on. nodi f yBusi nessQbj ect | D False
Bi zObj Associ ati on. read False
Bi zObj Associ ati on. renove False
Bi zObj Associ ati on. sear chByBi zObj ect TypeAndl D False
Bi zObj Associ ati on. sear chByTaskl D False
CacheVersi on. i nsert False
CacheVer si on. nodi fy False
CacheVer si on. read False
CodeTabl eDat a. changeTabl eNane False
CodeTabl eDat a. i nsert True
CodeTabl eDat a. nodi fy False

© Merative US L.P. 2012, 2024

Curam 8.1.3 208

Operation Name Default
Auditing
Setting
CodeTabl eDat a. r ead False
CodeTabl eDat a. r enoveOneCodeTabl e False
CodeTabl eHeader . get Chi | dCode False
CodeTabl eHeader . i nsert True
CodeTabl eHeader . j oi nCTHeader CTI t em N/A
CodeTabl eHeader . nodi f yDef aul t Code False
CodeTabl eHeader . nodi f yPar ent Codet abl e False
CodeTabl eHeader . nodi f yTabl eNane False
CodeTabl eHeader . nodi f yTi mest anp False
CodeTabl eHeader . r ead False
CodeTabl eHeader . r eadChi | dCodeTabl e False
CodeTabl eHeader . r eadDef aul t Code False
CodeTabl eHeader . readEntireTabl e False
CodeTabl eHeader . r eadTabl eNane False
CodeTabl eHeader . r enpve True
CodeTabl eHeader . sear chByCodeTabl eNane N/A
CodeTabl eHi erarchy. i nsert False
CodeTabl eHi erarchy. nodi fy False
CodeTableHierarchy.modifyCodetable False
CodeTabl eHi erar chy. read False
CodeTabl eHi erar chy. readAl | False
CodeTabl eHi er ar chy. readByCodet abl e False
CodeTabl eHi erarchy. renove False
CodeTabl el t em changeTabl eNane False
CodeTabl el t em count CodeTabl el t ens N/A
CodeTabl el t em count Descri pti onSanmePar ent CodeDi f f er ent Code N/A
CodeTabl el t em count Descri pti onSanePar ent CodeOnTabl e N/A
CodeTabl el t em count Descri pti onsOnTabl e N/A

© Merative US L.P. 2012, 2024

1 Curam server developer 209

Operation Name Default
Auditing
Setting

CodeTabl el t em count Descri pti onsWt hDi f f erent CodeOnTabl e N/A
CodeTabl el tem i nsert True
CodeTabl el tem i nsert Wt hout Ti nest anp True
CodeTabl el tem | i st Unl i nkedCodesExcl udeLocal e N/A
CodeTabl el tem read False
CodeTabl el tem readAl | Local es False
CodeTabl el t em r eadAl | Wt hout Annot at i ons False
CodeTabl el tem readChi | dren False
CodeTabl el t em r eadChi | dr enOnelLocal e False
CodeTabl el t em readChi | dr enOneLocal eExcl udeDupl i cat es N/A
CodeTabl el t em r eadDi sabl ed False
CodeTabl el t em r eadEnabl ed False
CodeTabl el t em r eadOnelLocal e False
CodeTabl el t em r eadOneLocal eExcl udeDupl i cat es N/A
CodeTabl el t em readUnl i nkedCodes False
CodeTabl el tem readnul ti False
CodeTabl el tem renove True
CodeTabl el t em r enoveOneCodeTabl e False
CodeTabl el t em updat e True
CodeTabl el t em updat eW t hCorment W t hout Par ent Code True
CodeTabl el t em updat eW t hout Par ent Code True
DPError | nformation.insert False
DPError | nfornation.read False
DPEr r or I nf ormati on. renove False
DPProcess. i nsert False
DPPr ocess.nkreadmulti False
DPPr ocess. r ead False
DPPr ocess. renove False

© Merative US L.P. 2012, 2024

Curam 8.1.3 210

Operation Name Default
Auditing
Setting

DPPr ocessl nst ance. i nsert False
DPPr ocessl nst ance. nkr eadnul t i False
DPPr ocessl nst ance. r ead False
DPProcessinstance.setFinishTime False
DPTi cket . i nsert False
DPTi cket . nodi fy False
DPTi cket . nkreadnul ti False
DPTi cket . read False
Event Cl ass. i nsert False
Event Cl ass. nodi fy False
Event d ass. read False
Event O ass. readAl | Event Ol asses False
Event Cl ass. renove False
Event Type.insert False
Event Type. nodi fy False
Event Type. nodi f yByEvent C ass N/A
Event Type. r ead False
Event Type. renove False
Event Type. renoveByEvent Cl ass False
Event Type. sear chByEvent Cl ass False
Event Wi t . count Event WAi t sByActi vityl nstancel D N/A
Event Wi t . count Event Wi t sByEvent Mat chKey N/A
Event Wi t . i nsert False
Event Wi t . readByActi vityl nstancel D False
Event Wi t . r eadByEvent Mat chKey False
Event Wi t . r eadEvent Mat chDat aByAct i vityl nstancel D False
Event WAi t . renpve False
Event Wi t . renmoveByActi vityl nstancel D False

© Merative US L.P. 2012, 2024

1 Curam server developer 211

Operation Name Default
Auditing
Setting

Fai | edMessage. get Al | Messages False
Fai | edMessage. i nsert False
Fai | edMessage. r ead False
Fai | edMessage. renove False
Fai | edMessage. sear chByMessageType False
Fai | edMessage. sear chByProcessl nst| D False
Fi el dLevel Security.get Al |l Operations N/A
Fi el dLevel Security. get Al | Ret ur nedFi el dNamesByQper ati on False
Fi el dLevel Security. get Al | Ret ur nedFi el dsAndSi dsByQOper ati on False
Fi el dLevel Security. get Al | Secur edFi el ds N/A
Fi el dLevel Security. get Si dFor Ret ur nedFi el d False
Fi el dLevel Security. get Si dVer si onNoFor Ret ur nedFi el d False
Fi el dLevel Security.insert True
Fi el dLevel Security. set Si dFor Ret ur nedFi el d True
Functionldentifier.joinFidSecurityFidSid N/A
Functionl dentifier.read False
Functionldentifier.readAl |l Fids False
Groupl nf or mat i on. get Ver si onNoFor G- oup False
Groupl nformation.insert False
Groupl nformation. |istExcludingScri pt N/A
G oupl nformation. nodi fy False
Groupl nf or mati on. nkreadnul ti False
Groupl nformati on. read False
Groupl nfornmati on. renove False
G oupRange. i nsert False
G oupRange. r eadAl | False
GroupRangeVal i d. i nsert False
GroupRangeVal i d. readAl | False

© Merative US L.P. 2012, 2024

Curam 8.1.3 212

Operation Name Default
Auditing
Setting
G oupRangeVal i d. renoveAl | False
| EGDefinitionlnfo.insert False
| EGDefinitionlnfo.nsnulti GoupByType N/A
| EGDefinitionlnfo.nsnmulti GoupW thout Type N/A
| EGDefinitionlnfo.nsnultiScriptByType N/A
| EGDefinitionlnfo.nsmultiScriptWthout Type N/A
| ECDef i ni tionlnfo.readmul ti False
| EGDef i nitionlnfo.renove N/A
| EGExecutionl nfo.insert False
| EGExecut i onl nf o. nodi fy False
| ECExecuti onl nf o. nkreadnul ti False
IEGExecutionInfo.read Fal se
| EGExecuti onl nf o. readExec False
| EGExecuti onl nfo. renove False
| EGExecuti onl nf o. sear chBef or eDat e N/A
Iteration.insert False
I teration. nodi f yEndDat eTi ne False
Iteration.read False
Iteration.readlterationlD False
Iteration.readlterati onSummary False
Iteration.renove False
JMVBLi t eMessage. i nsert False
JMVBLI t eMessage. r ead False
JMVBLI t eMessage. readAl | By Type False
JMBLIi t eMessage. renove False
Joi nl nstance. i nsert False
Joi nl nst ance. nodi fy False
Joi nl nst ance. readByJoi nMet al D False

© Merative US L.P. 2012, 2024

1 Curam server developer 213

Operation Name Default
Auditing
Setting
Joi nl nstance. renove False
KeyServer.insert False
KeyServer. nodi fy False
KeyServer. read False
KeySet Range. i nsert False
KeySet Range. nodi fy False
KeySet Range. r ead False
Mat chedEvt Ar chi ve. get Mat chedEvent sFor Acti vi tyl nst ance False
Mat chedEvt Ar chi ve. i nsert False
Mat chedEvt Ar chi ve. r ead False
Mat chedEvt Ar chi ve. readByActi vi tyl nst ancel D False
Mat chedEvt Ar chi ve. sear chByActi vityl nstancel D False
pAudi t Trai |l . insert False
ProcEnact Evt Dat a. i nsert False
Pr ocEnact Evt Dat a. nodi fy False
ProcEnact Evt Dat a. r ead False
ProcEnact Evt Dat a. r eadByPr ocessSt art Event | D False
Pr ocEnact Evt Dat a. r enove False
ProcEnact Evt Dat a. r enbveByProcessSt art Event | D False
ProcEnact nent Evt . i nsert False
ProcEnact ment Evt . nodi fy False
ProcEnact nment Evt . r ead False
ProcEnact nent Evt . readAl | Recor ds False
Pr ocEnact ment Evt . r eadByEnabl ed False
ProcEnact ment Evt . r eadByEvent False
Pr ocEnact ment Evt . r eadByPr ocessToSt ar t False
ProcEnact ment Evt . r enove False
Procl nst Over f| ow. get WDOSnapshot False

© Merative US L.P. 2012, 2024

Curam 8.1.3 214

Operation Name Default
Auditing
Setting
Procl nst Overfl ow. i nsert False
Procl nst Over fl ow. renmoveAl | Recor dsFor Processl nst ance\WDO False
Pr ocl nst WDODat a. get Al | Cont ext WDOFor Activity False
Pr ocl nst WDODat a. get Al | WDODat aFor OnePr ocessl nst ance False
Procl nst WDODat a. i nsert False
Procl nst WDODat a. nodi fy False
Procl nst WDODat a. r ead False
Procl nst WDODat a. r eadAl | Recor ds False
Procl nst WDODat a. r eadOver f| owl nd False
Procl nst WDODat a. r enove False
Pr ocl nst WDODat a. r enbveAl | Cont ext WDOFor Activity N/A
ProcessDef i ni tion. count Defi niti onsByNane N/A
ProcessDefini tion. count Defi niti onsByNaneAndVer si on N/A
Table 72: Audit settings 2
Operation Name Default
Auditing
Setting
ProcessDef i ni tion. count Unrel easedDefi niti onsByl D N/A
ProcessDef i ni tion. count Unrel easedDefi niti onsByNane N/A
ProcessDef i ni tion. get H ghest Rel easedVer si onNunber N/A
ProcessDef i ni tion. get H ghest UnRel easedVer si onNunber N/A
ProcessDefini tion. get H ghest Ver si onNunber N/A
ProcessDefinition.insert False
ProcessDefinition. nodify False
ProcessDefi ni tion. nodi f yByNaneAndVer si on False
ProcessDefinition.read False
ProcessDef i ni tion. readByNaneAndVer si on False
ProcessDefinition.readDefinitionBylD N/A

© Merative US L.P. 2012, 2024

1 Curam server developer 215

Operation Name Default
Auditing
Setting

ProcessDefinition.readDefinitionByNane N/A
ProcessDefinition.readLat est Versi onDefinitionDetail sByNanme N/A
ProcessDefinition. readProcessldentifier False
ProcessDefinition. readProcessRel eased False
ProcessDefini tion. readUnrel easedDefi niti onByNanme N/A
ProcessDefinition.renove False
ProcessDef i ni tion. renmoveByNaneAndVer si on False
ProcessDefinition.searchAl | DefinitionsSumraryDetail s N/A
ProcessDef i ni tion. searchAl | Versi ons False
ProcessDefini tion. searchAl | Ver si onsByNane False
ProcessDef i ni tion. sear chByNaneAndRel easedI nd False
ProcessDef i ni tion. searchByRel easedl ndi cat or False
ProcessDefinition.searchDefinitions False
ProcessDefinition. searchLatestDefinitions N/A
ProcessDefinition. searchLat est Rel easedPr ocesses N/A
ProcessDefinition. searchProcesses False
Processl nst ance. count Processl nst ancesByProcessDefinitionDetails N/A
Processl nst ance. i nsert False
Processl nst ance. nodi fy False
Processl nst ance. nodi f ySt at us False
Processl nst ance. read False
Processl nst ance. readOne False
Processl nstance. readSt at us False
Processl nst ance. renove False
Processl nst ance. sear chByBi zCbj ect N/A
Processl nst ance. sear chByEvent Wai t Det ai | s N/A
Processl nst ance. sear chByPar ent Processl nst ancel D N/A
Processl nst ance. sear chByProcessDet ai |l s N/A

© Merative US L.P. 2012, 2024

Curam 8.1.3 216

Operation Name Default
Auditing
Setting
Processl nst ance. sear chByPr ocessl DAndVer si on N/A
Processl nst ance. sear chByTaskl D N/A
Processl nst ance. sear chByTaskUser N/A
Pr opDescri ption. count Descri ptions N/A
PropDescri ption.insert True
PropDescri ption. nodi fy True
Pr opDescri ption. read False
PropDescri ption. readDescri ptionByl D False
PropDescri ption. renove True
PropDescri ption. renoveAl | Descri pti onsByPropertyl D False
Properties. count CccurrencesCf Nane N/A
Properties.insert True
Properties. nodify True
Properties.read False
Properties. readAl | ByLocal eO Cat egory N/A
Properti es. readNane False
Properti es. readNameAndVal uelLi st N/A
Properti es. readbyNane False
Properties.readl Al |l Properti esTabl e False
Properties. renove True
Properties.reset Al | Properties N/A
Remi nder s. cl ear Sent Remi nder sByAct i vityl nstancel D False
Reminders.clearSentRemindersByReminderAndActivitylnstancelD False
Remi nders. i nsert Remi nder False
Remi nder s. scanReni nder s N/A
Rul eSet I nformation.insert False
Rul eSet I nformati on. | i stByType False
Rul eSet | nf or mat i on. nodi fy False

© Merative US L.P. 2012, 2024

1 Curam server developer 217

Operation Name Default
Auditing
Setting

Rul eSet I nf ormat i on. read False
Rul eSet I nformati on. readDet ai | SWt hout Definition False
Rul eSet | nf or nat i on. renove False
Rul eSet Li nk. i nsert False
Rul eSet Li nk. r ead False
Rul eSet Li nk. readrnul ti ByMast er Rul eSet False
Rul eSet Li nk. readnul ti BySubRul eSet False
Rul eSet Li nk. renove False
Scri pt GroupRel s. dr opG oupsFor Scri pt N/A
Scri pt G oupRel s. i nsert False
Scri pt G oupRel s. read False
Scri pt GroupRel s. readnul ti False
Scri pt GroupRel s. readnul ti For Scri pt False
Scriptinformation.insert False
Scriptlnformation. nodify False
Scri pt I nfornmation. nkreadnul ti False
Scriptlnfornation.read False
Scriptlnformation. renove False
SecurityFidSid.insert True
SecurityFi dSid.joi nFi dSi dFunctionl dentifier N/A
SecurityFi dSid. modi fySid True
SecurityFidSid.readAll Fid False
SecurityFidSid.readAl | FidSid False
SecurityFidSid.readAll Sid False
SecurityFi dSid. readFid False
SecurityFidSid.readSid False
Securi tyFi dSid. renove True
SecurityFi dSid. renoveSi d True

© Merative US L.P. 2012, 2024

Curam 8.1.3 218

Operation Name Default
Auditing
Setting
SecurityG oup.insert True
SecurityG oup. nodi fy True
SecurityG oup. read False
SecurityG oup. readAl | G oups False
SecurityG oup. readG oupsl nRol e N/A
SecurityG oup. readG oupsNot | nRol e N/A
SecurityG oup. renove True
SecurityG oupSi d. get Funct i onSl DsFor Gr oup N/A
SecurityG oupSi d. get NonFunct i onSI DsFor G oup N/A
SecurityG oupSi d. get Unl i nkedFunct i onSI DsFor Gr oup N/A
SecurityG oupSid.insert True
SecurityG oupSi d. nodi fyG oup True
SecurityG oupSi d. nodi fySi d True
SecurityG oupSi d. read False
SecurityG oupSi d. renove True
SecurityG oupSi d. renmoveG oupNane True
SecurityG oupSi d. renoveSi d True
Securityldentifier.insert True
Securityldentifier.nodify True
Securityldentifier.nodi fyNaneAndDescri ption True
Securityldentifier.read False
Securityldentifier.readAll Sids False
Securityldentifier.readMatchSid False
Securityldentifier.readSi dType False
Securityldentifier.readSi dsl nG oupSid N/A
Securityldentifier.readSi dsNotlnG oupSid N/A
Securityldentifier.renove True
Securit yRol e. get NonUser sRol es N/A

© Merative US L.P. 2012, 2024

1 Curam server developer 219

Operation Name Default
Auditing
Setting

SecurityRol e. get Rol esAndFuncti onSI Ds N/A
Securi t yRol e. get Rol esAndNonFunct i onSl Ds N/A
Securi tyRol e. get Unl i nkedFuncti onSl Ds N/A
SecurityRol e.insert True
SecurityRol e. nodi fy True
SecurityRol e.read False
SecurityRol e.readAl | Rol es False
SecurityRol e. readRol esNot | nG oup N/A
SecurityRol e.renove True
SecurityRol eG oup.insert True
Securit yRol eG oup. nodi f yAl | Cccur r encesOf ARol eNane True
Securi t yRol eG oup. nodi f yGroup True
SecurityRol eG oup. read False
Securit yRol eG oup. r eadRol esl nG oup False
Securi tyRol eG oup. renove True
Securit yRol eG oup. renbveG oupNane True
SecurityRol eG oup. renoveRol e True
SuspendedActivity.insert False
SuspendedActivity. read False
SuspendedActivity. readmul ti False
SuspendedActivity.renove False
SuspendedActi vity. renoveActi viti esFor Processl nstance False
TabSessi on. i nsert False
TabSessi on. nodi fy False
TabSessi on. read False
TabSessi on. renove False
Task. count Al | ByBi zCbj ect AndSt at us N/A
Task. count Al | ByBi zCbj ect DueDat eAndSt at us N/A

© Merative US L.P. 2012, 2024

Curam 8.1.3 220

Operation Name Default
Auditing
Setting

Task. count Assi gnedByBi zCbj ect AndSt at us N/A
Task. count Assi gnedByBi zObj ect DueDat eAndSt at us N/A
Task. count ByUser AndPriority N/A
Task. count ByUser AndSt at us N/A
Task. count ByUser DueDat eAndSt at us N/A
Task. count Reser vedByCat egory N/A
Task. count Reser vedBy St at us N/A
Task. count Reser vedByUser nane N/A
Task. count Reser vedByUser naneAndDueDat e N A
Task. count Reser vedByUser naneAndPriority N/A
Task. count Reser vedByUser naneAndSt at us N/A
Task. count Reser vedByUser naneBi zObj ect AndSt at us N/A
Task. count Reser vedByUser naneBi zCbj ect St at usAndDueDat e N/A
Task. count TasksFor Reser vedByUser N/A
Task. i nsert False
Task. nodi fy False
Task. nodi f yAssi gnedDat eTi ne False
Task. nodi fyPriority False
Task. nodi f yReser vedBy False
Task. nodi fyRestart Ti nme False
Task. nodi f ySt at us False
Task. nodi fyTot al Ti meWor ked False
Task. read False
Task. readAl | Tasks False
Task. readAssi gnedDat eTi e False
Task. readReser vedBy False
Task. readSt at us False
Task. readSummaryDet ai | s False

© Merative US L.P. 2012, 2024

1 Curam server developer 221

Operation Name Default
Auditing
Setting

Task. readTaskW t hDueDat e N/A
Task. readTot al Ti meWor ked False
Task. readVer si onNo False
Task. sear chAl | ByBi zObj ect AndSt at us N/A
Task. sear chAl | ByBi zObj ect DueDat eAndSt at us N/A
Task. sear chAssi gnedByBi zChj ect AndSt at us N/A
Task. sear chAssi gnedByBi zObj ect DueDat eAndSt at us N/A
Task. sear chReser vedByCat egory N/A
Task. sear chReser vedByDueOnDat e N/A
Task. searchReservedByPriority N/A
Task. sear chReser vedBy St at us N/A
Task. sear chReser vedByUser nane N/A
Task. sear chReser vedByUser nameAndDueDat e N/A
Task. sear chReser vedByUser nanmeAndPriority N/A
Task. sear chReser vedByUser naneAndsSt at us N/A
Task. sear chReser vedByUser naneBi zQhj ect AndSt at us N/A
Task. sear chReser vedByUser nanmeBi zCbj ect St at usAndDueDat e N/A
Task. sear chTasksByBi zCbj ect N/A
Task. sear chTasksByBi zChj ect AndDueDat e N/A
Task. sear chTasksByBi zOhj ect AndReser vati onSt at us N/A
Task. sear chTasksByBi zChj ect User AndSt at us N/A
Task. sear chTasksByDueDat e N/A
Task. sear chTasksDuel nTheNext \eek N/A
Task. sear chTasksReser vedDuel nTheNext Ti mePeri od N/A
TaskHi story.insert False
TaskHi story. read False
TaskHi story. search False
TaskHi st ory. sear chByTaskl D N/A

© Merative US L.P. 2012, 2024

Curam 8.1.3 222

Operation Name Default
Auditing
Setting

TaskWDOQOver f | ow. get WDOSnapshot False
TaskWDQOver f | ow. i nsert False
TaskWDOOver f | ow. renoveAl | Ent ri esFor Task False
Transi tionl nstance. insert False
Transi tionl nstance. nodi fy False
Transi tionl nstance. read False
Transi ti onl nstance. renove False
Transi ti onl nstance. renoveByTransitionl D False
Transi tionl nstance. sear chByProcessl| nstancel D False
User Pr ef erencel nf o. get Al | User Pr ef NanesFor Pref Set | D N/A
User Pref erencel nf o. get Al | User Pr ef er ences False
User Pref erencel nfo. get Al | User Pref erencesFor User N/A
User Pref erencel nf o. get User Pref erence False
User Pref erencel nfo. i nsertUser Preference False
User Pr ef erencel nf o. nodi f yUser Pref erence False
User Pr ef er encel nf o. renpoveUnusedUser Pr ef er ences N/A
User Pref erencel nf o. renpveUser Pr ef er encesFor User False
Users. count CccurrencesOf Rol e N/A
Users. nodi fy True
Users. nodi f yAl | GccurrencesOf ARol eNane True
Users. read False
Users. readAl | Users False
Users. readCasel nsensi ti veUser N/A
Users. readLocal e False
Users. readUser AndRol eNanes N/A
Users. readUser sByRol e False
Users. renove True
WDOTenpl at eLi brary. count Tenpl at esByNane N/A

© Merative US L.P. 2012, 2024

1 Curam server developer 223

Operation Name Default
Auditing
Setting

WDOTenpl at eLi brary. i nsert False
WDOTenpl at eLi brary. nodi fy False
WDOTenpl at eLi brary. read False
WDOTenpl at eLi brary. readAl | False
WDOTenpl at eLi brary. readTenpl at eByNane False
WDOTenpl at eLi brary. renove False
WDOTenpl at eLi brary. sear chByCat egory False
WDOVal uesHi story. i nsert False
WDOval uesHi st ory. nodi fy False
WDOVal uesHi story. read False
WDOVal uesHi st ory. readByActi vi tyl nst ancel DAndExecut i onPeri od False
WDOVal uesHi st ory. renove False
WDOVal uesHi st ory. sear chByActi vi tyl nstancel D False
WDOVal uesHi st ory. sear chByPr ocessl nst ancel D False
WDOVal uesHi st ory. sear chByPr ocessl nst ancel DAndCr eat i onTi ne N/A
Wor kf | owDeadl i ne. i nsert False
Wor kf | owDeadl i ne. nodi fy False
Wor kf | owDeadl i ne. nodi f ySuspended False
Wor kf | owDeadl i ne. r ead False
Wor kf | owDeadl i ne. readDeadl i neDet ai | sByActi vityl nstancel D False
Wor kf | owDeadl i ne. r eadDeadl i neDet ai | sByTaskl D False
Wor kf | owDeadl i ne. r eadDeadl i nel DAndTi neByTaskl D False
Wor kf | owDeadl i ne. readDeadl i nel DByTaskl D False
VWor kf | owDeadl i ne. renove False
Wor kf | owDeadl i ne. scanWor kf | owbeadl i nes N/A
Wor kf | owHi story. insert False
Wor kf | owHi story. nodi fy False
Wor kf | owHi story. read False

© Merative US L.P. 2012, 2024

Curam 8.1.3 224

Operation Name Default
Auditing
Setting
Wor kf | owHi st ory. readnul ti False
Wor kf | owHi story. renove False
Wor kf | owHi st ory. sear chByEvent False
Wor kf | owHi st ory. sear chByProcessl nst ancel DAndEvent Ti e False
Wor kf | owHi st ory. sear chByProcessl nst ancel DAndUser | D False
Wor kf | owHi st ory. sear chByUser False
Wor kf | owHi st ory. sear chByUser AndEvent False
XM_Ar chi veDoc. i nsert False
XMLAr chi veDoc. r ead False
XSLTenpl ate. i nsert False
XSLTenpl at e. nodi fy False
XSLTenpl ate. read False
XSLTenpl ate. readAl | By Type False
XSLTenpl at e. r eadBy| DCode False
XSLTenpl at e. r eadByNane False
XSLTenpl at e. readLat est Ver si onAndTenpl at eNane False
XSLTenpl at e. readLat est Ver si onByTenpl atel D False
XSLTenpl ate. readmnul ti False
XSLTenpl at e. renove False
XSLTenpl at el nst. del et eUsi ngTenpl at el DAndLocal e False
XSLTenpl at el nst. get Al | Tenpl at el nst Det ai | sFor Tenpl at el dAndLocal e False
XSLTenpl at el nst. get Al | Versi onDetail s False
XSLTenpl atel nst. i nsert False
XSLTenpl at el nst. nodi fy False
XSLTenpl at el nst . read False
XSLTenpl at el nst . r enove False

© Merative US L.P. 2012, 2024

Notices

Permissions for the use of these publications are granted subject to the following terms and
conditions.

Applicability
These terms and conditions are in addition to any terms of use for the Merative website.
Personal use

You may reproduce these publications for your personal, noncommercial use provided that all
proprietary notices are preserved. You may not distribute, display or make derivative work of
these publications, or any portion thereof, without the express consent of Merative

Commercial use

You may reproduce, distribute and display these publications solely within your enterprise
provided that all proprietary notices are preserved. You may not make derivative works of these
publications, or reproduce, distribute or display these publications or any portion thereof outside
your enterprise, without the express consent of Merative.

Rights

Except as expressly granted in this permission, no other permissions, licenses or rights are
granted, either express or implied, to the publications or any information, data, software or other
intellectual property contained therein.

Merative reserves the right to withdraw the permissions granted herein whenever, in its
discretion, the use of the publications is detrimental to its interest or, as determined by Merative,
the above instructions are not being properly followed.

You may not download, export or re-export this information except in full compliance with all
applicable laws and regulations, including all United States export laws and regulations.

MERATIVE MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE
PUBLICATIONS. THE PUBLICATIONS ARE PROVIDED "AS-IS" AND WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT
LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT,
AND FITNESS FOR A PARTICULAR PURPOSE.

Merative or its licensors may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this documentation does not grant you any license
to these patents.

Information concerning non-Merative products was obtained from the suppliers of those products,
their published announcements or other publicly available sources. Merative has not tested those
products and cannot confirm the accuracy of performance, compatibility or any other claims
related to non-Merative products. Questions on the capabilities of non-Merative products should
be addressed to the suppliers of those products.

Any references in this information to non-Merative websites are provided for convenience only
and do not in any manner serve as an endorsement of those websites. The materials at those

© Merative US L.P. 2012, 2024

websites are not part of the materials for this Merative product and use of those websites is at
your own risk.

This information contains examples of data and reports used in daily business operations.

To illustrate them as completely as possible, the examples include the names of individuals,
companies, brands, and products. All of these names are fictitious and any similarity to actual
people or business enterprises is entirely coincidental.

The licensed program described in this document and all licensed material available for it are
provided by Merative under terms of the Merative Client Agreement.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate
programming techniques on various operating platforms. You may copy, modify, and distribute
these sample programs in any form without payment to Merative, for the purposes of developing,
using, marketing or distributing application programs conforming to the application programming
interface for the operating platform for which the sample programs are written. These examples
have not been thoroughly tested under all conditions. Merative, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample programs are provided
"AS IS", without warranty of any kind. Merative shall not be liable for any damages arising out of
your use of the sample programs.

Privacy policy

The Merative privacy policy is available at https://www.merative.com/privacy.

Trademarks

Merative " and the Merative ™ logo are trademarks of Merative US L.P. in the United States and
other countries.

IBM®, the IBM® logo, and ibm.com® are trademarks or registered trademarks of International
Business Machines Corp., registered in many jurisdictions worldwide.

Adobe™, the Adobe™ logo, PostScript™, and the PostScript™ logo are either registered
trademarks or trademarks of Adobe™ Systems Incorporated in the United States, and/or other
countries.

Oracle and Java are registered trademarks of Oracle and/or its affiliates.

The registered trademark Linux® is used pursuant to a sublicense from the Linux Foundation, the
exclusive licensee of Linus Torvalds, owner of the mark on a worldwide basis.

Microsoft™, Windows™, and the Windows™ logo are trademarks of Microsoft™ Corporation in
the United States, other countries, or both.

UNIX™ is a registered trademark of The Open Group in the United States and other countries.

Other company, product, and service names may be trademarks or service marks of others.

© Merative US L.P. 2012, 2024

https://www.merative.com/privacy

	Note
	Edition
	Notices
	Privacy policy
	Trademarks

	Contents
	1 Cúram server developer
	1.1 Building and configuring a Cúram application
	Directory Structure
	Application components
	Application directory structure
	Source artifacts of the Cúram application
	Cúram application build structure

	Artifacts of the SDEJ

	Build files and their targets
	How to initiate the build
	Overriding default JUNIT.JAR
	How to configure the build
	Cúram Build Settings
	Java Compiler Settings
	Java Task Settings
	Generator Settings
	LANG Environment variable for Linux®

	What is happening under the hood
	generated
	wsconnector
	emx2xml
	modelgen
	msggen
	ctgen
	evgen
	compile.generated

	implemented
	compile.implemented

	Utility Targets
	Clover Targets
	Rules Targets
	IEG Targets
	Application Configuration Import and Export Targets
	Workflow Targets
	Deployment Targets
	Extending the Build
	Introducing a new script

	Overridden Targets
	Application Targets
	BI App
	CREOLE
	Evidence Generation

	Cúram Configuration Settings
	Application Properties
	Application prx
	How to merge an application prx file

	Bootstrap.properties

	Support for multiple time zones
	Dates and date/times in Cúram

	Data Manager
	Intended Data Manager process
	Planning for MBCS data

	Invocation
	Database artifacts
	Data definition XML files
	Data contents DMX files
	The table element
	The <attribute> element

	How to customize a DMX file
	Retrieving values from DMX files for database insertion
	Validation of DMX files
	Tracing Information for the DMX Merging Process

	Database Object Naming
	(deprecated) Short Name Substitution
	Primary key indices
	Primary key constraints
	Automatic index generation
	Tablespaces

	Data Manager configuration
	Database Synchronization
	Statistics
	LOB Manager

	SQL Checker
	Under the Hood
	Limitations

	1.2 SDEJ development and application programming interfaces
	Eclipse
	Cúram projects to import into Eclipse
	Eclipse configuration files
	.project file
	The .classpath file
	Eclipse .classpath generation

	.settings directory

	Access Rules option
	Working Sets

	Logging that uses Apache log4j 2 API
	Logging usage
	Logging hierarchy
	Logging trace levels
	Configuring the Apache Log4j 2 logging utility
	Logging statistics
	Localization of log messages
	How to enable dynamic UIM tracing

	How to use exceptions
	Constructing an exception
	Creating messages with argument placeholders
	Handling exceptions
	Logging exceptions
	General exception guidelines
	Coding Conventions for Exceptions
	How to use the Record Not Found indicator
	Localized output
	Use of the Informational Manager

	Message files
	The Format of Message Files
	The <messages> Element

	Customizing a Message File
	Rules of Message Merges

	Artefacts Produced by msggen Build Target
	Retrieving Messages from Message Files
	Writing Messages To Server Logs
	Localizing SDEJ Message Files

	Code table files
	The code table file format
	Customizing a code table file
	Rules of code table merges

	Artifacts produced by the ctgen build target
	Code table hierarchy
	Retrieving locale codes from code table files
	Localizing SDEJ code table files

	Specialized readmulti operations
	When to Use Readmulti Operations
	How to define your own readmulti operations
	Extra features of readmulti operations
	An alternative
	Summary

	Deprecation
	Overview
	Other Sources of Information

	Effect of Deprecation on a Custom Application
	Customizations and References
	Support for Deprecated artifacts
	Effect of Deprecation on the User Interface
	Reinstating Deprecated Functionality

	Scope
	Artifact types that can be deprecated
	Limitations of the deprecation infrastructure

	Running a Deprecation Report
	Configuring the Deprecation Report
	Prerequisites for running the Deprecation Report
	Generating the Deprecation build output
	Identifying deprecation warnings in the build output
	Notes on running the Deprecation Report

	Analyzing Deprecation Warnings
	Identifying overrides of deprecated artifacts
	Addressing overrides of deprecated artifacts

	Identifying references to deprecated artifacts
	Notes on analyzing deprecation warnings

	User Preferences
	User Preferences Definition
	Data definition XML file
	Properties files

	Development support
	External users
	Localizing display names
	Localizing infrastructure preferences display names

	1.3 Application Resources
	Locale of Application Resource
	Fallback for properties files

	1.4 Cúram runtime behavior
	Transaction control
	Transactions and method invocations
	Optimistic locking and the forUpdate flag
	General guidelines
	Underlying design
	DB2
	Oracle

	Use of the transaction SQL query cache
	How results get stored in the query cache
	How the cache gets invalidated
	How to set the property for the transaction SQL cache
	SQLQueryCacheAdmin API
	SQLQueryCacheUtil API
	Logging

	Deferred processing
	Model your deferred processes
	Deferred process enactment
	WMInstanceData

	Offline Unit-Testing of Deferred Processes
	Configuration of Deferred Processing Table
	Error Handling
	Security
	Deferred Processing summary

	Cúram timers
	Java™ Platform, Enterprise Edition bean definition
	Development support
	TimerInfo Class
	TimerTask Class
	TimerCallback interface
	Code sample:

	Rules for using Cúram timers
	Timer behavior
	FAQ

	Events and event handlers
	The Format of Event Files
	Event definition
	Event handler registration

	How to merge event files
	Rules of event definition merges
	Rules of event handler merges

	Artifacts produced by generate events
	Database Scripts
	Java event code example

	How to raise an event
	Event handlers
	Event filters

	Unique IDs
	What Unique IDs are used for
	The limit of allocating Unique IDs
	When Unique IDs need to be used
	When not to use Unique IDs
	Do keys need to be human-readable?
	When contiguous human-readable Unique IDs are required
	The way to design Unique IDs
	Overview of the Range Aware Key Server
	Overview of the Range Aware Key Server
	How the Range Aware Key Server generates primary keys
	Where to use the Range Aware Key Server

	1.5 Cúram configuration parameters
	Bootstrap.properties
	Dynamic properties in Application.prx
	Static properties in Application.prx
	KeyServer

	Variable property settings

	1.6 Infrastructure auditing settings
	Default table-level audit setting

